IP 10G Product Description V21!09!2009

Embed Size (px)

Citation preview

  • 8/10/2019 IP 10G Product Description V21!09!2009

    1/94

    FibeAir

    IP-10

    G-Series

    Product Description

    Document Version 21

    September 2009

  • 8/10/2019 IP 10G Product Description V21!09!2009

    2/94

    FibeAir

    IP-10 G-Series Product Description 2

    Notice

    This document contains information that is proprietary to Ceragon Networks Ltd.No part of this publication may be reproduced, modified, or distributed without prior written authorization ofCeragon Networks Ltd.

    This document is provided as is, without warranty of any kind.

    Registered Trademarks

    Ceragon Networks

    , FibeAir

    and CeraView

    are registered trademarks of Ceragon Networks Ltd.

    Other names mentioned in this publication are owned by their respective holders.

    TrademarksCeraMap

    TM, ConfigAir

    TM, PolyView

    TM, EncryptAir

    TM,CeraMon

    TM, EtherAir

    TM, and MicroWave Fiber

    TM, are

    trademarks of Ceragon Networks Ltd.

    Other names mentioned in this publication are owned by their respective holders.

    Statement of Conditions

    The information contained in this document is subject to change without notice.

    Ceragon Networks Ltd. shall not be liable for errors contained herein or for incidental or consequentialdamage in connection with the furnishing, performance, or use of this document or equipment supplied withit.

    Information to User

    Any changes or modifications of equipment not expressly approved by the manufacturer could void the usersauthority to operate the equipment and the warranty for such equipment.

    Copyright 2009 by Ceragon Networks Ltd. All rights reserved.

    Corporate Headquarters

    Ceragon Networks Ltd.24 Raoul Wallenberg St.Tel Aviv 69719, IsraelTel: 972-3-645-5733Fax: 972-3-645-5499Email: [email protected] www.ceragon.com

    European Headquarters

    Ceragon Networks (UK) Ltd.4 Oak Tree Park, Burnt Meadow RoadNorth Moons Moat, Redditch,Worcestershire B98 9NZ, UKTel: 44-(0)-1527-591900Fax: 44-(0)-1527-591903Email: [email protected]

    North merican Headquarters

    Ceragon Networks Inc.10 Forest Avenue,Paramus, NJ 07652, USATel: 1-201-845-6955Toll Free: 1-877-FIBEAIRFax: 1-201-845-5665Email: [email protected]

    P C Headquarters

    Ceragon Networks APAC

    (S'pore) Pte Ltd100 Beach Road#27-01/03 Shaw TowersSingapore 189702Tel.: 65 65724170Fax: 65 65724199

  • 8/10/2019 IP 10G Product Description V21!09!2009

    3/94

    FibeAir

    IP-10 G-Series Product Description 3

    Contents

    Introducing FibeAir IP-10..............................................................................................4

    Features.........................................................................................................................5

    Advantages..................................................................................................................11

    Applications................................................................................................................. 12

    System Overview ........................................................................................................ 13

    FibeAir IP-10 & FibeAir RFUs .....................................................................................22

    Carrier Grade Ethernet ...............................................................................................23

    Wireless Network Synchronization............................................................................ 37

    Integrated Nodal Solution........................................................................................... 43

    Cross Connect (XC) ....................................................................................................48

    FibeAir IP-10 G-Series Typical Configurations .........................................................62

    Specifications..............................................................................................................75

  • 8/10/2019 IP 10G Product Description V21!09!2009

    4/94

  • 8/10/2019 IP 10G Product Description V21!09!2009

    5/94

    FibeAir

    IP-10 G-Series Product Description 5

    Features

    Highest Spectral Efficiency

    Modulations: QPSK to 256 QAM

    Radio capacity:

    o ETSI up to 50/100/220/280/500 Mbps over 7/14/28/40/56 MHz channels

    o FCC up to 70/140/240/320/450 Mbps over 10/20/30/40/50 MHz channels

    All licensed bands: L6, U6, 7, 8, 10, 11, 13, 15, 18, 23, 26, 28, 32, 38 GHz

    Highest scalability: From 10 Mbps to 500 Mbps, using the same hardware, including the same

    ODU/RFU!

    Configurations: 1+0 or 1+1 Hot Standby (fully redundant)

    TDM Voice Transmission with Dynamic Allocation-With the n x E1/T1 option, only enabled E1/T1

    ports are allocated with capacity. The remaining capacity is dynamically allocated to the Ethernet ports

    to ensure maximum Ethernet capacity.

    FibeAir IP-10 Capacity vs. Channel Bandwidth

    0

    100

    200

    300

    400

    500

    600

    7 10 14 20 28/30 40 50 56

    Channel Bandwidth [MHz]

    Ca

    pacity

    [Mbps]

    F ibA ir IP -10 Legac y P DH Legac y S DH

    Highest

    Capacit

    yatany

    Channe

    lBandw

    idth

  • 8/10/2019 IP 10G Product Description V21!09!2009

    6/94

    FibeAir

    IP-10 G-Series Product Description 6

    Native2

    Microwave Radio Technology

    At the heart of the IP-10 solution is Ceragon's market-leading Native2 microwave technology.

    With this technology, the microwave carrier supports native IP/Ethernet traffic together with optional native

    PDH. Neither traffic type is mapped over the other, while both dynamically share the same overall

    bandwidth.

    This unique approach allows you to plan and build optimal all-IP or hybrid TDM-IP backhaul networks

    which make it ideal for any RAN (Radio Access Network) evolution path selected by the wireless provider

    (including Green-Field 3.5G/4G all-IP installations).

    In addition, Native2

    ensures:

    Very low link latency of

  • 8/10/2019 IP 10G Product Description V21!09!2009

    7/94

    FibeAir

    IP-10 G-Series Product Description 7

    Adaptive Coding & Modulation

    ACM employs the highest possible modulation during changing environmental conditions, which may be

    from QPSK to 256 QAM.

    The benefits of this dynamic feature include:

    Maximized spectrum usage

    Increased capacity over a given bandwidth

    8 modulation/coding work points (~3 db system gain for each point change)

    Supports both Ethernet and T1/E1 traffic

    Hitless and errorless modulation/coding changes, based on signal quality

    T1/E1 traffic has priority over Ethernet traffic

    An integrated QoS mechanism enables intelligent congestion management to ensure that your high

    priority traffic is not affected during link fading.

    Each T1/E1 is assigned a priority to enable differentiated T1/E1 dropping during severe link

    degradation.

    Non-realtime

    services

    Voice&realtime

    servicesWeak

    FECStrong

    FEC

  • 8/10/2019 IP 10G Product Description V21!09!2009

    8/94

    FibeAir

    IP-10 G-Series Product Description 8

    Integrated Layer-2 Switching

    IP-10 supports two modes for Ethernet switching:

    Smart Pipe -In this mode, Ethernet switching functionality is disabled and only a single Ethernet interface

    is enabled for user traffic. The unit effectively operates as a point-to-point Ethernet microwave radio.

    Metro Switch -In this mode, Ethernet switching functionality is enabled.

    The following table lists the different aspects of IP-10 functionality.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    9/94

    FibeAir

    IP-10 G-Series Product Description 9

    QoS-Aware Dynamic Congestion Management (with ACM)

    Four priority (CoS) queues

    Advanced CoS classifier: 802.1p, VLAN ID, IPv4 / IPv6 (DSCP/TOS/TC).

    Advanced ingress traffic policing/rate-limiting per port/CoS

    Flexible scheduling: Strict Priority, Weighted Round Robin, or hybrid.

    Traffic shaping

    802.3x flow control (for loss-less) operation

    Intelligent Ethernet Header Compression (patent-pending)

    Improves effective throughput by up to 45%!

    Does not affect user traffic.

    5%512

    29%96

    Ethernet

    packet size (bytes)

    Capacity increase by

    compression

    64 45%

    128 22%

    256 11%

    5%512

    29%96

    Ethernet

    packet size (bytes)

    Capacity increase by

    compression

    64 45%

    128 22%

    256 11%

  • 8/10/2019 IP 10G Product Description V21!09!2009

    10/94

    FibeAir

    IP-10 G-Series Product Description 10

    Extensive Radio Capacity/Utilization Statistics

    Statistics are collected at 15-minute and 24-hour intervals

    Historical statistics are stored and made available when needed

    Capacity/ACM statistics:

    - Maximum modulation in interval

    - Minimum modulation in interval

    - # of seconds in an interval, during which active modulation was below the user-configured threshold

    Utilization statistics:

    - Maximal radio link utilization in an interval

    - Average radio link utilization in an interval

    - # of seconds in an interval, during which radio link utilization was above the user-configured

    threshold

    In-Band Management

    IP-10 can optionally be managed in-band, via its radio and Ethernet interfaces. This method of managementeliminates the need for a dedicated interface and network.

    In-band management uses a dedicated management VLAN, which is user-configurable.

    Native TDM Base Station Timing & Synchronization

    Each T1/E1 trail carries a native TDM clock, which is compliant with strict cellular application

    requirements (2G/3G), and is suitable as a base station timing source.

    This eliminates the need for timing-over-packet techniques for base station synchronization.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    11/94

    FibeAir

    IP-10 G-Series Product Description 11

    Advantages

    IP-10 has many advantages that cover the many aspects of flexible and reliable network building.

    Incomparable Economic Value

    The IP-10 pay-as-you-grow concept reduces network costs. Each network node is optimized individually,

    with future capacity growth in mind.

    Whenever needed, additional functionality is enabled via upgrade license, using the same hardware. Using

    this flexible economic approach, a full duplex throughput of more than 400 Mbps over a single channel can

    be achieved.

    Experience Counts

    IP-10 was designed with continuity in mind. It is based on Ceragons well-established and field-provenIP-MAX Ethernet microwave technology.

    With Ceragon's large install base, years of experience in high-capacity IP radios, and seamless integration

    with all standard IP equipment vendors, IP-10 is poised to be an IP networking standard-bearer.

    ative2

    With Native2, you get optimal all-IP or hybrid TDM-IP backhaul networking - ideal for any RAN evolution

    path!

    User- anagement Traffic Integration

    In-Band Management significantly simplifies backhaul network design and maintenance, reducing both

    CapEx and OpEx. It also dramatically improves overall network availability and reliability, enabling supportfor services with stringent SLA (Service Level Agreement).

    Unique Full Range Adaptive Modulation

    Provides the widest modulation range on the market from QPSK to 256 QAM with multi-level real-time

    hitless and errorless modulation shifting changing dynamically according to environmental conditions -

    while ensuring zero downtime connectivity.

    Guaranteed Ultra Low Latency (< 0.15 ms @ 400Mbps)

    Suitable for delay-sensitive applications, such as VoIP and Video over IP.

    Extended Quality of Service (QoS) SupportEnables smart packet queuing and prioritization.

