42
1 S. Coelli, M. Monti - INFN MILANO Istituto Nazionale di Fisica Nucleare Sezione di Milano LHCb – UT TRACKER UPGRADE 30 September 2013 UT TRACKER DETECTOR MECHANICAL DESIGN «TILES» BASED CONCEPT PROPOSAL

Istituto Nazionale di Fisica Nucleare Sezione di Milano

  • Upload
    soyala

  • View
    43

  • Download
    0

Embed Size (px)

DESCRIPTION

LHCb – UT TRACKER UPGRADE. Istituto Nazionale di Fisica Nucleare Sezione di Milano. UT TRACKER DETECTOR MECHANICAL DESIGN «TILES» BASED CONCEPT PROPOSAL. Summary :. REQUIREMENTS AND MECHANICAL CONSTRAINS DESCRIPTION OF THE TILE CONCEPT ADVANTAGES OF THE PROPOSED SOLUTION - PowerPoint PPT Presentation

Citation preview

Page 1: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

1S. Coelli, M. Monti - INFN MILANO

Istituto Nazionale di Fisica NucleareSezione di Milano

LHCb – UT TRACKER UPGRADE

30 September 2013

UT TRACKER DETECTOR MECHANICAL DESIGN

«TILES» BASED CONCEPTPROPOSAL

Page 2: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

2S. Coelli, M. Monti - INFN MILANO

30 September 2013

• REQUIREMENTS AND MECHANICAL CONSTRAINS• DESCRIPTION OF THE TILE CONCEPT• ADVANTAGES OF THE PROPOSED SOLUTION• MECHANICAL DESIGN OF A BASELINE GEOMETRY• STAVE INTEGRATION PROCEDURE• THERMAL ANALYSIS• RADIATION LENGTH EVALUATION• GOALS FOR FUTURE OPTIMIZATION AND EVOLUTION• STRUCTURAL MECHANICAL ANALYSIS: END OF STAVE KINEMATICS • THERMO-MECHANICAL DEFORMATION INDUCED BY THE COOLING

DOWN• PROTOTYPES DESIGN; USE OF SHORT STAVELETS AND SELECTED FULL

LENGTH STAVES• MATERIALS PROCUREMENT PLAN• COMPOSITES COMPANY COLLABORATION• THERMAL TEST INFRASTRUCTURE WORK IN PROGRESS

Summary:

Page 3: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

3S. Coelli, M. Monti - INFN MILANO

30 September 2013

Given :

• the geometry of the sensors and of the relevant electronic circuits, namely the ASICs connected to the sensor

• the UT tracker global geometry and the choice of having a modular vertical element that we call a «stave»

REQUIREMENTS AND MECHANICAL CONSTRAINS

Page 4: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

4S. Coelli, M. Monti - INFN MILANO

30 September 2013

Sketch of a typical sensor and its cables

REQUIREMENTS AND MECHANICAL CONSTRAINS

After discussion with M. Citterio, having expertise in this electronic field:• About a realistic geometry of the signal/power connection flexbus: it

appears that these are long objects modelizable using a «rectangular» section, and the typical width is something around 10 mm, much less wide than the sensor and overall stave largeness, that is 97,5 mm

• About the necessity to have a kind of self-standing suffiently rigid support for the sensor, during all the phases from the connection (bonding) to the ASIC etc., passing trought the test of each sensor during a qualification process, to the final integration of a stave with all the 7+7 sensor on it

• The stave is to be attached at the end on a global mechanical support providing the correct kinematics and cooling connection

Page 5: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

5S. Coelli, M. Monti - INFN MILANO

30 September 2013

REQUIREMENTS AND MECHANICAL CONSTRAINS

• The flexbus are objects to be developed and their real properties will be measured only too late

• In general they will be a “mixture” of metallic (Copper or Aluminum) conductor embedded into a insulating matrix (Kapton)

• Flexbus conductive Kth properties depends on the final design• Flexbus mechanical properties: final geometry (dimensions), % of the component

materials, relevant coefficient of thermal expansion (CTE) and Young modules• all these depend on the final design, and all are needed within a good tolerance to

run a simulation• ONLY IF we’ll rely on these flexbus to position the sensor on the stave and

moreover if we use them as thermal conductors• High CTE and a not very precise geometry are expected from the flexbus materials

(from the point of view of a tracker sensor!)• => that’s why we’re trying to propose a stave having the flexbus not underbneath

the sensor but attached laterally and using a somewhat indipendent mechanical support

• sensor/flexbus connection areas will be taken in account • the mechanical modularity of the stave could be based on a “TILE” having

mounted on it a sensor and its attached hybrid circuit and electronics (ASICS etc)

