IPR - Leslie Thompson

Embed Size (px)

Citation preview

  • 8/17/2019 IPR - Leslie Thompson

    1/57

    Inflow Performance

    Relationship

    IPR

    by

    Dr. Leslie Thompson

  • 8/17/2019 IPR - Leslie Thompson

    2/57

    Production System

  • 8/17/2019 IPR - Leslie Thompson

    3/57

    Fluid Production

    • Path of produced fluids

     – Reseroir 

     – Perforations! "rael pac#! etc.

     – Downhole e$uipment! casin"! tubin".

    • %i&in" with "as'lift "as

     – (ellhead! production cho#es – Flow lines! manifolds

     – Separator 

  • 8/17/2019 IPR - Leslie Thompson

    4/57

    Fluid Production

    • In each flow se"ment! the fluids interact

    with the production components

     – Pressure! temperature and flow elocityare altered.

     – Fluid properties constantly chan"in".

  • 8/17/2019 IPR - Leslie Thompson

    5/57

    Pressure Losses

  • 8/17/2019 IPR - Leslie Thompson

    6/57

    Driin" Force

    • The driin" force that moes fluids alon" the

    reseroir and production system is the ener"y

    stored in the form of compressed fluids in thereseroir.

     – )s the fluids moe alon" the system components!

    pressure drop occurs. The pressure in the

    direction of flow continuously decreases from thereseroir pressure to the final downstream

    pressure alue at the separator. 

  • 8/17/2019 IPR - Leslie Thompson

    7/57

    IPR

    • The flow of oil! "as and water from the

    reseroir is characteri*ed by the Inflow

    Performance relationship. – IPR is a measure of +Pressure losses, in the

    formation.

    • The functional relationship between flow rate

    and bottomhole pressure is called IPR. – Indicator of well performance.

    ( )   ( ) p f  p p f q wf    ∆=−=

  • 8/17/2019 IPR - Leslie Thompson

    8/57

    Productiity Inde&

    • %easure of the well-s capacity to

    produce fluids from reseroir to

    wellbore.• Definition Fluid production rate for / psi

    pressure drop from reseroir to

    wellbore.

  • 8/17/2019 IPR - Leslie Thompson

    9/57

    Productiity Inde&

    ( )

    ( ) ( )( )t  pt  pt q

     PI wf −

    =

     PI Productiity Inde&! ST01d1psi

    ( )t  p    )era"e pressure in the well-s draina"e area! psi.

    ( )t  pwf    0ottomhole flowin" pressure! psi

    q(t ) Production rate! ST01d

  • 8/17/2019 IPR - Leslie Thompson

    10/57

    Parameters 2ontrollin" IPR or PI

    • Roc# Properties – Permeability! Relatie permeability

    • Fluid Properties – 0o! µo! 0w! µw! co! cw – 0"! µ"! *! c"

    • Flow Re"ime in the Reseroir  – Darcy Flow

     – 3on'Darcy 4inertial! Forchheimer5 flow

    • Phases Flowin" – Sin"le Phase 46il! 7as5

     – Two Phases 4687! 68(! 78(5

     – Three Phases 46878(5

  • 8/17/2019 IPR - Leslie Thompson

    11/57

    Parameters 2ontrollin" IPR or PI

    • Fluid Saturation Distribution

    • Reseroir Drie %echanisms

    • Formation Dama"e of Stimulation

    • Relationship between IPR1PI and other

    ariables 4#! fluid properties! relatie

    permeability! etc.5 can be ery comple&.

  • 8/17/2019 IPR - Leslie Thompson

    12/57

    Determination of PI• Testin" the (ell

     – %easure q, pwf ,

    • Deelop PI models 4e$uations5

     – PI 9 f (k, k ro , k rg  , k rw , Bo , B g  , Bw , etc.5

     – e.".! steady'state sin"le phase flow

      p

    ( )

    ( ) ( )( )t  pt  pt q

     PI wf −=

      

     

     

     

     +−  

     

     

     

     µ

    =−

    =

     s

    r  B

    kh

     p p

    q PI 

    w

    ewf  

    2

    1ln2.141

  • 8/17/2019 IPR - Leslie Thompson

    13/57

    Steady'State Radial Flow

    ( e l l !   r  w D a m a " e d : o n e , ( r   s ,   k   s )

    R e s e r o i r  , ( r  e ,   k  )

  • 8/17/2019 IPR - Leslie Thompson

    14/57

    Radial Flow

    • 2onsider sin"le'phase radial flow in a cylindrical

    reseroir of radius r e with a well in the center

    produced at a constant rate q sc ST01D. 

