135
ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION GRANT NGR-06-002-112 John R. Brophy Approved by Paul 3. Wilbur December 1984 Department o f Mechanical Engi neeri ng Col orado State University Fort Coll ins, Colorado

ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

ION THRUSTER PERFORMANCE MODEL

PREPARED FOR

LEWIS RESEARCH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

GRANT NGR-06-002-112

John R. Brophy

Approved by

Paul 3 . Wi lbur

December 1984

Department o f Mechanical Engi n e e r i ng Col orado S t a t e U n i v e r s i t y

F o r t C o l l i n s , Colorado

Page 2: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION
Page 3: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

'For sale by the National Technical Information Service, Springfield, Virginia 22161

NASAC-168 (Rev. 10-75) i

- 1. Report No.

NASA CR 174810 2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

ION THRUSTER PERFORMANCE MODEL

7. Author(s)

John R. Brophy

9. Performing Organization Name and Address

Department of Mechanical Engineering Colorado State Univers i ty For t Col 1 ins, Colorado 80523

. 12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration Washington, D. C. 20546

5. Report Date Dec. 1984

6. Perform~ng Organization Code

8. Performing Organization Report No.

10. Work Unit No.

11. Contract or Grant No.

NGR-06-002-112 13. Type of Report and Period Covered Dec. 1, 1983 - Dec. 1, 1984

14. Sponsoring Agency Code

l5 Supplementary Notes Grant Monitor - W i l l iam Kerslake, NASA Lewis Research Center, Cleveland, Ohio 441 35. This repor t i s a reproduction o f the Ph.D. D isser ta t ion o f John R. Brophy. It i s submitted t o the sponsor and t o the d i s t r i b u t i o n l i s t i n t h i s form both as a presentation o f the technical mater ia l , and as an ind icat ion o f the academic program supported by the grant.

16. Abstract A model of i on thruster performance i s developed f o r high f l u x density,cusped magnetic f i e l d

thruster designs. This model i s formulated i n terms o f the average energy required t o produce an ion i n the discharge chamber plasma and the f r a c t i o n o f these ions tha t are extracted t o form the beam. The d i r e c t loss o f h igh energy (primary) electrons from the plasma t o the anode i s shown t o have a major e f f e c t on thruster performance. The model provides simple algebraic equations enabling one t o ca lcu la te the beam i o n energy cost, t he average discharge chamber plasma i o n energy cost, the primary e lec t ron density, the primary-to-Maxwell i a n electron density r a t i o and the t4axwell i a n electron temperature. Experiments ind icate tha t the model correct1 y predicts the va r ia t i on i n plasma i o n energy cost f o r changes i n propel lant gas (Ar, Kr and Xe), g r i d trans- parency t o neutral atoms, beam ext rac t ion area, discharge voltage, and discharge chamber wal l temperature.

The model and experiments ind icate t h a t th rus te r performance may be described i n terms of on ly four thruster conf igurat ion dependent parameters and two operating parameters. The model also suggests t h a t improved performance should be exh ib i ted by thruster designs which ext rac t a l a rge f r a c t i o n o f the ions produced i n the discharge chamber, which have good primary electron and neutral atom containment and which operate a t h igh propel lant flow rates. I n addit ion, i t suggests t h a t hollow cathode e f f i c iency becomes increasingly important t o the discharge chamber performance as the discharge voltage i s reduced. Final ly, the u t i l i t y o f the model i n mission analysis cal cu- l a t i o n s i s demonstrated. The model makes i t easy t o determine which changes i n thruster design o r operating parameters have the greatest e f f e c t on the payload f r a c t i o n and/or mission duration.

17. Key Words (Suggested by Author(s))

Elec t ros ta t i c Thruster Discharge Chamber Model

18. Distribution Statement

Unclassi f ied - Unlimited

19. Security Classif. (of this report)

Unclassif ied 20. Security Classif. (of this page)

Unclassif ied 21. No. of Pages

133 22 Price*

Page 4: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

TABLE OF CONTENTS

Chapter Page

I . INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1 Background . . . . . . . . . . . . . . . . . . . 2 Overview . . . . . . . . . . . . . . . . . . . . 4

I1 . I O N THRUSTER OPERATION . . . . . . . . . . . . . . . 7

I11 . THEORETICAL DEVELOPMENT' . . . . . . . . . . . . . . 14 Thruster Performance . Model . . . . . . . . . . . 14 . . . . . . . . . Assum t i ons and L imi ta t ions 14 e Beam on Energy Cost . . . . . . . . . . . . . 15

Plasma Ion Energy Cost . . . . . . . . . . . . 18 . . . . . . . . Cal cu l a t i o n o f P l asma Propert ies 27 . . . . . . . . . . . Primary E l ect ron Density 27 . . . Primary-to-Total Electron Density Rat io 31 P r i mary-to-Maxwel 1 i an Electron Density Rat io . 32 . . . . . . . Maxwellian Electron Temperature 32 Double I o n Production . . . . . . . . . . . . 34

I V . EXPERIMENTAL PROCEDURES AND RESULTS . . . . . . . . 37 . . . . . . . . . . . . . . . . . . . . Apparatus 37 . . . . . . . . . . . . . . . . . . . . Procedure 41 Experimental Resul t s . . . . . . . . . . . . . . 43

Plasma I o n Energy Cost . . . . . . . . . . . . 43 . . . . . . . . . . . . Extracted I o n F rac t i on 54 . . . . . . . . . . . . . . Plasma Propert ies 56

. . . . . . . . . . . . . . . . . V . MODEL APPLICATIONS 69 . . . . . . . . . . . . . . . . . Thruster Design 69 . . . . . . . . . . . . . . . Thruster Scal i ng 77 . . . . . . . . . . . . . . Neutral Loss Rate 77 Thruster Test ing Without Beam Ext rac t ion . . . . 78 . . . . . . . . Space Propulsion Mission Analysis 81

. . . . . . . . . . . . . . . . . . . . V I . CONCLUSIONS 92 . . . . . . . . . . . Suggestions f o r Future Work 94

. . . . . . . . . . . . . . . . . . . . . . . . . REFERENCES 96

APPENDIX A . Theoret ica l Ca lcu la t ion o f t h e * . . . . . Basel ine Plasma Ion Energy Cost. E 101 P

Page 5: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

Tab1 e o f Contents (Continued)

& APPENDIX B . Error Analysis . . . . . . . . . . . . . . . . . . 109

APPENDIX C . Nomenclature . . . . . . . . . . . . . . . . . 123

Page 6: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

LIST OF FIGURES

Page

. . . . . . . . . . . . . . Ion Thruster Schematic 8

Discharge Plasma Power Balance Schematic . . . . . 19

Ring Cusp Ion Source Schematic - . . . . . . . . . . . . . . . . . . Configuration I 38

Ring Cusp Ion Source Schematic - . . . . . . . . . . . . . . . . . Configuration 11 38

Plasma Ion Energy Cost Curve for . . . . . . . . . . . . . . . . . . Configuration I 44

Plasma Ion Energy Cost Curve for High Accelerator Grid Transparency t o Neutral Atoms - Configuration I . . . . . . . . 44

Plasma Ion Energy Cost Curve fo r Krypton - . . . . . . . . . . . . . . . . . . Configuration I 47

Plasma Ion Energy Cost Curve for S~iiall . . . . . . . . Diameter Ion Beam - Configuration I 47

Plasma Ion Energy Cost Curve fo r Argon . . . . . . . . . . . . . . . . . Configuration I1 50

Plasma Ion Energy Cost Curve for Xenon - . . . . . . . . . . . . . . . . . Configuration XI 50

Plasma Ion Energy Cost Variation a t Low Discharge Voltage - Configuration I1 . . . . . . . 51

Anode Electron Temperature Variation a t . . . . . Low Discharge Voltage - Configuration I1 51

Effect of Discharge Voltage on the extracted Ion Fraction - Configuration I . . . . . . . . . . 55

Effect of Propellant on the Extracted Ion . . . . . . . . . . . . Fraction - Configuration I 55

Primary Electron Density Variation fo r Argon - . . . . . . . . . . . . . . . . . Configuration I1 58

Page 7: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

L i s t o f Figures (Continued)

Page Figure

9b Primary E l ectron Density Var iat ion for Xenon - Configurat ion I 1 . . . . . . . . . . . . . 58

P r i mary-to-Total E l ectron Density Ratio f o r Argon - Configuration I 1 . . . . . . . . . . . 61

Primary-to-Total E l ectron Density Ratio f o r Xenon - Configurat ion I 1 . . . . . . . . . . . 61

Maxwell i a n Electron ~ernperature Var ia t ion f o r Xenon - Configurat ion I1 . . . . . . . . . . . 62

Ion iza t ion Rate Factor f o r Xenon . . . . . . . . . 64

Correlat ion o f Electron Temperatures . . . . . . . 66

Doubly-to-Singly Charged I on Beam Current Results . 67

E f fec t o f fB on Performance . . . . . . . . . . . . 71

E f fec t o f Co on Performance . . . . . . . . . . . . 71

Effect of Propel 1 ant Flow Rate. on Performance f o r Small Co . . . . . . . . . . . . . . . . . . . 73

Effect o f Propel lant Flow Rate on Performance for Large Co . . . . . . . . . . . . . . . . . . . 73

Effect o f Cathode Operation on Perforniance f o r Xenon. . . . . . . . . . . . . . . . . . . . . 76

Pay1 oad Fraction, Propel 1 ant Mass Fract ion and Generator Mass Fract ion Var iat ion w i t h Propel lant U t i l i z a t i o n . . . . . . . . . . . . . . 85

Effect o f Power Plant Spec i f ic Mass (a) on Payload Fract ion . . . . . . . . . . . . . . . . 87

Effect o f Power Plant Speci f ic Mass on Optimum Propel lant U t i l i z a t i o n . . . . . . . . . . 87

Effect o f Bo on Payload Fract ion . . . . . . . . . 87

Effect of Bo on the Performance Curve and

the Optimum Propel l a n t U t i l ' i za t i on . . . . . . . . 89

Effect o f fg on Payload Fract ion . . . . . . . . . 90

Page 8: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

L i s t of Figures (Continued)

F i gure

21 b

Page

E f f e c t o f fg on t h e Performance Curve and

the Optimum Propel1 an t U t i 1 i z a t i o n . . . . . . . . 90

Ef fec t o f Prope l lan t on Payload Frac t ion . . . . . 91

Effect o f Prope l lan t on t h e Performance Curve and the Optimum Prope l lan t U t i l i z a t i o n . . . 91

I o n i z a t i o n C o l l i s i o n Cross Sect ion f o r . . . . . . . . . . . . . . . . . . Xenon (Ref. 50) 104

Tota l E x c i t a t i o n Col l i s i o n Cross Section . . . . . . . . . . . . . . . . f o r Xenon (Ref. 49) 104

Base1 i n e Plasma I o n Energy Cost Va r ia t i on Calculated from Eq. A-7 f o r Xenon . . . . . . . . . 105

So lu t ions f o r t he Base1 i n e Plasma Ion Energy Cost f o r Xenon . . . . . . . . . . . . . . . 108

. . . . . . . I o n Source Inst rumentat ion Schemati c 11 1

Uncerta inty i n the Plasma I o n Energy . . . . . . . . . . . . . . . . . Cost Measurements 116

Uncerta inty i n t he Doubly-to-Si ng l y . . . . . . . Charged I o n Beam Current Measurements 122

Page 9: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

LIST OF TABLES

Tab1 e Page

1 Standard Configuration Parameters . . . . . . . . . 69 *

2 Ef fec t o f V, on E . . . . . . . . . . . . . . . . 74 P

Page 10: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION
Page 11: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

I . I N'TRODUCTI ON

Electron bombardment i o n th rus te rs have been proposed f o r both

primary and a u x i l i a r y space propulsion app l i ca t i ons fo r near ly two-and-

a-ha1 f decades. During t h i s time, th rus te r performance requirements

have var ied according t o t h e missions of cu r ren t i n t e r e s t . Also dur ing

t h i s time, the development o f t h rus te r designs capable of meeting these

requi rements has been 1 argely experimental . That i s , t h rus te r develop-

ment has general ly been accomplished by a procedure i n which the design

parameters t h a t i n f l uence t h r u s t e r performance a re physical l y var ied

u n t i l an acceptabl e conf igurat ion i s obtained.

This procedure has several inherent 1 im i ta t i ons . F i r s t of a l l , i t

can be time consuming,especially i f a l a r g e number o f parameters i s

involved. Secondly, an optimum conf igura t ion may no t be found. That i s ,

once a conf igurat ion capable o f f u l f i l 1 i n g the mission requirements i s

i den t i f i ed , the procedure i s general ly terminated even though t h i s may

not r e s u l t i n the best conf igura t ion possible. F ina l l y , changes i n the

missions of cu r ren t i n t e r e s t t o those character ized by d i f f e r e n t

t h r u s t e r requi rements necessi t a t e t h a t the i t e r a t i v e experimental pro-

cedure be repeated.

Consequently, there i s a need f o r the development of an ana ly t i ca l

model which describes the e f f e c t s o f t h r u s t e r design var iables and

operat ing parameters on t h r u s t e r performance. Such a model should, as

a minimum, be capable o f p rov id ing guidance fo r t h e i t e r a t i v e procedure

Page 12: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

described above, and ideally would be capable of describing exactly how

a thruster should be designed to achieve a given se t of performance

requirements . Many models of discharge chamber operation have been developed

over the l a s t 24 years. A brief discussion of these models is given in

the next section. In general, the complexity of the processes taking

place i n the discharge chamber of an ion thruster together w i t h the

relat ive ease with which new thruster designs can be tested experi-

mentally has resulted in a situation i n which theoretical understanding

has 1 agged experimental developments . The objective of this research i s to improve the theoretical

understanding of ion thruster operation by providing a simple physical

model of the processes affecting thruster performance. Additional con-

s t ra in ts on this model are that i t should be easy to use, yet general

enough to be appl icabl e to a wide range of thruster configurations and

operating conditions.

Background

Analytical model i ng of el ectron bombardment ion thrusters has been

on going more or 1 ess continuously since their introduction by Kaufman

[1 ,2] i n 1960. Milder [3] provides a survey of modeling efforts made

through 1969. In this survey he concluded that, ". . .our knowledge and

understanding of the physics of these plasmas i s f a r from complete."

In addition, he concluded that the usefulness of these efforts was

1 i~iiited by ei ther the simplyfing assumptions required to make the

probleni tractable or the diff icul ty of applying 1 ess simp1 if ied models.

Page 13: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

Kaufman [4] presents a d iscussion of t h r u s t e r technology as o f

1974 i n which the l a t e s t theor ies of t h r u s t e r operat ion are described.

He concluded, as had Mi lder e a r l i e r , t h a t t he most successful e f f o r t

t o date was t h e semiempirical approach proposed by Masek [5] i n 1969.

The theory of Masek i s semiempirical i n t h a t i t requires as i n p u t a

d e t a i l e d knowledge of t he plasma proper t ies i n s i d e the t h r u s t e r d i s -

charge chamber. These proper t ies are general l y obtained using a

Langmuir probe together w i th a data reduct ion procedure t h a t i s both

tedious and u n t i l r ecen t l y [6,7] of o n l y l i m i t e d accuracy.

Since 1974 a nurriber of a n a l y t i c a l models have been developed,

d i rec ted toward d i f f e ren t aspects of i o n t h r u s t e r discharge chamber

opera t ion [7-191. Of these, the models proposed i n references 8

through 12 a re extensions of Masek's modeling technique i n t h a t they

requ i re d e t a i l ed Langmui r probe data as inputs. References 16 through

18 present models which do no t r e q u i r e probe data, but which instead

cons is t of a complex s e t o f equations which must be solved i t e r a t i v e l y ,

by a computer. This complexity makes these models d i f f i c u l t t o apply

and 1 i m i t s t h e i r usefu l ness i n p rov id ing guide1 i nes t o improved

t h r u s t e r designs.

Discharge chamber models of i o n sources f o r neut ra l beam i n j e c t o r s

have a1 so been proposed r e c e n t l y [20-221. The opera t ion of these

sources i s inmany respects very s i m i l a r t o t h a t of i o n sources fo r

space propuls ion app l ica t ions . This s i m i l a r i t y was enhanced by the

recent swi tch i n space t h r u s t e r design [23,24] t o discharge chambers

character ized by the same high magnetic f l u x dens i ty cusped f i e l d s used

i n neut ra l beam i n j e c t o r s . References 20 through 22 present re1 a t i ve ly

simple models t h a t provide valuable i n s i g h t t o discharge chamber

Page 14: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

operation, b u t a1 so require plasma property data as inputs. Further,

these models are not developed to the point where the performance of a

given discharge design can be cal cul ated direct ly . In summary, the situation a t the present time i s remarkably

similar to the way i t was in 1969 as described by Milder [3]. Many

addi tional models have been proposed since 1969 providing a significant

improvement in the overall understanding of discharge chamber processes,

however, most of these models s t i 11 require detai 1 ed plasma property

data as inputs . Those that do not are e i ther over simp1 i f i ed, resul t-

ing in a loss of generality and usefulness, or too complex to be

appl ied easily. Thus, there i s a need for the development of a model of

ion thruster performance that i s easy to use, does not require plasma

data as inputs, and ye t i s general enough and accurate enough to serve

as a guide1 ine for the design of improved thruster configurations.