Page 6: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

6S. Coelli, M. Monti - INFN MILANO

30 September 2013

Description of the layers that make up a TILE MODULE

Sketch of a TILE MODULE,the UNIT WITH ONE SENSOR

DESCRIPTION OF THE TILE CONCEPT

SENSOR

CFRP «TILE» MECHANICAL SUPPORT

The red layers are ALL glue layers

HYBRID

ASICs

Page 7: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

7

EXPLOITING:• LATERAL POSITIONING OF SIGNAL / POWER CONNECTION FLEXBUS(ALTERNATIVE TO GLUING ON TOP/PUT UNDERNEATH THE SENSOR)• USE OF CFRP TILES MODULES TO SUPPORT THE SENSORS AND ITS

ELECTRONICS• SEMPLIFICATED INTEGRATION MANAGEMENT (see next slides) • LONGITUDINAL CFRP STRUCTURAL SUPPORTS (FORMING A SANDWICH

PANEL TOGETHER WITH THE GLUED TILES)• HIGH CONDUCTIVE /LOW WEIGHT CARBON FOAM CORE• EVAPORATING CO2 COOLING PIPE(S) EMBEDDED INTO THE CARBON FOAM

S. Coelli, M. Monti - INFN MILANO30 September 2013

TRACKER DETECTOR LOCAL SUPPORTSMECHANICAL DESIGN PROPOSAL SOLUTION

typical sensor element mounted on the staveThe same geometry concept is applicable for 4, 8 or 16 ASICs

..Please see next slides for more details..

Page 8: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

8S. Coelli, M. Monti - INFN MILANO

30 September 2013

CROSS SECTION OF THE STAVE

LONGITUDINAL CFRP STRUCTURAL SUPPORTS (FORMING A SANDWICH PANEL TOGETHER WITH THE GLUED TILES AND THE CORE IN CARBON FOAM)THE BASELINE DESIGN PROVIDES A COUPLE OF SHAPED LONGERONS => DIMENSIONS AND LAY-UP TO BE OPTIMIZED

MECHANICAL DESIGN OF A BASELINE GEOMETRY

STRUCTURAL ELEMENTS DETAIL

SPACE TO ALLOCATE THE POWER / SIGNAL FLEXBUSDOT GLUED INTO THE LATERAL SPACECAN ALSO STICK OUTSIDE IF NEEDED

Page 9: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

9S. Coelli, M. Monti - INFN MILANO

30 September 2013

MECHANICAL DESIGN OF A BASELINE GEOMETRY

TYPICAL STAVE WITH SIGNAL AND POWER FLEXBUS CABLES PUT ON BOTH THE LEFT AND THE RIGHT SIDESSERVICING ONE HALF STAVE

SIGNAL AND POWER FLEXBUS SIGNAL AND POWER FLEXBUS

SIGNAL AND POWER FLEXBUS

SIGNAL AND POWER FLEXBUS

Page 10: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

10S. Coelli, M. Monti - INFN MILANO

30 September 2013

MECHANICAL DESIGN OF A BASELINE GEOMETRY

GEOMETRY CONCEPT FOR SIGNAL AND POWER FLEXBUS POSITIONINGCONNNECTED TO THE HYBRIDBONDING?PRESHAPED FLEX INCLUDING HYBRID CONNECTION?DETAILS TO BE DEFINED

SENSOR CONNECTION TO THE ASICsBONDING?(SKETCH)

Page 11: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

11S. Coelli, M. Monti - INFN MILANO

30 September 2013

STAVE INTEGRATION PROCEDURE

THE GOAL IS TO DESIGN A REALISTIC STAVE INTEGRATION PROCESSTAKING INTO ACCOUNT EVERY STEP

THE FOLLOWING IS A BASELINE APPROACHTO BE STEPS OR CHANGED EVERYWHERE NEEDED

ASSEMBLING OF A TILE MODULEOPERATION TO BE REPEATED FOR EACH MODULE 4 PLANES X 16 STAVES X 7 MODULE ON EACH SIDE (14 SENSORS) = 896 UNITS GEOMETRICALLY IDENTICALWITH SENSOR AND ASSOCIATED ELECTRONICS CHANGING ACCORDINGLY TO THE POSITION WHITIN THE TRACKERTHE UNIT INCORPORATES A CARBON FIBER REINFORCED PLATE SUPPORT : BASELINE STACKING SEQUENCE (O/90/0), EPOXY MATRIX, VOLUM FIBER ~70%MECHANICAL STABILITY AND THERMAL CONDUCTION ASSURED BY DEDICATED GLUE LAYERS

Page 12: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

12S. Coelli, M. Monti - INFN MILANO

30 September 2013

STAVE INTEGRATION PROCEDURE

BONNDING AND TESTING OF A TILE MODULE

THE SEQUENCE OF PROCESS OPERATIONS NEED TO BE DEFINED IN DETAILTHE UNIT CAN BE MOVED AROUND DURING THE OPERATIONS HAVING SMALL GEOMETRY (approx 10 cm X 15 cm) AND A SELF CONSISTENT MECHANICAL SUPPORT

AFTER PASSING THE QUALIFICATION PROCESS EACH UNIT IS READY TO BE INTEGRATED IN A STAVE

Page 13: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

13S. Coelli, M. Monti - INFN MILANO

30 September 2013

PREPARATION OF A STAVE UNIT

STAVE INTEGRATION PROCEDURE

THE CARBON FOAM HALF BOTTOM IS MACHINE WORKED WITH SEMI-CYLINDICAL GROOVES TO EMBED THE COOLING PIPESNOTE THAT THERE ARE SEVERAL PIECES LONGITUDINALLY DUE TO STARTING RAW MATERIAL DIMENSION (30cm long i.e.)