    Fully Integrated L2 Ethernet Switching Functionality

    Including VLAN based switching, MAC address learning, QinQ and STP/RSTP/MSTP support.

    ultiple Network Topology Support

    Mesh, Ring, Chain, Point-to-Point.

    Longer Transmission Distances, Smaller Antennas

    Reduces network costs and enables a farther reach to the other end.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    12/94

    FibeAir

    IP-10 G-Series Product Description 12

    Applications

    Mobile backhaul

    Cellular Networks

    FibeAir IP-10 family supports both Ethernet and TDM for cellular backhaul network migration to IP, within

    the same compact footprint. The system is suitable for all migration scenarios where carrier-grade Ethernet

    and legacy TDM services are required simultaneously.

    WiMAX Networks

    Enabling connectivity between WiMAX base stations and facilitating the expansion and reach of emerging

    WiMAX networks, FibeAir IP-10 provides a robust and cost-efficient solution with advanced native

    Ethernet capabilities.

    FibeAir IP-10 family offers cost-effective, high-capacity connectivity for carriers in cellular, WiMAX and

    fixed markets. The FibeAir IP-10 platform supports multi-service and converged networking requirements

    for both legacy and the latest data-rich applications and services.

    Converged Fixed/Wireless Networks

    Ceragons FibeAir IP-10 delivers integrated high speed data, video and voice traffic in the most optimum

    and cost-effective manner. Operators can leverage FibeAir IP-10 to build a converged network infrastructure

    based on high capacity microwave to support multiple types of service.

    FibeAir IP-10 is fully compliant with MEF-9 & MEF-14 standards for all service types (EPL, EVPL and E-

    LAN) making it the ideal platform for operators looking to provide high capacity Carrier Ethernet services

    meeting customers demand for coverage and stringent SLA.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    13/94

    FibeAir

    IP-10 G-Series Product Description 13

    System Overview

    General

    Split-mount architecture (IDU and RFU/ODU)

    Compatible with all existing Ceragon RFUs/ODUs.

    Dimensions

    o Height: 42.6 mm (1RU)

    o Width: 439 mm (

  • 8/10/2019 IP 10G Product Description V21!09!2009

    14/94

    FibeAir

    IP-10 G-Series Product Description 14

    Interfaces

    Main Interfaces:

    5 x 10/100Base-T

    2 x GbE combo ports: 10/100/1000Base-T or SFP 1000Base-X

    16 x T1/E1 (optional)

    RFU/ODU interface, N-type connector

    Additional Interfaces:

    TDM T-Card Slot options:

    o 16 x E1

    o 16 x T1

    o 1 x STM-1/OC-3

    The T-cards are field-upgradable, and add a new dimension to the FibeAir IP-10 migration flexibility.

    Terminal console

    AUX package (optional):

    o Engineering Order Wire (EOW)

    o User channel (V.11 Asynchronous, RS-232)

    External alarms (4 inputs & 1 output)

    PROT: Ethernet protection control interface (for 1+1 HSB mode support)

    16 x E1/T1 T-Card

    STM-1/OC-3 Mux T-Card

  • 8/10/2019 IP 10G Product Description V21!09!2009

    15/94

    FibeAir

    IP-10 G-Series Product Description 15

    In addition, each of the FE traffic interfaces can be configured to support an alternate mode of operation:

    MGT: Ethernet out-of-band management (up to 3 interfaces)WS: Ethernet wayside

    Available Assembly Options *

    TDM options:

    o Ethernet only (no TDM)

    o Ethernet + 16 x E1 + T-Card Slot

    o Ethernet + 16 x T1 + T-Card Slot

    With or without AUX package (EOW, User channel)

    XPIC support

    Sync unit

    * Contact Ceragon support for available combinations.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    16/94

    FibeAir

    IP-10 G-Series Product Description 16

    Adaptive Coding and Modulation

    Adaptive Coding and Modulation refers to the automatic adjustment that a wireless system can make inorder to optimize over-the-air transmission and prevent weather-related fading from causing communication

    on the link to be disrupted. When extreme weather conditions, such as a storm, affect the transmission and

    receipt of data and voice over the wireless network, an ACM-enabled radio system automatically changes

    modulation allowing real-time applications to continue to run uninterrupted. Varying the modulation also

    varies the amount of bits that are transferred per signal, thereby enabling higher throughputs and better

    spectral efficiencies. For example, a 256 QAM modulation can deliver approximately four times the

    throughput of 4 QAM (QPSK).

    Ceragon Networks employs full-range dynamic ACM in its new line of high-capacity wireless backhaul

    product - FibeAir IP-10. In order to ensure high transmission quality, Ceragon solutions implement

    hitless/errorless ACM that copes with 90 dB per second fading. A quality of service awareness mechanism

    ensures that high priority voice and data packets are never dropped, thus maintaining even the moststringent service level agreements (SLAs).

    The hitless/errorless functionality of Ceragons ACM has another major advantage in that it ensures that

    TCP/IP sessions do not time-out. Lab simulations have shown that when short fades occur (for example if a

    system has to terminate the signal for a short time to switch between modulations) they may lead to timeout

    of the TCP/IP sessions even when the interruption is only 50 milliseconds. TCP/IP timeouts are followed

    by a drastic throughput decrease over the time it takes for the TCP sessions to recover. This may take as long

    as several seconds. With a hitless/errorless ACM implementation this problem can be avoided.

    So how does it really work? Let's assume a system configured for 128 QAM with ~170 Mbps capacity over

    a 28 MHz channel. When the receive signal Bit Error Ratio (BER) level arrives at a predetermined

    threshold, the system will preemptively switch to 64 QAM and the throughput will be stepped down to ~140

    Mbps. This is an errorless, virtually instantaneous switch. The system will then run at 64 QAM until the

    fading condition either intensifies, or disappears. If the fade intensifies, another switch will take the system

    down to 32 QAM. If on the other hand the weather condition improves, the modulation will be switched

    back to the next higher step (e.g. 128QAM) and so on, step by step .The switching will continue

    automatically and as quickly as needed, and can reach during extreme conditions all the way down to QPSK.

    16 QAM

    QPSK

    99.995 %

    200

    Unavailability

    Rx

    level

    Capacity

    (@ 28 MHz channel)

    32 QAM

    64 QAM

    128 QAM

    256 QAM

    99.999 %

    99.99 %

    99.95 %

    99.9 %

    Mbps170 200 140 100 200 120 200

  • 8/10/2019 IP 10G Product Description V21!09!2009

    17/94

    FibeAir

    IP-10 G-Series Product Description 17

    Adaptive Modulation and Built-in Quality of Service

    Ceragon's Adaptive Modulation has a remarkable synergy with the equipment's built-in Layer 2 Quality of

    Service mechanism. Since QoS provides priority support for different classes of service, according to a widerange of criteria (see below) it is possible to configure the system to discard only low priority packets as

    conditions deteriorate. The FibeAir IP-10 platform can classify packets according to the most external

    header, VLAN 802.1p, TOS / TC - IP precedence and VLAN ID. All classes use 4 levels of prioritization

    with user selectable options between strict priority queuing and weighted fair queuing with user

    configurable weights.

    If the user wishes to rely on external switches QoS, Adaptive Modulation can work with them via the flow

    control mechanism supported in the radio.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    18/94

    FibeAir

    IP-10 G-Series Product Description 18

    Quality of Service (QoS)

    Traffic Classification and policing

    The system examines the incoming traffic and assigns the desired priority according to the marking of the

    packets (based on the user port/L2/L3 marking in the packet). In case of congestion in the ingress port, low

    priority packets will be discarded first.

    The user has the following classification options:

    Source Port

    VLAN 802.1p

    VLAN ID

    IPv4 TOS/DSCP

    IPv6 Traffic Class

    After classification traffic policing/rate-limiting can optionally be applied per port/CoS.

    Queuing and Scheduling

    The system has four priority queues that are served according to three types of scheduling, as follows:

    Strict priority: all top priority frames egress towards the radio until the top priority queue is empty.

    Then, the next lowest priority queues frames egress, and so on. This approach ensures that high priority

    frames are always transmitted as soon as possible.

    Weighted Round Robin (WRR): each queue can be assigned with a user-configurable weight from 1 to

    32.

    Hybrid: One or two highest priority queues as "strict" and the other according to WRR

    Shaping is supported per interface on egress.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    19/94

    FibeAir

    IP-10 G-Series Product Description 19

    Ethernet Statistics

    The FibeAir IP-10 platform stores and displays statistics in accordance with RMON and RMON2standards.

    The following groups of statistics can be displayed:

    Ingress line receive statistics

    Ingress radio transmit statistics

    Egress radio receive statistics

    Egress line transmit statistics

    The statistics that can be displayed within each group include the following:

    Ingress Line Receive Statistics

    Sum of frames received without error

    Sum of octets of all valid received frames

    Number of frames received with a CRC error

    Number of frames received with alignment errors

    Number of valid received unicast frames

    Number of valid received multicast frames

    Number of valid received broadcast frames

    Number of packets received with less than 64 octets

    Number of packets received with more than 12000 octets (programmable)

    Frames (good and bad) of 64 octets

    Frames (good and bad) of 65 to 127 octets

    Frames (good and bad) of 128 to 256 octets

    Frames (good and bad) of 256 to 511 octets

    Frames (good and bad) of 512 to 1023 octets

    Frames (good and bad) of 1024 to 1518 octets

    Frames (good and bad) of 1519 to 12000 octets

  • 8/10/2019 IP 10G Product Description V21!09!2009

    20/94

    FibeAir

    IP-10 G-Series Product Description 20

    Ingress Radio Transmit Statistics

    Sum of frames transmitted to radio

    Sum of octets transmitted to radio

    Number of frames dropped

    Egress Radio Receive Statistics

    Sum of valid frames received by radio

    Sum of octets of all valid received frames

    Sum of all frames received with errors

    Egress Line Transmit Statistics

    Sum of valid frames transmitted to line

    Sum of octets transmitted

    Notes:

    Statistic parameters are polled each second, from system startup.

    All counters can be cleared simultaneously.

    The following statistics are displayed every 15 minutes (in the Radio and E1/T1 performance

    monitoring windows):

    Utilization - four utilizations: ingress line receive, ingress radio transmit, egress radio receive, and

    egress line transmit

    Packet error rate - ingress line receive, egress radio receive

    Seconds with errors - ingress line receive

  • 8/10/2019 IP 10G Product Description V21!09!2009

    21/94

    FibeAir

    IP-10 G-Series Product Description 21

    End-To-End Network Management

    Ceragon provides state-of-the-art management based on SNMP and HTTP.

    Integrated Web Based Element Manager: Each device includes an HTTP based element manager that

    enables the operator to perform element configuration, RF, Ethernet, and PDH performance monitoring,

    remote diagnostics, alarm reports, and more.