Overview

This dissertation i s organized i n the following manner. F i rs t , a

brief review of ion thruster operation i s given in Chapter 11. In t h i s

chapter, the dominant mechanism affecting thruster performance are

identified and discussed qualitatively. Since t h i s report i s primarily

concerned with ion thruster discharge chamber operation, detailed dis-

cussions of other thruster components such as the ion accelerator

system and cathodes, e tc . , will not be given. These components will be

discussed only in regard to their effect on the operation of the main

discharge chamber.

In Chapter I11 the analytical derivation of the equations com-

pri sing the thruster performance model proposed in th i s investigation

Page 15: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

i s presented. Th is model cons is ts o f a se t o f a lgebraic equations,

each o f which describes the behavior o f a d i f f e r e n t performance param-

e ter . For example, a s ing le equation f o r the t h r u s t e r performance

curve ( v a r i a t i o n o f beam i o n energy cos t w i t h p rope l l an t u t i l i z a t i o n

e f f i c i e n c y ) i s developed. Other equations are developed t h a t a1 low the

average values o f the discharge chamber plasma proper t ies t o be calcu-

l a t e d as fu t l c t ions o f the t h r u s t e r operat ing po in t . These plasma

p rope r t i es inc lude: the pr imary e lec t ron densi ty , the pr imary-to-

Maxwell i an e lec t ron dens i t y r a t i o , the Maxwell i an e lec t ron temperature,

and the r a t i o o f doubly- to-s ingly charged i o n cur ren ts i n the beam.

I n Chapter I V Y the experimental apparatus and procedures used t o

i nves t i ga te the v a l i d i t y o f t he proposed model are described. Experi-

mental resu l t s , comparison o f these r e s u l t s w i t h the p red i c t i ons o f the

model, and a d iscussion o f t h i s comparison are a l so given i n t h i s

chapter.

Three appl i c a t i o n s of the t h r u s t e r performance model are discussed

i n Chapter V. 'The f i r s t o f these i l l u s t r a t e s the e f f e c t o f t h r u s t e r

design and operat ing parameters on the standard performance curve. The

second a p p l i c a t i o n describes how the model can be used t o ex t rapo la te

data taken w i thou t i o n beam e x t r a c t i o n t o ob ta in the performance curve

appl i cab le t o operat ion w i t h beam ex t rac t i on . F i n a l l y , an i l l u s t r a t i o n

o f how the model can be app l i ed t o mission ana lys is ca l cu la t i ons i s

presented. I n t h i s appl i c a t i o n , the e f f e c t s o f t h r u s t e r design param-

e t e r s and p rope l l an t u t i l i z a t i o n e f f i c i e n c y on the del i ve rab le payload

f r a c t i o n are discussed f o r an e a r t h o r b i t r a i s i n g miss ion ( low ea r th

o r b i t t o geosynchronous e a r t h o r b i t ) .

Page 16: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

The major conclusions o f t h i s invest igat ion are sumnarized in-

Chapter V I . S I un i t s are used throughout t h i s repor t w i th the excep-

t i o n t h a t energy i s f requent ly given i n un i t s o f e lec t ron vo l t s . I n

addi t ion, f o r thermal electrons the energy quant i ty kT, where k i s

Boltzmann's constant and T i s the temperature w i l l be given as eTM

where e i s the e lec t ron ic charge and TM i s the e lec t ron temperature i n

eV.

Page 17: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

11. ION THRUSTER OPERATION

A contemporary " r i n g cusp" e l e c t r o n bombardment i o n t h r u s t e r i s

shown schemat ica l ly i n Fig. 1. Th is t h r u s t e r cons is ts o f a c y l i n d r i c a l

s tee l s t ruc tu re bounded a t one end by a c i r c u l a r s tee l p l a t e and a t t he

o t h e r end by a se t o f two c l o s e l y spaced g r i ds . The volume bounded by

t h i s s t ruc tu re i s r e f e r r e d t o as t h e discharge chamber. The two g r i d s

a t t h e end o f t he discharge chaniber have a matched ma t r i x o f holes

through which the i o n beam i s ext racted. The inner g r i d i s r e f e r r e d t o

as the screen g r i d w h i l e the ou ter one i s c a l l e d t h e accelerator g r i d .

During t h r u s t e r operation, neut ra l propel 1 ant gas i s i n jec ted i n t o

t h e discharge chamber. The p re fe r red p rope l l an t gas has, f o r t he most

pa r t , been mercury vapor because o f i t s l a r g e atomic mass, low ion iza-

t i o n energy, and i t s 1 i q u i d phase s t o r a b i l i ty . Cesium vapor has a l so

been used. However, a t t he present time, t he prope l lan ts o f most i n -

t e r e s t are t h e r a r e gases argon, krypton and xenon. I n t h i s inves t iga-

t ion,only these r a r e gases are considered. The p rope l l an t gas i s

assumed t o f i l l t h e discharge chamber un i fo rm ly dur ing t h r u s t e r

operat ion.

A hol low cathode serves as the source o f e lec t rons f o r t he d i s -

charge chamber. Hol low cathodes have replaced both r e f r a c t o r y metal

and ox ide cathodes i n i o n th rus te rs p r i m a r i l y because they e x h i b i t very

long 1 i f e t i m e s and can be res ta r ted a number o f t imes even a f t e r

exposure t o a i r (an important c a p a b i l i t y i f the t h r u s t e r i s t o be

Page 18: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

ANODE POTENTIAL DISCHARGE CHAMBER SHELL

/

ACCELERATOR

NEUTRALIZER HOLLOW CATHODE

TO SPACECRAFT GROUND

Figure 1 . Ion Thruster Schematic

Page 19: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

prefl i g h t tested). A detailed discussion of hollow cathodes is given

by Siegfried 1251.

The electrons emitted by the cathode in Fig. 1 are accelerated by

an electric field adjacent t o the cathode into the discharge chamber.

This electric field i s established by biasing the discharge chamber

walls (with the exception of the screen grid) 30 t o 50 volts positive

of the cathode by means of an external DC power supply (called the

di scharge or anode supply). Electrons which have undergone thi s accel-

eration are called primary electrons. The energy of these primary

electrons i s determined by the voltage difference appl ied between the

anode and cathode. The magnitude of this voltage difference is chosen

so that the collision cross section for ionization by the primary

electrons i s large while a t the same time the collision cross section

for the production of mu1 t iply charged ions by the primary electrons i s

small . A second group of electrons originates from the inelastic inter-

action of the primaries w i t h the neutral propellant atoms. These -- interactions reduce the energy of the primary electrons. In this in-

vestigation, an electron i s no longer considered a primary electron i f

i t has had at least one inelastic collision. Ionization, the inelastic

coll ision process of primary interest here, results in the release of

low energy secondary electrons. Primary electrons, t h a t have had their

energy degraded by inelastic coll i sions, and secondary electrons

released by ionization, thermal ize t o form an electron population with a

nearly Maxwell ian energy distribution (characterized by a temperature on

the order of a few eV). I t i s possible for both electron populations

Page 20: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

t o e x i s t s imultaneously i n the discharge chamber due t o the low i n t e r -

a c t i o n r a t e between the pr imary and Maxwellian e lec t rons [26].

At t y p i c a l discharge chamber neut ra l atom d e n s i t i e s (%I O1 * ~ m - ~ ) ,

t h e i o n i z a t i o n mean f r e e pa th f o r pr imary e lec t rons i n neut ra l atoms i s

on t h e order o f meters wh i l e t y p i c a l discharge chamber dimensions are

on t h e order o f tens o f centimeters. For t h i s reason, a magnetic f i e l d

i s employed t o r e s t r i c t t he d i r e c t access o f pr imary e lec t rons t o the

anode. The magnetic f i e l d f o r the t h r u s t e r o f F ig. 1 i s created by

t h e r i n g s o f magnets o f a1 t e r n a t i n g p o l a r i t y loca ted along the back and

s ides o f t h e discharge chamber. The con f i gu ra t i on and s t rength o f t he

magnetic f i e l d has a subs tant ia l e f f e c t on t h r u s t e r operat ion and con-

sequently has been the subject o f numerous s tud ies [6,7,13,24,27-331.

Contemporary t h r u s t e r designs are operated w i t h t h e e n t i r e discharge

chamber housing (except f o r the screen g r i d ) a t anode p o t e n t i a l . Mag-

n e t i c f i e l d l i n e s a t the f i e l d cusps, thus, terminate on anode p o t e n t i a l

surfaces. T h i s a l lows e lec t rons t o be l o s t t o t h e anode by t r a v e l 1 i n g

along magnetic f i e l d l i n e s as we l l as by d i f f u s i n g across them. To

adequately r e s t r i c t t h e f l ow o f pr imary e lec t rons along the f i e l d l i n e s

t o t h e anode, magnetic f l u x dens i t i es on the order o f 0.1 t e s l a a re

requ i red .

he- discharge chamber magnetic f i e l d reduces the probab i l i ty t h a t

a pr imary e l e c t r o n w i l l be co l l ec ted by t h e anode w i thout f i r s t having

had an i n e l a s t i c c o l l i s i o n w i t h a neut ra l p rope l l an t atom. Th i s prob-

a b i l i t y i s a f u n c t i o n o f t he t h r u s t e r size, t he discharge chamber mag-

n e t i c f i e l d conf igura t ion , the cathode l o c a t i o n and the neu t ra l atom

densi ty . As the neut ra l dens i ty decreases, t h e probabi l i t y t h a t a

Page 21: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

11

primary e lec t ron w i l l be l o s t t o the anode without having an i n e l a s t i c

c o l l i s i o n increases.

For the hypothet ical case o f a zero neut ra l atom density, t h i s

probabi l i t y i s one. That i s , a l l pr imary e lec t rons emit ted by the

cathode w i l l be co l l ec ted by the anode and none w i l l have i n e l a s t i c

c o l l i s i o n s . I n t h i s case, each primary e lec t ron w i l l , on the average,

t r a v e l a c e r t a i n distance through the discharge chamber before being

co l l ec ted by the anode. This distance i s a charac te r i s t i c o f the

th rus te r geometry, magnetic f i e l d conf igura t ion and cathode locat ion ,

and i s c a l l e d the primary e lec t ron containment length [34]. With t h i s

d e f i n i t i o n , the probabi l i t y o f pr imary e lec t ron loss t o the anode may

be expressed as a func t ion o f the r a t i o o f the primary e lec t ron con-

tainment length t o the mean f r e e path f o r primary electron-neutral atom

i n e l a s t i c c o l l i s i o n s [34]. The loss o f primary e lectrons t o the anode

cons t i t u tes a loss o f discharge energy. Consequently, i o n th rus te r

performance i s s t rong ly dependent on the probabi 1 i ty w i t h which primary

e lectrons are l o s t [34,35].

The plasma produced w i t h i n the discharge chamber w i l l t y p i c a l l y

assume a po ten t ia l a few v o l t s p o s i t i v e o f the anode. Thus, a

po ten t ia l sheath w i l l e x i s t a t a l l plasma boundaries. The magnitude o f

t h i s sheath a t cathode po ten t ia l surfaces depends p r i m a r i l y on the

magnitude o f the discharge voltage app l ied between the cathode and

anode. The sheath p o t e n t i a l a t cathode surfaces i s s u f f i c i e n t l y nega-

t i v e t o r e f l e c t a l l bu t the most energet ic e lectrons i n the t a i l o f the

Maxwell i a n d i s t r i b u t i o n . Consequently, the vast ma jo r i t y o f e lectrons

i n the plasma can leave the discharge chamber on ly a t anode po ten t ia l

surfaces.

Page 22: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

O f t he ions produced i n the discharge chamber, some w i l l reach the

discharge chamber wa l l s. 'Those t h a t do, recombine w i t h e lectrons there

and r e t u r n t o t h e plasma as neut ra l atoms. Most o f t h e ions t h a t reach

t h e g r i d system,on the o ther hand, are accelerated by the e l e c t r i c f i e l d

between t h e screen and acce lera tor g r i d t o form the i o n beam. The

f r a c t i o n o f t he t o t a l i o n cur rent produced t h a t i s extracted i n t o the

beam i s c a l l e d the ex t rac ted ion f r a c t i o n . Because i t does l i t t l e good

t o produce ions i n the plasma o n l y t o have them recombine a t the d i s -

charge chamber wa l l s, i t i s c l e a r l y desi rab l e t o have th rus te r designs

i n which the ex t rac ted ion f r a c t i o n i s as l a rge (c lose t o one) as pos-

s i b l e [34]. The e l e c t r i c f i e l d between the g r i d s i s establ ished by

b ias ing t h e t h r u s t e r body p o s i t i v e o f ground p o t e n t i a l (on the order o f

1000 v o l t s ) and b ias ing the accelerator g r i d several hundred v o l t s nega-

t i v e o f ground p o t e n t i a l . The f i n a l v e l o c i t y o f t he ions i n the beam

i s determined by the sum o f the p o s i t i v e p o t e n t i a l appl ied t o the

t h r u s t e r cathode and the d i scharge vo l tage.

Electrons are i n jec ted i n t o the p o s i t i v e i on beam by a cathode

( c a l l e d a n e u t r a l i z e r ) pos i t ioned downstream o f the accelerator g r i d i n

order t o space charge and cur rent neut ra l i z e the beam. The negative

acce lera tor g r i d prevents these e lec t rons from backstreaming t o the

p o s i t i v e t h r u s t e r body.

During t h r u s t e r operat ion, the propel 1 ant gas i n the discharge

chamber i s o n l y p a r t i a l l y ionized, w i t h the i on dens i t y t y p i c a l l y an

order o f magnitude smaller than the. neut ra l atom density. Thus, one

might expect t h e neut ra l f l u x through the g r i d s t o be greater than the

i o n f l u x . This, however, i s no t the case since the neutra l f l u x i s

determined by free-molecular f l ow toward the g r i d s a t a temperature

Page 23: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

governed by t h e mean discharge chamber wa l l temperature [36] (% 400K).

The ions, on the o the r hand, tend t o move toward the g r i d system a t the

B o h [37] ve loc i t y , which i s governed by the much higher eTectron

temperature ( t y p i c a l l y 5 eV o r % 58,000K). Thus, the i o n f l u x through

t h e g r i d s i s u s ~ l a l l y g reater than the neu t ra l f l u x even though the i on

dens i t y i s s u b s t a n t i a l l y smaller than the neu t ra l densi ty .

The r a t i o o f t he beam cu r ren t (assuming s i n g l y charged ions on ly )

t o the t o t a l p rope l l an t f l o w r a t e (expressed i n u n i t s o f equivalent

amperes) i s known as t h e p rope l l an t u t i l i z a t i o n ef f ic iency. For a

constant t o t a l propel 1 an t f l o w ra te , increasing the prope l lan t u t i l i za-

t i o n e f f i c i e n c y genera l l y requ i res an increase i n the average energy

requ i red t o produce a beam ion. This v a r i a t i o n o f the beam ion energy

cos t w i t h the p rope l l an t u t i l i z a t i o n i s known as a performance curve.

I t w i l l be shown i n the chapters t h a t f o l l o w t h a t the dominant mechan-

isms a f f e c t i n g t h e performance curve are t h e l o s s o f pr imary e lec t rons

t o t h e anode and t h e ex t rac ted ion f r a c t i o n .

Page 24: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

I I I. THEORETICAL DEVELOPMENT

Thruster Performance Model

I n t h i s sect ion, a model i s developed which r e s u l t s d i r e c t l y i n a

s i ng le a lgeb ra i c equat ion f o r t he v a r i a t i o n o f t he beam i o n energy cos t

w i t h t h e p r o p e l l a n t u t i l i z a t i o n e f f i c i e n c y f o r h igh f l u x d e n s i t y cusped

magnetic f i e l d t h rus te rs . Th is i s made poss ib le by fo rmu la t i ng the

model i n terms o f t he average energy requ i red t o produce an i o n i n t he

discharge chamber plasma and t h e f r a c t i o n of ions produced which are

ex t rac ted i n t o the beam. A key fea tu re of the model i s t h a t i t

prov ides a simple technique f o r t he c a l c u l a t i o n of t h e average d i s -

charge plasma i o n energy cos t as a f u n c t i o n of t h e p r o p e l l a n t f l o w r a t e

and p r o p e l l a n t u t i l i z a t i o n e f f i c i e n c y .

Assumptions and L i m i t a t ions

The development o f t he model assumes steady s t a t e discharge

chamber operat ion. The model i s appl i c a b l e t o discharge chambers which

produce low pressure, p a r t i a l l y ion ized, o p t i c a l l y t h i n plasmas i n

which neu t ra l d e n s i t i e s a re i n t he range of 1018 t o 1019 m'3 and plasnia

d e n s i t i e s range from 1016 t o 1017 m'3. I n add i t ion , Maxwel l ian e lec -

t r o n temperatures and pr imary e l e c t r o n energies should range from

1 t o 10 eV and 30 t o 50 eV, respec t ive ly .