CFRP LONGERONSCOMPOSITE CURED POSSIBLY IN FULL LENGTH (~1 m)

1 OR 2 STRAIGHT COOLING PIPES (TITANIUM / STAINLESS STEEL / ..)LENGTH (~1,5 m)WITH THE RELEVANT CONNECTION FITTING ALREADY WELDED, PRESSURE TESTED AND QUALIFIED

GLUING ALL THE PARTS WITH ACCURACY ON A REFERENCE TOOL REFERRED TO A GRANITE TABLE

Page 14: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

14S. Coelli, M. Monti - INFN MILANO

30 September 2013

PREPARATION OF A STAVE UNIT

STAVE INTEGRATION PROCEDURE

THE CARBON FOAM HALF TOP IS MACHINE WORKED WITH SEMI-CYLINDICAL GROOVES TO EMBED THE COOLING PIPES

GLUING THE PART WITH ACCURACY USING A REFERENCE TOOL REFERRED TO A GRANITE TABLE

AFTER THE MECHANICAL QUALIFICATION (METROLOGY AND MECHANICAL TEST TO BE DEFINED )THIS «CORE» SUPPORT IS READY ACCEPT THE TILES MODULES, TO BE GLUED ON IT

FLEXBUS CABLESLATERALPOSITIONING

Page 15: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

15S. Coelli, M. Monti - INFN MILANO

30 September 2013

STAVE INTEGRATION PROCEDURE

THE TILE MODULES ARE GLUED IN THE CORRECT POSITION

GLUING THE MODULES WITH ACCURACY USING A REFERENCE TOOL OR A ROBOT REFERRED TO A GRANITE TABLE

THE FLEXBUS INTEGRATION NEED TO BE STUDIED IN DETAIL: ADDED BEFORE OR AFTER MODULES INTEGRATION?

A STRUCTURAL GLUE LAYER ATTACHES THE COMPOSITE TILES TO THE LONGERONS

A GLUE CONDUCTIVE LAYER UNDERNEATH THE TILE THERMALLY CONNECTS THE MODULE TO THE CARBON FOAM

Page 16: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

16S. Coelli, M. Monti - INFN MILANO

30 September 2013

STAVE INTEGRATION PROCEDURE

ALL THE TILE MODULES ARE GLUED IN THE CORRECT POSITION COMPLETING THE INTEGRATION ON ONE SIDE OF THE STAVE

INTEGRATION WITHOUTOR WITH THE FLEXBUS CABLESALREADY IN POSITIONTO BE DEFINED

Page 17: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

17S. Coelli, M. Monti - INFN MILANO

30 September 2013

INTEGRATION ON OTHER SIDE OF THE STAVEALL THE TILE MODULES ARE GLUED IN THE

CORRECT POSITION

STAVE INTEGRATION PROCEDURE

OVERTURNING THE STAVE UNDER CONSTRUCTIONUSING A DEDICATED TOOLTHE OTHER STAVE FACE IS ACCESSIBLE TO ATTACH THE TILE MODULES

BACK FACE TILE MODULE

BACK FACE TILE MODULE

GLUING THE MODULES WITH ACCURACY USING A REFERENCE TOOL OR A ROBOT REFERRED TO A GRANITE TABLE

Page 18: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

18S. Coelli, M. Monti - INFN MILANO

30 September 2013

STAVE INTEGRATION PROCEDURE TOWARD FINAL INSTALLATION

AFTER THE INTEGRATION PROCESS THE TILES GLUED ON THE TWO SIDES TO THE LONGERONS MAKE THE STAVE TO BECOME A SANDWICH PANELTHAT HAS A MECHANICAL STABILITY AND RIGIDITY

CONNECTION OF THE HYBRID CIRCUITS TO THE POWER/SIGNAL FLEXBUSIF NOT ALREADY PRESENT CAN BE MADE

USING A DEDICATE TRANSPORTATION TOOL THE STAVE CAN BE CAREFULLY MOVED TO COMPLETE THE INSTALLATION PROCESS AND QUALIFICATION

