74
ISSCC 2012 Tutorial Getting In Touch with MEMS: The Electromechanical Interface Dr. Aaron Partridge [email protected] SiTime, Corp. February 19, 2012

ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

ISSCC 2012 Tutorial

Getting In Touch with MEMS:The Electromechanical Interface

Dr. Aaron [email protected], Corp.

February 19, 2012

Page 2: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 2 of 70Getting In Touch with MEMS:The Electromechanical Interface

Overview

These slides accompany the 2012 ISSCC Tutorial,Getting In Touch with MEMS: The ElectromechanicalInterface.

The tutorial is written for practicing IC engineers andstudents.  No MEMS background is needed.

The goal is to expand the attendee’s potential role fromcircuit designer to system designer. From “Here is theMEMS device, design the interface circuit.”into “Here isthe problem, define an optimal solution.”

Page 3: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 3 of 70Getting In Touch with MEMS:The Electromechanical Interface

Outline

o MEMS Materials, Processes, and Example Applications

o Electrical Interfaces

o Scaling Laws

o Packaging is Critical

o CMOS Integration

o How to Succeed

o References

Page 4: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 4 of 70Getting In Touch with MEMS:The Electromechanical Interface

o MEMS Materials, Processes, and Example Applications

o Electrical Interfaces

o Scaling Laws

o Packaging is Critical

o CMOS Integration

o How to Succeed

o References

Page 5: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 5 of 70Getting In Touch with MEMS:The Electromechanical Interface

Materials

o Standard Semiconductor Materialsn Silicon (single crystal and poly).n Oxide (thermal and deposited).n Nitride.n Aluminum.

o Unusual Materialsn Gold, various other metals.n Piezoelectrics (AlN mostly).n Plastics (e.g. SU­8).n And then just about anything else.

Page 6: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 6 of 70Getting In Touch with MEMS:The Electromechanical Interface

Processes

o Early in MEMS many unusualetches were common.

o Now standard fab processare preferred when possible.

o A few special processesn Bosch etch.n HF vapor etch.n Oxide plasma release.n Xenon difluoride (XeF2)

release.

o Deep etches are common.

Tuning fork resonator, Bosch 2003

S. Pourkamali, F. Ayazi, 2004

Page 7: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 7 of 70Getting In Touch with MEMS:The Electromechanical Interface

Example Applications

o MEMS will find its way into practically every application.

o Right now, it is strong inn Automotive (pressure, acceleration, rotation).n Consumer (acceleration, rotation, time).n Industrial and Military (pressure, acceleration).n Medicinal (pressure, biological sensors).

o Future hot apps will ben Medical, for diagnostic tools.n Timing, to replace quartz.n RF Filters, switches, etc.n Inertial, to sense motion of all types.

Page 8: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 8 of 70Getting In Touch with MEMS:The Electromechanical Interface

Pressure Sensors

Sensimed intraocular pressure sensor in contact lens

Page 9: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 9 of 70Getting In Touch with MEMS:The Electromechanical Interface

Accelerometers & Gyroscopes

Freescale accelerometer

Page 10: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 10 of 70Getting In Touch with MEMS:The Electromechanical Interface

Microphones

Akustica microphone

Page 11: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 11 of 70Getting In Touch with MEMS:The Electromechanical Interface

Light Modulators & Projectors

Two pixels in a TI DLP mirror array

Page 12: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 12 of 70Getting In Touch with MEMS:The Electromechanical Interface

Resonators & Oscillators

SiTime oscillator

Page 13: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 13 of 70Getting In Touch with MEMS:The Electromechanical Interface

RF Switches

G. Rebeiz UCSD, RF switch

Page 14: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 14 of 70Getting In Touch with MEMS:The Electromechanical Interface

o MEMS Materials, Processes, and Example Applications

o Electrical Interfaces

o Scaling Laws

o Packaging is Critical

o CMOS Integration

o How to Succeed

o References

Page 15: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 15 of 70Getting In Touch with MEMS:The Electromechanical Interface

Capacitive Overview

o Capacitive transduction is used in 90% of MEMSinterfaces.

o Good Points:n Easy to build, no need for special materials.n With the Bosch etch we can make beautiful cap structures.n Can move small to large distances.n Can move in­plane and out­of­plane.n Can sense tiny displacements.

o Bad points:n Often will not deliver as much force as desired.n Needs bias voltage, sometimes large.n Output signals can be very small.