E lec t ron energy losses due t o e l a s t i c c o l l i s i o n s w i t h i ons o r

neu t ra l atoms a re neglected. This can be j u s t i f i e d because t h e average

Page 25: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

energy l o s s per encounter i s p ropor t iona l t o the r a t i o o f masses, and

t h i s r a t i o i s small (Q Elec t ron energy losses r e s u l t i n g f rom

i n e l a s t i c c o l l i s i o n s w i t h ions are a lso neglected because of t h e low

i o n dens i t y r e l a t i v e t o t h e neut ra l density. This should no t cause

a s i g n i f i c a n t e r ro r , except perhaps a t very h igh p rope l l an t u t i l i z a -

t ions . Only s i n g l y charged ions a re assumed t o be produced, and t h e

ef fect of metastable atomic s ta tes on i o n product ion i s neglected.

Primary e lec t ron thermal i z a t i o n resu l t i ng from co l 1 i sions w i t h t h e

background Maxwel l i a n e l ectrons a1 so i s negl ected. Primary e l ec t ron

behavior i s assumed. t o be l i m i t e d t o e i t h e r i n e l a s t i c c o l l i s i o n s w i t h

neu t ra l atoms o r d i r e c t l o s s t o anode p o t e n t i a l surfaces. A pr imary

e l e c t r o n i s considered t o j o i n the Maxwell i a n e lec t ron populat ion a f t e r

having one i n e l a s t i c co l 1 i s i on .

Elect rons are assumed t o be constrained by the plasma sheaths so

they a r e ab le t o leave t h e plasma on ly a t anode po ten t i a l surfaces.

Ions and photons (emi t ted by the de-exc i ta t ion o f exc i t ed p rope l l an t

atoms) a re assumed t o be l o s t across a1 1 plasma boundaries. The

assumption o f a low pressure discharge imp l ies t h a t ion-e lec t ron r e -

combination should be wa l l cont ro l 1 ed, consequently, vo l ume i o n recombi - na t i on i s negl ected.

The neut ra l atom dens i t y i s assumed t o be uni form throughout t he

discharge chamber, and f r e e ~ i io lecu lar f l ow i s assumed t o apply t o the

neu t ra l atom f l u x through the acce lera tor g r i d system.

Beam I o n Energy Cost

The average energy cos t per beam i o n i s def ined as,

€6 I (JD - JB) VdJB , [eV/beam ion ]

Page 26: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

where a l l symbols are defined i n Appendix C. The beam cu r ren t (JB) i n

Eq. 1 i s subtracted from the discharge cu r ren t (JD) SO t h a t t h e energy

t h a t goes i n t o acce lera t ing the beam ions through the discharge voltage

i s n o t charged t o the beam i o n energy cost. The numerator on the

r ight-hand-side of Eq. 1 represents the power used t o operate t h e d i s -

charge chamber.

I n a s i m i l a r manner, t he average energy expended i n c rea t ing ions

i n the discharge chamber plasma may be def ined as,

By analogy t o Eq. 1 , the "JB + JCl1 term i s subtracted from the di,s-

charge cu r ren t so t h a t the energy t h a t goes i n t o acce lera t ing thes,e

ions ou t o f t h e discharge chamber plasma i n t o the chamber wa l l s o r the

beam i s n o t included i n the plasma i o n product ion cost. Rearranging

Eq. 2 y ie lds ,

For steady s t a t e operation, the t o t a l i o n cu r ren t produced (Jp) must be

equal t o the t o t a l i o n cur rent l eav ing the plasma. For i o n t h r u s t e r

discharge chambers, ions can on ly leave the plasma by going t o cathode

po ten t ia l surfaces, anode po ten t ia l surfaces o r by being ex t rac ted i n t o

the beam. Thus, the t o t a l i o n cu r ren t produced i s given by*,

D iv id ing t h i s equation through by Jp y ie lds ,

* Equation 4 i s a statement of c o n t i n u i t y fo r t he ions.

Page 27: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

where,

fB s JB/Jp , f = J / J and fA I JA/Jp . c - C P (6)

The f rac t ions fB, fC and fA are, i n order, t h e ex t rac ted i o n f rac t ion ,

t h e f r a c t i o n of i o n cu r ren t produced t h a t goes t o cathode p o t e n t i a l

surfaces, and the f r a c t i o n of i o n cur ren t produced t h a t goes t o anode

po ten t i a l surfaces. Using the d e f i n i t i o n s of fg and fC i n Eq. 3 along

w i t h Eq. 1 y i e l d s ,

E = cBfB - fCVD . P (7

Solv ing t h i s equat ion f o r cB g ives the r e s u l t ,

This equat ion describes the beam i o n energy cos t as a f u n c t i o n o f the

plasma i o n energy cos t ( , t h e extracted i o n f r a c t i o n ( f B ) , t h e

f r a c t i o n of i o n cu r ren t t o cathode po ten t i a l surfaces ( f C ) and t h e d i s -

charge vol tage (VD) . The f i r s t term on the r ight-hand-side o f Eq. 8 represents t h e

energy l oss associated w i t h producing ions i n the discharge chamber and

e x t r a c t i n g on l y a f r a c t i o n o f them i n t o the beam. Ions which a r e no t

ex t rac ted i n t o the beam go t o the wal ls o f the discharge chamber where

they recombine. The r e s u l t i n g atoms must then be re - i on i zed before

they can con t r i bu te t o the beam current . The f a c t o r l / fB may be

i n t e r p r e t e d as the average number o f times t h a t a beam i o n undergoes

i o n i z a t i o n from a neutra l s t a t e before being extracted i n t o the beam.

Page 28: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

The second term on the r ight-hand-s ide of Eq. 8 represents t h e

energy wasted i n acce lera t ing plasma ions i n t o i n t e r i o r cathode po-

t e n t i a l surfaces. This process i s undesi rable because i t resu l t s i n

both a discharge energy l oss and i n t h e s p u t t e r eros ion of these

surfaces.

To generate performance curves us ing Eq. 8, one must be abl e t o

specify t h e behavior o f each of t he terms on t h e r ight-hand-s ide o f

t h i s equat ion as a funct ion of t he p r o p e l l a n t u t i l i z a t i o n ef f ic iency.

Plasma I o n Energy Cost

The plasma i o n energy cos t parameter ( E ) appearing i n Eq. 8 and P

defined by Eq. 2 r e f l e c t s a1 1 mechanisms o f energy l oss from the d i s -

charge chamber except f o r the acce lera t ion o f ions o u t o f the plasma

through t h e discharge vol tage. Spec i f i ca l ly , E inc ludes energy losses P

due t o t h e fo l low ing phenomena: d i r e c t pr imary e l e c t r o n l o s s t o the

anode, Maxwell i a n e lec t ron co l 1 e c t i o n by the anode, e x c i t a t i o n o f

neut ra l atoms, e x c i t a t i o n o f i o n i c s ta tes (which w i l l be neglected) and

hol low cathode operat ion. To der ive an expression fo r t he plasma i o n

energy c o s t as a funct ion of t he p rope l l an t u t i l i z a t i o n , a power

balance i s made on the discharge chamber plasma represented i n Fig. 2.

The boundary o f t he con t ro l volume f o r t h i s power balance i s defined by

the plasma sheath edge. The pr imary e lec t rons a re assumed t o be accel-

erated from a cathode reg ion plasma p o t e n t i a l t h a t i s VC v o l t s above

cathode p o t e n t i a l t o t he po ten t i a l o f the bul k plasma which i s assumed

t o be near t h a t o f the anode. I n add i t ion , i f i t i s assumed t h a t on ly

the discharge power supply i s used t o sus ta in the discharge, then the

r a t e a t which energy i s suppl ied t o the d ischarge chamber plasma by the

Page 29: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

JE (VD-VC) PRIMARY

JM"M MAXWELLIAN

ELECTRON ELECTRONS LOST

INPUT TO ANODE

JL (VD-Vc) PRIMARY ELECTRONS LOST TO

Figure 2. Disharge Plasma Power Balance Schematic

Page 30: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

primary electrons i s given by JE(VD - V C ) The "missing11 power JEVC i s

used t o operate the hollow cathode.

Energy i s l o s t from the plasma p r ima r i l y by the f l u x o f four types

o f energy ca r r i e r s across the plasma boundaries: ions, photons (emitted

by de-excitat ion o f exci ted propel l a n t atoms), Maxwell i an electrons,

and primary electrons. The ions and photons are l o s t t o a l l i n t e r i o r

thruster surfaces whereas the Maxwell ian and primary electrons are

assumed t o be l o s t t o the anode surfaces only. I n steady state, the

ra te of energy supplied t o the plasma must be equal t o the ra te a t

which i t i s l os t , thus,

where the sumnation i s over the set o f exc i ted neutral states.

Div id ing Eq. 9 by the ion production current (Jp) and recognizing t ha t

the emission current (JE) re la ted t o the discharge current by *,

al lows Eq. 9 t o be w r i t t en as,

where Eq. 2 has been used. The r a t e a t which the j t h exci ted state i s

produced (expressed as a current) i s given by,

* Equation 10 i s a statement o f con t i nu i t y f o r the electrons.

Page 31: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION
Page 32: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

length), o: i s the t o t a l i ne l as t i c c o l l i s i o n cross'section for

electrons a t the primary e lec t ron energy and no i s the neutral atom

density. Combining Eqs. 14, 16 and 17 y ie lds ,

The current o f Maxwellian electrons t o the anode may be given as the

sum o f the secondary electrons 1 i berated i n the ion izat ion process and

the thermal ized primary electrons, thus,

Using Eqs. 17 and 19 i n 18 y ie lds ,

(20)

F ina l ly , using Eqs. 2 and 10 and solv ing Eq. 20 f o r E resu l t s in , P

I

The fac to r 1-e -uOnOee may be in terpreted as the probabil i t y t ha t a

primary electron w i l l have an i n e l a s t i c c o l l i s i o n before being co l lec ted

by the anode. This i s analogous t o the " f a s t neutron non-leakage prob-

a b i l i t y " used i n nuclear reactor physics [40].

The neutral densi ty (no) may be expressed i n terms o f the pro-

pel l a n t f l ow ra te and propel lant u t i l i za t i on by equating the r a t e a t

which propel lant enters and leaves the discharge chamber, i .e.,

Page 33: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

where and 6 are i n u n i t s o f equivalent amperes". The neu t ra l f low

r a t e from the t h r u s t e r may be expressed using the theory f o r f r e e

molecular f l o w through a sharp-edged o r f i c e [39],

' = ' n e v ~ 4 no o o o g 0

Combining Eqs. 22 and 23 y ie lds ,

where the prope l lan t u t i l i z a t i o n defined by nu t Js/m was used. Thus,

Eq. 21 may be w r i t t e n as,

where,

and,

Equation 25 i s a very simple r e l a t i o n s h i p which can be used t o ca l cu la te

the plasnia i on energy cost as a func t i on o f the p rope l l an t u t i l i z a t i o n .

Experimental resu l t s , which w i l l be presented i n Chapter' I V , i n d i c a t e *

t h a t under many condi t ions the parameters Co and E may be taken t o P be independent o f the propel 1 ant u t il i z a t i o n .

Subs t i t u t i on o f Eq. 25 i n t o Eq. 8 y i e l d s the fo l l ow ing s i n g l e

equation descr ib ing the performance o f a g iven t h r u s t e r design,

t Equation 22 i s a statement o f c o n t i n u i t y f o r the prope l lan t .

Page 34: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

For design purposes, the parameters fB and fC i n a d d i t i o n t o Co and *

E may be taken t o be independent of the u t i l i z a t i o n and flow ra te . P

These parameters do, however, depend s t rong ly on the t h r u s t e r design.

Indeed, these f o u r parameters determine the performance of a given

t h r u s t e r design.

The quan t i t y Co r e f l e c t s the degree t o which primary e lectrons

i n t e r a c t w i t h neut ra l atoms. Thus, i t i s re fe r red t o as the primary

e lec t ron u t i l i z a t i o n factor. This fac to r depends on the q u a l i t y of the

pr imary e lec t ron containment ( through r e the qua1 i ty of the contain-

ment of neut ra l atoms (through A , po and vo) and the prope l lan t gas 9

proper t ies (through u: and vo). Recall t h a t t h e primary e lec t ron con-

tainment l eng th re may be in te rp re ted as t h e average distance a primary

e l ect ron would t rave l i n the discharge chan~ber before being l o s t t o the

anode--assuming i t had no i n e l a s t i c c o l l i s ions . Magnetic f i e 1 ds i n a1 1

discharge chamber designs serve the func t i on of increasing t h i s 1 ength.

A1 though an e f fec t i ve means o f determining re remains t o be developed,

i t i s be1 ieved t h a t t h i s parameter i s a func t i on p r i m a r i l y of the

th rus te r geometry, magnetic f i e l d con f igu ra t i on and cathode locat ion .

Equation 25 suggests t h a t the plasma i o n energy cos t should,

through the fac tor Co, be a func t i on o f :

1. The propel lant , which determines the t o t a l i n e l a s t i c c o l l i s i o n

cross sec t ion (0:) and atomic mass (which a f fec ts the thermal neutra l

ve loc i t y , vo) . 2. The wa l l temperature, which a f fec ts the neutra l ve loc i t y .

Page 35: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

3. The transparency of t he g r i d s t o neu t ra l s (4,).

4. The area through which t h e beam i s ex t rac ted ( A ). 9

5. The discharge voltage, which determines the pr imary e l ec t ron

energy and, thus, e f fec ts the value of t he cross sec t i on (a;).

The base1 i n e plasma i o n energy cos t (E;), defined by Eq. 27,

depends on a number of energy l o s s mechanisms inc lud ing : t he r e l a t i v e

amount of energy expended i n exc i t a t i ons compared t o i o n i z a t i o n o f

neu t ra l atoms through E,, the average energy o f t he Maxwell i a n e lec t rons

which leave the plasma ( E ~ ) and the ef f ic iency w i t h which the hol low

cathode operates.

The cathode ef f ic iency i s re f l ec ted i n t h e value of VC which

represents the plasma p o t e n t i a l from which the e lec t rons a r e suppl ied.

I n e f f i c i e n t cathode opera t ion r e s u l t s i n h igh values of VC and corres-

pondingly poor ove ra l l t h r u s t e r performance. For thermionic cathodes

VC = 0, however, add i t iona l heater power must be suppl ied t o e f fec t i t s

operat ion. For th rus ters equipped w i t h a cathode po le piece/baff l e

assembly, VC should be taken as t h e plasma p o t e n t i a l i n t he cathode

discharge reg ion ( i .e., t he reg ion between the cathode and t h e ba f f le ) .

I n t h i s case, t he power represented by JEVC goes i n t o both the opera t ion

o f t he hol low cathode and the opera t ion o f the cathode reg ion discharge.

The r e s u l t i n g h igh values of VC, i n t h i s case, would be expected t o

produce poorer ove ra l l t h r u s t e r performance. El i m i na t i on of t he

separate cathode discharge reg ion shoul d, therefore, improve the per-

formance.

The parameter E~ , defined by Eq. 15, i n general i s a func t ion of

t he e n t i r e e lec t ron energy d i s t r i b u t i o n i n c l u d i n g t h e pr imary e lect rons.

The parameter E* (which contains E,, see Eq. 27) i s , thus, a l so a P

Page 36: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

funct ion of the e lec t ron energy d i s t r i b u t i o n . For p l asmas character ized

by a Maxwell i a n p lus monoenergetic e lec t ron energy d i s t r i b u t i o n , a

simple method fo r t he c a l c u l a t i o n of E* may be derived. Sample cal cu- P

l a t i o n s us ing t h i s method, along w i t h the appropr ia te c o l l i s i o n cross

sec t ion data, a re g iven i n Appendix A. The experimental r e s u l t s g iven

i n Chapter I V i n d i c a t e tha t , under many condi t ions, the basel ine plasma

i o n energy cos t (E*) may be taken t o be a constant. The ca l cu la t i ons P

g iven i n Appendix A demonstrate t h a t t h i s experimental observat ion i s

predic ted by the model . Although the model cannot y e t be used t o p r e d i c t the performance

of corr~pletely new t h r u s t e r designs, i t provides a c l ear physical p i c -

t u r e of the phenomena a f fec t i ng t h e performance. Equation 25 descr i bes

the plasma i o n energy cos t i n terms of the l oss of pr imary e lect rons t o

the anode. A t h igh values of the neut ra l dens i ty parameter, t h e neut ra l

dens i ty i n the discharge chamber i s large, and the p r o b a b i l i t y i s h igh

t h a t a1 1 the primary e lect rons w i l l undergo i n e l a s t i c c o l l i s i o n s w i t h

neut ra l atoms and none w i l l be l o s t d i r e c t l y t o t h e anode. I n t h i s

case, the discharge chamber w i l l be producing ions f o r the minimum o r

base1 i n e plasma i o n energy cost, E* P*

As the beam cu r ren t i s increased ( a t a constant p rope l l an t f low

r a t e ) , t he propel 1 a n t u t i 1 i z a t i o n increases causing t h e neut ra l dens i t y

parameter (and thus the neut ra l dens i ty ) t o decrease (see Eq. 24). The

decrease i n neutra l densi ty increases the 1 i kel i hood of a primary e lec-

t r o n reaching the anode w i thout having an i n e l a s t i c c o l l i s i o n . This

d i r e c t l oss o f primary e lec t ron energy increases the o v e r a l l plasma i o n

energy cos t according t o Eq. 25 and consequently increases the beam i o n

energy cos t accordi ng t o Eq. 28. The shape of t he performance curve i s

Page 37: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

l a r g e l y determined by t h i s d i r e c t l o s s of primary e lectrons. Thus, any

design change which decreases the 1 i kel i hood o f the d i r e c t l o s s o f

primary e lec t rons (w i thout decreasing the extracted i o n f r a c t i o n )

should improve the t h r u s t e r ' s performance. The probabi 1 i ty of d i r e c t

primary e lec t ron l o s s i s determined through the parameter Co. This

parameter may be increased by e i t h e r increasing re, which makes i t

harder fo r pr-imary e lectrons t o escape the plasma, o r by making i t

harder fo r neutra l atoms t o escape the discharge chamber.