END OF STAVE PARTS (MACHINED PEEK POLYMER) ARE GLUED TO FIX THE STAVE TO THE TRACKER MECHANICAL SUPPORT, TO BE DEFINED

STAVE UNITFRONT AND BACK VIEWS OF A STAVE WITH ALL THE MODULES ON IT

Page 19: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

19S. Coelli, M. Monti - INFN MILANO

30 September 2013

STAVE SECTION SHOWING ONLY THE STRUCTURAL PARTS:• CFRP (0/90/0) LONGERON => TO BE OPTIMIZED• CFRP (0/90/0) TILES => TO BE OPTIMIZED• GLUED TOGETHER• FILLING CORE MATERIAL CARBON FOAM ACTS AS THERMAL CONDUCTOR AND

HELPS TO MAINTAIN GEOMETRICAL STABILITY

STAVE MECHANICSSTRUCTURAL DETAILS

Page 20: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

20S. Coelli, M. Monti - INFN MILANO

30 September 2013

STAVE SECTION SHOWING ONLY THE STRUCTURAL PARTS:• COMPOSITE CFRP (0/90/0) LONGERON => TO BE OPTIMIZED BY F.E.M ANALYSIS• COMPOSITE CFRP (0/90/0) TILES => TO BE OPTIMIZED BY F.E.M ANALYSIS• GLUING PROCESS => TO BE OPTIMIZED USING REAL PROTOTYPES• FILLING CORE MATERIAL CARBON FOAM (NOT SHOWN HERE) ACTS AS THERMAL

CONDUCTOR AND HELPS TO MAINTAIN GEOMETRICAL STABILITY => THICKNESS TO BE OPTIMIZED

• PIPE NUMBER AND DIMENSIONS (DIAMETER, MATERIAL, THICKNESS) => TO BE OPTIMIZED

STAVE MECHANICSSTRUCTURAL DETAILS

STRUCTURAL COMPOSITESGLUED CONTACTS

Page 21: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

21S. Coelli, M. Monti - INFN MILANO

30 September 2013

3D MODEL EXTRACT SHOWING THE OVERLAP BETWEEN TILE MODULES ON OPPOSITE SIDESTHE OVERLAP BETWEEN SENSOR IS 1,4 mm AS REQUIREDTILE DIMENSION IS DICTATED BY THE MODULEELECTRONICS REQUIREMENTSMINIMIZATION OF MATERIAL IS A GUIDELINETOGETHER WITH CORRECT THERMAL MANAGEMENT

STAVE MECHANICSSTRUCTURAL DETAILS

Page 22: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

22S. Coelli, M. Monti - INFN MILANO

30 September 2013

ANSYS FINITE ELEMENT METHOD ANALYSISVIEW OF MESHED MODEL

CROSS SECTION AND TOP VIEW

STAVE THERMAL ANALYSIS

Page 23: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

23S. Coelli, M. Monti - INFN MILANO

30 September 2013

Selected the «B» type stave to start:

• It has same maximum power as the central stave «A» type

• Chosen to start a detailed full lenght stave design avoiding the beam pipe interference problems in the first phase

UTAX plane sketch

Page 24: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

24S. Coelli, M. Monti - INFN MILANO

30 September 2013

THERMAL ANALYSIS IS PERFORMED OVER AREPRESENTATIVE THREE MODULE STAVE SECTIONUSING THE MAXIMUM THERMALLY LOADED SECTIONWHERE THERE ARE 16 ASIC POWER SOURCES IN EACH TILE MODULE

STAVE THERMAL ANALYSIS

Page 25: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

25S. Coelli, M. Monti - INFN MILANO

30 September 2013

MESHING DETAIL NOTESDUE TO SMALL (GLUE) THICKNESS LAYERSATTENTION MUST BE PAYD ON THE MODELIZATIONTO OBTAIN MODEL RUNNABLE IN A REASONABLE TIME

CONTACT ELEMENTS ARE ANOTHER PROBLEMATIC ISSUE:LARGE NUMBER AND NODES LOCATION INSIDE ACTIVE ELEMENTS (UNDER THE ASICs)

STAVE THERMAL ANALYSIS

Page 26: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

26S. Coelli, M. Monti - INFN MILANO

30 September 2013

BOUNDARY CONDITIONS:ASICs THERMAL POWER (~1,4 W/ASIC)

STAVE THERMAL ANALYSIS

Page 27: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

27S. Coelli, M. Monti - INFN MILANO

30 September 2013

BOUNDARY CONDITIONS:SENSOR THERMAL POWER (~0,5 W)

STAVE THERMAL ANALYSIS

Page 28: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

28S. Coelli, M. Monti - INFN MILANO

30 September 2013

BOUNDARY CONDITIONS:PIPE INTERNAL WALL TEMPERATURE FIXED TO 0 °CFOR AN EVALUATION OF THE THERMAL GRADIENTSMATERIAL THERMAL PROPERTIES ARE NON TEMPERATURE DEPENDANTTHE SIMULATION OUTCOME CAN BE TRANSLATED TO THE REAL FIGURES SUBCTRACTING THE REAL INNER COOLANT TEMPERATUREFOR EVAPORATING CO2 -25 °C CAN BE USEDA SA A GUIDELINE