    PolyView is Ceragon's NMS server that includes CeraMap its friendly and powerful client graphical

    interface. PolyView can be used to update and monitor network topology status, provide statistical and

    inventory reports, define end-to-end traffic trails, download software and configure elements in the network.

    In addition, it can integrate with Northbound NMS platforms, to provide enhanced network management.

    The application is written in Java code and enables management functions at both the element and network

    levels. It runs on Windows 2000/2003/XP/Vista and Sun Solaris.

    Integrated IP-10 Web EMS and PolyView NMS

  • 8/10/2019 IP 10G Product Description V21!09!2009

    22/94

    FibeAir

    IP-10 G-Series Product Description 22

    FibeA ir IP-10 & FibeA ir RFUs

    FibeAir IP-10 is based on the latest Ceragon technology, and can be installed together with any FibeAir

    RFU, including:

    FibeAir 1500HP (FibeAir RFU-HP)

    FibeAir 1500HS (FibeAir RFU-HS)

    FibeAir 1500SP (FibeAir RFU-SP)

    FibeAir 1500P (FibeAir RFU-P)

    FibeAir RFU-C

    FibeAir RFUs support multiple capacities, frequencies, modulation schemes, and configurations for various

    network requirements.

    The RFUs operate in the frequency range of 6-38 GHz, and support capacities of from 10 Mbps to 500

    Mbps, for TDM and IP interfaces.

    For more information, see the relevant RFU Product Description.

    IP-10 works with

  • 8/10/2019 IP 10G Product Description V21!09!2009

    23/94

    FibeAir

    IP-10 G-Series Product Description 23

    C arrier Grad e Ethernet

    Carrier Ethernet is a high speed medium for MANs (Metro Area Networks). It defines native Ethernet

    packet access to the Internet and is today being deployed more and more in wireless networks.

    The first native Ethernet services to emerge were point to point-based, followed by emulated LAN

    (multipoint to multipoint-based). Services were first defined and limited to metro area networks. They

    have now been extended across wide area networks and are available worldwide from many service

    providers.

    The term "carrier Ethernet" implies that Ethernet services are "carrier grade". The benchmark for carrier

    grade was set by the legacy TDM telephony networks, to describe services that achieve "five nines

    (9.9999%)" uptime. Although it is debatable whether carrier Ethernet will reach that level of reliability,

    the goal of one particular standards organization is to accelerate the development and deployment of

    services that live up to the name.

    Carrier Ethernet is poised to become the major component of next-generation metro area networks,

    which serve as the aggregation layer between customers and core carrier networks. A metro Ethernet

    network, which uses IP Layer 3 MPLS forwarding, is currently the primary focus of carrier Ethernet

    activity.

    The standard service types for Carrier Ethernet include:

    E-Line Service

    This service is employed for Ethernet private lines, virtual private lines, and Ethernet Internet

    access.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    24/94

    FibeAir

    IP-10 G-Series Product Description 24

    E-LAN Service

    This service is employed for multipoint L2 VPNs, transparent LAN service, foundation for IPTV,and multicast networks.

    Metro Ethernet Forum (MEF)

    The Metro Ethernet Forum (MEF) is a global industry alliance started in 2001. In 2005, the MEF committed

    to this new carrier standard, and launched a Carrier Ethernet Certification Program to facilitate delivery of

    services to end users.

    The MEF 6 specification defines carrier Ethernet as "A ubiquitous, standardized, carrier-class Service

    and Network defined by five attributes that distinguish it from familiar LAN based Ethernet". The five

    attributes include:

    Standardized Services

    Quality of Service (QoS)

    Service Management

    Scalability

    Reliability

  • 8/10/2019 IP 10G Product Description V21!09!2009

    25/94

    FibeAir

    IP-10 G-Series Product Description 25

    The Benefits

    For service providers, the technology convergence of Carrier Ethernet ensures a decrease in CAPEX and

    OPEX.

    Access networks employ Ethernet to provide backhaul for IP DSLAMs, PON, WiMAX, and direct

    Ethernet over fiber/copper.

    Flexible Layer 2 VPN services, such as private line, virtual private line, or emulated LAN, offer new

    revenue streams.

    For Enterprises, a reduction in cost is achieved through converged networks for VoIP, data, video

    conferencing, and other services.

    In addition, Ethernet standardization reduces network complexity.

    FibeAir IP-10 Carrier Ethernet Solution

    Ceragon's FibeAir IP-10 includes a built-in Carrier Ethernet switch. The switch operates in one of two

    modes:

    Metro Switch - Carrier Ethernet is active.

    Smart Pipe - Carrier Ethernet is not active.

    IP-10

    Radio

    Interface

    Metro Switch Mode

    Ethernet

    User

    Interfaces

    Carrier Ethernet

    Switch

    IP-10

    Radio

    Interface

    Metro Switch Mode

    Ethernet

    User

    Interfaces

    Carrier Ethernet

    Switch

    IP-10

    RadioInterface

    Smart Pipe Mode

    Ethernet

    User

    Interface

    IP-10

    RadioInterface

    Smart Pipe Mode

    Ethernet

    User

    Interface

  • 8/10/2019 IP 10G Product Description V21!09!2009

    26/94

    FibeAir

    IP-10 G-Series Product Description 26

    Using Smart Pipe, only a single Ethernet interface is enabled for user traffic and IP-10 acts as a point-to-

    point Ethernet microwave radio.

    FibeAir IP-10 is equipped with an extensive Carrier Ethernet feature set which eliminates the need for

    an external switch.

    MEF Certified

    The Metro Ethernet Forum (MEF) runs a Certification Program with the aim of promoting the deployment

    of Carrier Ethernet in Access Networks, MANs, and WANs. The program offers certification for Carrier

    Ethernet equipment supplied to service providers.

    The program covers the following areas:

    MEF-9:Service certification

    MEF-14:Traffic management and service performance

    FibeAir IP-10 is fully MEF-9 & MEF-14 certified for all Carrier Ethernet services (E-Line & E-LAN).

    IP-10 Carrier Ethernet Functionality

    IP-10 meets all Carrier Ethernet Service specifications, in each category:

    Standardized Services MEF-9 and MEF-14 certified for all service types (EPL, EVPL, and E-

    LAN)

    Scalability - Up to 500 Mbps per radio carrier

    - Integrated non-blocking switch with 4K VLANs

    - 802.1ad provider bridges (QinQ)

    - Scalable nodal solution

    - Scalable networks (1000s of NEs)Quality of Service (QoS) - Advanced CoS classification

    - Advanced traffic policing/rate-limiting

    - CoS based packet queuing/buffering

    - Flexible scheduling schemes

    - Traffic shaping

    Reliability - Highly reliable & integrated design

    - Fully redundant 1+1 HSB & nodal configurations

    - Hitless ACM (QPSK - 256 QAM) for enhanced radio link availability

    - Wireless Ethernet Ring (RSTP based)

  • 8/10/2019 IP 10G Product Description V21!09!2009

    27/94

    FibeAir

    IP-10 G-Series Product Description 27

    - 802.3ad link aggregation

    - Fast link state propagation

    -

  • 8/10/2019 IP 10G Product Description V21!09!2009

    28/94

    FibeAir

    IP-10 G-Series Product Description 28

    - Weighted Round Robin (WRR)

    - Hybrid, any combination of SP & WRR

    Shaping per port

    Smart Pipe Mode QoS Traffic Flow

    The following illustration shows the QoS flow of traffic with IP-10 operating in Smart Pipe mode.

    Metro Switch Mode QoS Traffic Flow

    The following illustration shows the QoS flow of traffic with IP-10 operating in Metro Switch mode.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    29/94

    FibeAir

    IP-10 G-Series Product Description 29

    Wireless Carrier Ethernet Rings

    Carrier-class Ethernet rings offer topologies built for resiliency, redundancy throughout the core,distribution and access, and a self-healing architecture that can repair potential problems before they reach

    end users. Such rings are designed for increased capacity, performance, and scalability, with beneficial

    increased value, stability, and a reduction in costs.

    By implementing Carrier-Class Ethernet rings, providers are able to expand their LANs to WANs.

    FibeAir IP-10 is a superb choice for Carrier Ethernet ring development.

    Basic IP-10 Wireless Carrier Ethernet Ring

    The following illustration is a basic example of an IP-10 wireless Carrier Ethernet ring.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    30/94

  • 8/10/2019 IP 10G Product Description V21!09!2009

    31/94

    FibeAir

    IP-10 G-Series Product Description 31

    IP-10 Wireless Carrier Ethernet Ring - 1+0

    IP-10 Wireless Carrier Ethernet Ring - Aggregation Site

  • 8/10/2019 IP 10G Product Description V21!09!2009

    32/94

    FibeAir

    IP-10 G-Series Product Description 32

    RSTP (Rapid Spanning Tree Protocol) ensures a loop-free topology for any bridged LAN. Spanning tree

    allows a network design to include spare (redundant) links for automatic backup paths, needed for cases inwhich an active link fails. The backup paths can be included with no danger of bridge loops, or the need for

    manual enabling/disabling of the backup links. Bridge loops must be avoided since they result in network

    "flooding".

    RSTP algorithms are designed to create loop-free topologies in any network design, which makes it sub-

    optimal to ring topologies.

    In a general topology, there can be more than one loop, and therefore more than one bridge with ports in a

    blocking state. For this reason, RSTP defines a negotiation protocol between each two bridges, and

    processing of the BPDU (Bridge Protocol Data Units), before each bridge propagates the information. This

    "serial" processing increases the convergence time.

    In a ring topology, after the convergence of RSTP, only one port is in a blocking state. We can therefore

    enhance the protocol for ring topologies, and transmit the notification of the failure to all bridges in the ring

    (by broadcasting the BPDU).

    Ceragon's IP-10 G supports Wireless Carrier Ethernet Ring topologies. A typical ring constructed by IP10 is

    shown in the following illustration.

    Ceragon's IP-10 supports native Ethernet rings of up to 500 Mbps in 1+0, and can reach Gigabit capacity in a

    2+0 configuration with XPIC.

    Ceragon's ring solution enhances the RSTP algorithm for ring topologies, so that failure propagation is much

    faster than the regular RSTP. Instead of serially propagation link by link, the failure is propagated in parallelto all bridges. In this way, the bridges that have ports in alternate states immediately place them in the

    forwarding state.

    The following illustration shows an example of such a ring.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    33/94

    FibeAir

    IP-10 G-Series Product Description 33

    Switch A is the Root, and before the failure, the protocol converges so that a port in switch C is the alternate

    port, and is therefore in the failure state.

    When a failure in the link between switches E and A occurs, switch E senses it and sends a notification

    (using standard BPDU) to all bridges. Switch D receives the message, and changes the role of the port from

    alternate to designated, and places it in the forwarding state.