Cal cul a t i o n o f Pl asma Propert ies

The fo l l o w i rrg analys is provides a s e t o f very simple a1 gebraic

equations which a l l ow one t o ca l cu la te the values of the fo l lowing d i s -

charge chamber p l asma propert ies: the average primary e lec t ron densi ty ,

the average pr imary- to - to ta l e l ec t ron densi ty r a t i o , t he average Max-

we1 1 i a n e lec t ron temperature and the average r a t i o of t he doubly-to-

s ing l y charged i o n cur rent i n the beam. Each of these q u a n t i t i e s may be

ca lcu la ted as a func t i on o f the propel 1 ant f low r a t e and p rope l l an t

u t i l i z a t i o n us ing on ly in format ion t h a t would normal l y be ava i l able i n

the t h r u s t e r design phase.

Primary E lec t ron Density

This ana lys is i s based on the recogn i t ion t h a t a l l of t he energy

suppl ied t o the discharge chamber plasma i s suppl ied by the primary

e lectrons. Thus, c o r r e c t l y accounting f o r the behavior of t he primary

e l ectrons i s essenti a1 i n determi n i ng the average p l asma proper t ies .

It i s assumed t h a t a primary e lec t ron can do only one of two th ings.

It can e i t h e r have an i n e l a s t i c c o l l i s i o n w i t h a neut ra l p rope l l an t

Page 38: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

atom or i t can be lost directly to the anode. For the case where the

primary electron has an inelastic collision with a neutral atom, i t

will produce either an ion or an excited neutral state. After such an

inel ast ic coll ision, the energy of the primary electron i s degraded and

i t i s assumed that i t i s subsequently thermalized into the Maxwellian

electron population. The rate a t which primary electrons have in-

elastic coll isions with neutral atoms i s given by the difference be-

tween the rate a t which they are supplied by the cathode ( JE) and the

rate a t which they are lost directly to the anode ( JL) , i . e m ,

where 56 is the ion current produced by primary electrons and JAx i s

the primary electron induced production rate of excited neutral states

expressed as a current. The ion current produced by primary electrons

i s given by, I

~ , , = n n e o ; + v 0 P P , (30)

where o; i s the ionization collision cross section a t the primary elec-

tron energy. Similarly, the rate of production of excited state atoms

induced by primaries i s given by,

n n e v + l o 1 J;X o p p j

where a : is the collision cross section for the j t h excited state at J

the primary electron energy. The fraction of the primary electron-

neutral atom inelastic coll isions that produce ions i s given by,

Page 39: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

Note t h a t t he sum 0; + 1 u I s j u s t t he t o t a l i n e l a s t i c c o l l i s i o n cross J I

sec t ion f o r pr imary e l ectron-neutral atom c o l l i s i ons uo . Therefore,

Eq. 33 may be w r i t t e n as,

M u l t i p l y i n g Eq. 34 by the r a t e a t which pr imary e lect ron-neutra l atom

c o l l i s i o n s occur (Eq. 29) y i e l d s the r a t e a t which ions are produced by

pr imary electrons, i .e., I

The term i n parentheses i n Eq. 35 may be w r i t t e n as,

The q u a n t i t y JL/JE i s the f r a c t i o n o f the i n p u t primary e l e c t r o n cu r ren t

l o s t d i r e c t l y t o the anode and i s given by the su rv i va l equat ion (Eq. 17

w r i t t e n i n a s l i g h t l y d i f f e r e n t form),

Combining Eqs. 2 and 10 y i e l d s the f o l l o w i n g expression f o r the cathode

emission current .

Page 40: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

Combining Eqs. 25, 35, 36, 37 and 38 y i e l d s the f o l l o w i n g expression

f o r t he i o n cu r ren t produced by pr imary e lectrons,

D iv id ing both sides o f t h i s equation by Jp y i e l d s an expression fo r

the r a t i o o f i o n cu r ren t produced by pr imar ies t o the t o t a l i o n cur rent

produced,

I

Since the r a t i o Jp/Jp cannot be greater than one, Eq. 40 provides a * .

theore t i ca l l i m i t f o r the maximum value of cp , I .e.,

The t o t a l i o n cu r ren t produced may be expressed i n terms o f the beam

cur rent by using the d e f i n i t i o n o f the ex t rac ted i o n f r a c t i o n (Eq. 6),

I n add i t ion , using the d e f i n i t i o n o f the propel 1 an t u t i l i z a t i o n the

beam cur rent may be w r i t t e n as,

Combining Eqs. 39, 42 and 43 y ie lds ,

Page 41: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

F i n a l l y , equating Eq. 30 t o Eq. 44 and so l v ing f o r t h e pr imary e l e c t r o n

dens i t y (np) y i e l d s ,

where Eq. 24 was used f o r t he neut ra l densi ty . Equation 45 provides an

expression fo r the average primary e lec t ron dens i t y as a func t ion o f

t h e p rope l l an t u t i l i z a t i o n . Remarkably, t h i s expression does n o t

depend on e i t h e r t he p rope l l an t mass flow r a t e o r t h e pr imary e l e c t r o n

u t i l i z a t i o n fac to r , both o f which cancel led ou t i n t he ana lys is . The

term i n the square brackets should be roughly a constant f o r a g iven

t h r u s t e r design, propel 1 an t gas and discharge vo l tage. A reasonabl e

est imate f o r each o f the terms i n the square bracket should be poss ib le

fo r a t h r u s t e r being designed (assuming a method i s developed fo r t he

determi na t i on o f the extracted i o n f r a c t i o n ) .

Pr imary-to-Total E lect ron Densi ty Rat io

Assuming quasi -neutra l i ty , t h e average i o n dens i ty (ni ) i s equal

t o the average t o t a l e lec t ron dens i t y (ni = n + nM). I n add i t ion , t he P

average i o n dens i t y i s r e l a t e d t o the beam cu r ren t by [41].

So lv ing t h i s equat ion fo r ni y i e l d s ,

where mi i s t he transparency o f t h e screen g r i d t o ions and vb i s the

Page 42: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

Bohm v e l o c i t y . D iv id ing Eq. 45 by 47 and using Eq. 43 y i e l d s the

f o l l owing expression for t h e average r a t i o o f pr imary- to- tota l e lec t ron

dens i t y ,

This equation ind ica tes t h a t . the average pr imary- to - to ta l e lec t ron

dens i ty r a t i o should be a funct ion of t he neutra l dens i ty parameter,

1 n u As was the case fo r Eq. 45, the combination of parameters i n

the square brackets o f Eq. 48 should be roughly a constant f o r a given

t h r u s t e r design, propel 1 a n t and discharge voltage. Equation 48 a1 so

i nd i ca tes tha t , a l l e lse being equal, increasing the extracted i o n

f r a c t i o n should decrease the pr imary- to- tota l e lec t ron dens i ty r a t i o .

Primary-to-Maxwell i a n Electron Density Rat io

Once t h e pr imary- to- tota l e l ect ron densi t y r a t i o i s ca l cu l ated ,

using Eq. 48 the primary-to-Maxwel l i a n e lec t ron dens i ty r a t i o (n /n ) P M

may be ca lcu la ted from the fo l lowing equation,

Maxwell i an El ectron Temperature

The t o t a l i o n cur rent produced (Jp) i s t he sum o f the i o n cu r ren t

produced by primary e lectrons (56) and t h a t produced by Maxwellian

e lectrons (Jp M) . 9

(50)

Page 43: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

The i o n current produced by primary electrons i s given by Eq. 30 and

tha t produced by Maxwell i an electrons i s given by,

where the quant i ty <U+Ve>M represents the product o f the electron

ve loc i t y and ion iza t ion col 1 i s i o n cross sect ion averaged over the

Maxwell i a n e l ectron energy d is t r ibu t ion . This quant i ty i s the Max-

we l l i an electron- r a t e fac to r f o r the production o f ions and i s given +

the symbol Q0 , i.e.,

Combining Eqs. 50 t o 52 y ie lds ,

+ Using Eqs. 42 and 43 i n Eq. 53 and solv ing f o r Q0 gives,

Subst i tu t ing f o r the neutral density using Eq. 24 y ie lds ,

The Maxwellian electron density, appearing i n Eq. 55, may be wr i t ten as,

Subst i tu t ing t h i s i n t o Eq. 55 y ie lds ,

Page 44: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

Equation 45 provides an expression f o r the pr imary e lec t ron density.

Using t h i s i n Eq. 57 y ie lds ,

The primary-to-Maxwell i an e lec t ron dens i ty r a t i o may be found using

Eqs. 48 and 49. Subs t i t u t i ng these equations i n t o Eq. 58 y i e l d s the

f o l l o w i n g expression f o r the average Maxwellian e lec t ron r a t e factor

Equation 59 provides an expression f o r the Maxwell i a n e lec t ron ioniza-

t i o n r a t e f a c t o r as a funct ion o f t he neutra l dens i t y parameter,

1 . Once t h i s r a t e f a c t o r has been calculated, i t can be compared

t o a tabu la t i on o f r a t e fac to rs versus e lec t ron temperature f o r the

g iven propel 1 ant t o determine the appropr iate Maxwell i a n e lec t ron

temperature. Equation 59, ind ica tes t h a t the average Maxwell i an elec-

t r o n temperature should increase w i t h decreasing val ues o f the neutra l

dens i ty parameter.

Double Ion' Production

I n the previous analysis, the product ion o f doubly charged ipns was

neglected. I n t h i s section, a simple formulat ion f o r the r a t i o o f

d o u b l y - t o - s i ~ g l y charged ion cur rent i n the beam i s developed. The pro-

duct ion r a t e o f s ing l y charged ions expressed as a cur rent i s given by,

Page 45: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

where Q: i s the Maxwell i a n r a t e fac to r f o r the product ion o f s ing le

ions from ground s ta te neutra l atoms and P: i s the primary e lec t ron

r a t e fac to r a1 so f o r the production o f s ing le ions from ground s ta te

neutra ls . S imi la r ly , the production r a t e o f doubly charged ions

expressed as a cur ren t i s given by,

++ ++ where n+ i s the s ing l y charged i on density, Qo and Po are the Max-

we l l i an and p r imarye lec t ron r a t e fac to rs f o r double i on production ++ ++

from ground s ta te neutrals, respect ively, and Q+ and P+ are the cor-

responding r a t e fac to rs f o r double i on production from ground s ta te ions.

D iv id ing Eq. 61 by 60 yie lds,

++ Assuming t h a t the doubly charged extracted i on f r a c t i o n ( f B ) i s equal

t o the s ing l y charged extracted i on f r a c t i o n ( f i ) imp1 i e s tha t ,

++ + where J B /JB i s the average r a t i o o f doubly-to-singly charged i on cur-

r e n t i n the beam. C?mbinlng Eqs. 62 and 63 y ie ids ,

n 2(QH+ 4 Pi+) ?+ (Q: + 3 p:) JF o . n,,, - - -

no +

'h + + $ 2 + 2 p+

Qo nM o Q o + % o

Page 46: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

The s i n g l y charged ion dens i ty (n+) may be conservat ive ly approximated

by assum-ing the beam cur rent i s made up e n t i r e l y o f s i n g l y charged ions,

thus,

n = n = B + 0 . 6 e ~ ~ A ~ ) ~

I n add i t ion , using Eq. 43 f o r the beam cur rent and Eq. 24 f o r the

neut ra l dens i ty a l lows Eq. 64 t o be w r i t t e n as,

The f i r s t term on the r ight-hand-side of Eq. 66 represents the produc-

t i o n o f double ions from ground s t a t e neut ra l atoms. This term depends

on t h e t h r u s t e r geometry on ly through the primary-to-Maxwell i a n e lec-

t r o n dens i t y r a t i o ( n /n ) which i s given by Eqs. 48 and 49 and the P M

Maxwell i a n e lec t ron temperature (Eq. 59). The second term i n Eq. 66

represents double i o n product ion from s i n g l y charged ions. This term

i s s t rong ly dependent on the p rope l l an t u t i l i z a t i o n . The r a t e fac to rs ++ ++ +

Qo and Q+ may be determined once the r a t e fac tor Q0 i s ca lcu la ted /'

from Eq. 59.

Page 47: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

I V . EXPERIMENTAL PROCEDURES AND RESULTS

Apparatus

For t h i s inves t iga t ion , the i on sources shown schematical ly i n

Figs. 3a and b were designed and b u i l t . Each of these sources normally

produces a 12 cm dia. i on beam and provides the c a p a b i l i t y f o r measuring

the d i s t r i b u t i o n o f ion cur rents t o the beam, screen g r i d and i n t e r n a l

t h r u s t e r surfaces, ( w i t h the exception o f the anode).

The magnetic f i e l d f o r the :experimental i on source i n Fig. 3a i s

establ ished through the use o f an electromagnet located on the upstream

c e n t e r l i n e o f the discharge chamber and a number o f 1.9 cm x 1.3 cm x

0.5 cm samarium coba l t permanent magnets. These permanent magnets are

arranged end-to-end t o form r i n g magnets of a l t e r n a t e p o l a r i t y i n the

manner suggested by Fig. 3a. The f l u x dens i ty a t t he surface o f the

magnets i s 0.27T and the magnets are attached t o the s tee l discharge

chamber housing by t h e i r own magnetic a t t r a c t i o n . This arrangement

a1 lows the i o n source magnetic f i e l d conf igura t ion t o be a1 te red q u i c k l y

and e a s i l y by simply adding, removing o r changing the p o s i t i o n o f the

magnets. Although many d i f f e r e n t c o n f i g ~ ~ r a t i o n s were tested, the r e s u l t s

obtained were a l l s im i la r , thus, on l y those obtained using the conf igura-

t i o n s shown i n Figs. 3a and 3b w i l l be presented. For these conf igura-

t ions, the upstream magnet r i n g i s covered w i t h a s t r i p o f 0.13 mill t h i c k

s tee l insu la ted from the magnets themselves by a s t r i p o f 0.25 mm t h i c k

f l e x i b l e mica. This i s done so t h a t the surface o f t h i s s t r i p can be

Page 48: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

Figure 3a. Ring Cusp I o n Source Sche~iiatic - Conf igurat ion I

Figure 3b. Ring Cusp I o n Source Schematic - Conf igurat ion I 1

Page 49: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

maintained a t anode po ten t i a l w h i l e the r e s t of t he t h r u s t e r body i s

biased negat ive of cathode po ten t i a l . The downstream magnet r i n g i s

uncovered. The magnetic f l ux dens i ty a t the sur face of t he e lec t ro -

magnet fo r t he conf igurat ion of Fig. 3a can be adjusted from zero t o

approximately 0.2 T by ad jus t ing the magnet cu r ren t from zero t o

124 A.

The main discharge chamber cathodes, f o r both conf igurat ions, con - s i s t o f seven 0.25 cm dia. tungsten wires connected i n para l l e l and support-

ed by two support posts t h a t are e l e c t r i c a l l y is01 ated from the th rus te r

body. Each cathode w i re i s approximately 2.8 cm long so the t o t a l

cathode l eng th exposed t o the plasma i s about 19.6 cm. These seven

sho r t wi res i n paral l e l a re used t o minimize the vo l tage drop across

t h e cathode. A vo l tage drop l e s s than 3 v a t t he maximum heater cur-

r e n t was achieved w i t h t h i s system. The small vo l tage drop across the

cathoqe r e s u l t s i n a primary e l e c t r o n energy d i s t r i b u t i o n t h a t more

c l o s e l y resembes the monoenergetic d i s t r i b u t i o n produced by a hol low

cathode. The cathode wires were heated us ing d i r e c t cur ren ts i n the

range 6 t o 8 A per wire. Tests on t h e conf igura t ion o f F ig. 3a, were

conducted us ing argon, krypton and xenon propel 1 ants. Discharge v o l t -

ages were var ied from 30 t o 50 v f o r argon and 20 t o 40 v fo r krypton

and xenon. The discharge cu r ren t was adjusted through the range of

0.5 t o 5 A by c o n t r o l l i n g the heat ing cu r ren t through the r e f r a c t o r y

cathode wires.