STAVE THERMAL ANALYSIS

Page 29: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

29S. Coelli, M. Monti - INFN MILANO

30 September 2013

SIMULATION CALCULATION RESULTGENERAL BEHAVIOUR IMAGE SHOWINGEXTERNAL ASICs TEMPERATURE WITH LOCAL MAXIMUM DT OF 25 °CITERATIONS ALREADY HAS BEEN DONE MOVING THE PIPES LATERALLY TO REDUCE THE MAX T AND REDUCING THE LATERAL SPACE LEFT TO THE FLEXBUS CABLES ACCORDINGLY TO INDICATION FROM M. CITTERIO THAT IS WORKING ON THIS ITEM

STAVE THERMAL ANALYSIS

Page 30: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

30S. Coelli, M. Monti - INFN MILANO

30 September 2013

SIMULATION CALCULATION RESULTDETAIL OF THE TEMPERATURES IN ASICs REGION AND OVER THE SENSORITERATIONS HAS BEEN DONE ON THE DISTANCE SENSOR-ASIC FROM 0.5 TO 2 mm TO REDUCE A LOCAL T PEAK CAUSED ON THE CORNER OF THE SENSOR BY THE POWER OF EXTERNAL SENSOROPTIMIZATION GOALS ARE TO REDUCE ASIC T PEAK AND LEVEL T OVER THE SENSORÞ WORK IN PROGRESS MANAGING THERMAL PATHS:Þ CARBON FOAM COULD LOCALLY EMERGE TROUGHT THE TILE CFRP TO BETTER

CONTACT POWER SOURCES, TAKING INTO ACCOUNT THE DESIGN FEASIBILITY I.E. CARBON FOAM MACHINING AND GLUING ON THE FOAM MATERIAL TECHNICAL PROBLEMS => PROTOTYPES DEMONSTRATION NEEDED

STAVE THERMAL ANALYSIS

Page 31: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

31S. Coelli, M. Monti - INFN MILANO

30 September 2013

GENERAL CONSIDERATIONS

THE PROPOSED GEOMETRY LOOKS PROMIZING IN SOLVING THE DESIGN PROBLEMCOLLABORATION COMMENTS ARE WELCOME TO POINT OUT ANY INADVERTENCEAND PROPOSAL TO BE STUDIED

A MATERIAL DATABASE HAS BEEN CREATED CONTAINING ALL THE MATERIALS USED IN THE SIMULATION (SEE FOLLOWING PAGE)

MATERIALS TO BE USED IN REAL PROTOTTYPES HAVE TO BE CHARACTERIZED WHEN NEEDED BY DEDICATED MEASUREMENT

THIS IMPLIES A MATERIAL PROCUREMENT PLAN TO BE DISCUSSED INTO THE COLLABORATION TO OPTIMAZIZE TIME AND COST

CARBON FOAM CAN BE GRAPHITIC OR RCV-BASED MATERIAL AND COMES INTO ROW BLOCKS TO BE MACHINED

THE NECESSARY PRELIMINARY STEP IS A DESIGN APPROVAL AFTER SOME OPTIMIZATION TO PRODUCE THE TECHNICAL DRAWINGS FOR TEST PROTOTYPES PRODUCTION

Page 32: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

32S. Coelli, M. Monti - INFN MILANO

30 September 2013

GENERAL CONSIDERATIONS

THE PROPOSED GEOMETRY LOOKS PROMIZING IN SOLVING THE DESIGN PROBLEMCOLLABORATION COMMENTS ARE WELCOME TO POINT OUT ANY INADVERTENCEAND PROPOSAL TO BE STUDIED

A MATERIAL DATABASE HAS BEEN CREATED CONTAINING ALL THE MATERIALS USED IN THE SIMULATION (SEE FOLLOWING PAGE)

MATERIALS TO BE USED IN REAL PROTOTTYPES HAVE TO BE CHARACTERIZED WHEN NEEDED BY DEDICATED MEASUREMENT

THIS IMPLIES A MATERIAL PROCUREMENT PLAN TO BE DISCUSSED INTO THE COLLABORATION TO OPTIMAZIZE TIME AND COST

CARBON FOAM CAN BE GRAPHITIC OR RCV-BASED MATERIAL AND COMES INTO ROW BLOCKS TO BE MACHINED

THE NECESSARY PRELIMINARY STEP IS A DESIGN APPROVAL AFTER SOME OPTIMIZATION TO PRODUCE THE TECHNICAL DRAWINGS FOR TEST PROTOTYPES PRODUCTION

Page 33: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

33S. Coelli, M. Monti - INFN MILANO

30 September 2013

LAPP - IVW PIXEL MEETING

ASSUMPTION

TO BE BETTER DEFINED

DATA SOURCEATLAS IBL TDR

UNIVERSITY OF WASHINGTON

MATWEB

CALCULATED BY ESACOMP

GENERAL DATASHEET

rev. 2 27/09/2013

Type Thickness [µm]