Page 16: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 16 of 70Getting In Touch with MEMS:The Electromechanical Interface

Capacitive Drive

o How does capacitive drive work?Take a parallel plate example:

o Were F=force,  0=permittivity,w=width, h=height,g=capacitive gap, V=voltage.

o The voltage squared givesattractive forces and drivenonlinearity.

o The gap squared givesdisplacement nonlinearity.

222

VgwhF cε

=

V

g

h

w

F

Page 17: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 17 of 70Getting In Touch with MEMS:The Electromechanical Interface

Capacitive Drive

o Want bipolar force?

o We can offset the attraction (pullmore and pull less) with DC biasand AC drive.

o Set Vbias >> Vdrive and we get abipolar offset drive.

o As bias is increased and drive isdecreased the linearity improves.

22 )(

2 drivebiasc VVgwhF +=

ε

drivebiasc

offset VVgwhF 2

ε≈

g

h

w

Vbias+Vdrive

F

Page 18: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 18 of 70Getting In Touch with MEMS:The Electromechanical Interface

Capacitive Drive

o Second option for bipolar isdifferential (pull one way,pull the other),

o Offset and differential can becombined,

o Typical bias and drive are 5Vand 0.5V.

( )2222 rightleft

cdif VV

gwhF −=

ε

( )leftrightbiasc

dif VVVgwhF −≈ 2

ε

g

h

w

Fdif

Vleft

g

Vright

Page 19: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 19 of 70Getting In Touch with MEMS:The Electromechanical Interface

Capacitive Drive

o Interdigitated fingers(combs) can move furtherand are more linear.

o N is the number of fingers.

o Since p does not effect Fcit is linear in displacement.

o Pairs of fingers can beused differentially tolinearize V and push­pull.

2VghNF c

difε

=

V

g

h

p

Fc

V

Page 20: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 20 of 70Getting In Touch with MEMS:The Electromechanical Interface

Capacitive Sense

o For capacitive sensing, weneed to think about charge,

o We all learned that,

o But for MEMS sensing wesometimes care more about,

o And we use a bias Vdc, oftenabout 5V but can be 100’s!

dtdQiCVQ /, ==

)/( dtdVCi =

)/( dtdCVi dc= i

cap C

Any structures with dC/dxwork.  Fingers are common.

Page 21: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 21 of 70Getting In Touch with MEMS:The Electromechanical Interface

Capacitive Sense

o What you will need to do as an engineern Because capacitances are small, sense currents are small.n Design the lowest noise sense amps possible.n If noise is not critical then shrink the MEMS.n Always push the circuits, always simplify the MEMS.

o Drive Circuitsn For AC system (gyros, vibrometers, oscillators) we need to

sense AC current.n For DC systems (accelerometers) we need to modulate a

carrier.n Clasic accelerometer drives a differential signal on plates

and measures current with a lock­in amplifier.

Page 22: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 22 of 70Getting In Touch with MEMS:The Electromechanical Interface

Capacitive Sense

o Differential lock­in sense amp for accelerometers.

OUTA

phasetrim

diffosc

sensor

Page 23: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 23 of 70Getting In Touch with MEMS:The Electromechanical Interface M. Dugger, Sandia Labs

Page 24: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 24 of 70Getting In Touch with MEMS:The Electromechanical Interface

Piezoresistive Overview

o Transduces strain to resistance.o One of the earliest MEMS interfaces and still important.

o Good points:n There is mechanical gain, typically about 30x.n The common sensor structure is a Wheatstone bridge.n Silicon­friendly fabrication, doped resistors work well.

o Bad points:n Main problem is temperature sensitivity –moderately

doped silicon resistors change about 0.5% per C or more.n 1/f noise and drift can be problematic.n Only senses, does not drive.

