46
Hideo Aoki Dept Physics, Univ Tokyo Iron-based superconductor --- an overview Thermal Quantum Field Theory Workshop, Yukawa Institute, Kyoto, 31 August 2010 My talk today A brief introduction for the iron-based SC Mechanism for s± pairing Material-dependence (s±⇔ d) Collective (phase) modes in multiband SC Keyword: Multiband SC http://cms.phys.s.u-tokyo.ac.jp/

Iron-based superconductor --- an overview Hideo Aokicms.phys.s.u-tokyo.ac.jp/pdf/TQF10_Aoki_en.pdfHideo Aoki Dept Physics, Univ Tokyo Iron-based superconductor --- an overview Thermal

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Hideo AokiDept Physics, Univ Tokyo

    Iron-based superconductor --- an overview

    Thermal Quantum Field Theory Workshop, Yukawa Institute, Kyoto, 31 August 2010

    My talk today✔ A brief introduction for the iron-based SC✔ Mechanism for s± pairing✔ Material-dependence (s± ⇔ d)✔ Collective (phase) modes in multiband SC

    Keyword: Multiband SC

    http://cms.phys.s.u-tokyo.ac.jp/

  • Kazuhiko Kuroki, Hidetomo Usui Univ Electro-Commun

    Ryotaro Arita Univ Tokyo

    Yukihiro Ota, Masahiko Machida Japan Atomic Energy AgencyTomio Koyama Tohoku Univ

  • room T

    liq N

    Tc (K)

    liq 4He

    year

    2008

    LaOFFeAs

    multiband SCMultiband SC (theory)(Suhl et al, Kondo 1950's-60's)

    2010

    picene

    Why multiband SC ?

  • attraction

    phonon el-el repulsion(spin /charge)

    Tc ~ 0.1ωD Tc ~ 0.01t

    anisotropic pairing

    100K 10000K10K 100K

    isotropic pairing

    * phonon mechanism

    * electron mechanism

  • K2 © Chris Warner

    Uemura, nature mat, news&views 2009

    AF

    Iron compound cuprate

    fullerene heavy fermion 4He

    Phase diagrams for various classes of materials

    AF

    SC

  • U tU t

    Hubbard model (a generic model)

  • (Uemura 2004)

    Tc

    (1)Pairing int’action from el-el repulsion= weak

    Cf. Laser-cooled Fermi gas(2004) Tc 0.1 T F attractive int’action

    ↑Feshbach resonance

    (2) Self-energy correction quasi-particles short-lived

    (3) Pairing from el-el repulsion= anisotropic(i.e., nodes in DBCS)

    --

    +

    +

    Tc ~ TF/100 is VERY low !

    TF (or n for bosons)

  • Attraction isotropic SC

    V(k,k ’)

    SC from repulsion: nothing strange

    Repulsion anisotropic SC

    attractionas in d wave pairing in cuprates

    +-

    +-

    -

    spin-fluctuation mediated pairing interaction

    Scalapino et al, Moriya & Ueda,QMC: Kuroki & Aoki,DCA: Jarrell,VMC: Yokoyama et al, . . .

  • 2D or 3D ?

    (Arita et al, JPSJ; PRB1999;Monthoux & Lonzarich PRB 1999)

    kx

    kykz

    >

    ωD

    kx

    kykz

  • My talk today✔ A brief introduction for the iron-based SC✔ Mechanism for s± pairing

    [Kuroki et al, PRL 101, 087004 (2008)] ✔ Material-dependence (s± ⇔ d)✔ Collective (phase) modes in multiband SC

    Keyword: Multiband SC

  • (Kuroki & Arita, 2001)

    Disconnected Fermi surfaces

    + +

    + +

    -

    (Kuroki et al 2001; 2004)

    TMTSF

  • Kuroki, to appear in Proc LT 25; arXiv0902.3695

    Disconnected Fermi surfaces in real materials

    Co compound Hf nitrides Fe compound

    Kuroki et al, JPSJ(06);PRL(07); JPSJ(07)

    Kuroki et al, PRL(08)

  • Suhl-Kondo mechanism

    (Suhl et al, PRL 1959; Kondo 1963)

    s

    dTc enhanced ~ O(Vsd2)

  • Fe-compound

    Kuroki et al, PRL 101, 087004 (2008)(cited 301 times)

    Kamihara et al, JACS 130, 3296 (2008)