    In addition, Ceragon's enhancement handles unidirectional failures in the radio. For example, in a "regularRSTP", a failure in the link between E and A will be seen only by the root bridge. In this case, bridge E will

    acknowledge the failure only upon the next BPDU. Ceragon's protocol enhancement informs bridge E

    immediately about the failure.

    This allows us to build wireless Ethernet rings with a protection time that is typically less than 50 msec for

    four nodes, and less than 100 msec for eight to ten nodes.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    34/94

  • 8/10/2019 IP 10G Product Description V21!09!2009

    35/94

    FibeAir

    IP-10 G-Series Product Description 35

    IEEE 802.1ag Ethernet CFM (Connectivity Fault Management) protocols consist of three protocols that

    operate together to aid in debugging Ethernet networks: continuity check, link trace, and loopback.

    FibeAir IP-10 utilizes these protocols to maintain smooth system operation and non-stop data flow.

    FibeAir IP-10 Carrier Ethernet Services Example

    The following is a series of illustrations showing how FibeAir IP-10 is used to facilitate Carrier Ethernet

    Services. The second and third illustrations show how IP-10 handles a node failure.

    Carrier Ethernet Services Based on IP-10

  • 8/10/2019 IP 10G Product Description V21!09!2009

    36/94

    FibeAir

    IP-10 G-Series Product Description 36

    Carrier Ethernet Services Based on IP-10 - Node Failure

    Carrier Ethernet Services Based on IP-10 - Node Failure (continued)

  • 8/10/2019 IP 10G Product Description V21!09!2009

    37/94

    FibeAir

    IP-10 G-Series Product Description 37

    W i r el es s N et w o r k S y n c h r o n i zat i o n

    Synchronizing the network is an essential part of any network design plan. Event timing determines how the

    network is managed and secured, and provides the only frame of reference between all devices in the

    network.

    Several unique synchronization issues need to be addressed for wireless networks:

    Phase/Frequency Lock

    Applicable to GSM and UMTS-FDD networks.

    - Limits channel interference between carrier frequency bands.

    - Typical performance target: frequency accuracy of < 50 ppb.

    Sync is the traditional technique used, with traceability to a PRS master clock carried over PDH/SDH

    networks, or using GPS.

    Phase Lock with Latency Correction

    Applicable to CDMA, CDMA-2000, UMTS-TDD, and WiMAX networks.

    - Limits coding time division overlap.

    - Typical performance target: frequency accuracy of < 20 - 50 ppb, phase difference of

    < 1-3 msecs.

    GPS is the traditional technique used.

    Wireless IP Synchronization Challenges

    Wireless networks set to deploy over IP networks require a solution for carrying high precision timing to

    base stations.

    Throughout the globe, legacy SDH/PDH based TDM networks are being fragmented, leading to islands of

    TDM.

    Traditional TDM services are being carried over packet networks using Circuit Emulation over Packet

    techniques (CESoP).

    Two new approaches are being developed in an effort to meet the challenge of migration to IP:

    Various ToP (Timing over Packet) techniques

    Synchronous Ethernet

  • 8/10/2019 IP 10G Product Description V21!09!2009

    38/94

    FibeAir

    IP-10 G-Series Product Description 38

    ToP (Timing over Packet)

    ToP refers to the distribution of frequency, phase, and absolute time information across an asynchronouspacket switched network.

    The timing packet methods may employ a variety of protocols to achieve distribution, such as IEEE1588,

    NTP, or RTP.

    Synchronous Ethernet (SyncE)

    SyncE is standardized in ITU-T G.8261 and refers to a method whereby the clock is delivered on the

    physical layer.

    The method is based on SDH/TDM timing, with similar performance, and does not change the basicEthernet standards.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    39/94

  • 8/10/2019 IP 10G Product Description V21!09!2009

    40/94

    FibeAir

    IP-10 G-Series Product Description 40

    Each trail is independent of the other, meaning that IP-10 does not imply any restrictions on the source of

    the TDM trails. (Meaning that each trail can have its own clock, and no synchronization between trails is

    assumed).Each E1 trail is mapped independently over the radio frame and the integrated cross-connect elements.

    Timing can be distributed over user traffic carrying T1/E1 trails or dedicated timing trails.

    This method eliminates the need to employ emerging ToP techniques.

    ToP-Aware Transport

    Ceragon's integrated advanced QoS classifier supports the identification of standard ToP control packets

    (IEEE1588v2 packets), and assigns to them the highest priority/traffic class.

    This ensures that ToP control packets will be transported with maximum reliability and minimum delay, to

    provide the best possible timing accuracy.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    41/94

    FibeAir

    IP-10 G-Series Product Description 41

    SyncE

    The SyncE technique supports synchronized Ethernet outputs as the timing source to an all-IP RBS. Thismethod offers the same synchronization quality provided over E1 interfaces to legacy RBS.

    Ceragon's SyncE supports two modes:

    Sync from Co-Located E1 Mode

    The clock for SyncE interfaces can be derived from any co-located traffic-carrying E1 interface at the BTS

    site.

    Native Sync Distribution Mode

    Synchronization is distributed natively over the radio links. In this mode, no TDM trails or E1 interfaces at

    the tail sites are required!

    Synchronization is provided by the E1/STM-1 clock source input at the fiber hub site (SSU/GPS).

  • 8/10/2019 IP 10G Product Description V21!09!2009

    42/94

    FibeAir

    IP-10 G-Series Product Description 42

  • 8/10/2019 IP 10G Product Description V21!09!2009

    43/94

    FibeAir

    IP-10 G-Series Product Description 43

    In t e g r a t ed N o d a l So l u t i o n

    Up to six IP-10 Native2 radios can be stacked with FibeAir IP-10 operating within nodal enclosures. This

    configuration supports any combination of 1+0, 1+1, and 2+0/XPIC.

    Nodal solution features:

    Integrated Native2

    networking functionality between all ports/radios

    Native Ethernet switching

    Native E1/T1 cross-connect

    Up to 75 E1s or 84 T1s per radio carrier

    Full high-availability support

    Cross-connect/switching elements

    Control/management elements

    Radio carriers

    TDM/Ethernet interfaces

    IP-10 Nodal Design

    Each IDU can be configured as a "main" or "extension" unit. The role an IDU plays is determined during

    installation by its position in the traffic interconnection topology.

    A main unit includes the following functions:

    Central controller, management

    TDM traffic cross-connect

    Radio and line interfaces

    An extension unit includes the following functions:

    Radio and line interfaces

    IP-10 design for the nodal solution is based on a "blade" approach. Viewing the unit from the rear, each IDU

    can be considered a "blade" within a nodal enclosure.

    I P-10 Rear Vi ew

  • 8/10/2019 IP 10G Product Description V21!09!2009

    44/94

    FibeAir

    IP-10 G-Series Product Description 44

    I P-10 Nodal Enclosur

    A "blade" can operate as a stand-alone unit at a tail site.

    The "rack chassis" is also modular, for optimum economical

    future upgrade, network design flexibility, and efficient

    installation, maintenance, and expansion.

    The solution is modular and forms a single unified nodal device,

    with a common Ethernet Switch, common E1 Cross-Connect,

    single IP address, and a single element to manage.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    45/94

    FibeAir

    IP-10 G-Series Product Description 45

    IP-10 Stacking Method

    IP-10 can be stacked using 2RU nodal enclosures. Each enclosure includes two slots for hot-swappable 1RU

    units.

    Additional nodal enclosures and units can be added in the field as required, without affecting traffic.

    Up to six 1RU units (three adapters) can be stacked to form a single unified nodal device.

    Using the stacking method, units in the bottom nodal enclosure act as main units, whereby a mandatory

    active main unit can be located in either of the two slots, and an optional standby main unit can be installed

    in the other slot.

    The switchover time is

  • 8/10/2019 IP 10G Product Description V21!09!2009

    46/94

    FibeAir

    IP-10 G-Series Product Description 46

    Nodal Enclosure Design

    The following photos show the Nodal Enclosures and how they are stacked.

    Extension Nodal Enclosure

    Main Nodal Enclosure

    Scalable Nodal Enclosure

    The nodal enclosure is a scalable unit. Each enclosure can be added to another enclosure for modular rack

    installation.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    47/94

    FibeAir

    IP-10 G-Series Product Description 47

    E1/T1 Cross-Connect

    E1/T1 VC (Virtual Container) trails are supported, based on the integrated E1/T1 cross-connect.

    The XC (cross-connect) function is performed by the active main unit.

    If a failure occurs, the backup main unit takes over (

  • 8/10/2019 IP 10G Product Description V21!09!2009

    48/94

    FibeAir

    IP-10 G-Series Product Description 48

    C r o s s C o n n e c t ( X C )

    The FibeAir IP-10 Cross Connect (XC) is a high-speed circuit connection scheme for transporting both

    Ethernet and TDM traffic from any given port "x" to any given port "y".

    The system is composed of several inter-connected (stacked) IDUs, with integrated and centralized TDM

    traffic switching and Ethernet bridging capability.

    The XC capacity is 75 E1 VCs (Virtual Containers) or 84 T1 VCs, whereby each E1/T1 interface or

    "logical interface" in a radio in any unit of the stack can be assigned to any VC.

    XC Features

    Cross Connect system highlights include:

    E1/T1 trails are supported based on the integrated E1/T1 cross-connect

    XC capacity is 180 E1/T1 trails

    XC is performed between any two physical or logical interfaces in the node, including:

    - E1/T1 interface

    - Radio VC (75 VCs supported per radio carrier)

    - STM1/OC3 mux VC12

    Each trail is timed independently by the XC

    XC function is performed by the active main unit

    In a failure occurs, backup main unit takes over (

  • 8/10/2019 IP 10G Product Description V21!09!2009

    49/94

    FibeAir

    IP-10 G-Series Product Description 49

    XC Basics

    Integrated TDM Cross Connect is performed by defining end to end trails. Each trail consists of

    segments represented by Virtual Containers (VCs). The XC functions as the forwarding mechanism

    between the two ends of a trail.

    The following illustration shows the basic XC concept.

    Basic XC Operation

    As shown in the illustration, trails are defined from one end of a line to the other. The XC forwards

    signals generated by the radios to/from the IDUs based on their designated VCs. As in the example, The

    cross connect may forward signals on Trail C from Radio 1, VC 3 to Radio 4, VC 1.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    50/94

    FibeAir

    IP-10 G-Series Product Description 50

    The cross connect function provides connectivity for the following types of configurations:

    Line to Radio Radio to Radio Line to Line

    E1/T1 trails are supported based on the integrated E1/T1 cross-connect (XC).

    The XC capacity is 180 E1/T1 bi-directional VC trails.

