31
IRD glaciological activities in the tropical Andes The recent depletion of tropical glaciers in the Andes: an indicator of climate change evidences, analysis & institutional background Jean Emmanuel Sicart and Bernard Francou, IRD, La Paz, Bolivia Laboratorio Mixto Internacional LMI ©BF

IRD glaciological activities in the tropical Andes The ... · IRD glaciological activities in the tropical Andes ... glaciologicos han sido obtenidos por medidas de campo y ajustados

Embed Size (px)

Citation preview

IRD glaciological activities in the tropical Andes

The recent depletion of tropical glaciers in the Andes: an indicator of climate change

evidences, analysis & institutional background

Jean Emmanuel Sicart and Bernard Francou, IRD, La Paz, Bolivia

Laboratorio Mixto Internacional LMI

©BF

GLACIOCLIM, a global network

GLACIOCLIM : a global observation network

Brésil Pérou

Equateur

Chili

French Alps (LGGE) Saint Sorlin, Argentière (45°N) Gébroulaz, Mer de Glace, Sarennes

Andes / Himalaya (IRD et local partners) Antizana (Ecuador, 0°) Zongo (Bolivia, 16°S) Chhota Shigri (India, 32°N) Mera (Nepal, 27°N)

Antarctica (LGGE-IPEV)

Cap Prud’Homme (67°S) Dôme C (75°S)

Global network including glacio-meteo-hydrological observations : >50 yrs (Alps), >20 yrs (Andes), 8 yrs (Himalaya) et 7 yrs (Antarctica)

http://www-lgge.ujf-grenoble.fr/ServiceObs/index.htm

Venezuela

10 °S

20 °S

10 °N

S.N. de Cocuy Santa Isabel

Antizana 15 & 12 Carihuayrazo - Cotopaxi

Artezonraju Yanamarey ó

Zongo (Chacaltaya) Charquini Sur

Data generation

IRD(LTHE-LGGE-OSUG) IHH-IGEMA

SENAMHI-ANA (UGRH) INAMHI-EPN (DICA)

GLACIOCLIM

GLACIER MONITORING NETWORK 1991-2011

LMI

GREATICE

Recent depletion of tropical glaciers in the Andes: an indicator of the climate change

o Balance de masa (método directo)

o Balance hidrológico

o Balance de energía

o Relevamientos topográficos

o Restituciones aerofotogramétricas

The mass balance network (month/year scale)

(ground measurements)

• Bolivia: • Zongo (from 1991) Glacioclim • Charquini Sur (from 2002) • Chacaltaya (from 1991, extincted 2009)

• Ecuador: • Antisana 15 (from 1995) Glacioclim • Antisana 12 « Los Crespos » (from 2004)

• Peru: • Artesonraju (assist. UGRH/ANA): from 1994 • Yanamarey (assist. UGRH/ANA): from 1994

• Colombia: • Santa Isabel (assist. IDEAM): from 2006 • Yanamarey (assist. UGRH/ANA): from 2006

1/ The Glacier Area & Volume lost over the last 50 yr

©BF

Exemple : le Glacier Zongo (Bolivie, 16°S), zone tropicale externe

Vue aérienne du glacier Zongo (août 2000 )

Measurement network: Zongo glacier, 16°S (Bolivia)

Experimental device : GLACIOCLIM

Balises d’ablation Carottages d’accumulation

Bilans : • glaciologique

Station hydrographique Pluviomètres

• hydrologique

Stations météo sur et hors glacier

• d’énergie

Pluviographe Geonor Pgeo (Pr)

Pluviographe Totalisateur PORE

Pyranomètres (SW "in" et "out")

Pyrgéomètre (LW "in" et "out")

Capteur ultrasonique de hauteur de neige

Appareil

photo.