    +

    -

  • single-band vs multi-band

    Fe compound: multi-band

    Cuprate:nearly half-filled one-band

  • band 2

    band 3

    dispersion

    band 4

    Band dispersion / Fermi surface

    band filling (=# electrons / # sites)n = 6.1 10% doping

    Fermi surface

    (Kuroki et al, PRL08)

  • hole concentration

    SC

    Phase diagram

    High-Tc

    SC

    AF

    Iron-based

    (Luetkens et al, 2008)

    SDW

    SC

  • 5-band RPA(Kuroki et al, PRL 2008)

    colinear SDW

    Susceptibilities: 5-band RPA result

    Inelastic neutron scattering(Lumsden et al, nature phys 2010)

    +

    +

    ++

    +

    -

    --

    -

    s± pairing

  • Calculation: Ran et al, PRB 2009ARPES: Richard et al, PRL 2010

    (Luetkens et al, 2008)

    SDW

    Dirac cones in the iron-based SC

  • Experimental evidences for multiband nature

    ✔ Quasiparticle excitations (penetration depth, thermal conductivity)

    ✔ ARPES

    ✔ NMR

    (BaK)Fe2As2: Ding et al, EPL 83, 47001 (2008)

    ARPES

  • JPS 2010 March meetingSymposium "Pairing symmetry in the iron-based SC"

    ✔ Shibauchi: Quasiparticle excitation probes incl. penetration depth, thermal cond consistent with full gap, while P-compound has a node

    ✔ Shimojima: ARPES 122 has full gap, but factors other than spin fluctuation may be relevant

    ✔ Hanaguri: Fourier transform STM s±

    ✔Mukuda: NMR various powers in T observed for T1 belowTC

    ✔ Sato: neutron scattering magnetic excitations, resonance peak

    ✔ Iketa: 1st principles calc for multiorbits, impurity potential s±

    ✔ Onari: : Theory for impurity effect, resonance peak s++, orbital fluctuation mechanism

    (Nagai et al, in prep)impurity

  • Phase-sensitive measurement (1)

    (Chen et al, nature physics 2010)

    (Wollman et al, PRL 1993)

    Nb

    AB flux

  • (Hanaguri et al,Science 2010)

    Phase-sensitive measurement (2)--- Fourier-transform STM spectroscopy

  • My talk today✔ A brief introduction for the iron-based SC✔ Mechanism for s± pairing✔ Material-dependence (s± ⇔ d)

    [Kuroki et al, PRB 79, 224511 (2009)] ✔ Collective (phase) modes in multiband SC

    Keyword: Multiband SC

  • dx2-y2

    dz2

    NdFeAsO h = 1.38 ÅLaFeAsO h = 1.32 ÅLaFePO h = 1.14 Å

  • pnictogen height

    LaFeAsO, NdFeAsOLaFePO

    (Kuroki et al, PRB 2009)

    Multibands modified

    b-g nesting b1-b2 nesting

  • Multiple nesting vectors compete

    “Frustration” in momentum space

    low Tc nodal d

    low Tc nodal s

    high Tc s±

    NdFeAsO h = 1.38 ÅLaFeAsO h = 1.32 Å

    LaFePO h = 1.14 Å

    Pnictogen height asa“switch”

    Height matters

    Kuroki et al, PRB 79, 224511 (2009)

  • Multiband systems various pairings when materials / p are tuned

    Degeneracy point s+id?

    (S.C. Zhang's group, PRL 2009)d

    (Kuroki et al, PRB 2009)

  • When T-broken pairing can occur?

    When the space group has a two-dimensional rep:as in

    ● p + ip for triplet SC

    ● d + id for singlet SC(Onari et al, PRB 2002)

    d1 d2

    + i

    (space group: G6+)

    ● p + ip for graphene(Uchoa et al, PRL 2007)

  • My talk today✔ A brief introduction for the iron-based SC✔ Mechanism for s± pairing✔ Material-dependence (s± ⇔ d)✔ Collective (phase) modes in multiband SC

    [Ota et al, arXiv:1008.3212]Keyword: Multiband SC

  • Collective excitation modes in SC

    Phase modes (Bogoliubov 1959, Anderson 1958, Nambu 1960)= massless Nambu-Goldstone mode for neutral SC massive for real (charged) SC (Anderson-Higgs mechanism 1963)

    as observed in NbSe2(Raman: Sooryakumar & Klein 1980, Littlewood & Varma 1981)

    Collective mode in one-band SC

    Out-of-phase (countersuperflow) mode (massive, Leggett 1966)

    Collective modes in two-band SC

  • Two-band SC

    in phase

    out of phase = Leggett mode

    as observed in MgB2 (Blumberg et al 2007)

  • Question here: 3-band = 2-band in terms of the collective modes ?