    XC is performed between any two physical or logical interfaces in the node (in any main or expansion

    unit) such as E1/T1 interface, radio VC (75 VCs supported per radio carrier), and STM1/OC3 mux

    VC11/VC12. The function is performed by the active main unit. If a failure occurs, the backup main

    unit takes over (

  • 8/10/2019 IP 10G Product Description V21!09!2009

    51/94

    FibeAir

    IP-10 G-Series Product Description 51

    The following illustration is an example of XC aggregation:

    XC operation is implemented using two-unit backplanes, which provide the interconnectivity. Up to three

    backplanes, consisting of six IDUs, can be stacked to provide an expandable system.

    Each modular shelf holds two IDUs. The shelf includes extension connectors located at its top and bottom

    panels, which allow stacking of up to three shelves (the base shelf is different from the two extension

    shelves), holding up to six IDUs, which exchange TDM traffic and compose a network node. Each pair of

    IDUs in a single modular shelf has access to Multi-Radio and XPIC interfaces between them.

    A node composed of identical IDUs that behave in a different way, is formed by inserting the IDUs in the

    stackable shelves and providing each IDU with an indication of its place in the stack. Each IDU uses

    different LVDS (Low-Voltage Differential Signaling) interfaces, depending on its place in the stack and

    system configuration.

    E1/T1

    interfaces

    STM1/OC3

    Interface

    E1/T1

    interfaces

    E1/T1

    interfaces

    E1/T1

    interfaces

    STM1/OC3

    Interface

    E1/T1

    interfaces

    E1/T1

    interfaces

    MWRadioLink

    IP-10 integratedSTM1/OC3 Mux

    IP-10Integrated

    XC

    MWRadioLink

    IP-10 integratedSTM1/OC3 Mux

    IP-10Integrated

    XC

  • 8/10/2019 IP 10G Product Description V21!09!2009

    52/94

    FibeAir

    IP-10 G-Series Product Description 52

    XC Operation

    The integrated XC supports E1/T1 VC (Virtual Container) trails. The function of the XC is performed

    by the active main unit.

    If a failure occurs, the backup main unit takes over within

  • 8/10/2019 IP 10G Product Description V21!09!2009

    53/94

    FibeAir

    IP-10 G-Series Product Description 53

    The XC process involves two stages:

    1. The XC sends received E11/T1s to downlink units in LVDS (Low-Voltage Differential Signaling) timeslots, which then discard the unnecessary slots.

    2. Each unit (XC included) maps each relevant LVDS time slot to radio VCs or line interfaces.

    For each line interface, the user defines which time slot it is mapped to, and for each radio, which radio VCs

    it transports (enabled radio VCs) and which time slot it is mapped to. Two interfaces mapped to the same

    time slots are known as a trail.

    Each IDU has several LVDS interfaces, some of which are disabled at the downlink units.

    All LVDS traffic is synchronized to a single clock provided by the activeXC unit. The clock is transmitted

    to the downlink units via the LVDS infrastructure.

    TDM Trail Status Handling

    Due to the fact that XC system users can build networks and define E1/T1 trails across the network,

    additional PM (performance monitoring) is necessary. A trail is defined as E1/T1 data delivered unchanged

    from one line interface to another, through one or more radio links.

    In each XC node, data can be assigned to a different VC number, but its identity across the network is

    maintained by a Trail ID defined by the user.

    Additional PM functionality provides end-to-end monitoring over data sent in a trail over the network.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    54/94

    FibeAir

    IP-10 G-Series Product Description 54

    Wireless SNCP

    IP-10 supports an integrated VC trail protection mechanism called Wireless SNCP(Sub network ConnectionProtection).

    With Wireless SNCP, a backup VC trail can optionally be defined for each individual VC trail.

    For each backup VC, the following needs to be defined:

    Two branching points from the main VC that it is protecting.

    A path for the backup VC (typically separate from the path of the main VC that it is protecting).

    For each direction of the backup VC, the following is performed independently:

    At the first branching point, duplication of the traffic from the main VC to the backup VC.

    At the second branching point, selection of traffic from either the main VC or the backup VC.

    - Traffic from the backup VC is used if a failure is detected in main VC.

    - Switch-over is performed within

  • 8/10/2019 IP 10G Product Description V21!09!2009

    55/94

    FibeAir

    IP-10 G-Series Product Description 55

    For each main VC trail, the branching points can be any XC node along the path of the trail.

    Support for Wireless SNCP in a Mixed Wireless-Optical Network

    Wireless SNCP is supported over fiber links using IP-10 STM-1/OC-3 mux interfaces.

    This feature provides a fully integrated solution for protected E1/T1 services over a mixed wireless-optical

    network.

    IP-10

    A

    IP-10

    D

    IP-10

    B

    IP-10

    C

    E1 #1

    E1 #2

    IP-10

    B

    E1 #2

    E1 #1IP-10

    A

    IP-10

    D

    IP-10

    B

    IP-10

    C

    E1 #1

    E1 #2

    IP-10

    B

    E1 #2

    E1 #1

    IP-10

    A

    IP-10

    D

    IP-10

    B

    IP-10C

    E1 #1

    E1 #2 IP-10

    A

    IP-10

    D

    IP-10

    B

    IP-10C

    E1 #1

    E1 #2

    MW radio link

    IP-10 integrated

    STM-1/OC-3 mux

    IP-10Integrated XC

    STM1/OC3

    iber link

    MW radio link

    IP-10 integrated

    STM-1/OC-3 mux

    IP-10Integrated XC

    STM1/OC3

    iber link

  • 8/10/2019 IP 10G Product Description V21!09!2009

    56/94

    FibeAir

    IP-10 G-Series Product Description 56

    TDM Rings

    SNCP replaces a failed sub network connection with a standby sub network connection. In the FibeAir

    product line, this capability is provided at the points where trails leave sub networks.

    The switching criterion is based on SNCP/I. This protocol specifies that automatic switching is performed if

    an AIS or LOP fault is detected in the working sub network connection. If neither AIS nor LOP faults are

    detected, and the protection lockout is not in effect, the scheme used is 1+1 singled-ended.

    The NMS provides anual switch to protectionand Protection lockoutcommands. A notification is sent to

    the management station when an automatic switch occurs. The status of the selectors and the sub network

    connections are displayed on the NMS screen.

    Wireless SNCP Advantages

    Flexibility

    - All network topologies are supported (ring, mesh, tree)

    - All traffic distribution patterns are supported (excels in hub traffic concentration)

    - Any mix of protected and non-protected trails is supported

    - No hard limit on the number of nodes in a ring

    - Simple provisioning of protection

    Performance

    - Non traffic-affecting switching to protection (

  • 8/10/2019 IP 10G Product Description V21!09!2009

    57/94

    FibeAir

    IP-10 G-Series Product Description 57

    XC Management

    XC system management enables users to control the XC node as an integrated system, and provides the

    means for the exchange of information between the IDUs.

    Several methods can be used for IP-10 XC management:

    Local terminal CLI

    CLI via telnet

    Web based management

    SNMP

    Local remote channel, for configuration of a small set of parameters in the remote unit

    In addition, the management system provides access to other network equipment through in-band or out-of-

    band network management.

    The XC node is managed in an integrated manner through centralized management channels. The main

    units CPU is the nodes central controller, and all management frames received from or sent to external

    management applications must pass through it.

    The node has a single IP management address, which is the address of the main unit (two addresses in caseof main unit protection).

    To ease the reading and analysis of several IDU alarms and logs, the system time should be synchronized to

    the main units time.

    As an additional resource, an extra data channel is included in the backplane LVDS infrastructure, through

    which basic management data is sent by IDUs to the XC unit (and vice-versa).

    The data provided over the channel includes:

    IP addresses

    Basic alarm information

    In addition, an SDH management channel (management through the STM-1 interface) allows control from

    an SDH network, without the need for additional Ethernet interfaces.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    58/94

    FibeAir

    IP-10 G-Series Product Description 58

    XC Management Highlights

    Centralized IP Access

    - A single IP address must be configured and node is reached through it, two addresses if main

    units are protected

    - All management frames must reach main units

    - Management mode (in band/out of band) is defined by main units mode

    Centralized Management Channels

    - SNMP main agent represents the entire node

    - NMS represents the node as a single unit

    - Web agent allows access to all elements from main window

    - CLI/Telnet access from main units CLI

    Feature Configuration

    - Some management is done through the main unit only: TDM XC, user registration, login, alarms

    - Other features are configured individually in each extension unit: radio parameters, Ethernet

    switch configuration

    Ethernet XC Management

    XC management connects main units to all extension units, and main units to each other. It also

    connects the CPU to the Mezzanine.

    In protection mode, management frames will arrive at a standby XC unit only through the protection

    interface, coming from its mate.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    59/94

    FibeAir

    IP-10 G-Series Product Description 59

    In-Band/Out of Band

    All management frames arrive at the main units CPU. The management mode (in-band/out of band) is

    determined by the mode of the main unit. The mode of the extension units is irrelevant, since they can only

    be reached through the internal management network.

    If the main unit is configured as in-band, frames will arrive through the traffic switches by standard layer

    two DA-based bridging.

    If the main unit is configured as out of band, there is no built-in channel for remote management frames to

    arrive at the CPU. Two possible solutions are suggested for this:

    1. Install an external Ethernet switch, which will allow frames incoming through the wayside channel to be

    distributed to all units.

    2. Implement an IP router in the extension unit's CPU. This will allow management frames to be routed to

    the internal LAN, reaching the main units CPU.

    For out of band, there is no wayside network. Access from remote sites is obtained through the wayside

    channel. Access from the remote link to an extension unit requires an external switch.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    60/94

    FibeAir

    IP-10 G-Series Product Description 60

    Protection

    The XC protection mechanism is an extension of the one used for non-XC IDUs.

    Each pair of protected IDUs makes its own decisions regarding data and switching.

    User and Ethernet traffic protection is implemented through Y cables or via the protection panel. TDM

    traffic protection is implemented through dual LVDS interfaces on the backplane.

    XC protection configurations include LVDS interface monitoring for AIS generation and SNCP support.

    They also include an Ethernet line protection disabling option, whereby the user can configure Ethernet

    interfaces for non-protection. In this setup, local failures will not affect all node traffic.

    Signaling is performed between units in a shelf to indicate their active or standby status.

    Protection Design

    The XC protection method runs by the following rules:

    An IDU may exchange traffic with a protection pair (even if it itself is not protected).

    Main units must know which pairs are protected, to send identical traffic to protected extension

    pairs.

    Each unit is the master clock for its LVDS interfaces.

    Extension units send traffic to both main units.

    All units must know from which LVDS interface to receive traffic.

    The following illustration shows how the basic XC protection operates.