    • If the outer boundary is held at a constant pressure 

     pe, after some time we will hae steady'state flow! 

    q(r )/ B = q sc for all r  and t  where q(r ) is the flow rate in

    R01D throu"h a cylinder of radius r . %oreoer! ∂ p/∂t  =0.

    •  Darcy-s Law becomes 

    ( ) ( )

     pr 

     B

    kh

     p

     B

    k rhr q sc

    µ

    =

    µ

    π×=   −

    2.141

    210127.1 3

  • 8/17/2019 IPR - Leslie Thompson

    15/57

    Radial Flow

    • In the outer *one! r e > r  > r  s 

    • Separatin" ariables and inte"ratin"

    ( ) r  p

    r  B

    khr q sc ∂

    ∂µ= 2.141

    ( )

    ( )      

      µ=−

    µ= ∫ ∫ 

    kh

     Bqr  p p

    dr 

    kh

     Bqdp

    e sce

     sc

     p

    r  p

    ee

    ln2.141

    2.141

  • 8/17/2019 IPR - Leslie Thompson

    16/57

    Radial Flow

    •  )t r = r  s! the pressure is "ien by

    • For the inner 4dama"ed *one5 Darcy-s

    law

    ( )    

     

     

     µ−=  s

    e sc

    e s r 

    kh

     Bq

     pr  p   ln

    2.141

     pr 

     B

    hk q  s sc ∂

    ∂µ

    =2.141

  • 8/17/2019 IPR - Leslie Thompson

    17/57

    Radial Flow

    • Separatin" ariables and inte"ratin"

    • ;liminatin" p4r  s5

    ( )

    ( )

    ( ) ( )      

      µ=−

    µ=

    ∫ ∫ r 

    hk 

     Bqr  pr  p

    dr 

    hk 

     Bqdp

     s

     s

     sc s

    r  s

     sc

    r  p

    r  p

     s s

    ln2.141

    2.141

    ( )

      

     

     

     

        

      +  

     

     

     

     µ=

       

      µ+  

      

      µ=−

    kh

     Bq

    hk 

     Bq

    kh

     Bqr  p p

     s

     s s

    e sc

     s

     s

     sc

     s

    e sce

    lnln2.141

    ln2.141ln2.141

  • 8/17/2019 IPR - Leslie Thompson

    18/57

    Radial Flow

    • ;&pandin" and simplifyin"

    • ;aluatin" at the wellbore

    ( )

       

      

        

      

       

      

     −+ 

      

      µ=

      

     

     

     

      

     

     

     

     + 

     

     

     

     − 

     

     

     

     +  

     

     

     

     µ=−

    kh

     Bq

    kh

     Bqr  p p

     s

     s

    e sc

     s

     s

     s s

     s

    e sce

    ln1ln2.141

    lnlnlnln2.141

       

      

        

      

        

      

     −+  

     

      

     µ=−

    w

     s

     sw

    e scwf e

    kh

     Bq p p ln1ln

    2.141

  • 8/17/2019 IPR - Leslie Thompson

    19/57

    S#in

    • (e define

    • The term s is #nown as the 4

  • 8/17/2019 IPR - Leslie Thompson

    20/57

    3otes on S#in

    • S#in is a dimensionless number 

    • If k = k  s! the reseroir is not dama"ed!and s = 0.

    • If k > k  s! the reseroir is dama"ed! and s 

    > 0.• If k < k  s! the reseroir is stimulated! and

     s < 0.

       

      

        

      

     −=

    w

     s

     s r 

    k  s ln1

  • 8/17/2019 IPR - Leslie Thompson

    21/57

    Productiity Inde&

    • For steady'state radial flow

    • (ell-s productiity is increased if –  s is reduced

     –  r w is increased

     –  µ is reduced –  h is increased

        

       +  

      

      µ

    =

    =

     sr r  B

    kh

     p p

    q PI 

    w

    ewf  e ln2.141

  • 8/17/2019 IPR - Leslie Thompson

    22/57

    ;&ample

    •  ) reseroir with the followin" properties

    is flowed at a bottomhole pressure of

    =>?? psi. 2alculate the flow rate.Su""est two ways of increasin" the

    wells production rate by a factor of @.