Station SO/GlacioClim

©BF

1/ THE GLACIER AREAS & VOLUME LOST OVER THE LAST 50 YR 2/ LINKING GLACIER MASS BALANCE & CLIMATE VARIABILITY: the « Pacific forcing » 3/ LINKING ATMOSPHERE & GLACIER: the ablation processes 4/ INSTITUTIONNAL ORGANIZATION: the LMI GREAT ICE

Ecuador: depletion of ice-cap on volcanos (Caceres, 2005,2010)

Aerophogrammetry on the Volcán Cotopaxi, Ecuador (~12km² en 2006)

1976 1997 2006

km² 21.8 15.4 11.8

% -30 -45 INAMHI-HEI

2006

1/ The Glacier Area & Volume lost over the last 50 yr

Jordan et al., 2005; Cáceres, 2010

Cumulative mass balance of 20 glaciers in the South Cordillera Real (Soruco, 2008)

Soruco, 2008

Bolivia 16°S: depletion of glaciers in the Cordillera Real Aerophogrammetry on 20 glaciers: loss of 40-50% (Area & Volume)

1/ The Glacier Area & Volume lost over the last 50 yr

1976

Glaciar de Zongo, Cordillera Real, Bolivia Reconstruction of 50-yr mass balance from crossed methods: glacio/hydro/photogrammetry

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Years

-20

-15

-10

-5

0

5

10

Cum

ulat

ive

Mas

s B

alan

ce (m

w.e

.)

Hydrological Mass BalanceGeodetic Mass BalanceAdjusted Glaciological Mass Balance

Balances de masa acumulados (mm w.e.) calculados por “geodetic method” (triangulos negros), por “método” hidrológico (línea gris) y por método glaciológico (línea negra). Los balances de masa hidrologicos han sido obtenidos anualmente entre 1974 y 2006. Los balances de masa glaciologicos han sido obtenidos por medidas de campo y ajustados según los datos de fotogrametria. (Soruco et al, 2008)

Soruco, 2008

1/ The Glacier Area & Volume lost over the last 50 yr

©AS

Many small-sized glaciers are out of equilibrium and are desappearing below 5400/5200 m Glaciar de Chacaltaya, Bolivia (< 0.5 ha en 2008)

0

50000

100000

150000

200000

250000

1940 1950 1960 1970 1980 1990 2000

area

(m2)

2000 2003

2005

1994

IRD-IHH-IGEMA SENAMHI

Chacaltaya’s aera evolution 1940-2005 2009

1/ The Glacier Area & Volume lost over the last 50 yr

©BF ©BF ©BF

©BF ©PG

Tropical glaciers: the snow line as an indicator of the ELA? Antoine Rabatel

10m

13

3227

44

10

3642

61

68

Zongo

4600

4700

4800

4900

5000

5100

5200

5300

5400

1994

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

Alt

itud

e Sl

a (m

)

- Forte variabilité interannuelle

- Pas de tendance significative

- Signal ENSO bien marqué

0

1

2

3

4

1600 1700 1800 1900 2000Years (AD)

Are

a (k

m²)

Huayna Potosi

Condoriri

Ichu Kota

Charquini

15 glacier areas reconstructed from dated moraines (liquenometry)

[1600-2000 AD] Rabatel et al., Quat. Res. (2008)

~10 morrenas datadas en Bolivia

~1660 AD

~1900 AD

2005

In all the Central Andes, glacier depletion is a century-scale phenomena whose intensity increased during the last 50 years (Jomelli, 2005; Rabatel, 2005)

Cordillera Real Bolivie

Glaciar Sur del Charquini

1/ The Glacier Area & Volume lost over the last 50 yr

©BF

Some perspectives….