Two i o n acce lera tor systems were used i n t h i s study. The f i r s t

accel ekator system consisted o f a s e t o f dished small ho le accelerator

g r i d s (SHAG) w i t h a c o l d g r i d separat ion of 0.75 mni and screen and

acce lera tor g r i d physical open area f rac t i ons of 0.68 and 0.30,

Page 50: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

respect ive ly . The second system consis ted of a s e t of dished l a r g e

hole acce lera tor g r i d s (LHAG) w i t h a c o l d g r i d separat ion o f 0.75 mn,

and screen and acce lera tor g r i d physical open area f rac t i ons o f 0.68

and 0.57, respec t i ve l y . Both accel e r a t o r systems were normal l y masked

t o produce a 12 cm diameter beam. One ser ies o f t e s t was conducted,

however, w i t h the SHAG s e t masked t o produce a 6 cm diameter beam. For

t he 12 cm d ia . beam tes ts , f low ra tes f o r both argon and krypton were

var ied from 500 t o 1500 mA eq. and f o r xenon from 250 t o 1000 mA eq.

For t h e 6 cm d ia . beam tes t , t h e f l o w ra tes were var ied from 125 t o 500

mA eq.

'The con f i gu ra t i on o f Fig. 3b i s s i m i l a r t o t h a t o f Fig. 3a except

t h a t t he electromagnet assembly has been replaced by a permanent magnet

attached t o t h e s tee l backplate. I n add i t ion , t h e source of Fig. 3b i s

2 cm sho r te r than the one i n Fig. 3a and the upstream magnet r i n g i s

pos i t ioned o n l y 2.5 cm from the downstream end r a t h e r than 6 cm.

This source was equipped w i t h two Langmuir probe assembl ies . 'The

f i r s t probe consis ted o f a 0.76 mm d ia. tantalum wire, 4.32 mm long,

supported from a quar tz tube i n s u l a t o r . This probe was pos i t ioned

a1 ong the t h r u s t e r cen te r l i ne approximately ha1 f way between the cathode

assen~bly and t h e screen g r i d as suggested i n Fig. 3b. The second probe

was a square piece of s tee l , 1 cm on a s ide and 0.127 mm t h i c k t h a t was

pos i t ioned on the surface o f t h e upstream magnetic r i n g . This probe

was i nsu la ted from the magnet r i n g w i t h a piece o f 0.13 mm t h i c k

f l e x i b l e mica.

Measurements of t he doubly and s i n g l y charged i o n beam components -b -h

were made on the t h r u s t e r cen te r l i ne us ing a c o l l imat ing E x B momentum

analyzer. De ta i l s o f t h e use of t h i s probe are given elsewhere [42].

Page 51: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

Tests were conducted on the conf igura t ion o f F ig. 3b us ing both

argon and xenon prope l lan ts . Argon p rope l l an t f low ra tes were var ied

over the range 350 t o 1500 mA eq. a t discharge voltages o f 30 t o 50 v.

Xenon p rope l l an t f low r a t e s were va r ied over t he range 250 t o 1000 mA

eq. a t discharge vol tages o f 20 t o 40 v. Discharge cur ren ts f o r both

propel 1 an ts were var ied over -0.5 t o 4.0 A.

A1 1 tes ts were conducted i n a 1.2 m d ia. x 4.6 m long vaculJm t e s t

f a c i l i t y . I nd i ca ted tank pressures ranged from .J 2 x 1 Om6 Tor r w i t h

no flow t o .J 3 x 1 0-5 Torr a t a f l ow r a t e of 1500 mA eq. of krypton.

Procedure

The f o l l o w i n g s e t of experiments, conducted us ing the t h r u s t e r

c o n f i g ~ ~ r a t i o n o f F ig . 3a, was designed t o t e s t t h e s u i t a b i l i t y of t he

mod.el developed i n Chapter I 1 1 t o p r e d i c t the func t iona l dependence o f

t h e plasma i o n energy cost, E , on t h e neut ra l dens i ty parameter, P

( I - ~ ) . The model p red i c t s t h a t the plasma i o n energy cos t should

behave according t o Eq. 25 w i t h the pr imary e l e c t r o n u t i l i z a t i o n f a c t o r

(Co) and the base1 i n e plasma i o n energy cos t (E* ) given by Eqs. 26 and P

27, respect ive ly . The value of E may be determined experimental ly P

through the use of Eq. 2, which i s repeated here f o r convenience,

Note t h a t the power used t o operate t h e thermionic cathodes i s no t i n -

cluded i n Eq. 2. I n order t o use Eq. 2, one must be able t o measure

each o f t h e parameters on the r ight-hand-s ide of t he equation. Measure-

ment o f t h e discharge current, discharge vol tage and beam cu r ren t i s

Page 52: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

s t r a i g h t forward, and was accompl ished using the exper imnta l i n s t r u -

mentation described i n Appendix B.

To measure t h e i o n cur rents JC and Jp, t he t h r u s t e r con f igu ra t i on

o f F ig . 3a was operated w i t h on ly the upstream magnet r i ng a t anode

po ten t ia l . A l l o the r i n t e r i o r discharge chamber surfaces ( w i t h t h e

exception of t he cathode support posts) were biased appmximately 30 v

negative o f cathode po ten t ia l t o repel t he discharge chamber e lectrons.

A t t h i s bias, t h e cur rent t o these surfaces consists only of t he incom-

i n g i o n cur rent . I f t h e i o n cur rent t o the cathode support posts and

cathode wires i s neglected, then the i o n cur rent measured i n the manner

described above i s equal t o JC.

To determine Jp, i t i s noted t h a t the t o t a l i o n product ion cu r ren t

i s t h e sum o f t h e i on . currents leav ing the. plasma as given by Eq. 4.

Since the anode i s exposed t o the plasma on ly a t a magnetic f i e l d cusp,

the e f f e c t i v e area f o r i o n l oss t o t h i s surface i s expected t o be less

than the physical area [43-461. Rough ca lcu la t ions i nd i ca te t h a t t he

i o n cur rent t o the anode w i t h t h i s conf igura t ion should be less than a

few precent o f t he t o t a l product ion current . Thus, Jp may be approxi-

mated as the sum o f the i o n cur rents t o the beam ( inc lud ing the impinge-

ment cur rent ) and t o the negat ive ly biased discharge chamber surfaces

( inc lud ing the screen g r i d ) .

Complete sets o f data cons is t i ng o f the beam current , propel 1 an t

f l ow rate, p rope l lan t u t i l i z a t i o n and t o t a l i o n product ion cu r ren t were

co l 1 ected over t h e range o f operat ing condi t ions discussed ea r l i e r w i t h

the electromagnetic cur rent held constant a t 57 A f o r the th rus te r of

Fig. 3a. A t each cond i t ion tested, the th rus te r was operated a t flow

ra tes o f 500, 750, 1000 and 1500 mA eq. f o r argon and krypton

Page 53: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

propel lan ts , and 250, 500, 750 and 1000 mA eq. f o r xenon. A t each f l ow

ra te , t he discharge vo l tage was held constant w h i l e the discharge cur-

r e n t was var ied. Increasing t h e discharge current , increases the beam

cu r ren t and propel 1 a n t u t i 1 i z a t i o n , thus causing the neut ra l dens i t y

parameter ;(l-nu) t o decrease. By opera t i ng i n t h i s manner, the f u l l

range o f neut ra l dens i t y parameters from c lose t o zero t o near ly 1500

niA eq. could be inves t iga ted . Thus, the plasma i o n energy cos t was de-

termined from Eq. 2 f o r a wide range of opera t ing condi t ions. The ex-

t r a c t e d i o n f r a c t i o n , fg, def ined by Eq. 6, was a lso computed from

measured i o n cur ren ts over t h i s same range o f condi t ions,

A second s e t o f experiments was performed us ing the t h r u s t e r

con f i gu ra t i on of Fig. 3b. These t e s t s were designed t o i nves t i ga te the

abi 1 i t y o f t he 'model t o p r e d i c t t h e behavior o f var ious plasma prop-

e r t i e s w i t h va r ia t i ons i n t h r u s t e r ope ra t i ng condi t ions , The procedure

f o r these t e s t s was the same as f o r t he previous s e t w i t h the a d d i t i o n

t h a t Langmui r probe measurements of t he plasma proper t ies on t h e th rus te r

center1 i n e and a t t h e anode sur face were made a t each operat ing p o i n t

tested. The r a t i o of doubly t o s i n g l y charged i o n beam cur ren ts along

t h e t h r u s t e r c e n t e r l i n e were a lso measured a t each operat ing condi t ion, -f -f

us ing E x B probe.

Experimental Results

Plasma I o n Energy Cost

Measurement o f the plasma i o n energy cost , f o r operat ion o f t he

t h r u s t e r con f i gu ra t i on o f F ig . 3a w i t h argon p rope l l an t a t a 50 v

discharge over t h e range o f neut ra l f l ow ra tes from 500 t o 1500 mA eq.,

y i e l d e d the r e s u l t s shown i n Fig. 4a. Here, t h e measured values of t he

Page 54: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

ARGON

VD ' 50. Ov

SHAG OPTICS

l2cm dio. BEAM E; ' 57. OoV

C, - 3.lCA oq)-'

FLOW RATE (mA eq) 0 1500 0 1000

0 1 I

0.0 . 2 - 4 - 6 .B 1.0 1.2 1.4

NEUTRAL OENSITY PARAMETER. i (1 -7,). (A eq. )

Figure 4a. Plasma Ion Energy Cost Curve - Configuration I

ARGON

VD - 50. ov

LHAG OPTICS

l2cm dio. BEAM

FLOW RATE (mA eq) 0 1500 0 1000 A 750

n 0

0 1 I

0.0 - 2 .4 . 6 . 0 1.0 1.2 1.4

NEUTRAL DENS I TY PARAMETER. i (1 -7,). (A oq. )

Figure 4b. Plasma Ion Energy Cost Curve f o r High Acce le ra tor Grid Transparency t o Neutral Atoms - Configurat ion I

Page 55: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

plasma i o n energy cos t (E ) a re p l o t t e d as a f m c t i o n of the neutra l P

dens i ty parameter m(l -nu), as suggested by Eq. 25. The sol i d 1 i n e i n

Fig. 4a i s t he curve g iven by Eq. 25 when the perameters Co and E* have P

been selected t o g i v e t h e best f it t o the data. The parameter E* was P

taken t o be the value of E measured a t 1 arge values o f the neutra l P

dens i ty parameter. The j u s t i f i c a t i o n f o r t h i s se lec t i on can be under-

stood by consider ing Eq. 25, which shows t h a t h e n Co ;(l-11,) i s large,

t he exponential term i s small compared t o u n i t y and one obta i ns *

E = E . Having establ ished the value of the base1 i n e plasma i o n P P

energy cost, the value of the pr imary e l e c t r o n u t i l i z a t i o n f a c t o r (Co)

i s var ied u n t i l t h e bes t fit i s obtained. The agreement between the

func t i ona l , form o f Eq. 25 and the experi~i iental data i s seen t o be q u i t e

good. This i nd i ca tes t h a t the parameters Co and E* may be taken t o be P

i ndependent o f t he neu t ra l densi ty parameter.

A value o f Co = 3.1 (A eq.)'' which i s appl icable t o the i o n source

of Fig. 3a opera t ing a t t he cond i t ions def ined i n the legend f o r F ig. 4a

has now been establ ished. New values o f primary e lec t ron u t i l i z a t i o n

fac to r , appl i c a b l e t o o the r opera t ing condit ions, may now be ca l cu l ated

from t h i s val ue us ing Eq. 26. For example, changi ng g r i d se ts from SHAG

t o LHAG should change the value of Co through the parameter (o which i s

t he e f fec t ive transparency of - t he g r i d s t o neutral atoms. This e f fec-

t i v e transparency parameter may be ca lcu la ted f o r each g r i d se t accord-

i n g t o the equation,

where $ and $a a re the modified transparencies f o r t he screen and

accel e ra to r grids, respect ive ly . These modi f ied transparencies may be

Page 56: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

ca lcu la ted as t h e physical open area f r a c t i o n o f a g r i d t imes t h e

appropriate Clausing f a c t o r [47]. For t h e two g r i d se ts used i n t h i s

study,

Thus, t h e new value o f t h e primary e lec t ron u t i l i z a t i o n f a c t o r appl i-

cable t o t h e LHAG op t i cs w i t h a l l o the r cond i t ions he ld constant i s

given by,

which yields (Co)new = 1.8 (A eq. ) - I

The measured values of s , obtained under the same se t o f condi- P

t i o n s de f ined i n the legend o f F ig. 4a,except f o r the change i n o p t i c s

f rom SHAG t o LHAG, y ie lded the r e s u l t s shown by the data p o i n t s i n

Fig. 4b. The s o l i d l i n e i s t he p red i c t i on of t he model based on t h e

value o f Co ca lcu la ted from Eq. 68. The value o f the base l ine plasma

i o n energy c o s t was held constant a t c* = 57 eV since changing the P

o p t i c s should no t a f f e c t t h i s parameter. The degree o f agreement be-

tween t h e data po in t s and the curve i n Fig. 4b shows c l e a r l y t h a t t he

model c o r r e c t l y p red i c t s the v a r i a t i o n i n the plasma ion energy c o s t

w i t h the neu t ra l dens i ty parameter when the g r i d system transparency t o

neut ra l s i s changed.

The same procedure o f c a l c u l a t i n g a new value o f t h e pr imary

e l e c t r o n u t i l i z a t i o n f a c t o r from the o l d value according t o Eq. 26 was

followed f o r t h e ana lys is o f the data d isp layed i n Figs. 5a and 5b.

For the data i n Fig. 5a, the t h r u s t e r was operated w i t h krypton

Page 57: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

- 0.0 . 2 - 4 . 6 . 8 1.0 1.2 1.4

NEUTRAL OENSI TY PARAMETER. i (1-7,). <A oq. )

100 n c 0 " 160 o E a 0 -I 140 a 5 0 " 120

a " 100

c' U)

8 80 r U

8 so Z W

z ,O 40

Figure 5a. Plasma Ion Energy Cost Curve f o r Krypton - Configuration I

- KRYPTON Vo - 40. Ov - SHAG OPTICS 12cm dio. BEAM

-

- FLOW RATE <mA oq) 0 1500

- 1000 A 750 0 so0

-

-

-

KRYPTON Vo - 40. Ov SHAG OPTICS 6cm dlo. BEAM

- 51. OoV FLOW RATE <mA oq)

C, - 22.8 (A oq) -I 0 500 0 375

NEUTRAL OENSI TY PARAMETER. <I -7,). <A oq.

Figure 5b. Plasma Ion Energy Cost Curve f o r Small Diameter Ion Beam - Configuration I

Page 58: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

p r o p e l l a n t and SHAG o p t i c s a t a discharge vol tage o f 40 v. The pr imary

e l e c t r o n u t i l i z a t i o n f a c t o r corresponding t o t h i s opera t ing c o n d i t i o n

was ca lcu la ted us ing the value o f Co obtained from Fig. 4a together

w i t h Eq. 26 i n the form,

I n t h i s case, both the change i n p rope l l an t p rope r t i es and the change

i n discharge vol tage must be accounted f o r . That i s , (u:)~, i s the

t o t a l i n e l a s t i c c o l l i s i o n cross sec t ion f o r 40 eV pr imary e lec t ron -

krypton atom c o l l i s ions , whereas refers, i n t h i s case, t o 50 eV

pr imary electron-argon atom c o l l i s i o n s . The cross sec t ion data needed

i n t h i s equat ion were obtained from de Heer, e t . a1 [48]. The new

value o f t he pr imary e lec t ron u t i l i z a t i o n f a c t o r ca l cu la ted from

Eq. 69 was Co = 5.7 (A eq.)- I and the corresponding p r e d i c t i o n o f t he

model i s compared t o the measured values i n Fig. 5a. A new value o f *

the base1 i n e plasma i o n energy cos t ( E ) was a1 so requ i red t o f i t the P

data o f F ig. 5a since t h i s parameter i s a f u n c t i o n o f bo th the d i s -

charge vo l tage and the p rope l l an t type. This new value was selected

i n t h e manner suggested prev ious ly as the measured plasma i o n energy

cos t a t h igh neut ra l dens i ty l eve l s . These data i n d i c a t e t h a t the

model works as we l l f o r operat ion w i t h krypton p r o p e l l a n t as i t does

f o r argon.

From Eq. 26, i t i s seen t h a t the pr imary e l e c t r o n u t i l i z a t i o n

f a c t o r depends i nve rse l y on the area o f the g r i d s through which the

beam i s ext racted, A . This area may be var ied w i thou t changing the 9

discharge chamber diameter by masking down the screen g r i d t o produce

Page 59: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

i o n beams of d i f f e r e n t cross sec t iona l areas. I n t h i s case, t he screen

g r i d f o r the SHAG o p t i c s s e t was masked down from a beam diameter o f

12cm t o oneof 6cm. This four fo ld reduc t ion i n beam area should pro-

duce a corresponding four f o l d increase i n pr imary e lec t ron u t i l i z a t i o n

fac to r . Taking Co f o r Fig. 5a and mu1 t i p l y i n g by fou r y i e l d s the new

value o f Co = 22.8 (A eq.)-I . The model p red i c t i on fo r t he plasma i o n

energy cost versus neut ra l dens i ty parameter curve, obtained us ing t h i s

value o f Coy i s compared t o the measured values o f these q u a n t i t i e s i n

Fig. 5b. Remarkably, t he agreement between the model and the experiment

i s excel l en t . S im i l a r agreement was obtained f o r operat ion w i t h argon

us ing the masked down g r i d set.