    MainActive

    MainStandby

  • 8/10/2019 IP 10G Product Description V21!09!2009

    61/94

    FibeAir

    IP-10 G-Series Product Description 61

    The following information is sent through LVDS interfaces (by all units):

    Protected or not protected

    Activity: active/standby

    In addition, main units inform extensions through separate hardware interfaces. This is required for

    extension units to align with active LVDS, since the main units provide the LVDS clock. The signal

    is encoded to prevent the system from being stuck due to faulty hardware.

    If an XC switch occurs, downlink units will synchronize to the new clock within 50 msec.

    Main units read the LVDS from both extension units to determine active/standby status. They also

    receive traffic from the active unit.

    Note:If a switch is detected, an idle window will open to prevent switch cascades.

    All data is made available to the software, including alarms for protection mode mismatches and

    errors, and interrupts upon protection switch.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    62/94

    FibeAir

    IP-10 G-Series Product Description 62

    FibeAir IP-10 G-Series Typical Configurations

    1+0

    1 IP-10, 1 RFU unit required

    Integrated Ethernet switching can be enabled for multiple local Ethernet interfaces support

  • 8/10/2019 IP 10G Product Description V21!09!2009

    63/94

    FibeAir

    IP-10 G-Series Product Description 63

    1+1 HSB

    2 IP-10, 2 RFU units required

    Integrated Ethernet switching can be enabled for multiple local Ethernet interfaces support

    Redundancy covers failure of all control and data path components

    Local Ethernet & TDM interfaces protection support via Y-cables or protection-panel

  • 8/10/2019 IP 10G Product Description V21!09!2009

    64/94

    FibeAir

    IP-10 G-Series Product Description 64

    1+0 with 32 E1s/T1s

    1+0 with 64 E1s/T1s

  • 8/10/2019 IP 10G Product Description V21!09!2009

    65/94

    FibeAir

    IP-10 G-Series Product Description 65

    2+0/XPIC Link, with 64 E1/T1s, no Multi-Radio Mode

    Ethernet traffic

    Each of the 2 units:

    Feeding Ethernet traffic independently to its radio interface.

    Can be configured independently for switch or pipe operation

    No Ethernet traffic is shared internally between the 2 radio carriers

    TDM traffic

    Each of the 2 radio interfaces supports separate E1/T1 services

    E1/T1 Services can optionally be protected using SNCP

  • 8/10/2019 IP 10G Product Description V21!09!2009

    66/94

  • 8/10/2019 IP 10G Product Description V21!09!2009

    67/94

    FibeAir

    IP-10 G-Series Product Description 67

    1+1 HSB with 32 E1s/T1s

    1+1 HSB with 64 E1s/T1s

  • 8/10/2019 IP 10G Product Description V21!09!2009

    68/94

    FibeAir

    IP-10 G-Series Product Description 68

    1+1 HSB with 75 E1s or 84 T1s

    1+1 HSB Link with 16 E1/T1s + STM1/OC3 Mux Interface(Up to 75 E1s/84 T1s over the radio)

  • 8/10/2019 IP 10G Product Description V21!09!2009

    69/94

    FibeAir

    IP-10 G-Series Product Description 69

    Native2 2+2/XPIC/Multi-Radio MW Link, with 2xSTM1/OC3 Mux

    (up to 150 E1s/168 T1s over the radio)

    Nodal Configurations

    Chain with 1+0 Downlink and 1+1 HSB Uplink, with STM1/OC3 Mux

  • 8/10/2019 IP 10G Product Description V21!09!2009

    70/94

    FibeAir

    IP-10 G-Series Product Description 70

    Node with 2 x 1+0 Downlinks and 1 x 1+1 HSB Uplink

    Chain with 1+1 Downlink and 1+1 HSB Uplink, with STM1/OC3 Mux

  • 8/10/2019 IP 10G Product Description V21!09!2009

    71/94

    FibeAir

    IP-10 G-Series Product Description 71

    Native2

    Ring with 3 x 1+0 Links + STM1/OC3 Mux Interface at Main Site

    Native2 Ring with 3 x 1+1 HSB Links + STM-1 Mux Interface at Main Site

  • 8/10/2019 IP 10G Product Description V21!09!2009

    72/94

    FibeAir

    IP-10 G-Series Product Description 72

    Node with 1 x 1+1 HSB Downlink and 1 x 1+1 HSB Uplink,with STM1/OC3 Mux

    Native2

    Ring with 4 x 1+0 Links, with STM1/OC3 Mux

  • 8/10/2019 IP 10G Product Description V21!09!2009

    73/94

    FibeAir

    IP-10 G-Series Product Description 73

    Native2 Ring with 3 x 1+0 Links + Spur Link 1+0

    Native2 Ring with 4 x 1+0 MW Links and 1 x Fiber Link (5 hops total),with STM1/OC3 Mux

  • 8/10/2019 IP 10G Product Description V21!09!2009

    74/94

    FibeAir

    IP-10 G-Series Product Description 74

    Native2 Ring with 2 x 2+0/XPIC MW Links and 1 x Fiber Link(3 hops total), with 2 x STM1/OC3 Mux

  • 8/10/2019 IP 10G Product Description V21!09!2009

    75/94

    FibeAir

    IP-10 G-Series Product Description 75

    Specifications

    Radio Specifications

    General

    6-18 GHz

    Specification 6L,6H GHz 7,8 GHz 11 GHz 13 GHz 15 GHz 18 GHz

    Standards ETSI, FCC ETSI ETSI, FCC ETSI ETSI ETSI, FCC

    Operating FrequencyRange (GHz)

    5.85-6.45,6.4-7.1

    7.1-7.9, 7.7-8.5

    10.7-11.7 12. 75-13.3 14.4-15. 35 17. 7-19.7

    Tx/Rx Spacing (MHz)

    252.04, 240,266, 300,340, 160,170, 500

    154, 161,168, 182,196, 245,300, 119,

    311.32

    490, 520,530

    266315, 420,644, 490,

    728

    1010, 1120,1008, 1560

    Frequency Stability +0.001%

    Frequency Source Synthesizer

    RF Channel Selection Via EMS/NMS

    SystemConfigurations

    Non-Protected (1+0), Protected (1+1), Space Diversity

    Tx Range(Manual/ATPC)

    20dB dynamic range

    23-38 GHz

    Specification 23 GHz 24-26 GHz 28 GHz 32 GHz 38 GHz

    Standards ETSI, FCC ETSI, FCC ETSI, FCC ETSI, FCC ETSI, FCC

    Operating FrequencyRange (GHz)

    21.2-23.65 24.2-26.5 27.35-31.3 31.8-33.4 37-40

    Tx/Rx Spacing (MHz) 1008, 1200,1232

    800, 900, 1008 350, 500, 1008 812 1000, 1260, 700

    Frequency Stability +0.001%

    Frequency Source Synthesizer

    RF Channel Selection Via EMS/NMS

    SystemConfigurations

    Non-Protected (1+0), Protected (1+1), Space Diversity

    Tx Range(Manual/ATPC)

    20dB dynamic range

  • 8/10/2019 IP 10G Product Description V21!09!2009

    76/94

    FibeAir

    IP-10 G-Series Product Description 76

    RFU support

    Split-Mount installation FibeAir RFU-C (6 38 GHz)1

    FibeAir RFU-P (11 38 GHz)

    FibeAir RFU-SP (6 8 GHz)

    FibeAir RFU-HS (6 8 GHz)

    FibeAir RFU-HP (6 11 GHz)

    All-Indoor installation FibeAir RFU-HP (6 11 GHz)

    IDU to RFU connection Coaxial cable RG-223 (100 m/300 ft), Belden 9914/RG-8 (300 m/1000 ft)

    or equivalent, N-type connectors (male)

    Antenna Connection Direct or remote mount using the same antenna type.

    Remote mount: standard flexible waveguide (frequency dependent)

    Note: For more details about the different RFUs refer to the RFU documentation.

    Refer to RFU-C roll-out plan for availability of each frequency.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    77/94

    FibeAir

    IP-10 G-Series Product Description 77

    Capacity

    7 MHz (ETSI)

    Profile Modulation

    Minimum

    required

    capacity

    license

    Radio

    Throughput(Mbps)

    Number of

    Supported

    E1s

    Ethernet

    Capacity(Mbps)

    Min Max

    0 QPSK 10 10.5 4 9.5 13.5

    1 8 PSK 25 15 6 14 20

    2 16 QAM 25 20 8 19 28

    3 32 QAM 25 25 10 24 34

    4 64 QAM 25 29 12 28 405 128 QAM 50 33 13 32 46

    6 256 QAM 50 38 16 38 54

    7 256 QAM 50 43 18 42 60

    Note: Ethernet Capacity depends on average packet size.

    10 MHz (FCC)

    Profile Modulation

    Minimum

    required

    capacity

    license

    Radio

    Throughput(Mbps)

    Number of

    Supported

    T1s

    Ethernet

    Capacity(Mbps)

    Min Max

    0 QPSK 10 13 7 13 18

    1 8 PSK 25 19 10 19 27

    2 16 QAM 25 29 16 29 41

    3 32 QAM 50 36 20 35 50

    4 64 QAM 50 44 24 43 62

    5 128 QAM 50 51 28 51 72

    6 256 QAM 50 56 31 55 79

    7 256 QAM 50 61 34 61 88

    Note: Ethernet Capacity depends on average packet size.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    78/94

    FibeAir

    IP-10 G-Series Product Description 78

    14 MHz (ETSI)

    Profile Modulation

    Minimum

    required

    capacity

    license

    RadioThroughput

    (Mbps)

    Number of

    supported

    E1s

    Ethernet

    Capacity(Mbps)

    Min Max

    0 QPSK 25 21 8 20 29

    1 8 PSK 25 29 12 29 41

    2 16 QAM 50 43 18 42 60

    3 32 QAM 50 50 20 49 70

    4 64 QAM 50 57 24 57 82

    5 128 QAM 100 69 29 69 98

    6 256 QAM 100 80 34 81 115

    7 256 QAM 100 87 37 87 125

    Note: Ethernet Capacity depends on average packet size.

    20 MHz (FCC)

    Profile Modulation

    Minimum

    required

    capacity

    license

    Radio

    Throughput(Mbps)

    Number of

    supported

    T1s

    Ethernet

    Capacity(Mbps)

    Min Max

    0 QPSK 25 28 15 27 39

    1 8 PSK 50 41 23 41 59

    2 16 QAM 50 58 32 57 82

    3 32 QAM 100 74 41 74 105

    4 64 QAM 100 87 49 87 125

    5 128 QAM 100 101 57 101 145

    6 256 QAM 100 114 65 115 164

    7 256 QAM 150 125 71 126 180

    Note: Ethernet Capacity depends on average packet size.