1. Ecuador: Multitemporal aerophotogrammetric analysis of Antisana glaciers (0°28 S Ecuador): Ruben Basantes (PhD, 2012-2015, LGGE/Grenoble (B.Francou,A.Rabatel, Marcos Villacis)

2. Bolivia: terrestrial / areal photogrammetry (Alvaro soruco)

3. Peru : Multitemporal aerophogrammetric analysis of Artesonraju glaciers (9°S) : in project (collaboration)

1/ The Glacier Area & Volume lost over the last 50 yr

WARM

COLD

MEI

Ablation intensity increases during the warm phases of ENSO (EN), and dicreases during the cold phases (LN)

• Cumullative mass balance in 3 ablation zones (Zongo, Charquini, Antisana 15 glaciers)

• Multivariate ENSO Index (MEI): Central Pacific Niño 3-4 sectors)

EN

EN

EN EN

LN

LN

LN

EN

PINATUBO Volcanic veil

Francou et al., 2003, 2004, J.Geophys.Res.

2/ LINKING GLACIER MASS BALANCE & CLIMATE VARIABILITY: the « Pacific forcing »

Correlation Pacific SSTa and glacier response

Antisana 15α 1995-2009 Zongo 1991-2009

Niño4 sector Niño1-2 sector

Complexity of thre ENSO/glacier teleconnection: Zonation of SST anomalies induces disctinct glacier responses

Francou , Ville et al., 2003;2004 & Francou/Vuille, in prep.

2/ LINKING GLACIER MASS BALANCE & CLIMATE VARIABILITY: the « Pacific forcing »

Some perspectives…

How glaciers of the tropical Andes do reflect complexity of the climate variability at regional scale?

1) How does the teleconnexion with SST tropical Pacific change with ENSO at multidecal scale (1991-2010: Eastern Pacific El Niño vs Central Pacific El Niño)?

2) How does the atmosphere warming at global scale affect tropical glaciers in the Andes? Observation and modeling.

AWS on Caquella snow field, Bolivia, 21°S, 5400 m asl (Photo P.W.)

Wind monitor (speed and direction) Young 05103

Net radiometer Kipp&Zonen CNR1 - 2 pyranometers CM3 (S↓ and S↑) - 2 pyrgeometers CG3 (L↓ and L↑)

Aspirated hygro-thermometer (T and RH) Vaisala HMP45

Datalogger Campbell CR10X (10s time step – half-hourly means)

Solar panel (power supply for datalogger and ventilation)

Aluminium mast and tripod

3) Energy balance, ablation processes How climate affects the glacier mass balance…

Study of the turbulence processes Ph.D M. Litt (2011-2013) Tropical glaciers / alpine snow cover sonic anemometers CSAT Campbell

infrared gas analyzers Licor LI-7500 Mean vertical profiles (6m) of T and U

• Radiación neta de onda corta S • Radiación neta de onda larga L • Flujo turbulento de calor sensible H • Flujo turbulento de calor latente LE

Wagnon et al., 1999 J.Geophys.Res

Favier et al., 2004 J.Geophys.Res

Sicart et al., 2005 J.Geophys.Res.

Flujos anuales medidos en la superficie de glaciares en el Antizana (Ecuador, 0°28S) y en el Zongo (Bolivia, 16°S)

Ecuación del BE: R + H + LE + G + P = ∆QM

2/ Procesos de ablación del hielo

Good correlations ice melt - air temperature: degree-day models are (often) efficient Paradox: net radiation generally is the greater incoming energy flux, but is poorly correlated to air temperature… Objective: investigating the physical basis of temperature-index models for three glaciers in highly contrasting climates - Zongo glacier (16°S, Bolivian outer tropics), - St Sorlin (45°N, French Alps) - Storglaciären (67°N, northern Sweden) Method - The energy balance is computed during melt seasons (30-min measurements) - All energy fluxes are correlated with each other and with Tair (daily averages) - Contribution of each energy flux to r(T,melt)

Distinct relationships between T and the energy fluxes in the different climates

Glacier melt, air temperature and energy balance in different climates: Bolivian Tropics, French Alps and northern Sweden Jean Emmanuel Sicart, Regine Hock and Delphine Six, JGR, 2008