Page 25: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 25 of 70Getting In Touch with MEMS:The Electromechanical Interface

Piezoresistive Sense

o A simple idea with may coefficients–strain changes resistivity.

o =change in resistivity,  arepiezo coefficients,  are stress.The  form a sparse 6x6 matrix.

o For specific cases the equation canbe simplified to,

∑=

=∆ 6

1λλωλ

ω σπρρ

R

axialeffectiveRR σπ=

Page 26: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 26 of 70Getting In Touch with MEMS:The Electromechanical Interface

Piezoresistive Sense

o Typical sense circuits are bridges.n This minimizes the temperature sensitivity that can swamp

signals.n Input offset often vital –use switched caps, diversity, etc.n Often must minimize 1/f noise –use switched topologies.n Temperature compensation of offset and gain variation is

often needed.

o See:  A.A. Barlian, W­T. Park, J.R. Mallon Jr., A.J.Rastegar, and B.L. Pruitt, “Review: SemiconductorPiezoresistance for Microsystems”, Proceedings of theIEEE, v.97, n.3, March 2009.

Page 27: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 27 of 70Getting In Touch with MEMS:The Electromechanical Interface

Piezoresistive Sense

o Bridge amp with temperature offset and gain correction

OUTA

OUT

Vbias

offsettrim

gaintrim

tempsense

sensor

Page 28: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 28 of 70Getting In Touch with MEMS:The Electromechanical Interface A. Partridge, Stanford

Page 29: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 29 of 70Getting In Touch with MEMS:The Electromechanical Interface

Piezoelectric Overview

o Transduces force to voltage.o Aluminum Nitride (AlN) is the most common material.

o Good points:n Moderately easy to fabricate, available in MEMS foundries.n Can provide low impedance and tremendous power

handing for RF.n Works well at high frequencies.

o Bad points:n Displacements are tiny, so not generally used for motion.n Rather low Q’s when used in resonators.n Does not transduce DC signals.

Page 30: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 30 of 70Getting In Touch with MEMS:The Electromechanical Interface

Piezoelectric Drive and Sense

o For sense and drive, think interms of S21 and S12.

o In the simplest form,

o Where t=thickness,e=dielectric permittivity, andd­bar is the piezoelectriccharge coefficient (a functionof material and orientation).

Fewh

tdV =

V

h

w

F

t

Page 31: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 31 of 70Getting In Touch with MEMS:The Electromechanical Interface G. Vigevani, UC Berkeley

Page 32: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 32 of 70Getting In Touch with MEMS:The Electromechanical Interface

Other Transducers

o Thermal sensors, particularly thermistors, are often usedfor IR imaging bolometers.

o Chemical sensors of all kinds are used in biology.

o There are lots of optical transducers, and this is animportant area for displays.  Optical forces can even beused to drive MEMS, but that is rare.

o Magnetic transducers are common in macrosystems butdon’t work well in micro.  They are rare.

o There are endless other ways to transduce signals.

Page 33: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 33 of 70Getting In Touch with MEMS:The Electromechanical Interface

Remember This:

You will usually need to design thelowest noise circuits possible.  If theMEMS is producing extra signal thenit should be simplified.

Page 34: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 34 of 70Getting In Touch with MEMS:The Electromechanical Interface

o MEMS Materials, Processes, and Example Applications

o Electrical Interfaces

o Scaling Laws

o Packaging is Critical

o CMOS Integration

o How to Succeed

o References

Page 35: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 35 of 70Getting In Touch with MEMS:The Electromechanical Interface

Scaling Laws

o Most things scale against us, not for us.

o Mechanical structuresn Volume and mass: x3 (simple)n Mechanical stiffness: x (extensional)n Resonant frequency: 1/x (extensional)

o Transducersn Piezoresistance: (no scale)n Capacitance: x (voltage to force)n Piezoelectrics: x (voltage to force)n Magnetics: x4 (current to dipole torque)n Optics: (wavelength limits)

Page 36: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 36 of 70Getting In Touch with MEMS:The Electromechanical Interface

Why Does Scaling Matter?

o Most MEMS things get worse when made smallern Mass goes down cubically, so inertial sensing gets tougher.n Capacitive and piezoelectric transducers get worse linearly.n Magnetic transducers scale terribly.

o A few things get bettern Circuits can be mounted closer, so C­strays decrease.n Resonant frequencies increase.n Reliability improves.n And (the most important) unit costs decrease.

o Poor scaling is counterintuitive for circuits engineers.