    28 MHz (ETSI)

    Profile Modulation

    Minimum

    required

    capacity

    license

    Radio

    Throughput(Mbps)

    Number ofSupported

    E1s

    Ethernet

    Capacity(Mbps)

    Min Max

    0 QPSK 50 41 17 40 58

    1 8 PSK 50 55 23 54 78

    2 16 QAM 100 78 33 78 111

    3 32 QAM 100 105 44 105 151

    4 64 QAM 150 130 55 131 188

    5 128 QAM 150 158 68 160 229

    6 256 QAM 150 176 75 178 255

    7 256 QAM 200 186 75 188 268

    Note: Ethernet Capacity depends on average packet size.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    79/94

    FibeAir

    IP-10 G-Series Product Description 79

    30 MHz (FCC)

    Profile Modulation

    Minimum

    required

    capacity

    license

    Radio

    Throughput(Mbps)

    Number ofSupported

    T1s

    Ethernet

    Capacity(Mbps)

    Min Max

    0 QPSK 50 39 22 39 56

    1 8 PSK 50 63 35 63 90

    2 16 QAM 100 92 52 93 132

    3 32 QAM 100 118 67 119 170

    4 64 QAM 150 142 81 143 205

    5 128 QAM 150 162 84 164 234

    6 256 QAM 200 183 84 185 264

    7 256 QAM 200 198 84 201 287

    Note: Ethernet Capacity depends on average packet size.

    40 MHz (ETSI / FCC)

    Profile Modulation

    Minimum

    required

    capacity

    license

    Radio

    Throughput(Mbps)

    Number of

    Supported

    E1/T1s

    Ethernet

    Capacity(Mbps)

    Min Max

    0 QPSK 50 56 23 / 31 56 80

    1 8 PSK 100 83 35 / 47 83 119

    2 16 QAM 100 121 51 / 69 122 174

    3 32 QAM 150 151 65 / 84 153 218

    4 64 QAM 200 189 75 / 84 191 274

    5 128 QAM 200 211 75 / 84 214 305

    6 256 QAM 300 240 75 / 84 243 347

    7 256 QAM 300 255 75 / 84 259 370

    Note: Ethernet Capacity depends on average packet size.

    50 MHz (FCC)

    Profile Modulation

    Minimum

    required

    capacity

    license

    Radio

    Throughput

    (Mbps)

    Number of

    SupportedT1s

    Ethernet

    Capacity(Mbps)

    Min Max

    0 QPSK 100 68 38 68 97

    1 8 PSK 100 106 60 107 152

    2 16 QAM 150 147 84 148 212

    3 32 QAM 150 185 84 187 267

    4 64 QAM 200 238 84 241 344

    5 128 QAM 300 274 84 278 398

    6 256 QAM 300 313 84 318 454

    7 256 QAM "All capacity" 337 84 342 489

    Note: Ethernet Capacity depends on average packet size.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    80/94

    FibeAir

    IP-10 G-Series Product Description 80

    56 MHz (ETSI)

    Profile Modulation

    Minimum

    required

    capacity

    license

    Radio

    Throughput(Mbps)

    Number ofSupported

    E1s

    Ethernet

    Capacity(Mbps)

    Min Max

    0 QPSK 100 76 32 76 109

    1 8 PSK 100 113 48 114 163

    2 16 QAM 150 150 64 151 217

    3 32 QAM 200 199 75 202 288

    4 64 QAM 300 248 75 251 358

    5 128 QAM 300 297 75 301 430

    6 256 QAM "All capacity" 338 75 343 490

    7 256 QAM "All capacity" 367 75 372 532

    Note: Ethernet Capacity depends on average packet size.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    81/94

    FibeAir

    IP-10 G-Series Product Description 81

    Transmit Power with RFU-C1 (dBm)

    Modulation 6-8 GHz 11-15 GHz 18-23 GHz 26-28 GHz 32-38 GHz

    QPSK 26 24 22 21 18

    8 PSK 26 24 22 21 18

    16 QAM 25 23 21 20 17

    32 QAM 24 22 20 19 16

    64 QAM 24 22 20 19 16

    128 QAM 24 22 20 19 16

    256 QAM 22 20 18 17 14

    Transmit Power with RFU-P(dBm)

    Modulation 11-15 GHz 18 GHz 23-26 GHz 28-32 GHz 38 GHz

    QPSK 23 23 22 21 20

    8 PSK 23 23 22 21 20

    16 QAM 23 21 20 20 19

    32 QAM 23 21 20 20 19

    64 QAM 22 20 20 19 18

    128 QAM 22 20 20 19 18256 QAM 21

    219 19 18 17

    Transmit Power with RFU-SP/HS/HP3 (dBm)

    RFU-SP RFU-HS RFU-HP

    Split-Mount

    RFU-HP

    All-Indoor

    Modulation 6-8 GHz4

    6-8 GHz 6-8 GHz 11 GHz 6-8 GHz 11 GHz

    QPSK 24 30 30 27 33 308 PSK 24 30 30 27 33 30

    16 QAM 24 30 30 27 33 30

    32 QAM 24 30 30 26 33 29

    64 QAM 24 29 29 26 32 29

    128 QAM 24 29 29 26 32 29

    256 QAM 22 27 27 24 30 27

    Refer to RFU-C roll-out plan for availability of each frequency.

    20dBm for 11GHz.

    RFU-HP supports channels with up to 30MHz occupied bandwidth.1dBm higher for 6L GHz.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    82/94

    FibeAir

    IP-10 G-Series Product Description 82

    Receiver Threshold (RSL) with RFU-C1

    (dBm @ BER = 10-6

    )

    Profile Modulation ChannelSpacing OccupiedBandwidth

    Frequency

    (GHz)6-15 18 23 26 28 38

    0 QPSK

    7 MHz(ETSI)

    6.2 MHz

    -92.0 -91.5 -91.0 -90.0 -90.0 -89.0

    1 8 PSK -88.5 -88.0 -87.5 -86.5 -86.5 -85.5

    2 16 QAM -86.5 -86.0 -85.5 -84.5 -84.5 -83.5

    3 32 QAM -84.0 -83.5 -83.0 -82.0 -82.0 -81.0

    4 64 QAM -82.5 -82.0 -81.5 -80.5 -80.5 -79.5

    5 128 QAM -80.5 -80.0 -79.5 -78.5 -78.5 -77.5

    6 256 QAM -77.0 -76.5 -76.0 -75.0 -75.0 -74.0

    7 256 QAM -73.5 -73.0 -72.5 -71.5 -71.5 -70.5

    0 QPSK

    10 MHz(FCC)

    8.4 MHz

    -93.5 -93.0 -92.5 -91.5 -91.5 -90.5

    1 8 PSK -90.0 -89.5 -89.0 -88.0 -88.0 -87.0

    2 16 QAM -85.5 -85.0 -84.5 -83.5 -83.5 -82.5

    3 32 QAM -82.0 -81.5 -81.0 -80.0 -80.0 -79.0

    4 64 QAM -80.0 -79.5 -79.0 -78.0 -78.0 -77.0

    5 128 QAM -77.5 -77.0 -76.5 -75.5 -75.5 -74.5

    6 256 QAM -75.5 -75.0 -74.5 -73.5 -73.5 -72.5

    7 256 QAM -72.0 -71.5 -71.0 -70.0 -70.0 -69.0

    0 QPSK

    14 MHz(ETSI) 12.2 MHz

    -90.5 -90.0 -89.5 -88.5 -88.5 -87.5

    1 8 PSK -87.0 -86.5 -86.0 -85.0 -85.0 -84.0

    2 16 QAM -83.5 -83.0 -82.5 -81.5 -81.5 -80.5

    3 32 QAM -82.0 -81.5 -81.0 -80.0 -80.0 -79.0

    4 64 QAM -80.5 -80.0 -79.5 -78.5 -78.5 -77.5

    5 128 QAM -77.5 -77.0 -76.5 -75.5 -75.5 -74.5

    6 256 QAM -74.5 -74.0 -73.5 -72.5 -72.5 -71.5

    7 256 QAM -72.0 -71.5 -71.0 -70.0 -70.0 -69.0

    0 QPSK

    20 MHz(FCC)

    17.4 MHz

    -90.0 -89.5 -89.0 -88.0 -88.0 -87.0

    1 8 PSK -85.0 -84.5 -84.0 -83.0 -83.0 -82.0

    2 16 QAM -82.5 -82.0 -81.5 -80.5 -80.5 -79.5

    3 32 QAM -80.0 -79.5 -79.0 -78.0 -78.0 -77.0

    4 64 QAM -77.5 -77.0 -76.5 -75.5 -75.5 -74.5

    5 128 QAM -75.0 -74.5 -74.0 -73.0 -73.0 -72.0

    6 256 QAM -72.0 -71.5 -71.0 -70.0 -70.0 -69.0

    7 256 QAM -69.0 -68.5 -68.0 -67.0 -67.0 -66.0

    0 QPSK

    28 MHz(ETSI)

    24.9 MHz

    -89.0 -88.5 -88.0 -87.0 -87.0 -86.0

    1 8 PSK -86.0 -85.5 -85.0 -84.0 -84.0 -83.0

    2 16 QAM -83.0 -82.5 -82.0 -81.0 -81.0 -80.0

    3 32 QAM -79.0 -78.5 -78.0 -77.0 -77.0 -76.0

    4 64 QAM -76.5 -76.0 -75.5 -74.5 -74.5 -73.5

    5 128 QAM -72.0 -71.5 -71.0 -70.0 -70.0 -69.0

    6 256 QAM -71.0 -70.5 -70.0 -69.0 -69.0 -68.0

    7 256 QAM -68.5 -68.0 -67.5 -66.5 -66.5 -65.5

    Note: RSL values are typical.