    Yes, more than one collective Leggett modes emerge in 3-band SC large difference in mass when

    multiple (internal) Josephson currents subtract

    (Ota et al, arXiv:1008.3212)

  • g23

    D(2)

    D(3)

    g12

    g31

    D(1)

    +

    + +[class "even"] internal Josephson c's add

    +

    - +[class "odd"]

    Josephson c's subtract

    even / odd (g -1) ij

    Question here: 3-band = 2-band in terms of the collective modes ?

    (Ota et al, 2010)

    g g -1 =

  • When the pairing interactions gij are varied

    wL+

    wL-

    w/D

    qz g23

    D(2)

    D(3)

    g12

    g31

    D(1)

    g 31

    g12 g23=-0.07

    mass difference

    repulsive gij's always class odd large mass difference

    (Ota et al, arXiv1008.3212)multiple Leggett modes

  • "Frustration" in the three-band SC complex (T-reversal broken) D

    (Stanev & Tesanovic, PRB 2010)

    D1

    D2

    D3

    Re

    Im

    when |g12| ~ |g23| ~ |g31|

  • ✔ Iron-based SC --- a prototype multiband SCvarious possibilities incl. various pairings

    ✔ Collective phase mode in 3-band

    Multiband SC rich prospects

    Summary and outlook

    Other multiband SC’s ?

    ✔ Even the cuprate has to be viewed as multiband

  • ++-

    -

    Cuprates: single-band Iron-based: multi-band

  • Wgy

    Why so much

    different Tc's?

    Various classes of cuprates

    single-layered (simplest possible)

    La2CuO4: Tc ~ 40K HgBa2CuO4: Tc ~ 90K

    Cuprates: still a lot of puzzles

    O

    Cu

    Why such a huge difference?

  • Γ ΓΓ Γ

    dx2-y2

    (Sakakibara et al, PRL 105, 057003 (2010))

    dx2-y2

    dz2

    La HgTh: Tc(La) > Tc(Hg)

    Ex: 40 K < 90 K

    contradiction!

    Cu

    Osmaller xtal field

    2.42

    2.78Å

    0.91

    eV 2.19

    eV

    dx2-y2dz2

    dx2-y2 dx2-y2

    dz2dz2

  • Outlook (1): diverse multiband SC's

    1.Even typical "low-T " SC's are often multiband

    2. Molecular solids tend to be multiband

    3. Cold atoms(different hyperfine states

    on optical lattices)

    (Gross et al, 2009)

    (Gross et al, 2009)

    Pb

    Metallic H at 414 GPa

  • SC in elemental Fe under p

    Theories:el-ph cannot explain Tc [Suzuki et al, 2002;

    Mazin et al, PRB 2002], spin fluctuations have to be considered

    http://www.physics.nmsu.edu

    [Schafer et al, PRB (2005)]

    [Shimizu et al, Nature 412, 316 (2001)]

    bcc(magnetic) hcp(nonmagnetic, SC)

  • attraction

    phonon el-elrepulsion

    To actually look at the interactions

    J-PARC

    http://j-parc.jp/main/Gif/J-PARCx702.jpg

  • Outlook (2): Colour SC in hadron physics

    T

    μB

    Quark-gluon plasma

    ~ 1 GeV

    ~ 170 MeV

    Coloursuperconductor

    Hadronic fluid

    Vacuum

    hole concentration

    SC

    Spin-fluct mediated,Multi-band SC,

    . . .

    Gluon,various SC phases,

    . . .

  • Differences in SC in solid-state vs hadron phys

    Energy scale ~ 0.01 eV ~ 100 MeV

    Length scale 1 ~ 103 nm 1 ~ 10 fm

    Particles involved e's with anisotropic FS relativistic quarks with isotr FS

    Interaction e-e, e-phonon gluon-mediated long-range

    Tc Tc ~ 0.01 eF Tc ~ 0.1 eF

    Internal deg spin, orbit colour, flavour, spin

    Order of phase tr weakly 1st fl of EM 1st thermal fl of gluons

  • IPMU Focus Week Feb 2010

    "Condensed Matter Physics

    Meets

    High Energy Physics"