ISO_M_5

Embed Size (px)

Citation preview

  • 8/12/2019 ISO_M_5

    1/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 1 -

    Insulation Co-ordination: Numerical Example 1

    Case 1: Without Capacitor Switching in Sub.2

    Case 2: With Capacitor Switching in Sub.2

    New Substation with Un=230kVExisting SubstationUs=Um=245kVPollution level: HeavyAltitude from sea level: 1000m

  • 8/12/2019 ISO_M_5

    2/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 2 -

    Insulation Co-ordination: Numerical Example 1

    Range I: Um

  • 8/12/2019 ISO_M_5

    3/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 3 -

    Step 1:determination of the representative overvoltages (Urp)

    -Power Frequency Voltage

    Us=Um=245kVminimum Creepage Distance for insulators =25mm/kV (Pollution: Heavy)

    -Temporary Overvoltages

    earth fault factor

    load rejection factor

    earth fault and load rejection factor

    -Slow-front Overvoltages

    surge arrester effect

    line entrance equipments

    other equipment

    -Fast-front Overvoltages

  • 8/12/2019 ISO_M_5

    4/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 4 -

    Step 1:determination of the representative overvoltages (Urp)

    -Temporary Overvoltages

    earth fault factor

    3 . .. 2k

    1.4k

    1.4 1.8k

    3 ...1.85k

    HV side of power transformerin Sub.1 is solidly earthed.

    System study: k=1.5 !(global network simulation)

    P-E Overvoltage:

  • 8/12/2019 ISO_M_5

    5/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 5 -

    Step 1:determination of the representative overvoltages (Urp)

    -Temporary Overvoltages

    load rejection factor

    System study: k=1.4(overspeed genarator in Sub. 1)

    moderately extended systems: < 1.2 p.u. for up to several minutes

    widely extended systems: 1.5 p.u. for some seconds

    close to turbo generator: 1.3 p.u.

    close to salient pole (German: "Schenkelpol") generator: 1.5 p.u.

    P-E Overvoltage:

    P-P Overvoltage:

  • 8/12/2019 ISO_M_5

    6/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 6 -

    Step 1:determination of the representative overvoltages (Urp)

    -Temporary Overvoltages

    earth fault and load rejection factor

    Will be opened after load rejection

    Earth Fault factorextremely decreases.(D/Y grounded of Tr.)

    k load rejection* k earth fault

  • 8/12/2019 ISO_M_5

    7/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 7 -

    Step 1:determination of the representative overvoltages (Urp)

    -Power Frequency Voltage

    Us=Um=245kVminimum Creepage Distance for insulators =25mm/kV (Pollution: Heavy)

    -Temporary Overvoltages

    earth fault factor k=1.5; Urp=212kV

    load rejection factor k=1.4; Urp=198kV(P-E);

    Urp=343kV(P-P)

    earth fault and load rejection factor not applicable

    Urp=212kV(P-E)

    Urp=343kV(P-P)

  • 8/12/2019 ISO_M_5

    8/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 8 -

    Step 1:determination of the representative overvoltages (Urp)

    -Slow-front Overvoltages

    energization and re-energization

    Range of 2% slow-front phase-to-earthovervoltages at thereceiving end due to line energization (Approximately Value)

  • 8/12/2019 ISO_M_5

    9/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 9 -

    Step 1:determination of the representative overvoltages (Urp)

    -Slow-front Overvoltages

    energization and re-energization

    Range of 2% slow-front phase-to-earthovervoltages at thereceiving end due to line energization (Exact Value)

    System study :

    Overvoltages originating from Sub.1

    Ue2=1.9 p.uUp2=2.9 p.u

    Overvoltages originating from Sub.2

    Ue2=3.0 p.uUp2=4.5 p.u

  • 8/12/2019 ISO_M_5

    10/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 10 -

    Step 1:determination of the representative overvoltages (Urp)

    -Slow-front Overvoltages

    energization and re-energization

    Probability distribution of the representative amplitude of theprospective overvoltage phase-to-earth

    Using phase-peak method:

    Overvoltages originating from Sub.1

    Ue2=1.9 p.uUet=1.25*1.9-0.25=2.125 p.u

    Overvoltages originating from Sub.2

    Ue2=3.0 p.uUet=1.25*3.0-0.25=3.5 p.u

  • 8/12/2019 ISO_M_5

    11/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 11 -

    Step 1:determination of the representative overvoltages (Urp)

    -Slow-front Overvoltages

    energization and re-energization

    Probability distribution of the representative amplitude of theprospective overvoltage phase-to-phase