EX [GPa]

PRYZ = PRXZr

[Kg/m3]CTEX

[ppm/K]CTEY = CTEZ

[ppm/K]K

[W / m K] Fiber Vol. Ratio X0 Rad. Length. [cm]

Fiber K13CResin System RS3

LAMINATE Lay-up (0/90/0) 200 276 1731 0,933 1,21 Kx 64/ Ky 32

Kz 0,5 28

Type ECOMPR. [GPa]

Poisson coefficient

r

[Kg/m3]CTE

[ppm/K]K

[W / m K]Compression

Strength [Mpa]X0 Rad. Length.

[cm]

Option 1 KFOAM L1 250 0,894 0,30 245 2 30 9,9 174

Type Thickness [µm] E [Gpa]

r

[Kg/m3]CTE [ppm/K] K [W / m K] Fiber Vol. Ratio X0 Rad. Length.

[cm]Fiber T-300 231,00 1760 -1,50 8.5/5 [/^]

Resin System Epoxy 4,5 1200 70 0,2

LAMINATE Lay-up (-45/+45) 300 1500 2 0,5 50% 28

Type Thickness [µm]

E [GPa]

Poisson coefficient

r

[Kg/m3]CTE

[ppm/K]K

[W / m K]X0 Rad. Length.

[cm]

Option 1 I.D. 2,0 mm - O.D. 2,2 mm

Option 2 I.D. 1,5 mm - O.D. 1,7 mm

Type Thickness [µm]

E [Gpa]

Poisson coefficient

r

[Kg/m3]CTE

[ppm/K]K

[W / m K]X0 Rad. Length.

[cm]

Option 1 I.D. 1,5 mm - O.D. 1,7 mm ? AISI 304 100? 196 8000 17,30 16,2 1,76

Type Thickness [µm]

E [Gpa]

Poisson coefficient

r

[Kg/m3]CTE

[ppm/K]K

[W / m K]X0 Rad. Length.

[cm]

Option 1 70% Al - 30% KAPTON 200 2314,6 147 14,81

Option 2 70% Cu - 30% KAPTON 200 2314,6 280 9,588

Type Thickness [µm]

E [Gpa]

Poisson coefficient

r

[Kg/m3]CTE

[ppm/K]K

[W / m K]X0 Rad. Length.

[cm]

Option 1 35% Cu - 65% KAPTON 100 4049,55 140 29,754

Type Thickness [µm]

E [Gpa]

Poisson coefficient

r

[Kg/m3]CTE

[ppm/K]K

[W / m K]X0 Rad. Length.

[cm]

SENSOR 250

ASICS 100

Type Thickness [µm]

E [Gpa]

Poisson coefficient

r

[Kg/m3]CTE

[ppm/K]K

[W / m K]X0 Rad. Length.

[cm]

PIPE GLUE STYCAST 100 1

FOAM/CFRP/FLEX GLUE EPOXY 100 1,2

MODULE ADHESIVE SE4445 100 2740 0,8

Type Thickness [µm]

E [Gpa]

Poisson coefficient

r

[Kg/m3]CTE

[ppm/K]K

[W / m K]X0 Rad. Length.

[cm]

Option 1 ALUMINUM NITRIDE 3260 180

Option 2 TPG20 2200 0,5 (ab)

6,5 (c)400 (ab) 3,5 (c) 20,5

Option 3 TPG1500 (ab)

10 (c)

Type Thickness [µm]

E [Gpa]

Poisson coefficient

r

[Kg/m3]CTE

[ppm/K]K

[W / m K]X0 Rad. Length.

[cm]

VICTREX PEEK 450CA30 25 1400 40 0,95 31,9

TITANIUM PIPE

CARBON FOAM

CARBON PIPE

Ti grade II Annealed 100

Option 1

CFRP

Prepreg K13C/RS3 65 410 0,39 -0,765

8,904510

15,00

0,34

SIGNAL/POWER FLEX

HYBRID FLEX SUBSTRATE

SENSOR/ASICS SILICON

1690

60%Option 1

16,4

9,36

35

THERMAL SPREADERS

2,49 124

3,59102

STAINLESS STEEL PIPE

PEEK

GLUE/ADHESIVE LAYERS

112SILICON 0,28 2329

MATERIAL PROPERTIES DATABASE FOR THE LHCb UT STAVE

Page 34: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

34S. Coelli, M. Monti - INFN MILANO

30 September 2013

THE % X/X0 OF THIS BASELINE DESIGN NEEDTO BE REFINED (STAVE THICKNESS I.E.)REDUCTION OF MATERIAL BUDGET IS POSSIBLE BUT SOME MARGIN IS NECESSARY

RADIATION LENGTH EVALUATION

Page 35: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

35S. Coelli, M. Monti - INFN MILANO

30 September 2013

PART. MATERIALDENSITY [gr/cm3]