Page 37: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 37 of 70Getting In Touch with MEMS:The Electromechanical Interface

Remember This:

Know how your system scales andleverage things that work for youand not against you.

Page 38: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 38 of 70Getting In Touch with MEMS:The Electromechanical Interface

o MEMS Materials, Processes, and Example Applications

o Electrical Interfaces

o Scaling Laws

o Packaging is Critical

o CMOS Integration

o How to Succeed

o References

Page 39: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 39 of 70Getting In Touch with MEMS:The Electromechanical Interface

Packaging is Critical

o In circuits we don’t think about packaging, except forn Size.n Lead inductance and resistance.n Heat dissipation.

o In MEMS, packaging is the single most important thingafter the transducer selectionn How do we protect the parts in operation?n How do we handle the parts in packaging?n Can we dice the parts from the wafers?n How do we connect to the sense/drive medium?n How do we isolate from the environment?n A million problems happen here.

Page 40: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 40 of 70Getting In Touch with MEMS:The Electromechanical Interface

Back­end Packaging

o Sometimes just put the MEMSand CMOS into a package.

o Don’t touch it!

o Production complicationsn How to dice?n How to pick & place?n Need a clean room?

o For some apps, like chemicaldetectors, it can work well.

ADI ADXL­50 circa 1995

Page 41: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 41 of 70Getting In Touch with MEMS:The Electromechanical Interface

Bonded Covers

o Wafer bonded covers protectthe MEMS elementsn Can use frit glass to glue the

wafers together.n These covers can take 80%

of the die area.n Building the covers can be

expensive.

o Much less expensive thenhandling naked MEMS wafers.

o The dominant technologytoday.

Bosch Gyroscope circa 1999

Page 42: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 42 of 70Getting In Touch with MEMS:The Electromechanical Interface

Deposited Thin Film Covers

o Save space by depositingrather than bonding covers.

o Harder than it looksn How to empty it out inside?n Thermal mismatches.n Contamination.n Need strength for plastic.n Limits MEMS designs.

o Development is expensiven Only makes sense for high­

volume applications.J.L. Lund, Hilton Head, 2002

B.H. Stark, JMEMS 2004

Page 43: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 43 of 70Getting In Touch with MEMS:The Electromechanical Interface

Deposited Encapsulation Example

o SiTime (my company) buriesresonators under the wafer surface.

SiTime Resonator

Page 44: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 44 of 70Getting In Touch with MEMS:The Electromechanical Interface

Stacked Die in Plastic

o When the MEMS iscovered or encapsulatedn It can be diced like a

CMOS wafer.n Pick­place, wire bond,

mold, etc, all normal.

o A low cost option when itworks for the app.

o Applications like opticalswitches can’t use this. SiTime Oscillator Construction

Page 45: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 45 of 70Getting In Touch with MEMS:The Electromechanical Interface

Remember This:

Design from the outside to the inside,and do the packaging first.

Page 46: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 46 of 70Getting In Touch with MEMS:The Electromechanical Interface

o MEMS Materials, Processes, and Example Applications

o Electrical Interfaces

o Scaling Laws

o Packaging is Critical

o CMOS Integration

o How to Succeed

o References

Page 47: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 47 of 70Getting In Touch with MEMS:The Electromechanical Interface

Homogeneous Integration

o Only three waysn MEMS on CMOS.n MEMS in CMOS.n MEMS under CMOS.

o Usually not the best approachn Do you have the time and money?n Do you feel lucky?

o Just a few of the problems…n The MEMS process can change the CMOS behavior.n The CMOS process may need to be adjusted.n Price leverage of CMOS at risk.n MEMS process limitations are severe.n Wasted area increases costs for each process.n Yield issues multiply (literally).