Measurements o f t he plasma i o n energy cos t v a r i a t i o n w i t h the

neut ra l dens i ty parameter were a1 so made on the t h r u s t e r conf igura t ion

of Fig. 3b. Some of t he r e s u l t s obta ined w i t h t h i s conf igura t ion are

shown i n Figs. 6a, 6b, 7a and 7b. The data i n Fig. 6a was obtained

w i t h argon prope l lan t , a discharge vo l tage of 50 v and a range o f pro-

p e l l a n t f l ow r a t e s from 350 t o 1500 mA eq. Excel1 en t agreement between *

the model and the experimental data was obtained by tak ing e = 59 eV P

and Co = 4.0 (A eq.)-I . The value o f E* = 59 eV, obtained w i t h t h i s P

conf igurat ion, agrees we1 1 w i t h the value of E* = 57 eV obtained w i t h P

the o the r conf igura t ion f o r opera t ion w i t h argon a t a discharge vol tage

of 50 v. The s l i g h t l y h igher va lue of e* f o r the conf igura t ion of P

Fig. 3b i s be1 ieved t o be the r e s u l t o f the shor te r discharge chamber

length causing a s l i g h t l y h igher f r a c t i o n of i o n cu r ren t t o go t o the

anode surface and cathode support posts.

Page 60: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

ARGON vg - 50. Ov SHAG OPTICS 12cn dia. BEAM - 50. oov

FLOW RATE (mA eq)

NEUTRAL DENSI TY PARAMETER. i (1-1,). <A eq. )

F igure 6a. Plasma I o n Energy Cost Curve - Conf igura t ion I 1

XENON VD - 40. Ov SHAG OPTICS 12ca dio. BEAM

w a FLOW RATE <nA eq) - 44. OoV

0 1000 0 710

tA4 100 A So0

0 1 I

0.0 . 2 . 4 .6 . a 1.0 1.2 1.4

NEUTRAL DENSI TY PARAMETER. i (1-7,). <A eq. )

F igure 6b. Plasma I o n Energy Cost Curve f o r Xenon - Conf iaura t ion I 1

Page 61: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

ARGON Vg - 30. Ov SHAG OPTICS 12cm dia. BEAM

FLOW RATE <mA oq) 0 1500 0 1000 A 750 0 so0 v 350

NEUTRAL DENS1 TY PARAMETER. i (1 -l,). (A eq. )

F igure 7a. Plasma I o n Energy Cost Va r ia t i on a t Low Discharge Voltage - Conf igura t ion I1

ARGON FLOW RATE (mA eq) Vo - 30. Ov 0 1500

0 1000 0 6 .d SHAG OPTICS A 750

12cm dia. BEAM 0 500 V 350

NEUTRAL OENS I TY PARAMETER. 6 Cl-7,). (A eq. )

F igure 7b. Anode E lec t ron Temperature Va r ia t i on a t Low Discharge Voltage - Conf igura t ion I1

Page 62: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

From t h e value of Co i n Fig. 6a, a new value of Co app l icab le t o

t h i s conf igura t ion opera t ing on xenon p rope l l an t a t a discharge vol tage

o f 40 v may be ca l cu la ted us ing Eq. 26. The resu l t s o f t h i s c a l c u l a-

t i o n , together w i t h t h e experimental resu l t s , a re given i n Fig. 6b,

For these data, the neut ra l dens i ty parameter has been corrected f o r

presence of doubly charged ions i n the beam. Again the value o f C* was P

chosen i n t h e manner described above. Clear ly , the model agrees we l l

w i t h the measured results, . Equations 25 and 26 have now been demon-

s t r a t e d t o describe c o r r e c t l y the effects of v a r i a t i o n s i n the plasma

i o n energy c o s t r e s u l t i n g from changes i n p rope l l an t f l o w ra te , pro-

pel 1 a n t u t i 1 i z a t i o n , e f fec t ive g r i d transparency t o neutra l atoms, beam

e x t r a c t i o n area, discharge voltage, and p rope l l an t gas (Ar, Kr and Xe).

I n add i t ion , o the r experiments i n d i c a t e t h a t the model c o r r e c t l y pre-

d i c t s t he change i n t h r u s t e r performance r e s u l t i n g from a change i n the

e f f e c t i v e discharge chamber wa l l temperature [36]. The model has a l so

been shown t o work we1 1 on 1 i ne cusp t h r u s t e r geometries [35].

For opera t ion a t low discharge voltages, however, the s i t u a t i o n i s

q u i t e d i f f e r e n t as seen i n Fig. 7a. The data i n t h i s f i gu re were taken

us ing argon prope l lan t , a discharge vol tage of 30 v and the t h r u s t e r

c o n f i g u r a t i o n o f Fig. 3b. Here, a systematic di f ference i n the data

taken a t d i f f e r e n t p rope l l an t f low ra tes i s observed. C lear ly , a s i n g l e

equat ion such as Eq. 25 i s no t su f f i c i en t t o exp la in t h i s behavior if

Co and E* a r e taken t o be independent of the p rope l l an t f low r a t e and P

p rope l l an t u t i l i z a t i o n . This systematic d i f fe rence of the plasma i o n

energy c o s t curves, measured a t d i f f e r e n t f l o w rates, i s be l ieved t o

r e s u l t f r o m changes i n the base1 i n e plasma i o n energy cos t (E*) which P

occur a t low discharge voltages.

Page 63: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

These changes, i n turn, r e s u l t from the dependence of the base1 i ne

plasma i o n energy c o s t on the average energy o f a Maxwell i a n e lec t ron

c o l l e c t e d by t h e anode, EM (see Eq. 27). The value of EM, however,

depends on the Maxwell ian e lec t ron temperature a t the anode. Measured

values of the e lec t ron temperature, made using the Langmui r probe po-

s i t i o n e d on the surface of the anode magnet r i ng , a re shown i n Fig. 7b.

These data were taken under operat ing condi t ions i d e n t i c a l t o those

used f o r t h e c o l l e c t i o n of t he data i n Fig. 7a. 'The data i n Fig. 7b

c l e a r l y i n d i c a t e a systematic d i f f e rence i n e lec t ron temperature a t t h e

anode fo r d i f f e ren t p rope l l an t flow rates. For a given value o f the

neut ra l dens i t y parameter, these data show t h a t . the e lec t ron temperature

a t the anode increases w i t h increasing p rope l l an t f low ra te . Higher

e lec t ron temperatures a t the anode correspond t o h igher values o f E* P

because o f the increased loss o f energy from the plasma i n the form o f

Maxwell ian e lectrons. Because the r a t i o €M/VD appears i n the equation

fo r E* , changes i n EM become increas ing ly important a t low discharge P

vol tages . The systematic d i f fe rence i n the curves of e lec t ron temperature

versus neutra l dens i ty parameter observed i n Fig. 7b i s no t predicted

by the model (as given by Eq. 59). Thus, some add i t iona l mechanism f o r

the t r a n s f e r o f energy from the primary e lectrons t o the Maxwell i a n

electrons, o the r than t h a t considered i n the model, must become i m -

por tan t a t low discharge voltages. This mechanism i s be1 ieved t o be

the d i r e c t thermal i z a t i o n o f the pr imary e lectrons as the r e s u l t of

e l ectron-el ectron col 1 i s ions . 'The col 1 i s i o n cross sec t ion f o r primary-

Maxwellian e lec t ron c o l l i s i o n s increases r a p i d l y w i t h decreasing

pr imary e lec t ron energy. This i s cons is ten t w i th the observat ion t h a t

Page 64: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

t h e separat ion between the e lec t ron temperature curves taken a t d i f -

f e r e n t p rope l l an t f low ra tes (such as those i n Fig. 7b) increases w i t h

decreasing pr imary e lec t ron energy ( i .e., discharge vol tage) .

Extracted I o n Frac t ion

Aside from t h e plasma i o n energy cost, the o the r parameter which

has a major a f f e c t on t h r u s t e r performance i s t h e extracted i o n f rac-

t i o n , fB. It i s o f l i t t l e use t o c rea te ions e f f i c i e n t l y i n t h e d i s -

charge chamber i f the f rac t i on of these ions ex t rac ted i n t o t h e beam

i s small. The extracted i o n f r a c t i o n , which i s def ined i n Eq. 6 as t h e

r a t i o of the beam cu r ren t t o the t o t a l i o n c u r r e n t produced, was mea-

sured f o r both t h r u s t e r conf igura t ions over t he range o f ope ra t i ng

cond i t ions discussed e a r l i e r .

The r e s u l t i n g extracted i o n f r a c t i o n data, obtained on t h e

t h r u s t e r con f i gu ra t i on o f Fig. 3a, a re shown i n Figs. 8a and b. I n

Fig. 8a, the value of fB are g iven versus the neu t ra l densl t y parameter

f o r opera t ion w i t h argon p rope l l an t a t discharge vol tages o f 30 and

50 v over a range of p rope l lan t f low ra tes from 500 t o 1500 mA eq.

These data i n d i c a t e t h a t t he ex t rac ted i o n f rac t ion , wh i l e being r e l a -

t i v e l y independent o f neut ra l density, does tend t o be s l i g h t l y g rea te r

a t lower discharge voltages. Data taken under t h e same condi t ions, b u t

a t a 40 v discharge voltage, fa1 1 between the two curves shown i n F ig. 8a.

The ex t rac ted i o n f rac t ions f o r argon p rope l l an t a r e compared t o

those f o r krypton prope l lan t a t a discharge vo l tage of 40 v i n Fig. 8b,

The values of fB f o r argon are seen t o be genera l l y s l i g h t l y h igher

than those f o r krypton.

Page 65: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

z OPEN SYMBOLS V0=50V h ImAeq) CLOSED SYMBOLS V0=30V 0 500

0.3 750

9 ARGON A 1000 0.2 SHAG OPTICS 0 1500

0 1 I I I , I I

0 0 . 2 0 . 4 0 . 6 0.8 1.0 1.2 1.4 NEUTRAL DENSITY PARAMETER, in(l-l)u). [ ~ e g ]

Figure 8a. E f f e c t o f Discharge Yo1 tage on the Extracted I o n F rac t i on - Conf igurat ion I

OPEN SYMBOLS ARGON rir(mAeq)

CLOSED SYMBOLS KRYPTON 0 5 0 0 0 750

SHAG OPTICS A 1000 0 1500

1 I t I

0 .2 0 .4 0.6 0 .8 1.0 1.2 1.4

NEUTRAL DENSITY PARAMETER, h ( I - q U ) , [ k q ]

Figure 8b. E f f e c t o f Prope l lan t on the Extracted Ion Frac t ion - Configuration I

Page 66: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

The data i n Figs. 8a and 8b ind ica te t h a t the extracted i o n

f rac t ion i s re1 a t i vel y i ndependent of the neutral densi t y parameter.

Other data not presented, ind ica te t h a t the extracted i o n f rac t ion

sometimes decreases w i t h increasing beam currents f o r ce r t a i n thruster

configurations. This decrease i n fB r esu l t s from a decrease i n the

ef fect ive transparency of the screen g r i d t o ions as the plasma density

i s increased. However, the f rac t ion of the t o t a l i on cur rent produced

t ha t i s d i rec ted toward the gr ids remains constant.

Ea r l i e r studies [32,33] ind ica te t ha t the extracted i o n f ract ion,

o r the f rac t ion of ions di rected toward the grids, i s s t rong ly dependent

on the magnetic f i e l d configurat ion and thruster geometry. The data i n

t h i s repor t i nd ica te t ha t fB i s also a weak function of the discharge

voltage and propel lant gas, but not a function of the neutral dens1 t y

parameter. Consequently, a simple design approach would be t o take fB

t o be a constant f o r a given discharge chamber design (magnetic f i e l d

conf igurat ion) , propel 1 ant and discharge vol tage. Unfortunately, a

method f o r ca lcu la t ing the value of the extracted i on f rac t ion from the

above design data remains t o be developed.

P l asma Propert i es

Equation 45 provides a simple expression f o r the primary electron

density as a function o f the propel lant u t i l i z a t i o n . As mentioned

ear l i e r , the combination of parameters ins ide the square brackets i n

t h i s equation may be taken t o be roughly a constant f o r a given pro-

pel 1 ant, discharge vol tage and thruster configuration. The value of

t h i s constant, appropriate f o r argon propel 1 ant, a discharge vol tage of

50 v and the thruster conf igurat ion of Fig. 3b, was calculated t o be

Page 67: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

1.0 x 1 0 l 0 cm-3 . Thus, Eq. 45 becomes, i n t h i s case,

The value of E* , requ i red fo r t h i s ca l cu la t i on , was taken t o be the P

measured value g iven i n Fig. 6a. The value of s* could, however, have P

been ca l cu la ted us ing the method described i n Appendix A.

The volume of t h e i o n product ion reg ion (W), requ i red by Eq. 45,

was determined from a computer drawn magnetic f i e l d map o f the d i s -

charge chamber. This map was created by measuring the magnetic f l u x

dens i t y and d i r e c t i o n a t r e g u l a r l y spaced po in ts i n the discharge

chamber. The i o n product ion volume, def ined by t h i s map, was taken t o

be the volume i n which the magnetic f l u x dens i ty was 0.005 Tesla o r

1 ess.

The ex t rac ted i o n f r a c t i o n ( fB) was taken t o be i t s measured value

obta ined i n t e s t s w i t h argon propel 1 ant, a discharge vo l tage o f 50 v

and t h e t h r u s t e r c o n f i g u r a t i o n o f F ig. 3b. The transparency o f t h e

g r i d s t o neu t ra l atoms (4,) was ca l cu la ted from Eq. 66. F i n a l l y , t he

neut ra l atom v e l o c i t y (vo) was ca l cu la ted based on an assumed e f f e c t i v e

wa l l temperature o f 400 K.

Comparison o f t h e ca l cu l ated values of the pr imary e lec t ron dens i t y

f rom Eq. 45 ( i n t he form o f Eq. 70) w i t h the measured values i s g iven

i n Fig. 9a. The measured pr imary e l e c t r o n d e n s i t i e s were obta ined us ing

t h e Langmuir probe pos i t ioned along t h e c e n t e r l i n e o f t h e discharge

chamber. Equations 45 and 70, however, ca l cu la te e s s e n t i a l l y an average

pr imary e l e c t r o n desni t y . Further, s ince t h e center1 i ne primary e l ec-

t r o n dens i t y i s expected t o be h igher than the average value, t h e

Page 68: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

x10 9

ARGON vo - 5ov

FLOW RATE (mA oq) 0 1500

1000 A 750 0 500 V 350

Eq. 45

0 1 I I I L I 1 I I I I

0.0 .2 .4 - 6 . 0 1.0 . PROPELLANT UTILIZATION, Tu

Figure 9a. or imary E lec t ron Densi ty Y a r i a t i o n f o r Argon - Conf igurat ion I1

45 r xlOB XENON

cP 30 - FLOW RATE CmA oq)

I- 0 1000 25- 750

W 0

A 500 0 250

g 20- E U W

d 15 -

0.0 . 2 .4 .6 . 0 1.0 PROPELLANT UTILIZATION. Tu

Figure 9b. Primary E lec t ron Density V a r i a t i o n f o r Xenon - Conf igurat ion I 1

Page 69: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

excel 1 ent agreement between the ca l cu l ated and measured val ues i n

Fig. 9a i s somewhat misleading. 'This f i gu re c l e a r l y ind ica tes , however,

t h a t Eq. 45 has the co r rec t funct ional form and t h a t the pr imary elec-

t r o n dens i ty i s indeed r e l a t i v e l y independent o f the p rope l l an t f low

r a t e as predicted by the model.

A s i ~ n i 1 a r comparison between ca lcu la ted and measured primary

e lec t ron dens i t i es i s given i n Fig. 9b fo r operat ion of t he same

t h r u s t e r conf igura t ion , bu t w i th xenon prope l lan t and a discharge v o l t -

age o f 40 v. Again, t he same concludsions drawn from Fig. 9a a re a lso

appl i c a b l e t o t h r u s t e r opera t ion on xenon as ind ica ted i n F ig. 9b. The

observat ion t h a t the ca l cu l ated average val ues a re somewhat greater

than the measured center1 i ne values probably r e s u l t s from the use of *

the measured value o f E = 44 eV i n Eq. 45 r a t h e r than the calculated P

value o f E* = 36 eV given i n Appendix A. P

An expression f o r t he r a t i o o f pr imary- to- tota l e lec t ron dens i ty

i s given by Eq. 48. The combination o f parameters i n the square brac-

kets i n t h i s equation i s approximately a constant f o r a g iven propel lant,

discharge vol tage and t h r u s t e r conf igura t ion . For operat ion w i t h argon

a t V,, = 50 and the con f igu ra t i on of Fig. 3b, Eq. 48 becomes,

I n making t h i s ca l cu la t i on , the Bohm v e l o c i t y (vb) was ca lcu la ted based

on an e lec t ron temperature o f 4 eV. The value o f t he screen g r i d

transparency t o ions (mi ) was determi ned experimental 1 y by measuri ng

the i o n cu r ren t t o the screen g r i d and t o the beam. The transparency

i s then the r a t i o o f the beam cu r ren t t o the sum of the screen g r i d and

Page 70: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

beam currents. The measured screen g r i d transparency t o ions was

approximately 0.8 compared t o the physical open area f r a c t i o n o f the

screen g r i d which was approximately 0.68.