  • 8/17/2019 IPR - Leslie Thompson

    23/57

    PropertiesProperty Value Source

    Permeability, md 5.2 Pressre !ransient "nalysis

    !#i$%ness, &t 53 'ell ls

    *is$sity, $+ 1.7 lid "nalysis

    rmatin *lme a$tr, -/! 1.1 lid "nalysis

    'ellbre radis, &t 0.32

    'ell drainae area, a$re 40 'ell s+a$in

    %in &a$tr 10 Pressre !ransient "nalysis

    "erae reserir +ressre, +si 535 Pressre !ransient "nalysis

  • 8/17/2019 IPR - Leslie Thompson

    24/57

    Solution

    • First! we conert the well-s draina"e area to an

    e$uialent draina"e radius usin"

    • The reseroir area is A=? acre 9 A=? acre×=B>A?ft@1acre 9 @CC=?? ft@. The e$uialent reseroir

    draina"e area is r e 9 @ECE ft.

     Ar e   =π  2

       

     

     

     

    +−   

     

     

     

    µ

    =−

    =

     sr 

     B

    kh

     p p

    q PI 

    w

    ewf 

    2

    1

    ln2.141

    ( ) ( )

    ( ) ( ) ( )

    !/+si 051.0

    105.032.0

    27ln7.11.12.141

    532.5=

       

      

     +− 

      

      

    = PI 

  • 8/17/2019 IPR - Leslie Thompson

    25/57

    Solution

    • Solin" for Rate

    • To double the rate! we could double the pressure

    drop. The current pressure drop is //B> psi! so

    double this alue is @@C? psi! which means that we

    must reduce the bottomhole pressure to >AB> – @@C?

    9 B?E> psi.

    ( )   ( )   !/d .34500535 051.0   S  p p PI q wf     =−=−=

  • 8/17/2019 IPR - Leslie Thompson

    26/57

    Solution

    •  )nother method of doublin" the well-s rate would beto double the Productiity Inde& to a alue of ?.//@@ST01psi.

    • (e would do this by decreasin" the s#in factor bystimulatin" the well.

    • To determine the new s#in factor 

    •  snew = 0.7. 

    ( ) ( )

    ( )( )( )     

       +− 

      

      

    ==

    new s

     PI 

    5.032.0

    27ln7.11.12.141

    532.51122.0

  • 8/17/2019 IPR - Leslie Thompson

    27/57

    Pseudosteady State Flow

    • Rate of chan"e of pressure with time at

    each point in a closed reseroir is

    constant. – ;ach +point, in the reseroir contributes

    e$ually to the flow.

    • Productiity Inde&

      

     

     

     

     +−  

     

     

     

     µ

    =−

    =

     sr 

    r  B

    kh

     p p

    q PI 

    w

    ewf  

    4

    3ln2.141

  • 8/17/2019 IPR - Leslie Thompson

    28/57

  • 8/17/2019 IPR - Leslie Thompson

    29/57

    Diet* Shape Factors

  • 8/17/2019 IPR - Leslie Thompson

    30/57

    3otes

    • (ith all else e$ual! asymmetric well'reseroirconfi"urations hae lower PI and flow ratecompared with a symmetric well'reseroirconfi"uration

    • For psuedosteady state flow with constant wellflowin" pressure! aera"e reseroir pressure andflow rate decline continuously due to depletion.

    • For sin"le phase flow! PI does not chan"e with

    chan"es in chan"es in flow rate and aera"ereseroir pressure due to depletion.

  • 8/17/2019 IPR - Leslie Thompson

    31/57

     )bsolute 6pen Flow Potential

    •  )6F – For a "ien well'reseroir pair and aera"e

    reseroir pressure! )6F is the ma&imum theoretical

    flow rate that the well can proide.