Page 48: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 48 of 70Getting In Touch with MEMS:The Electromechanical Interface

Homogeneous Example

3­Axis Accelerometer, Sandia

Page 49: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 49 of 70Getting In Touch with MEMS:The Electromechanical Interface

Heterogeneous Integration

o Usually a better approachn Build the MEMS and CMOS die into one package.n Can be wire bonded or bump bonded.n Requires the MEMS be pre­covered for most apps.

o Usually cheaper, faster, and more versatilen MEMS+CMOS can be developed in parallel.n Fewer material and temperature restrictions on the MEMS.n Shorter development times.n Many fewer surprises.

o Be prepared to argue against a homogeneous approachn It seems obvious, everything is getting integrated right?n Actually, heterogeneous integration is very common in RF.

Page 50: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 50 of 70Getting In Touch with MEMS:The Electromechanical Interface

Heterogeneous Example

Oscillator, SiTime

Page 51: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 51 of 70Getting In Touch with MEMS:The Electromechanical Interface

Wafer­scale Integration

o MEMS wafer bonded to CMOS wafern The wafers are bonded face­face at the MEMS fab.n Various proprietary metallurgies at MEMS fabs.n Common are gold compression and eutectics.

o Has some good pointsn Electrically close –low capacitance.n Many interconnects possible.n Usually a decent and hermetic lid.n Built in parallel, a full wafer at a time.

o Not always a good idean Enforces a 1:1 size constraint on MEMS:CMOS die.n Usually wastes space on one or both die.n Yield losses multiply.

Page 52: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 52 of 70Getting In Touch with MEMS:The Electromechanical Interface

Wafer­scale Example

Rich Ruby, Avago, IFCS 2011

MEMS Wafer

Circuits Wafer

Page 53: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 53 of 70Getting In Touch with MEMS:The Electromechanical Interface

Remember This:

Never integrate MEMS on, in, or underCMOS without a very compelling reason.

Page 54: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 54 of 70Getting In Touch with MEMS:The Electromechanical Interface

o MEMS Materials, Processes, and Example Applications

o Electrical Interfaces

o Scaling Laws

o Packaging is Critical

o CMOS Integration

o How to Succeed

o References

Page 55: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 55 of 70Getting In Touch with MEMS:The Electromechanical Interface

Problems to Manage

o You will need to build something earlyn The MEMS components will not be finished when you start

your IC design.n You will not have solid data for your analysis.n If prototypes have been tested, the new parts (the real

parts!) will be different.n When the MEMS is tested it will show “surprises”.

o You will need to make your own circuit modelsn The MEMS components will not modeled for you.n At best you will have theory or Matlab code.n Spice? Verilog­A? CppSim?  You will need to build them

yourself.

Page 56: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 56 of 70Getting In Touch with MEMS:The Electromechanical Interface

Problems to Manage

o Specs will change in the middle of developmentn There are three, maybe four things in flux.n Circuits, MEMS design, MEMS process, and software.n On the applications side, marketing and sales learn too.n Rates of flux are higher than you may be used to.

o To improve the chances your circuits workn Understand the system in detail.n Understand the MEMS as much as possible.n Design circuits with as much flexibility as possible.n Insist on rapid prototyping cycles with test chips.n Don’t go for product too early, it can waist design effort.

Page 57: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 57 of 70Getting In Touch with MEMS:The Electromechanical Interface

Important Points

o Be sure you have a MEMS expert on the teamn Hire one or consult with one, but get one.n Amateurs who think they are smart enough are wrong.

o Understand the application driversn How does the scaling work?n Does it require integration?

o Consider the packaging carefullyn Design from the outside to the inside.

o Be sure an IC engineer (you) are involved earlyn System design requires balancing circuit tradeoffs.n Does a good circuits person know the details?