    Refer to RFU-C roll-out plan for availability of each frequency.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    83/94

    FibeAir

    IP-10 G-Series Product Description 83

    Profile Modulation Channel

    Spacing

    Occupied

    Bandwidth

    Frequency

    (GHz)

    6-15 18 23 26 28 38

    0 QPSK

    30 MHz(FCC)

    26.9 MHz

    -89.0 -88.5 -88.0 -87.0 -87.0 -86.0

    1 8 PSK -84.5 -84.0 -83.5 -82.5 -82.5 -81.5

    2 16 QAM -80.5 -80.0 -79.5 -78.5 -78.5 -77.5

    3 32 QAM -76.0 -75.5 -75.0 -74.0 -74.0 -73.0

    4 64 QAM -74.5 -74.0 -73.5 -72.5 -72.5 -71.5

    5 128 QAM -72.0 -71.5 -71.0 -70.0 -70.0 -69.0

    6 256 QAM -70.0 -69.5 -69.0 -68.0 -68.0 -67.0

    7 256 QAM -66.0 -65.5 -65.0 -64.0 -64.0 -63.0

    0 QPSK

    40 MHz(ETSI/FCC)

    34.8 MHz

    -87.0 -86.5 -86.0 -85.0 -85.0 -84.0

    1 8 PSK -81.5 -81.0 -80.5 -79.5 -79.5 -78.5

    2 16 QAM -79.0 -78.5 -78.0 -77.0 -77.0 -76.03 32 QAM -75.5 -75.0 -74.5 -73.5 -73.5 -72.5

    4 64 QAM -72.0 -71.5 -71.0 -70.0 -70.0 -69.0

    5 128 QAM -71.0 -70.5 -70.0 -69.0 -69.0 -68.0

    6 256 QAM -68.5 -68.0 -67.5 -66.5 -66.5 -65.5

    7 256 QAM -66.0 -65.5 -65.0 -64.0 -64.0 -63.0

    0 QPSK

    50 MHz(FCC)

    44.3 MHz

    -87.5 -87.0 -86.5 -85.5 -85.5 -84.5

    1 8 PSK -83.0 -82.5 -82.0 -81.0 -81.0 -80.0

    2 16 QAM -80.0 -79.5 -79.0 -78.0 -78.0 -77.0

    3 32 QAM -76.5 -76.0 -75.5 -74.5 -74.5 -73.5

    4 64 QAM -73.5 -73.0 -72.5 -71.5 -71.5 -70.5

    5 128 QAM -71.0 -70.5 -70.0 -69.0 -69.0 -68.06 256 QAM -68.5 -68.0 -67.5 -66.5 -66.5 -65.5

    7 256 QAM -65.5 -65.0 -64.5 -63.5 -63.5 -62.5

    0 QPSK

    56 MHz(ETSI)

    49.1 MHz

    -86.5 -86.0 -85.5 -84.5 -84.5 -83.5

    1 8 PSK -81.5 -81.0 -80.5 -79.5 -79.5 -78.5

    2 16 QAM -80.5 -80.0 -79.5 -78.5 -78.5 -77.5

    3 32 QAM -76.0 -75.5 -75.0 -74.0 -74.0 -73.0

    4 64 QAM -74.0 -73.5 -73.0 -72.0 -72.0 -71.0

    5 128 QAM -71.0 -70.5 -70.0 -69.0 -69.0 -68.0

    6 256 QAM -68.5 -68.0 -67.5 -66.5 -66.5 -65.5

    7 256 QAM -65.5 -65.0 -64.5 -63.5 -63.5 -62.5

    Note: RSL values are typical.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    84/94

  • 8/10/2019 IP 10G Product Description V21!09!2009

    85/94

    FibeAir

    IP-10 G-Series Product Description 85

    Profile Modulation Channel

    Spacing

    Occupied

    Bandwidth

    Frequency

    (GHz)

    11-18 23-28 31 32-38

    0 QPSK

    30 MHz(FCC)

    26.9 MHz

    -88.5 -88.0 -88.0 -87.0

    1 8 PSK -84.0 -83.5 -83.5 -82.5

    2 16 QAM -80.0 -79.5 -79.5 -78.5

    3 32 QAM -75.5 -75.0 -75.0 -74.0

    4 64 QAM -74.0 -73.5 -73.5 -72.5

    5 128 QAM -71.5 -71.0 -71.0 -70.0

    6 256 QAM -69.5 -69.0 -69.0 -68.0

    7 256 QAM -65.5 -65.0 -65.0 -64.0

    0 QPSK

    40 MHz(ETSI/FCC)

    34.8 MHz

    -87.0 -86.5 -86.5 -85.5

    1 8 PSK -81.0 -80.5 -80.5 -79.52 16 QAM -78.5 -78.0 -78.0 -77.0

    3 32 QAM -75.0 -74.5 -74.5 -73.5

    4 64 QAM -71.5 -71.0 -71.0 -70.0

    5 128 QAM -70.5 -70.0 -70.0 -69.0

    6 256 QAM -68.0 -67.5 -67.5 -66.5

    7 256 QAM -65.5 -65.0 -65.0 -64.0

    0 QPSK

    50 MHz

    (FCC)

    44.3 MHz

    -87.0 -86.5 -86.5 -85.5

    1 8 PSK -82.5 -82.0 -82.0 -81.0

    2 16 QAM -79.5 -79.0 -79.0 -78.0

    3 32 QAM -76.0 -75.5 -75.5 -74.5

    4 64 QAM -73.0 -72.5 -72.5 -71.55 128 QAM -70.5 -70.0 -70.0 -69.0

    6 256 QAM -68.0 -67.5 -67.5 -66.5

    7 256 QAM -66.5 -66.0 -66.0 -63.5

    0 QPSK

    56 MHz(ETSI)

    49.1 MHz

    -86.0 -85.5 -85.5 -84.5

    1 8 PSK -81.0 -80.5 -80.5 -79.5

    2 16 QAM -80.0 -79.5 -79.5 -78.5

    3 32 QAM -75.5 -75.0 -75.0 -74.0

    4 64 QAM -73.5 -73.0 -73.0 -72.0

    5 128 QAM -70.5 -70.0 -70.0 -69.0

    6 256 QAM -68.0 -67.5 -67.5 -66.5

    7 256 QAM -66.5 -66.0 -66.0 -63.5

    Note: RSL values are typical.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    86/94

    FibeAir

    IP-10 G-Series Product Description 86

    Receiver Threshold (RSL) with RFU-SP/HP1 (dBm @ BER = 10-6)

    Profile Modulation Channel

    Spacing

    Occupied

    Bandwidth

    RFU-SP

    (6-8 GHz)

    RFU-HP

    (6-11 GHz)

    0 QPSK

    10 MHz(FCC)

    8.4 MHz

    -93.5 -93.5

    1 8 PSK -90.0 -90.0

    2 16 QAM -85.5 -85.5

    3 32 QAM -82.0 -82.0

    4 64 QAM -80.0 -80.0

    5 128 QAM -77.5 -77.5

    6 256 QAM -75.5 -75.5

    7 256 QAM -72.0 -72.0

    0 QPSK

    14 MHz(ETSI)

    12.2 MHz

    -90.5 -90.51 8 PSK -87.0 -87.0

    2 16 QAM -83.5 -83.5

    3 32 QAM -82.0 -82.0

    4 64 QAM -80.5 -80.5

    5 128 QAM -77.5 -77.5

    6 256 QAM -74.5 -74.5

    7 256 QAM -72.0 -72.0

    0 QPSK

    20 MHz(FCC) 17.4 MHz

    -90.0 -90.0

    1 8 PSK -85.0 -85.0

    2 16 QAM -82.5 -82.5

    3 32 QAM -80.0 -80.04 64 QAM -77.5 -77.5

    5 128 QAM -75.0 -75.0

    6 256 QAM -72.0 -72.0

    7 256 QAM -69.0 -69.0

    0 QPSK

    28 MHz(ETSI)

    24.9 MHz

    -89.0 -89.0

    1 8 PSK -86.0 -86.0

    2 16 QAM -83.0 -83.0

    3 32 QAM -79.0 -79.0

    4 64 QAM -76.5 -76.5

    5 128 QAM -72.0 -72.0

    6 256 QAM -71.0 -71.0

    7 256 QAM -67.0 -67.0

    Note: RSL values are typical.

    RFU-HP supports channels with up to 30 MHz occupied bandwidth.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    87/94

    FibeAir

    IP-10 G-Series Product Description 87

    Profile Modulation ChannelSpacing OccupiedBandwidth RFU-SP(6-8 GHz) RFU-HP(6-11 GHz)

    0 QPSK

    30 MHz(FCC)

    26.9 MHz

    -89.0 -89.0

    1 8 PSK -84.5 -84.5

    2 16 QAM -80.5 -80.5

    3 32 QAM -76.0 -76.0

    4 64 QAM -74.5 -74.5

    5 128 QAM -72.0 -72.0

    6 256 QAM -70.0 -70.0

    7 256 QAM -66.0 -66.0

    0 QPSK

    40 MHz(ETSI/FCC)

    34.8 MHz

    -87.5 Not supported

    1 8 PSK -81.5 Not supported2 16 QAM -79.0 Not supported

    3 32 QAM -75.5 Not supported

    4 64 QAM -72.0 Not supported

    5 128 QAM -71.0 Not supported

    6 256 QAM -68.5 Not supported

    7 256 QAM -66.0 Not supported

    0 QPSK

    50 MHz

    (FCC) 44.3 MHz

    -87.5 Not supported

    1 8 PSK -83.0 Not supported

    2 16 QAM -80.0 Not supported

    3 32 QAM -76.5 Not supported

    4 64 QAM -73.5 Not supported

    5 128 QAM -71.0 Not supported

    6 256 QAM -68.5 Not supported

    7 256 QAM -67.0 Not supported

    0 QPSK

    56 MHz(ETSI)

    49.1 MHz

    -86.5 Not supported

    1 8 PSK -81.5 Not supported

    2 16 QAM -80.5 Not supported

    3 32 QAM -76.0 Not supported

    4 64 QAM -74.0 Not supported

    5 128 QAM -71.0 Not supported

    6 256 QAM -68.5 Not supported

    7 256 QAM -67.0 Not supported

    Note: RSL values are typical.

  • 8/10/2019 IP 10G Product Description V21!09!2009

    88/94

    FibeAir

    IP-10 G-Series Product Description 88

    Interfaces

    Ethernet

    Supported Ethernet Interfaces 5 x 10/100base-T (RJ-45)

    2 x 10/100/1000Base-T (RJ-45) or 1000base-X (SFP)

    Supported SFP Types Optical 1000Base-LX (1310 nm) or SX (850 nm)

    E1/T1

    Interface Type E1/T1

    Number of Ports 16 x E1/T1 or 16 x E1/T1+16 x E1/T1 on T-Card

    Connector Type MDR 69-pin

    Framing Unframed (full transparency)

    Coding E1: HDB3T1: AMI/B8ZS (Configurable)

    Line Impedance 120 ohm/100 ohm balanced. Optional 75 ohm unbalanced.

    Compatible Standards ITU-T G.703, G.736, G.775, G.823, G.824, G.828, ITU-T I.432, ETSI ETS300 147, ETS 300 417, ANSI T1.105, T1.102-1993, T1.231, Bellcore GR-253-

    core, TR-NWT-000499

    Auxiliary Channels

    W ayside Channel 2 Mbps or 64 Kbps, Ethernet 10/100BaseT

    Engineering Order Wire Audio channel (64 Kbps) G.711

    User Channel Asynchronous V.11/RS-232 up 19.2 kbps

  • 8/10/2019 IP 10G Product Description V21!09!2009

    89/94

    FibeAir

    IP-10 G-Series Product Description 89

    Optical STM-1/OC-3 SFP

    Transceiver Name SH1310 LH1310 LH1550

    Application Code S-1.1 L-1.1 L-1.2

    Operating Wavelength(nm)

    1261-1360 1263-1360 1480-580