RAD. L. X0

[cm]VOLUME (FEA)

[cm3]VOL. %

EQUIV. THICK. [cm]

CALCULATED X/X0

X/Xo(%)

PIPE (N°2) TITANIUM 4,51 3,59 0,454 0,4 0,001353 0,00038 0,038

K-FOAM CARBON 0,245 174 87,368 82,6 0,260413 0,00150 0,150

CARBON RIBS (N°2) CARBON FIBER + EPOXY 1,731 28 1,348 1,3 0,004018 0,00014 0,014

CFRP (N°3 complete + N°2 partial) CARBON FIBER + EPOXY 1,731 28 8,383 7,9 0,024986 0,00089 0,089

PIPE GLUE STYCAST GLUE 1,2 35,0 0,497 0,5 0,001482 0,00004 0,004

FOAM GLUE EPOXY GLUE 1,2 35,0 2,151 2,0 0,006410 0,00018 0,018

RIBS GLUE EPOXY GLUE 1,2 35,0 0,275 0,3 0,000821 0,00002 0,002

CFRP GLUE EPOXY GLUE 1,2 35,0 3,160 3,0 0,009418 0,00027 0,027

CO2 (N°2 PIPES) AVERAGE 75%LIQ.-25% S. CO2 VAPOUR PHASE AVERAGE 25% 0,58 63,0 2,161 2,0 0,006441 0,00010 0,010

105,80 100,0 TOTAL X/Xo(%) 0,353105,80

PART. MATERIALDENSITY [gr/cm3]

RAD. L. X0

[cm]VOLUME (FEA)

[cm3]VOL. %

EQUIV. THICK. [cm]

CALCULATED X/X0

X/Xo(%)

SENSORS (N°3 complete + N°2 partial) SILICON 2,329 9,36 8,505 46,8 0,025349 0,00271 0,271

ASICS (N°48) SILICON 2,329 9,36 0,171 0,9 0,000510 0,00005 0,005

SENSORS ADHESIVE SE4445 1,2 35,0 3,402 18,7 0,010139 0,00029 0,029

ASICS ADHESIVE SE4445 1,2 35,0 0,171 0,9 0,000510 0,00001 0,001

HYBRID (N°3) Cu 35% + KAPTON 65% 4,05 29,8 0,790 4,3 0,002354 0,00008 0,008

HYBRID GLUE EPOXY GLUE 1,2 35,0 0,790 4,3 0,002354 0,00007 0,007

FLEX SIGNAL/POWER CABLES (N°4) Cu 70% + KAPTON 30% 2,314 9,6 3,303 18,2 0,009846 0,00103 0,103

FLEX SIGNAL/POWER GLUE EPOXY GLUE 1,2 35,0 1,032 5,7 0,003075 0,00009 0,009

18,163 100,0 TOTAL X/Xo(%) 0,43318,163

0,786

RADIATION LENGTH - MECHANICAL STRUCTURE CONTRIBUTION (3D MODEL) - MILANO DESIGN -PROPOSAL WITH TWO TITANIUM PIPES

RADIATION LENGTH - ELECTRONICS EXTIMATE CONTRIBUTION (3D MODEL) - MILANO DESIGN - PROPOSAL WITH TWO TITANIUM PIPES

TOTAL X/Xo (%) MECHANICAL STRUCTURE + ELECTRONICS (ESTIMATED)

Page 36: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

36S. Coelli, M. Monti - INFN MILANO

30 September 2013

FUTURE WORKGOALS FOR FUTURE OPTIMIZATION AND EVOLUTION

PROBLEM OF HIGH VOLTAGE ACROSS CFRP TILE UNDER THE SENSOR NEED TO BE ADRESSED, A SOLUTION IMPLEMENTED IN SIMILAR HEP TRACKERS IS A PARYLENE COATING

COMPOSITE PARTS PRODUCTION NEEDS SPECIALIZED COMPANY EXPERTIZETEST PROTOTYPES CAN BE DESIGNED AD HOC FOR THE TEST

SHORT PROTOTYPE STAVELETS CAN BE DESIGNED FOR MECHANICAL PRODUCTION TEST AND THERMAL TEST (NUMBER? => MATERIAL PROC.)