Page 58: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 58 of 70Getting In Touch with MEMS:The Electromechanical Interface

Important Points

o Build flexibility in your ICn The MEMS will not work as expected, so roll with it.n The MEMS will be improved later, and the earlier IC should

support that.

o Insist on many small learning cyclesn Use test chips to prove out the concepts.n Don’t go into product design too early.

o Take a bigger role than IC designern You must be the guardian of your success.

Page 59: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 59 of 70Getting In Touch with MEMS:The Electromechanical Interface

Aaron’s Complexity Paradox

o The “Simple”solutionsare difficult.

o The “Complex”solutionsare easy.

o Move toward easysolutions wheneverpossible, this meansincreasing complexity.

o Embrace complexity tosucceed.

Material

Device

Analog

Digital

Microcode

Firmware

Software

Sim

ple

Com

plex

Easy

Difficult

Page 60: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 60 of 70Getting In Touch with MEMS:The Electromechanical Interface

Aaron’s Complexity Paradox

o For system designers this meansn Push the problem out of MEMS whenever possible.n Don’t ever make the MEMS designers do something that

one can possibly do elsewhere.

o For IC designers this meansn You will be (or should be!) asked to push your circuits to

the limit to ease the work in MEMS.n Working with MEMS will never be easy –you will always

need to bring your best game.

Page 61: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 61 of 70Getting In Touch with MEMS:The Electromechanical Interface

Complexity Management Example

o MEMS oscillator researchers (including me!) tried to buildfrequency­accurate temperature­flat resonators.

n That didn’t work.

o Then my colleagues and I moved the complexity intoCMOS and managed the frequency with frac­N PLLs.

n That worked!

o Then all sorts of great things started happening –wecould include new functions in that CMOS.

Page 62: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 62 of 70Getting In Touch with MEMS:The Electromechanical Interface

Complexity Management Example

o SiTime Architecture.o Will step through this

block by block.

CMOS Oscillator

MEMS Resonator

GND

ProgOE/ST

Vcc

ClkTemperatureSensor

ConfigurationPROM

FrequencyControl

I/O Regs

Frac­NPLL

SustainingAmp

Drive

Page 63: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 63 of 70Getting In Touch with MEMS:The Electromechanical Interface

Choose the Right Products

o Must have a Starving Market. (Kurt Petersen)o Must have an Unfair Advantage. (Arno Penzias)

o Why discuss this in a circuits tutorial?n Because we engineers and scientists can almost always

make our stuff work.n But failure happens when people don’t want our stuff.n Good engineering, when not needed, is wasted effort.

o We don’t have time to waste, we are very expensive forour companies.

o And besides, we have better things to do than engineerstuff that people don’t need.

Page 64: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 64 of 70Getting In Touch with MEMS:The Electromechanical Interface

Remember This:

We are valued not by what we do, butby what we do that makes a difference.

Page 65: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 65 of 70Getting In Touch with MEMS:The Electromechanical Interface

Your Work Does Make a Difference

o Technology hasfundamentally helpedHumanity.

o Engineers make smallcontributions that aremultiplied countlesstimes.

o What you do matters toBillions of people!

Dorothea Lang, “Migrant Mother”1936

Page 66: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 66 of 70Getting In Touch with MEMS:The Electromechanical Interface

Thank You!

Questions?

Page 67: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 67 of 70Getting In Touch with MEMS:The Electromechanical Interface

o MEMS Materials, Processes, and Example Applications

o Electrical Interfaces

o Scaling Laws

o Packaging is Critical

o CMOS Integration

o How to Succeed

o References

Page 68: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 68 of 70Getting In Touch with MEMS:The Electromechanical Interface

References

o A complete background to MEMS and thorough basic references

n Gregory Kovacs, “Micromachined Transducers Sourcebook”, McGraw­Hill Science/Engineering/Math, ISBN 0­0729­0722­3 , 1998.

o A good general introduction of scaling and technology options

n Marc Madou, “Fundamentals of Microfabrication, The Science ofMiniaturization”, CRC Press, ISBN 0­8493­0826­7, 2002.

o A deep dive into RF MEMS and systems

n Gabriel Rebeiz, “RF MEMS: Theory, Design, and Technology”, Willey­Interscience, ISBN 978­0471201694 , 2004.