Comparison of Eq. 48 ( i n the form of Eq. 71 ) w i t h the experimental-

l y measured values i s given i n Fig. 10a. This f i g u r e indicates t h a t f o r

a g iven discharge voltage, p rope l lan t and t h r u s t e r conf igura t ion the

pr imary- to - to ta l e lec t ron dens i ty r a t i o i s on l y a func t i on o f t he neu-

t r a l dens i ty parameter. I n addi t ion, i t ind ica tes t h a t Eq. 71 has the

c o r r e c t func t iona l form f o r the v a r i a t i o n o f t h i s r a t i o w i t h the

neut ra l dens i ty parameter.

For operat ion o f t h e same t h r u s t e r con f igu ra t i on w i t h xenon a t

VD = 40 v, the r e s u l t s shown i n Fig. l o b were obtained. The s o l i d 1 i n e

i n t h i s f i g u r e corresponds t o Eq. 48, where the constant was ca lcu la ted

using values o f the parameters i n Eq. 48 t h a t a re appropr iate f o r xenon

propel 1 a n t and a discharge vol tage o f 40 v. Figures 10a and b i n d i c a t e

t h a t Eq. 48 c o r r e c t l y accounts f o r changes i n the propel 1 an t gas, t he

discharge vol tage, t h e neut ra l dens i ty parameter and the propel 1 ant

f l o w ra te .

Comparison o f ca lcu la ted and measured Maxwell i a n e lec t ron tempera-

tu res i s given i n F ig . 1 1 . The ca l cu l ated e l ect ron temperatures were

obtained using Eq. 59. For operat ion w i t h xenon a t VD = 40 and the

t h r u s t e r con f igu ra t i on o f Fig. 3b, Eq. 59 becomes,

where the appropr iate cross sec t ion data were ob ta i ned from References

49 and 50. Equation 72 gives the value o f the Maxwel l i a n i o n i z a t i o n

r a t e f a c t o r f o r t he product ion o f s i n g l e ions fro111 neut ra l atoms as a

Page 71: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION
Page 72: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

FLOW RATE (mA aq>

0 1000 [3 750 A 500 0 250

XENON VD = 40. Ov

0 0.0 . 2 . 4 .6 . 8 1.0 1.2 1.4

NEUTRAL DENS1 TY PARAMETER. i (1-7,). (A eq. >

F igure 11. Maxwel l ian E lec t ron Temperature V a r i a t i o n f o r Xenon - Conf igura t ion I1

Page 73: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

f unc t i on o f t h e neut ra l dens i t y parameter. The r a t e f a c t o r Q: i s a

func t i on o f t h e Maxwell i a n e l ect ron temperature, and i s g iven by,

t Using Eq. 73, t he r a t e fac tor Qo may be p l o t t e d as a funct ion o f the

e l e c t r o n temperature as shown i n F ig. 12.

To determine the e l e c t r o n temperature as a funct ion of the neut ra l

dens i t y parameter, the f o l l o w i n g procedure i s used. F i r s t , t he value t

of t he r a t e fac tor Qo i s cal-culated f o r a g iven value o f m(1-su) us ing

Eq. 72. This value of Q: i s then used t o en te r the curve i n Fig. 12

from which the corresponding e lec t ron temperature i s determined. Re-

peat i ng t h i s procedure generates the curve of Maxwell i an e lec t ron

temperature versus neut ra l dens i t y parameter shown as the sol i d l i n e

i n F ig. 11. The agreement between the ca l cu la ted and measured e lec t ron

temperatures i s considered t o be q u i t e good.

I n a d d i t i o n t o the Langmuir probe pos i t ioned on the t h r u s t e r

center1 ine, a second probe was posi t ioned on t h e upstream magnet r i n g .

This probe was used t o measure the temperature of t he Maxwell i a n e lec-

t rons and the energy of the pr imary e lec t rons reaching the anode.

Because t h e probe was pos i t ioned i n a reg ion o f very h igh magnetic f l u x

densi ty , t h e e lec t ron temperatures determined from the probe t races

obtained- w i t h t h i s probe a r e probably o n l y equal t o t he e lec t ron tem-

perature r e s u l t i n g f r o m motion along the magnetic f i e l d 1 ines. The

e lec t ron temperature corresponding t o motion normal t o the f ie1 d 1 ines

Page 74: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

MAXWELL I AN' ELECTRON TEMPERATURE. TM. (aV)

Figure 12. I o n i z a t i o n Rate Factor f o r Xenon

Page 75: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

may o r may not be the same. For s i m p l i c i t y , these temperatures are

assumed, i n t h i s work, t o be the same.

The measured e lec t ron temperatures a t the anode were found t o be

1 ess than the measured center1 i n e temperatures by approximately a

fac tor of 2/3. The c o r r e l a t i o n o f e lec t ron temperature a t the anode

w i t h the c e n t e r l i n e e lec t ron temperature i s given i n F ig. 13. The data

i n t h i s f i g u r e were obta ined w i t h the th rus te r conf igura t ion o f F ig. 3b

using both argon and xenon propel lants. The s o l i d l i n e i n t h i s f i gu re

has a s lope of 2/3. This observat ion t h a t the e lec t ron temperature a t

the anode i s a p p d i m a t e l y 2/3 o f the c e n t e r l i n e temperature i s used i n

Appendix A f o r the c a l c u l a t i o n o f E* . P

The probe t races obtained w i t h the probe pos i t ioned on the magnet

r i n g surface a lso i nd i ca ted the presence o f pr imary e lectrons. For

operat ion a t a discharge vol tage o f 50 v, these primary e lec t rons had

an energy o f approximately 50 eV as the model suggests they should f o r

t h i s case where a re f rac to ry cathode i s used (VC = 0). Simi la r ly , f o r

operat ion a t V,, = 40 v, t he measured primary e lec t ron energy a t the

anode sur face was % 40 eV. These probe t races provide d i r e c t evidence

o f the l oss o f primary e lec t rons through the magnetic f i e l d cusp t o the

anode. Further, t he l o s s r a t e o f these primary e lectrons was seen t o

increase as the neut ra l dens i t y parameter decreases as the model

p red ic ts .

A comparison between the ca lcu la ted (from Eq. 66) and measured

values o f the doub ly - to -s ing ly charged i o n beam cu r ren t r a t i o i s given

i n Fig. 14. The measured values a re given by t h e open symbols and the

ca l cu la ted values by t h e sol i d symbols. 'The p rope l l an t u t i l i z a t i o n

e f f i c i e n c i e s i n t h i s f i g u r e have been corrected f o r the presence of

Page 76: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

0 1 2 3 4 5 6 7 8 9 10 CENT ERLI NE ELECT RON TEMPERA'TURE. Tw <aV)

Figure 13. Correlation of Electron Temperatures

Page 77: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

XENON Vg = 40V

MEASURED FLOW RATE <mA oq)

0 1000 0 750 A so0 0 250

0 oA.-.t - -a e~-' - *\ CALCULATED

Eq. 66

00 I I I I I I I I I I I

0.0 . 2 . 4 . 6 . 8 I. 0

PROPELLANT UTILIZATION. '1,

Figure 14. Doubly-ta-Singly Charged Ion Beam Current Results

Page 78: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION
Page 79: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION
Page 80: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

Figure 15a shows the ef fect of t he extracted i o n f r a c t i o n on

performance. As expected, t h i s parameter has a st rong ef fect on the

performance. Changes i n fg s h i f t t he performance curve up o r down, b u t

do n o t s u b s t a n t i a l l y change i t s shape. Clear ly , i t i s des i rab le t o

have fB be as l a r g e (near u n i t y ) as possible.

The ef fect of the pr imary e lec t ron u t i l i z a t i o n f a c t o r (Co) on

performance i s given i n F ig. 15b. This parameter a1 so has a st rong

effect on the performance. Indeed, i t i s t h i s parameter which p r i m a r i l y

determine t h e shape of t h e performance curve, w i t h l a r g e r values o f Co

corresponding t o improved performance and curves w i t h more sharply

defined "knees." The d e f i n i t i o n of Co given i n Eq. 26 suggests a num-

ber of ways i n which the value of Co may be increased. For example, i t

may be increased by using a p rope l l an t gas character ized by a l a r g e r

i n e l a s t i c c o l l i s i o n cross sec t ion o ' and a l a r g e r atomic mass ( r e s u l t - o '

i n g i n a lower neutra l v e l o c i t y vo). The parameter Co may a lso increase

by decreasing the g r i d transparency t o neutra ls , m0. This must be done,

of course, w i thout i ncreasi ng the accel e r a t o r impingement current . For

t h r u s t e r designs w i t h non-uniform beam pro f i les , T a i l o r i n g t h e accel e-

r a t o r g r i d ho le s i z e t o match the r a d i a l cur rent dens i ty p r o f i l e might

be a usefu l way t o minimize mo. Also, th ree g r i d systems might be ex-

pected t o have smal ler values of $, than two g r i d systems.

Most important ly , Co may be increased by increasing the primary

e l ect ron containment 1 ength (ee) . This 1 ength corresponds t o the

average d is tance a primary e lec t ron would t r a v e l i n the discharge

chamber before being co l l ec ted by an anode sur face provided i t had no

i n e l a s t i c co l 1 i sions. As mentioned ea r l i er, the primary funct ion of t he

magnetic f i e l d i n a1 1 t h r u s t e r designs i s t o increase t h i s 1 ength. I n

Page 81: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

PROPELLANT U T I L I Z A T I O N . 7,

Figure 15a. Effect o f fg on Performance

cir I IOOOmA o q

fe - . 6 Co - I S . O < A e q F 1

f, - . I vo - so. Ov

€;: - SO. OeV

PROPELLANT U T I L I Z A T I O N . 7,

Figure 15b. E f fec t o f Co on Performance

Page 82: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

cusped f ie1 d th rus ters , pr imary e lec t rons a re l o s t t o t h e anode through

the cusps. Thus, ee may be increased by decreasing the number of cusps

a t anode p o t e n t i a l o r increasing the f l u x dens i ty a t t h e cusp, b u t on l y

up t o a po in t . Reductions i n e f fec t ive anode cusp area below a c e r t a i n

1 i m i t w i l l r e s u l t i n unstable operat ion o f the discharge [22].

Equation 26 a lso suggests t h a t the primary e l e c t r o n u t i l i z a t i o n

fac to r may be increased by masking down the area of t he gr ids through

which t h e beam i s extracted, A However, decreasing A i n t h i s manner g ' 9

w i l l l ead t o a l a r g e reduct ion i n the ex t rac ted i o n f ract ion, and,

therefore, an o v e r a l l reduc t ion i n performance.

The e f f e c t o f p rope l l an t f low r a t e on performance i s shown i n

Figs. 16a and b. I n general, h igher f low ra tes produce b e t t e r perform-

ance. The maximum f l o w r a t e a t which t h e t h r u s t e r can be operated,

however, i s 1 i m i t ed by the a b i l i t y of t he accel e r a t o r system t o e x t r a c t

t he i o n cu r ren t d i rec ted toward it. The e f f e c t of f l o w r a t e on perform-

ance i s l ess dramatic f o r t h r u s t e r designs character ized by l a r g e r

values of Co as shown i n Fig. 16b. High values o f Co should, therefore,

be p a r t i c u l a r l y des i rab le i n t h rus te rs designed t o be t h r o t t l ed.

The effect of E* i s merely t o s h i f t the performance curves up o r P

down. The amount of t he s h i f t increases f o r smal ler values of fB. For

t h rus te rs t h a t use hol low cathodes, the e f f i c i e n c y o f the cathode opera-

t i o n (character ized by VC i n Eq. 27) has a st rong e f f e c t on the value

of E* . I n addi t ion, h i gher values o f VD, i n general , produce small e r P

val ues o f E* . High d ischarge vol tages, however, a re undersi r a b l e from P

t h r u s t e r 1 i fetime considerat ions, Consequently, a t rade off between

t h r u s t e r performance and t h r u s t e r l i f e t i m e i s necessary.

Page 83: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

i - 2 0 0 0 n A o q fe - . 6

f e - - 1 vo - SO. Ov

Co - 3.OCA oq)-' c; - SO. o o v

PROPELLANT U T I L I Z A T I O N . 7,

Figure 16a. Effect of Propellant Flow Rate on Performance for Small C,

ZOO ,-

PROPELLANT U T I L I Z A T I O N . 7,

Figure 16b. Effect of propellant Flow Rate on Performance fo r Large Co

Page 84: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

The ef fect of cathode operat ion on t h r u s t e r performance can be

inves t iga ted ana ly t i ca l l y using t h e performance model. Hol low cathode

operat ion i s re f lec ted i n the value of the parameter VC. The lower

the value of t h i s parameter the more e f f i c i e n t l y the cathode i s oper-

a t ing . A t a f i xed discharge voltage, increasing t h e value o f VC

degrades t h e t h r u s t e r performance i n two ways. F i r s t , i t increases

* E d i r e c t l y through i t s appearance i n Eq. 27, and second, i t decreases

P the energy of t he pr imary electrons, which increases the value of the

c o l l i s i o n a l l oss parameter E, and decreases t h e value of Co. A l l of

these affects a re accounted fo r when E* i s ca lcu la ted according t o the P

procedure described i n Appendix A and t h e pr imary e lec t ron energy i s

given by VD-VC.

The effect o f VC on t h e basel ine plasma i o n energy cost was calcu-

l a t e d f o r xenon p rope l l an t us ing the method described i n Appendix A and

assuming a discharge vol tage o f 30 v. The r e s u l t s of these ca lcu la t ions

are given i n Table 2.

vc (Vo l t s ) (Vo l ts )

3 0 0

30 2.5

3 0 5.0

30 7.5

30 1-0.0

30 12.5

Table 2

Ef fec t of VC on E* P

* 'D.-'c E P

(Vol t s ) (ev)

30 3 6

27.5 42

25.0 48

22.5 5 5

20.0 66

17.5 79

Page 85: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

The values of E* and Co, from Tab1 e 2, were then used i n the equat ion P

fo r t h r u s t e r performance (Eq. 28) along w i t h the values: = 1000 mA eq.,

fB = 0.5, fC = 0.1 , and V,, = 30 v. The performance curves generated i n

t h i s manner a re shown i n Fig. 17. This f i g u r e ind ica tes t h a t , a t a d i s -

charge vol tage o f 30 v, r e l a t i v e l y small changes i n VC can produce

subs tant i a1 changes i n t h r u s t e r performance. For exampl e, i ncreasi ng

VC from 10 t o 12.5 v causes an increase o f approximately 30 eV/beam i o n

i n t h e performance curve.

Work done by S i e g f r i e d [52] on i n e r t gas hol low cathodes i nd i ca ted

t h a t a 0.6 v increase i n t he sur face work func t i on o f t h e cathode i n -

s e r t could produce an increase i n i n t e r n a l cathode plasma p o t e n t i a l

f rom 8 t o 12 v. The value of VC would be expected t o increase by t h i s

same amount. I n add i t i on , S ieg f r ied notes t h a t t he re i s apparent ly a

g rea te r s e n s i t i v i t y of the i n s e r t t o dep le t i on or contaminat ion of t he

low work funct ion ma te r ia l f o r opera t ion w i t h argon o r xenon as compared

t o opera t ion w i t h mercury. Consequently, on t h e basis o f these consid-

, era t ions , one would expect the performance of i n e r t gas i o n t h r u s t e r s

opera t ing a t low discharge voltages t o be q u i t e s e n s i t i v e t o the con-

d i t i o n and opera t ion of the hol 1 ow cathode.

Changes i n the f r a c t i o n of i o n cu r ren t going t o cathode p o t e n t i a l

surfaces ( f C ) a lso tend t o s h i f t t h e performance curves up o r down.

Recent trends [23,24] i n t h r u s t e r design t o operate t h e discharge

chamber body a t anode r a t h e r than cathode po ten t i a l serve t o reduce t h e

va lue of fC, and consequently improve the performance. I n add i t ion ,

e l i m i n a t i o n o f t he separate cathode discharge reg ion i n these designs

serves t o decrease both fC and VC, which again improves the performance.

It should be noted, however, t h a t an increase i n t he ex t rac ted i o n

Page 86: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION
Page 87: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION
Page 88: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

no = i - J~ = . (75)

Subs t i t u t i ng t h i s i n t o Eq. 28, and so lv ing f o r t h e neut ra l loss r a t e

This equation gives the value of t h e neut ra l atom loss r a t e as a func-

t i o n of t h e beam i o n energy cost . For a s p e c i f i e d t h r u s t e r geometry *

and discharge voltage, the design parameters Co, E ~ , fB, fC and VD may

be taken t o be approximately constant. Thus, s ince t h e propel l a n t mass

flow r a t e doesn' t appear on the r ight-hand-s ide of Eq. 76, t h i s equa-

t i o n p r e d i c t s t h a t t he neut ra l l o s s r a t e t io i s independent o f the f l ow

r a t e a t a constant value o f t h e energy cos t per beam i o n ( E ~ ) . This

same conclus ion was reached o r i g i n a l l y by Kaufman [53] i n h i s constant

neutra l l oss r a t e theory developed fo r low magnetic f i e l d s t rength d i s -

charge chamber designs.