    Using phase-peak method:

    Overvoltages originating from Sub.1

    Up2=2.9 p.uUpt=1.25*2.9-0.43=3.195 p.u

    Overvoltages originating from Sub.2

    Up2=4.5 p.uUpt=1.25*4.5-0.43=5.195 p.u

  • 8/12/2019 ISO_M_5

    12/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 12 -

    Step 1:determination of the representative overvoltages (Urp)

    -Slow-front Overvoltages

    Surge Arrester effect

    O.V from Sub. 1 O.V from Sub. 2

    phase-earth Uet=425kV Uet=700kV

    phase-phase Upt=639kV Upt=1039kV

    energization and re-energization without S.A:

    Surge Arrester Characteristics:

    Using Surge Arrester:

    Phase-to-earth: Ure= Ups = 410kV < 425 & 700

    Phase-to-phase: the lower value of

    Urp= 2 Ups= 820kV < 1039 but >639 Urp= Upt = 639kV < 820

  • 8/12/2019 ISO_M_5

    13/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 13 -

    Step 1:determination of the representative overvoltages (Urp)

    -Power Frequency Voltage

    Us=Um=245kVminimum Creepage Distance for insulators =25kV/mm (Pollution: Heavy)

    -Temporary Overvoltages

    earth fault factor

    load rejection factor

    earth fault and load rejection factor

    -Slow-front Overvoltages

    surge arrester effect

    line entrance equipments

    other equipment

    -Fast-front Overvoltages: Simplified Statistical Approach (see step2)

    Urp=212kV(P-E)

    Urp=343kV(P-P)

  • 8/12/2019 ISO_M_5

    14/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 14 -

    Step 2:determination of the co-ordination withstand voltages (Ucw)

    -Temporary Overvoltages

    Ucw=Urp (Kc=1)

    Urp=212kV(P-E)

    Urp=343kV(P-P)

    Ucw=212kV(P-E)

    Ucw=343kV(P-P)

    -Slow Front Overvoltages

    S.A Characteristics:

    System study :

    Overvoltages originating from Sub.1

    Ue2=1.9 p.uUp2=2.9 p.u

    Overvoltages originating from Sub.2

    Ue2=3.0 p.uUp2=4.5 p.u

  • 8/12/2019 ISO_M_5

    15/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 15 -

    Step 2:determination of the co-ordination withstand voltages (Ucw)

    -Slow Front Overvoltages

    Line entrance equipments:

    Ups / Ue2 = 410/600 = 0.68 Kcd = 1.10

    Ucw= 1.10 * Urp

    2Ups/ Up2 = 820/900 = 0.91 Kcd = 1.00

    Ucw= 1.00 * Urp

    All other equipments:

    Ups / Ue2 = 410/380 = 1.08 Kcd = 1.03

    Ucw= 1.03 * Urp

    2Ups/ Up2 = 820/580 = 1.41 Kcd = 1.00

    Ucw= 1.00 * Urp

    S.A Characteristics: Ups= 410kV

    Line entrance equipments:

    Ue2=3.0 p.u=600kVUp2=4.5 p.u=900kV

    All other equipments:

    Ue2=1.9 p.u=380kVUp2=2.9 p.u=580kV

    (a)

    (b)

    (a)

    (b)

  • 8/12/2019 ISO_M_5

    16/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 16 -

    Step 2:determination of the co-ordination withstand voltages (Ucw)

    -Slow Front Overvoltages

    Step. 1:

  • 8/12/2019 ISO_M_5

    17/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 17 -

    Step 2:determination of the co-ordination withstand voltages (Ucw)

    -Fast Front Overvoltages

    Simplified Statistical Approach

    S.A Characteristics:

    n=2

    n: minimum Nos. of lines connected to the Sub.

    Upl = 500A = 4500n = 2

  • 8/12/2019 ISO_M_5

    18/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 18 -

    Step 2:determination of the co-ordination withstand voltages (Ucw)

    -Fast Front Overvoltages

    Simplified Statistical Approach

    L = 30m for internal insulationL = 60m for external insulation

    Lsp= 300m Span Length

    Ra= acceptable failure rate = 1 in 400 yearsRkm= outage per 100km per year = 1

    La= Ra/ Rkm= 1/400 = 0.25 km = 250 m

  • 8/12/2019 ISO_M_5

    19/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 19 -

    Step 2:determination of the co-ordination withstand voltages (Ucw)

    -Fast Front Overvoltages

    Simplified Statistical Approach

  • 8/12/2019 ISO_M_5

    20/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 20 -

    Step 3: determination of the required withstand voltages (Urw)

    -Ks: Safety Factor

    for any type of Overvoltages (P-E & P-P)

    internal insulation : Ks=1.15

    external insulation : Ks=1.05

    -Ka: Altitude Factor

    Only for external insulation !