Zongo: tropical glaciers, very high altitude, MELT SEASON

Radiation controls the energy balance over the melt season

The gains in H are mostly cancelled out by the energy sink in sublimation

The turbulent sensible heat flux is small and does not vary much because:

(i) the 0°C isothermal elevation varies little over the year and T remains low during the melt season

(ii) the light air at very high altitude carries less heat

1-Nov 11-Nov 21-Nov 1-Dec 11-Dec 21-Dec

-150

-100

-50

0

50

100

150

200

250

300

350

ener

gy fl

ux (W

m-2)

-4

0

4

8

12

T (°

C)

0

0.2

0.4

0.6

0.8

1

albe

do

L↓

S

SEB

H

LE

albedo

T

Solar radiation, poorly correlated to T, controls the variations of melt energy

the degree-day model is not appropriate for simulating the melting of tropical glaciers at short time steps…

Albedo fluctuations: decrease the correlations

Contribution to r(T,melt)

R (%) H (%) LE (%)

Zongo 61 43 -4

St sorlin 70 22 8

Storglaciären 11 58 31

Canadian Arctic 9 68 23

low thermal seasonality

Wet season: accumulation and ablation

Dry season: low ablation

Sep Nov Jan Mar May Jul Sep

0

100

200

300

400

500

600

débi

t (l.s

-1)

50

40

30

20

10

0

plui

e (m

m)

-4-20246

tem

péra

ture

(°C

)

1999-2000

Huayna Potosi (16°15’S), Zongo Glacier 6000-4900 m asl, 2.1 km2 ELA0: 5150 m a.s.l.

Objective: understand the seasonal changes of the melting and identify the factors driving the inter-annual changes of mass balance (in Ecuador: PhD. L. Masincho 2012-2014)

Distributed model of energy balance [Hock and Homlgren, 2005]

1- melting at the climate station (input: T, RH, U, G, P); 2- spatial extrapolation of the energy fluxes 3- three linear reservoirs (firn, snow and ice) to simulate the melting discharge. Resolution: hour / grid size: 20 m

‘Physical’ Model: tool to understand the melting processes

Two main adaptations to the tropical glaciers: - Albedo: frequent alternation between snowfall and melting periods in wet season - Incoming long-wave radiation: marked seasonality linked to the cloud-cover

Energy fluxes in dry season: averages over the entire glacier

Low melting rates: • energy loss in long-wave radiation • energy loss by sublimation

12-F

eb

22-F

eb

03-M

ar

13-M

ar

23-M

ar

02-A

pr

12-A

pr

22-A

pr

02-M

ay

12-M

ay

22-M

ay

01-J

un

11-J

un

21-J

un

01-J

ul

11-J

ul

21-J

ul

31-J

ul

-150

-50

50

150

250

350

ener

gy fl

ux (W

m-2)

-800-600-400-2000200400600

Joul

es 1

06

S

H+LE

SUML

S: net short-wave radiation L: net long-wave radiation H+LE: turbulent fluxes

clouds clear sky

Discharge and melting duration

0 4 8 12 16 20 24number of hours Tsurf. > -1°C

0

100

200

300

400

daily

dis

char

ge (l

.s-1

)

Long-wave radiation (clouds) drive the seasonal changes of surface energy balance (low latitude and very high altitude) The mass balance strongly depends on the outbreak of the wet season, which interrupts the period of highest melt rates caused by solar radiation

dry season (June-Aug.)

gradual build-up of the wet season (Sept.-Dec.)

wet season (Jan.-May)

09 10 10 11 12 01 02 03 04 05 06 07 08month

0

2

4

6

8

10

runo

ff (m

m)

0

2

4

6

prec

ipita

tions

(mm

)

0

100

200

300

400

500

sum

pre

cipi

tatio

ns (m

m)

Mass balance / melt discharge: wet season timing and duration / precipitation intensity, frequency… PhD. C. Ramallo, 2010-2012

Runoff

precipitations

sum of precipitations 5 stations on the Altiplano, daily averages over 1991-2008

Delay of the wet season (El Niño 97/98): very negative mass balance due to little accumulation and very large ablation

Three seasons in the year? Marengo et al., 2005, Brazilian Amazon Basin…

Variabilité décennale

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

1950

-59

1960

-69

1970

-79

1980

-89

1990

-99

2000

-09

Indi

ces

pluv

iom

etriq

ue (i

)PatacamayaSCAyo Ayo

Indice pluviométrique i= (Pi-P)/σ Pluviomètres du Patacamaya, Ayo Ayo et San calixto.