Page 69: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 69 of 70Getting In Touch with MEMS:The Electromechanical Interface

References

o A solid theoretical underpinning of common MEMS devices

n Ville Kaajakari, “Practical MEMS: Design of microsystems,accelerometers, gyroscopes, RF MEMS, optical MEMS, and microfluidicsystems”, Small Gear Publishing, 098­2299109, 2009.

o The primary conference proceedings and journals

n Hilton Head, “Solid­State Sensors, Actuators, and Microsystemsworkshop”, Transducers Research Foundation.

n Transducers, “International Conference on Solid­State Sensors,Actuators and Microsystems”, IEEE.

n MEMS, “International Conference on Micro Electro MechanicalSystems”, IEEE.

n JMEMS, “Journal of Microelectromechanical Systems”, IEEE.

Page 70: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 70 of 70Getting In Touch with MEMS:The Electromechanical Interface

Additional References

Capacitive transduction

o W.C. Tang, T­C.H. Nguyen, M.W. Judy, R.T. Howe, “Electrostatic­Comb Drive ofLateral Polysilicon Resonators”, Sensors and Actuators A: Physical, v.21, pp.328­331, 1990.

o A. Selvakumar, K. Najafi, “Vertical Comb Array Microactuators”, J.Microelectromechanical Systems, v.12, pp.440–449, 2003.

o H. Hammer, "Analytical Model for Comb Capacitance Fringe Fields", J.Microelectromechanical Systems, v.19, pp.175­182, 2010.

o L. Prandi, C. Caminada, L. Coronato, G. Cazzaniga, F. Biganzoli, R. Antonello, R.Oboe, “A Low­Power 3­Axis Digital­Output MEMS Gyroscope with Single Driveand Multiplexed Angular Rate Readout”, ISSCC 2011, pp.104­106, 2011.

Piezoresistive transduction

o A.A. Barlian, W­T. Park, J.R. Mallon, A.J. Rastegar, B.L. Pruitt, “Review:Semiconductor Piezoresistance for Microsystems”, Proceedings of the IEEE, v.97,n.3, 2009.

o Y. Kanda, “A Graphical Representation of the Piezoresistance Coefficients inSilicon,”IEEE Transactions on Electron Devices, vol.29, n.1, pp.64­70, 1982.

Page 71: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 71 of 70Getting In Touch with MEMS:The Electromechanical Interface

Additional References

o F.N. Hooge “1/f Noise Sources,”IEEE Transactions of Electron Devices, v.41,n.11, pp.1926­1935, 1994.

o J.A. Harley, T.W. Kenny, “1/F Noise Considerations for the Design and ProcessOptimization of Piezoresistive Cantilevers”, J. Microelectromechanical Systems,v.9, pp.226­235, 2000.

o L.M. Roylance, J.B. Angell, “A Batch Fabricated Silicon Accelerometer,”IEEETransactions on Electron Devices, ED­26, n.12, pp.1911­1917, 1979.

Piezoelectric transduction

o W. G. Cady, “Piezoelectricity; An Introduction to the Theory and Applications ofElectromechanical Phenomena in Crystals”, McGraw­Hill, 1946.

o R. Ruby, P. Bradley, J. Larson, Y. Oshmyansky, D. Figueredo, “Ultra­MiniatureHigh­Q Filters and Duplexers Using FBAR Technology”, ISSCC 2001, p.120­121,2001.

o G. Piazza, P.J. Stephanou, A.P. Pisano, “One and Two Port Piezoelectric Contour­Mode MEMS Resonators for Frequency Synthesis”, Solid­State Device ResearchConference ESSCERC 2006, pp.182­185, 2006.

o R.L. Kubena, F.P. Stratton, D.T. Chang, R.J. Joyce, T.Y. Hsu, M.K. Lim R.T.M’Closkey, “MEMS­Based Quartz Oscillators and Filters for On­Chip Integration”,International Frequency Control Symposium, p.6, 2005.