    H=Altitude above sea level = 1000 m

  • 8/12/2019 ISO_M_5

    21/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 21 -

    Step 3: determination of the required withstand voltages (Urw)

    For Switchingwithstand voltages:

  • 8/12/2019 ISO_M_5

    22/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 22 -

    Step 3: determination of the required withstand voltages (Urw)

    Step. 2: For Switchingwithstand voltages:

    Ucw=451 , curve (a): m=0.94

    Ucw=820 , curve (c): m=1.00

    For Lightningwithstand voltages:

    For Power Frequencywithstand voltages:

    m = 1.00

    m = 0.50

  • 8/12/2019 ISO_M_5

    23/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 23 -

    Step 3: determination of the required withstand voltages (Urw)

    For Switchingwithstand voltages:

    Ka= e 0.94.(1000/8150)= 1.122 (P-E)Ka= e

    1.00 . (1000/8150)= 1.130 (P-P)

    For Lightningwithstand voltages:

    For Power Frequencywithstand voltages:

    Ka= e1.00 . (1000/8150)= 1.130 (P-E & P-P)

    Ka= e0.50 . (1000/8150)= 1.063 (P-E & P-P)

  • 8/12/2019 ISO_M_5

    24/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 24 -

    Step 3: determination of the required withstand voltages (Urw)

    Urw= Ucw . Ks . Ka

  • 8/12/2019 ISO_M_5

    25/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 25 -

    Step 4: Conversion to withstand voltages normalized for range I

  • 8/12/2019 ISO_M_5

    26/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 26 -

    Step 4: Conversion to withstand voltages normalized for range I

  • 8/12/2019 ISO_M_5

    27/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 27 -

    Step 4: Conversion to withstand voltages normalized for range I

  • 8/12/2019 ISO_M_5

    28/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 28 -

    Step 5: Selecting of standard withstand voltage values

    Summary:

    Urw(s): minimum required withstand voltage obtained directlyUrw(c): minimum required withstand voltage obtained by conversion

    l l l

  • 8/12/2019 ISO_M_5

    29/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 29 -

    Step 5: Selecting of standard withstand voltage values

    Short duration power frequency withstand voltages are selected according to direct values Urw(s)

    Lightning withstand voltages are selected as a highest value of Lightning Urw(s) orconverted valueof switching withstand voltage into lightning withstand voltage Urw(c)

    S 5 S l i f d d i h d l l

  • 8/12/2019 ISO_M_5

    30/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 30 -

    Step 5: Selecting of standard withstand voltage values

    Results:minimum required withstand voltage

    PFWV(kVrms) / LIWV (kVpeak) : 395/950

    only P-P minimum required withstand voltage for line enterance equipement is 1127kVwhichis more than 950 kV standardized value and next standard value of 1175kVshall be selected.

    Since there is no three phase equipment in line entrance, minimum P-P clearance can bespecified instead of testing. (IEC 71-2: page:101; )

    St 5 S l ti f t d d ith t d lt l

  • 8/12/2019 ISO_M_5

    31/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 31 -

    Step 5: Selecting of standard withstand voltage values

    LIWV (kVpeak) P-P & P-E for other equipments: 950

    LIWV (kVpeak) P-P for line equipments: 1175

    2.35m P-P clearane for line equipments and 1.9m

    P-P and P-E clerance for other equipments.

    St 5 S l ti f t d d ith t d lt l

  • 8/12/2019 ISO_M_5

    32/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 32 -

    Step 5: Selecting of standard withstand voltage values

    Results (cont.):

    Refeinment in system study leads to lower value of PFWV for external insulations. So 360kVfor PFWVand 850kVfor LIWVmay be possible to select as an insulation levels.

    for internal insulation, it is economic to select 750and 850kVlightning withstand voltageforPhase to Earthand Phase to Phase, respectively. But PFWVshall be at least 395kV.

    I l i C di i N i l E l 1

  • 8/12/2019 ISO_M_5

    33/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 33 -

    Insulation Co-ordination: Numerical Example 1

    Case 2: With Capacitor Switching in Sub.2

    With Capacitor Switching

    C s 2: C p cit r S itchin in Sub 2 (St p 1: U )

  • 8/12/2019 ISO_M_5

    34/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 34 -

    Case 2: Capacitor Switching in Sub. 2 (Step.1: Urp)

    Having a capacitor switching in Sub.2 affects only in Slow-front Overvoltages.