Composites des années sèches et humides

Nombre de jours juliens

P jo

urna

liere

(mm

)

0 50 100 150 200 250 300 3500

24

68

Composites humides du trois annéesComposites seches du trois annéesMoy enne du 28 années

Patacamaya

Nombre de jours juliens

P jo

urna

liere

(mm

)

0 50 100 150 200 250 300 350

02

46

810

Composites humides du trois annéesComposites seches du trois annéesMoy enne du 28 années

San Calixto

Nombre de jours juliens

P jo

urna

liere

(mm

)

0 50 100 150 200 250 300 350

02

46

810

Composites humides du trois annéesComposites seches du trois annéesMoy enne du 28 années

Plataforma

Nombre de jours juliens

P jo

urna

liere

(mm

)

0 50 100 150 200 250 300 3500

510

1520

Composites humides du trois annéesComposites seches du trois annéesMoy enne du 28 années

Harcacycle saisonnières du composites secs (1993,1998, 2005), composites humides (1997,2001, 2007) et la moyenne du 18 ans (1992-2010). Pluie annuelle Patacamaya: 395mm, San Calixto: 600mm, Plataforma: 800mm et Harca: 2160mm

Relation between wet season properties (timing, duration…) and melt discharge (since the seventies) ?

0 100 200 300 400

010

020

030

040

0

Nombre de jours juliens

cum

ul p

luie

jour

nalie

re(m

Patacamaya

0 100 200 300 400

010

020

030

040

050

0

Nombre de jours juliens

cum

ul p

luie

jour

nalie

re(m

San Calixto

0 100 200 300 400

020

040

060

080

0

Nombre de jours juliens

cum

ul p

luie

jour

nalie

re(m

Plataforma

0 100 200 300 400

050

010

0015

0020

00

Nombre de jours juliens

cum

ul p

luie

jour

nalie

re(m

Harca

Cumulated sum of daily prec., averages over 19 years

« The Great Ice » LMI

Dates: • 1991: IRD’s initiative for studying glaciers (the « Great Ice » program) • 2001: The Observatory GLACIOCLIM-Andes (French Alps, Central Andes, Antarctica, Himalaya, Kerguelen Islands) • 2011: Laboratoire Mixte International/Laboratorio Mixto International (IRD)

Component parts: • 10 French res. from LTHE, LGGE, UJF (Grenoble University) • 11 Andean res. From UMSA (Bolivia), INAMHI / EPN (Ecuador), ANA / SENAMHI (Peru) • Leaders: B.Francou/J-E.Sicart/T. Condom (Paz,Grenoble)) & M.Villacis (Quito)

Functions : • Observing glaciers and climate on the long term (decades) and producing data for documenting climate change Diagnosing glacier/climate evolution in the Andean and determining impacts on economy and environment (water resources and ecosystems) • Increasing capacities for researchers of the Andean countries and developing competence in local universities Master / PhD students, workshops, field courses, GTHN-UNESCO

4/ INSTITUTIONNAL ORGANIZATION: the LMI GREAT ICE

Some general conclusions… Relations between climate and glaciers - Observations: long-term monitoring program in the central Andes since the nineties (should continue…)

- Studies of the processes (meas.) / modeling (melt model adapted to the tropical glaciers?) - Glacier changes at regional scales, inner/outer tropics - Links to the climatic forcing (student co-supervising?) - Exploration of past climates (Little Ice Age) … THANK YOU