FULL LENGTH STAVE PROTOTYPES CAN BE DESIGNED AND USED FOR MECHANICAL TEST, FULLY LOADED THERMAL TEST AND THERMOMECANICAL DEFORMATION MEASUREMENT

HYBRID AND FLEXBUS MATERIALS ARE RESONABLE HYPOTESIS TO BE CONFIRMEDUSE OF COPPER OR ALUMINUM AND THEIR % HAVE BIG IMPACT ON THERMAL PROPERTIES AND RADIATION LENGTH

VERY SMALL DIAMETER PIPE PRODUCTION IS MATERIAL DEPENDENT: USE OF TITANIUM OR S.S. IMPACTS THE ACTIVITY, A CHOICE HAS TO BE MADE

Page 37: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

37S. Coelli, M. Monti - INFN MILANO

30 September 2013

FUTURE WORKGOALS FOR FUTURE OPTIMIZATION AND EVOLUTION

F.E.M. ANALYSIS WORK PLAN SHOULD FORESEE:• THERMAL OPTIMIZATION • MECHANICAL ANALYSIS, GRAVITY LOADS AND KINEMATICS OF A FULL LENGTH STAVE

ATTACHEMENT: DESIGN OF THE END OF STAVE HAS TO TAKE IN ACCOUNT THERMAL EXPANSION/CONTRACTION AND FIXING TECHNIQUE (PEEK WITH PINS AND SLOTS SUGGESTED)

• THERMO-MECHANICAL ANALYSIS OF FULL LENGTH STAVE NEEDED TO OTIMIZE THE SHAPE AND LAY-UP OF THE STRUCTURAL COMPOSITE MATERIALS: GIVEN THE ACCEPTABLE DEFORMATION AND THE COOLING DOWN RANGE THE ITERATION ON THE COMPOSITES WITH ANSYS IS A VERY TIME CONSUMING AND DELICATE PROCESS

• PIPING MATERIAL AND DIMENSION HAS AN IMPACT: DRIVING FORCE FOR THE LONGITUDINAL STAVE CONTRACTION AND RELEVANT SENSORS DEFORMATION

• DYNAMIC ANALYSIS? NEED TO KNOW THE BOUNDARY CONDITIONS (VIBRATION INPUTS..)

LOADED EPOXY GLUES OR CFRP COMPOSITES R&D => TO IMPROVE THERMAL CONDUCTIVITY, EXPERIENCE MADE IN SIMILAR HEP TRACKER IS USEFUL AND MANDATORY NO TO SPEND TIME WITH WRONG TECHNIQUES, GLUE PROCESS IS A VERY SESIBLE ITEM FOR THE STAVE PRODUCTION

Page 38: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

38S. Coelli, M. Monti - INFN MILANO

30 September 2013

FUTURE WORKGOALS FOR FUTURE OPTIMIZATION AND EVOLUTION

THERMAL TEST INFRASTRUCTURE: COULD START USING A CHILLER TO TEST COOLING PERFORMANCES OF PROTOTYPES AND TO SET FUTURE MEASUREMENT

THERMAL PERFORMANCE DEMONSTRATION IS MANDATORY USING A CO2 PLANT

CERN LABORATORY CONTACT: WE’RE COLLABORATING WITH CERN DPT . TO SHARE EXPERIENCES IN THE COMMON EFFORT OF USING CO2 COOLING TECHNOLOGY

MECHANICAL METROLOGY UNDER COOLING

AND OTHER TEST TO BE CAREFULLY PLANNEDNEEDED THE REQUIREMENT IN THE FORM OF FIGURES: NOMINAL, MAXIMUM ACCEPTABLE UNDER SEVERAL SCENARIOS LIKE SWITCHING OFF PART OF THE SENSORS ETC.. => MAYBE USEFUL TO WRITE A REFERENCE DOCUMENT?

Page 39: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

S. Coelli, M. Monti - INFN MILANO 39

BACKUP SLIDES

30 September 2013

Page 40: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

S. Coelli, M. Monti - INFN MILANO30 September 2013 40

Half TRACKER planes areSupposed to move horizontally

opening like in the actual LHCb TT tracker

Page 41: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

S. Coelli, M. Monti - INFN MILANO

Calculation of the stave thermal powerto be dissipated with the cooling circuit

30 September 2013 41

From the Mechanical requirements document for UT Upgrade Tracker=> ASIC power estimate ~ 0.768 W/ASICNumber of ASICs in the «B» stave =28 * 4 = 112 ASICsÞ Total «B» stave power ~ 90 W Þ Total «half plane» power ~ 500 W

supposing to have a modularity with the 4 UT planes divided in:• 1 right half plane • 1 left half plane

To start thinking on the connectivity of the cooling system exploiting CO2 evaporation system

Proposal: use for each «half plane» • 1 lower inlet manifold,

distributing liquid CO2 to the staves

• 1 upper manifold, collecting hexaust CO2 (partially evaporated) from the staves

«right half plane»«left half plane»

CO2 (X = 0)

CO2 (~ 50%)

X := thermodynamic title Saturated liquid = 0%Saturated vapour =100%

Page 42: Istituto Nazionale  di Fisica Nucleare Sezione di  Milano

CO2 coling plant power first estimate

29 JULY 2013 Simone Coelli, Mauro Monti 42

The CO2 cooling plant should be a 2PACL system with cooling capacity: 4000 Watt@-30°C=> Need a specific plant design

For comparison Actual LHCb- VELOCooling capacity: 1500 W@-30°C