Page 72: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 72 of 70Getting In Touch with MEMS:The Electromechanical Interface

Additional References

Examples of less common drive and sense technologies

o C.H. Liu, A.M. Barzilai, J.K. Reynolds, A. Partridge, T.W. Kenny, J.D. Grade, H.K.Rockstad, “Characterization of a High­Sensitivity Micromachined TunnelingAccelerometer with Micro­g Resolution,”IEEE Journal of MicroelectromechanicalSystems, v.7, n.2, pp.235­244, 1998.

o A.M. Leung, J. Jones, E, Czyzewska, J. Chen, B. Woods, “MicromachinedAccelerometer Based on Convection Heat Transfer”, International Workshop onMicro Electro Mechanical Systems, pp.627­630, 1998.

o A. Rahafrooz, S. Pourkamali, “Fully Micromechanical Piezo­Thermal Oscillators”IEEE Int. Electron Devices Meeting, pp.7.2.1­7.2.4, 2010.

o M. Lutz, W. Golderer, J. Gerstenmeier, J. Marek, B. Maihofer, S. Mahler, H.Munzel, and U. Bischof, “A Precision Yaw Rate Sensor in Silicon Micromachining,”International Conference on Solid State Sensors and Actuators, , v.2, pp.847­850, 1997.

o Y. Li, J. John, X. Zhang, J. Zhang, J.A. Loeb, X. Xu, “3D Neural Probes withCombined Electrical and Chemical Interfaces”, Solid­State Sensors, Actuators,and Microsystems Workshop, Hilton Head, pp.134­137, 2010.

Page 73: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 73 of 70Getting In Touch with MEMS:The Electromechanical Interface

Additional References

MEMS wafer­level packaging

o Y.T. Cheng, L. Lin, and K. Najafi, "Localized Bonding with PSG or Indium Solderas Intermediate Layer," Twelfth IEEE International Conference on Micro ElectroMechanical Systems, pp. 285­289, 1999.

o C.H. Tsau, S.M. Spearing, and M.A. Schmidt, "Fabrication of Wafer­LevelThermocompression Bonds," Journal of Microelectromechanical Systems, vol. 11,pp.641­647, 2002.

o C.M. Mastrangelo and R.S. Muller, "Vacuum­Sealed Silicon MicromachinedIncandescent Light Source," Proceedings of the International Electron DevicesMeeting, pp.503­506, 1989.

o M. Esashi, S. Sugiyama, K. Ikeda, Y. Wang and H. Miyashita, “Vacuum­SealedSilicon Micromachined Pressure Sensors,”Proc. IEEE, v.86 pp.1627–1631, 1998.

o K.S. Lebouitz, A. Mazaheri, R.T. Howe, and A.P. Pisano, “Vacuum Encapsulationof Resonant Devices Using Permeable Polysilicon,”Twelfth IEEE InternationalConference on Micro Electro Mechanical Systems. MEMS'99, pp.470­475, 1999.

o B.H. Stark, K. Najafi, “A Low­Temperature Thin­Film Electroplated Metal VacuumPackage,”Journal of Microelectromechanical Systems, v.13, pp.147­157, 2004.

o A. Partridge, A.E. Rice, T.W. Kenny, and M. Lutz, "New Thin Film EpitaxialPolysilicon Encapsulation for Piezoresistive Accelerometers," 14th IEEEInternational Conference on Micro Electro Mechanical Systems, MEMS 2001,pp.54­59, 2001.

o M. Esashi, “Wafer Level Packaging of MEMS”, J. of Micromechanics andMicroengineering, iopscience, v.18, 2008.

Page 74: ISSCC€2012€Tutorial Getting€In€Touch€with€MEMS: The ... · Aaron€Partridge Getting€In€Touch€with€MEMS: 7 of€70 The€Electromechanical€Interface Example€Applications

Aaron Partridge 74 of 70Getting In Touch with MEMS:The Electromechanical Interface

End