    System study shows the following maximum amplitude of O.V in new Sub. Due to capacitorswitching in Sub. 2:

    Ups< Uet and 2 Ups< Upt

    Surge Arrester Characteristics:

    Urp= 410 kV (P-E)Urp= 820 kV (P-P)

    Case 2: Capacitor Switching in Sub 2 (Step 2: U )

  • 8/12/2019 ISO_M_5

    35/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 35 -

    Case 2: Capacitor Switching in Sub. 2 (Step.2: Ucw)

    Ups= 410 kV (P-E)2 . Ups= 820 kV (P-P)

    IEC 60071-2 page: 215, Mistake!!!Kcd= 1.075 , Ucw= 441 kV;

    Case 2: Capacitor Switching in Sub 2 (Step 3: U )

  • 8/12/2019 ISO_M_5

    36/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 36 -

    Case 2: Capacitor Switching in Sub. 2 (Step.3: Urw)

    Ucw= 441 kV (P-E)Ucw= 820 kV (P-P)

    Ucw=441 , curve (a): m=0.94Ucw=820 , curve (c): m=1.00

    Ka= e 0.94(1000/8150)= 1.122 (P-E)Ka= e

    1.0(1000/8150)= 1.130 (P-P)

    Safety Factor :internal insulation : Ks=1.15external insulation : Ks=1.05

    -External insulation:(P-E): Urw= 441 * 1.05 * 1.122 = 519 kV(P-P): Urw= 820 * 1.05 * 1.13 = 973 kV

    -Internal insulation:(P-E): Urw= 441 * 1.15 = 507kV(P-P): Urw= 820 * 1.15 = 943 kV

    Case 2: Capacitor Switching in Sub 2 (Step 4: Conversion)

  • 8/12/2019 ISO_M_5

    37/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 37 -

    Case 2: Capacitor Switching in Sub. 2 (Step.4: Conversion)

    -Conversion to short-duration power-frequency withstand voltage (SDW):-External Insulation:(P-E): SDW = 519 * (0.6 + 519 / 8500) = 343 kV;(P-P): SDW = 973 * (0.6 + 973 / 12700) = 658 kV;-Internal Insulation:(P-E): SDW = 507 * 0.5 = 254 kV;(P-P): SDW = 943 * 0.5 = 472 kV.

    -Conversion to lightning impulse withstand voltage (LIW):-External Insulation:(P-E): SDW = 519 * 1.3 = 675 kV;(P-P): SDW = 973 * (1.05 + 973 / 9000) = 1127 kV;-Internal Insulation:(P-E): SDW = 507 * 1.1 = 558 kV;

    (P-P): SDW = 943 * 1.1 = 1037 kV.

    Case 2: Capacitor Switching in Sub 2 (Step 5)

  • 8/12/2019 ISO_M_5

    38/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 38 -

    Summary:

    Urw(s): minimum required withstand voltage obtained directlyUrw(c): minimum required withstand voltage obtained by conversion

    Urw

    - kV rms for PFWV

    -kV peak for SIWV or LIWV

    External Insulation Internal

    Insulation

    Urw(s)

    Urw(c)

    Urw(s)

    Urw(c)

    PFWV

    P-E 237 343 243 254

    P-P 383 658 395 472

    SIWV

    P-E 519 - 507 -

    P-P 973 - 943 -

    LIWV

    P-E 884 675 715 558

    P-P 884 1127 715 1037

    Case 2: Capacitor Switching in Sub. 2 (Step.5)

    Case 2: Capacitor Switching in Sub 2 (Step 5)

  • 8/12/2019 ISO_M_5

    39/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 39 -

    Case 2: Capacitor Switching in Sub. 2 (Step.5)

    Results:

    minimum required withstand voltagePFWV(kVrms) / LIWV (kVpeak) : 395/950

    only P-P minimum required withstand voltage for all equipments(not onlyline enteranceequipement) is 1127kVwhich is more than 950 kV standardized value and next standard valueof 1175kVshall be selected.

    2.35m P-P clearane for all external equipments needed if no P-P test would like to beprovided.

    for internal insulation, 460/1050 kV (due to capacitor switching in Sub.2)

    Case 2: Capacitor Switching in Sub 2 (Comparision)

  • 8/12/2019 ISO_M_5

    40/40

    Fachgebiet

    Hochspannungstechnik Overvoltage Protection and Insulation Coordination / Chapter 6

    Numerical Example 1 - 40 -

    Case 2: Capacitor Switching in Sub. 2 (Comparision)