    •  )6F is useful in analy*in" IPR in terms of

    ( ) p PI qq

     p p PI q

     AOF 

    wf 

    ==−=

    ma

    ma

     erssq

    q

     p

     pwf 

  • 8/17/2019 IPR - Leslie Thompson

    32/57

    Sin"le Phase IPR

    q

    wf  P 

    ( )wf  p p PI q   −=r  P 

    maq

     pwf  p

    q PI   

     

     

     

     

     ∂∂

    −=

     p PI q   =ma

  • 8/17/2019 IPR - Leslie Thompson

    33/57

    Future Linear IPR

    q

    wf  P 

    ( )wf r    P  P   q   −=

    r  P 

    maq

     )s time t  incresases! reseroir

    pressure P r  decreases and cumulatie

    production N  p increases.

  • 8/17/2019 IPR - Leslie Thompson

    34/57

    IPR for 7as (ells

    • 7as PT properties are a function of pressure 4µ)! ! , B g , c g 5

    • If p G @>?? psi and steady'state "as flow 4$ %scf1D5

    • Pseudosteady'state flow

       

      

     +  

     

      

     µ=−   s

    kh

    "  # q p p

    w

    ewf  e   ln

    142422

       

      

     +  

     

      

     µ=−   s

    C r 

     A

    kh

    "  # q p p

     Aw

    wf     2

    22   245.2ln2

    11424

  • 8/17/2019 IPR - Leslie Thompson

    35/57

    PI for 7as (ells

    • Pseudosteady'state flow

    • PI for "as wells is a function of pressure.

     – (hen aera"e reseroir pressure chan"es! "as propertieschan"e.

     – PI is not constant durin" the well-s life

    ( )

        

       +  

      

      µ

    +=

    ==

     sC r  A"  # 

     p pkh

     p p

    q PI  PI 

     Aw

    wf  

    wf  2245.2ln2

    11424

  • 8/17/2019 IPR - Leslie Thompson

    36/57

    Typical 7as IPR

    Gas IPR

    ?

    /???

    @???

    B???

    =???

    >???

    A???

    ? /???? @???? B???? =???? >???? A???? C????

    Rate, MSCF/d

       W  e   l   l   P  r  e  s  s  u  r  e ,  p  s

       i

  • 8/17/2019 IPR - Leslie Thompson

    37/57

  • 8/17/2019 IPR - Leslie Thompson

    38/57

    Pseudosteady State 7as Flow

    • For Pseudosteady state flow

    • 0ac# Pressure ;$uation 4Rawlins – Schellhardt5

      

     

     

     

     ++  

     

      

     µ=−   $q s

    C r 

     A

    kh

    "  # q p p

     Aw

    wf     2

    22   245.2ln2

    11424

    222 %q&q p p wf    +=−

        

       +  

      

      µ=   sC r 

     A

    kh

    "  # & Aw

    2

    245.2ln2

    11424

    kh

    "$ # %

      µ=

    1424

  • 8/17/2019 IPR - Leslie Thompson

    39/57

    Limitin" 2ases

    • (hen non'Darcy flow is ne"li"ible 4% 

  • 8/17/2019 IPR - Leslie Thompson

    40/57

    7enerali*ed 7as Flow

    • Limitin" forms of the "as flow e$uation can be

    "enerali*ed as

     – 3e"li"ible non'Darcy flow! n 9 /

     – Purely non'Darcy flow! n 9 ?.>

     – 0oth components play a role! ?.> G n G /

    • ;$uation can be rearran"ed as

    ( )

    n

    wf  p pC q

    22

    −=

    ( )   ( ) ( )C n

    qn

     p p wf  l1

    l1

    l 22 −=−

  • 8/17/2019 IPR - Leslie Thompson

    41/57

    0ac# Pressure )nalysis

    •  )t constant reseroir pressure! flow at

    four different flow rates.

     – %easure stabili*ed bottomhole pressure ateach rate.

    • Plot

    • Strai"ht line with slope /1n.• (ith n! can construct the IPR.

    ( )   ( )q p p wf     l()erssl()  22 −

  • 8/17/2019 IPR - Leslie Thompson

    42/57

    %ultiphase Flow

    • 3eed rates of oil! "as! water 

     –  PI o , PI  g  , PI w 

       

      

     +  

     

      

     µ

    =−= s

    C r 

     A B

    hk 

     p p

    q PI 

     Aw

    oo

    o

    wf 

    oo

    2

    245.2ln

    2

    12.141

        

       +  

      

      µ

    =−

    =

     sC r  A B

    hk 

     p p

    q PI 

     Aw

    ww

    w

    wf  

    ww

    2245.2ln212.141

      

     

     

     

     +  

     

     

     

     µ

    =−

    =

     sC r 

     A B

    hk 

     p p

    q PI 

     Aw

     g  g 

     g 

    wf 

     g 

     g 

    2

      245.2ln2

    12.141

    roo   kk k   =

    rww   kk k   =

    rg  g    kk k   =

  • 8/17/2019 IPR - Leslie Thompson

    43/57

    %ultiphase IPR

    • IPR under multiphase flow conditions cannot beeasily calculated.

    • The most accurate method is by solin" thee$uations "oernin" the flow in the porousmedia throu"h a reseroir simulator.

    • The IPR is so important to Production;n"ineers that simplified or empirical methodsto estimate it are necessary.

    • The most common correlations are o"el andFet#oich

  • 8/17/2019 IPR - Leslie Thompson

    44/57

    o"el IPR

    • o"el used a numerical reseroir simulator to

    "enerate the IPR.

  • 8/17/2019 IPR - Leslie Thompson

    45/57

    *el 6P- 

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.2 0.4 0.6 0.8 1mar  f w

    2

    ma

    .02.01     

      −  

      

      −=

     p p

     p p

    qq   wf  wf  

  • 8/17/2019 IPR - Leslie Thompson

    46/57

    o"el IPR

    • o"el IPR can be obtained from well tests.

    •  )lthou"h the method was deeloped for

    solution "as drie reseroirs! the e$uation is"enerally accepted for other drie

    mechanisms as well.

    • It is found to "ie e&cellent results for any well

    with a reseroir pressure below the oil bubblepoint! i.e.! saturated reseroirs.

  • 8/17/2019 IPR - Leslie Thompson

    47/57

    Hndersaturated Reseroirs

     P r 

     P %

     P 

    q

    ( )wf r   P  P   q   −=

    ?

    q% q'&(

  • 8/17/2019 IPR - Leslie Thompson

    48/57

    Hndersaturated Reseroirs

     P r 

     P %

     P 

    q

    q% q'&(

    q) = q * q%

     P r ) = P %

  • 8/17/2019 IPR - Leslie Thompson

    49/57

    Hndersaturated Reseroirs

     P r 

     P %

     P 

    q

    ( )wf r    P  P   q   −=

    q%   q'&(

       

      

     −  

     

      

     −=

    −−

    %

    wf 

     P 

     P 

    qq

    qq

     P 

     P 

    %

    wf  

    %

    %

    2

    ma

    .02.01

  • 8/17/2019 IPR - Leslie Thompson

    50/57

  • 8/17/2019 IPR - Leslie Thompson

    51/57

    ;&ample

    ien data,

     p = 2,400 +sia

    qo = 100 !/d

    wf = 100 +sia

    enerate in&l8 +er&rman$e $re sin

     bt# *el9s and et%i$#9s (n  = 1)e:atins.

  • 8/17/2019 IPR - Leslie Thompson

    52/57

    ;&ample

    Solution •*el9s ;:atin

    etermine qo,ma

    2

    ma, 2400

    100.0

    2400

    1002.01

    100   

      − 

      

      −=

    oq 

    250ma,   =oq  !/d

    *els e:atin be$mes

    2

    2400.0

    24002.01

    250      

     

    −   

     

    −= wf wf o  p pq

     

  • 8/17/2019 IPR - Leslie Thompson

    53/57

    ;&ample

    •et%i$#9s ;:atin

    etermine qo,ma

    2

    ma, 2400

    1001

    100   

      −=

    oq  

    .22ma,   =oq  !/d

  • 8/17/2019 IPR - Leslie Thompson

    54/57

    ;&ample

    *el et%i$#

     pwf , +sia  qo, !/d   pwf , +sia

      qo, !/d 

    0 250.0 0 22.

    00 225.0 00 214.3

    1200 175.0 1200 171.5

    100 100.0 100 100.0

    2400 0.0 2400 0.0

  • 8/17/2019 IPR - Leslie Thompson

    55/57

  • 8/17/2019 IPR - Leslie Thompson

    56/57

     Multi-layer inflow Performance

  • 8/17/2019 IPR - Leslie Thompson

    57/57

    rss?l8 bet8een 2 @ayers