Thruster Test ing w i thout Beam Ex t rac t i on

I t i s o f ten des i rab le t o compare the performance o f d i f f e r e n t d i s -

charge chamber designs t h a t have been operated w i thout i o n beam extrac-

t i o n . Operation w i thout beam e x t r a c t i o n i s o f t e n more convenient and

general l y requ i res the use of small e r vacuum t e s t fac i 1 i ti es than

operat ion w i t h beam ex t rac t i on . However, data ob ta i ned under these

condi t ions must be i n te rp re ted c a r e f u l l y . It has been observed t h a t

the performance (eV/beam ion ) extrapolated from t h r u s t e r operat ion

w i thout beam e x t r a c t i o n i s genera l ly s i g n i f i c a n t l y b e t t e r than the

performance measured w i t h beam e x t r a c t i o n [24,54,55]. This di f ference

Page 89: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

i n performance may be understood i n context of the performance model

developed i n t h i s repor t .

Thruster operat ion w i thout beam ex t rac t i on should be character ized

by higher discharge chamber neutra l dens i t ies than operat ion a t t he

same prope l lan t flow r a t e w i t h beam ext rac t ion . 'This i s because,

w.i thout beam ex t rac t i on most of t he prope l lan t 1 eaves t h e discharge

chamber i n the form of neutra l atoms a t the neut ra l atom thermal

ve loc i t y . With beam ext rac t ion , however, most of t he propel 1 an t 1 eaves

i n t h e form o f ions a t t he Bohm v e l o c i t y . Therefore, s ince t h e t o t a l

p rope l l an t f low r a t e 1 eaving the t h r u s t e r must be the same i n each case,

the l oss r a t e of neut ra ls i s smal ler w i t h beam e x t r a c t i o n than wi thout

it, imply ing lower neutra l dens i t ies . This i s p r i m a r i l y a consequence

of t he changing e f fec t ive transparency of the screen g r i d. W i thout

beam ext rac t ion , t he e f f e c t i v e screen g r i d transparency i s very small

[56] s ince ions tend t o be focused onto the g r i d webbing. With beam

ext rac t ion , t he ions tend t o be focused away from the screen g r i d

webbing and through the g r i d apertures. I n any case, opera t ion a t

h igher neutra l dens i t ies , f o r the same th rus te r conf igurat ion, t rans-

l a t e s i n t o lower plasma i o n energy costs according t o Eq. 25.

The performance model developed herein may be used t o make more

meaningful ex t rapo la t i on o f data taken wi thout beam e x t r a c t i o n t o opera-

t i o n w i t h beam ext rac t ion . To do t h i s , i t i s necessary t o experiment-

a l l y determine the values of t he parameters E* Co, fB and fC. The P'

parameters E* and Co are roughly independent of the neut ra l densi ty , P

thus, s houldn' t change depending on whether o r no t a beam i s extracted.

For hol 1 ow cathode equi pped t h r u s t e r designs, however, the base1 i ne

plasma i o n energy cos t includes the parameter VC, which i s an i n d i c a t i o n

Page 90: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

o f cathode performance. The value of VC may be a funct ion of t he d i s -

charge chamber neutra l dens i ty and consequently could cause t h e value

o f E * t o change fo r operat ion w i t h and wi thout beam ext rac t ion . The P

magnitude o f the change i n VC, i f any, i s unknown.

To determine the values of E* and Co fo r opera t ion w i thout beam P

ex t rac t ion , some method of est imat ing the t o t a l i o n cur rent produced as

a funct ion of the discharge chamber neut ra l dens i ty must be used. This

i s probably most e a s i l y accomplished using several i o n cur rent probes

posi t ioned a t the wa l ls o f t he discharge chamber i n t h e manner suggested

by Poeschel [54]. Ideal l y , these data should be acquired over a range

o f neut ra l dens i t ies a t a constant discharge vol tage.

Once t h e t o t a l i o n cu r ren t produced i s known as a func t i on of t he

neutra l densi ty , a curve s i m i l a r t o F ig. 4a may be generated, where the

values o f E are ca lcu la ted using Eq. 2. From these data, t he val ues P

of E* and Co may then be determined as those which g i ve the best f i t P

o f Eq. 25 t o the data. Note, E* may a1 so be ca l cu la ted according t o P

t he procedure out1 i ned i n Appendix A.

F ina l l y , the values of fg and f C may be determined using t h e above

probe data and guessing a value o f t he e f f e c t i v e screen g r i d t ranspar-

ency appropr iate f o r the beam e x t r a c t i o n condi t ion. Once the values of *

€P' Co, fB and fC have been determined, the performance curve fo r t he

beam e x t r a c t i o n cond i t ion may be approximated us ing Eq. 28, f o r any

desi red t o t a l propel 1 ant f low r a t e .

Page 91: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

Space Propul s i o n Mission Anal y s i s

The perfwmance model, developed i n t h i s repor t , i s p a r t i c u l a r l y

useful f o r examining t h e impact of t h r u s t e r performance on space pro-

pu l s ion missions. It should a lso be useful f o r s tud ies making compari-

s ions of t h e c a p a b i l i t i e s of d i f f e r e n t propuls ion systems such as those

done i n References 57 and 58. The fo l l ow ing analys is i s intended as an

i l l u s t r a t i o n of t h e kinds of th ings t h a t can be done us ing t h i s t h r u s t e r

performance model. Consequently, t he o r b i t t rans fer miss ion considered

here has been g r e a t l y simp1 i f i e d . So lv ing a more accurate and compl i - cated o r b i t t r a n s f e r problem would no t prov ide any add i t i ona l i n s i g h t

i n t o the a p p l i c a b i l i t y o f t he model t o mission analys is , and may even

tend t o conceal t h e desi red i l l u s t r a t i o n . I n t h e ana lys is t h a t fol lows,

t he e f f e c t o f t h r u s t e r performance on the maximum payload f r a c t i o n ob-

t a i n a b l e fo r a low ea r th o r b i t t o geosynchronous ea r th o r b i t t rans fer

mission, w i t h a c h a r a c t e r i s t i c v e l o c i t y of 6000m/s, i s inves t iga ted .

The rocket equat ion (Eq. 77) gives the r a t i o o f f i n a l spacecraf t

mass (Mf) t o i n i t i a l mass (Mi) as a func t i on of t he c h a r a c t e r i s t i c

v e l o c i t y f o r t he miss ion (AV), t he t h r u s t e r exhaust v e l o c i t y (u) and

the t h r u s t e r p rope l l an t u t i l i z a t i o n e f f i c i ency (nu),

Assuming, f o r s i m p l i c i t y , t h a t t h e f i n a l mass cons is ts o n l y o f t h e

payload mass (Me) and the mass of t he power p l a n t (M ) then Eq. 77 can 9

be w r i t t e n as,

Page 92: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

The mass of the power p l a n t i s p ropor t iona l t o t he power generated,

where a i s t h e spec i f i c power p l a n t mass (Kg/W), and Pg i s t he

generator power ( W ) . The generator power may be given as,

where qt i s the t h r u s t e r e l e c t r i c a l e f f i c i e n c y and m i s the t o t a l P

propuls ion system p rope l l an t mass f l o w r a t e (kg/s). For. a constant

exhaust v e l o c i t y and p rope l l an t e f f i c i ency , Eq. 80 may be in tegra ted t o

obtain,

where M i s the i n i t i a l p rope l l an t mass and t i s the t o t a l mission Po

time. Combining Eqs. 78-80 and recogniz ing tha t ,

y i e lds ,

Considering o n l y discharge chamber losses, t he t h r u s t e r e l e c t r i c a l

e f f i c i ency may be approximated by,

where VN i s t he ne t accel e r a t i ng vol tage. The n e t accel e ra t i ng vol tage

i s re1 a ted t o the exhaust vel o c i ty by,

Page 93: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

Combining Eqs . 83-85 y ie lds ,

Equation 86 gives the payload mass f r a c t i o n as a f u n c t i o n o f : t h e

c h a r a c t e r i s t i c v e l o c i t y , the exhaust ve loc i t y , t h e miss ion time, the

power p l a n t spec i f i c mass, t he charge-to-mass r a t i o o f t h e beam ions,

t he average beam i o n energy cos t and the p rope l l an t u t i l i z a t i o n e f f i c i -

ency. The average beam i o n energy cos t i s r e l a t e d t o the p rope l l an t

u t i l i z a t i o n e f f i c i e n c y through the equation developed i n the t h r u s t e r

performance model,

where Bo i s a dimensionless q u a n t i t y descr ib ing t h e u t i l i z a t i o n o f

pr imary e lec t rons i n t he discharge chamber and i s g iven by Eq. 74.

For a g iven c h a r a c t e r i s t i c ve loc i t y , mission time, power p l a n t

spec i f i c mass, and p rope l l an t u t i l i z a t i o n e f f i c i ency , the optimum

exhaust v e l o c i t y corresponding t o the maximum pay1 oad f r a c t i o n , f o r

these cond i t ions , can be determined from Eq. 86. This i s accomplished

by s e t t i n g the d e r i v a t i v e of Eq. 86 ( w i t h respect t o u ) equal t o zero

and numerical l y so l v ing t h e r e s u l t i n g equat ion f o r u . S u b s t i t u t i n g

t h i s va lue o f t h e exhaust v e l o c i t y back i n t o Eq. 86 gives the value of

t he optimum payload f r a c t i o n under the spec i f i ed condi t ions. This pro-

cedure may be repeated f o r d i f f e r e n t values o f p rope l l an t u t i l i za t i on ,

Page 94: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

where, for each val ue of qu, t h e corresponding beam i o n energy c o s t i s

ca lcu la ted from Eq. 87. I n t h i s manner, a curve o f opt imized payload

f r a c t i o n versus prope l lan t u t i l i z a t i o n e f f i c iency liiay be generated f o r

speci f ied values of t h e c h a r a c t e r i s t i c ve loc i ty , miss ion time, power

* p l a n t spec i f i c mass and t h r u s t e r performance parameters, EP, f B ~ f C s

Bo and V,,.

An example o f t h i s i s shown as the s o l i d l i n e i n Fig. 18 f o r a

c h a r a c t e r i s t i c v e l o c i t y of 6000 m/s, a mission t ime o f 200 days and a

s p e c i f i c power p l a n t mass o f 40 kg/kW. I n add i t ion , t he t h r u s t e r per- *

formance parameters were taken t o be E = 50 eV, fB = 0.5, fC = 0.1, P

Bo = 5 and VD = 40 v w i th argon as the prope l lan t . F igure 18 ind ica tes

t h a t t he curve of opt imized payload f r a c t i o n versus p rope l l an t u t i l i z a -

t i o n e f f i c i e n c y goes through a maximum. The propel 1 an t u t i 1 i za t ion

e f f i c i e n c y corresponding t o t h i s doubly maximized payload f r a c t i o n i n -

d icates the l o c a t i o n on the t h r u s t e r performance curve a t which t h e

t h r u s t e r should be operated i n order t o t r u l y maximize the payload

f r a c t i o n . I n summary, t he doubly maximized payload f r a c t i o n was de-

termined by op t im iz ing the exhaust v e l o c i t y t o produce the optimum pay-

load f r a c t i o n f o r a given p rope l l an t u t i l i z a t i o n e f f i c iency and

subsequently se lec t i ng the propel1 a n t u t i l i z a t i o n t o o b t a i n the maximum

payload f r a c t i o n from t h i s s e t o f opt imized payload f rac t i ons .

To i l l u s t r a t e more c l e a r l y what i s going on, the i n i t i a l p rope l lan t

mass f r a c t i o n ( M /Mi) and power p l a n t mass f r a c t i o n (M /Ma) a re p l o t t e d Po 9 1

along w i t h the opt imized payload f r a c t i o n i n Fig. 18. Note t h a t the

sum o f the th ree curves i n t h i s f i gu re , a t any p rope l l an t u t i l i z a t i o n ,

i s equal t o u n i t y . As the p rope l l an t u t i l i z a t i o n increases the i n i t i a l

p rope l l an t mass f r a c t i o n decreases as expected. I n add i t ion , the power

Page 95: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

- I AV=6000m/s ARGON 9,-5. 0

I t-200days fB-0. 5 $ -500~ a=40kg/kW fC-0. 1 Vp-40v /

PROPELLANT UTILIZATION. 12,

Figure 18. Payload Fract ion, Propel 1 an t Mass Fract ion, and Generator Mass Frac t ion V a r i a t i o n w i t h Propel 1 an t U t i 1 i za t ion

Page 96: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

p l a n t mass decreases i n i t i a l l y , due t o a decreasing optimum exhaust

ve loc i t y , then increases dramat ica l ly a t h igh p rope l l an t u t i l i z a t i o n

e f f i c i e n c i e s , due t o the r a p i d increase i n the average beam i o n energy

cost . For t h e se t o f cond i t ions chosen fo r the curves i n F ig. 18, t he

doubly maximized payload f r a c t i o n occurs a t a p rope l l an t u t i l i z a t i o n

of 0.73.

The e f f e c t o f the s p e c i f i c power p l a n t mass on the opt imized pay-

load f r a c t i o n vs. p rope l lan t u t i l i z a t i o n e f f i c i ency curve i s shown i n

Fig. 19a. It i s i n t e r e s t i n g t o note that , a t very low values of a the

opt imized payload f r a c t i o n i s r e l a t i v e l y i n s e n s i t i v e t o l a r g e changes

i n t h e p rope l l an t u t i l i z a t i o n . I n add i t ion , t he p rope l l an t u t i l i z a t i o n

a t which t h e doubly maximized payload f rac t i on occurs i s a func t i on of

a. That i s , t h e po in t a t which one should operate on the performance

curve o f a g iven th rus te r depends on the spec i f i c power p lan t mass f o r

t he spacecraft. This i s i l l u s t r a t e d i n Fig. 19b, where the optimum

propel 1 ant u t i l i z a t i o n eff ic iences fo r the spec i f i ed mission parameters

are i nd i ca ted on the performance curve used i n generat ing the curves i n

Fig. 19a. It i s a lso i n t e r e s t i n g t o note tha t , t h e optimum prope l lan t

u t i l i z a t i o n fo r the a = 1 kg/kW case occurs we l l past what might o rd in-

a r i l y be considered the "knee" o f t he performance curve. I n a s i m i l a r

manner, t he ~ i i i s s i o n t ime can be shown t o e f f e c t t h e optimum prope l lan t

u t i l i z a t i o n , w i t h longer t r i p times y i e l d i n g h igher optimum prope l lan t

u t i l i z a t i o n s .

So f a r , on l y one t h r u s t e r performance curve has been considered and

i t has been observed t h a t t he optimum prope l lan t u t i l i z a t i o n e f f i c iency

corresponding t o the doubly maximized payload f r a c t i o n i s a func t i on of

t he s p e c i f i c power p lan t mass and the mission t ime. The e f f e c t of the

Page 97: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

0.0 . I . 2 .3 . 4 . 5 - 8 .7 .8 .Q 1.0 PROPELLANT UTILIZATION. 7,

Figure 19a. E f f e c t o f Power P lan t Spec i f i c Mass on Payload Frac t ion

ARGON Fg-0.5 I

PROPELLANT UTILIZATION. 1,

Figure 19h. E f f e c t o f Power P lan t S p e c i f i c Mass on Optimum Prope l l an t U t i l i z a t i o n

Page 98: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

t h r u s t e r performance parameters on the opt-imu~ii payload vs. propel 1 an t

u t i l i z a t i o n curves w i l l now be invest igated.

F igure 20a i nd i ca tes the ef fect of the parameter Bo on payload

f r a c t i o n curves. This parameter p r i m a r i l y determines t h e shape of t he

t h r u s t e r performance curve. As expected, l a r g e r values o f Bo y i e l d

h igher maximum payload f rac t ions . The optimum propel 1 an t u t i l i z a t i o n

e f f i c i enc ies are indicated, f o r each performance curve i n Fig. 20 b, by

the v e r t i c a l l i n e s t h a t i n t e r s e c t t he curves.

The ef fect of the extracted i o n f r a c t i o n on the payload f r a c t i o n

curves i s shown i n Fig. 21a. Not su rp r i s i ng l y , h igher ext racted i o n

f rac t i ons produce 1 arger maximum payload f rac t i ons . Agai n, t he optimum

propel 1 an t u t i 1 i zat ions a re i ndicated f o r each performance curve i n

Fig. 21b.

F i n a l l y , the e f f e c t o f t h e p rope l l an t gas i s i nd i ca ted i n Fig. 22a.

To generate the curve l a b e l l e d "argon" i n t h i s f i gu re , t he fo l l ow ing

t h r u s t e r performance parameters were used: fB = 0.5, fC = 0.1 , VD =

40 v, Bo = 5.0 and E* = 50 eV. For krypton and xenon propel lants, the P

values o f fB and fC were he ld constant, but, t he values o f VD. Bo and

* E were changed t o 30 v, 8.2 and 49 eV f o r krypton, and 30 v, 14.6 and

P 42 eV f o r xenon. The changes i n t he values o f Bo were ca lcu la ted using

the equations developed i n the t h r u s t e r perfor~iiance model. 'The changes

i n t h e values o f E* a re cons is ten t w i t h measured changes i n t h i s param- P

e t e r f o r a given t h r u s t e r design operated on the th ree p rope l l an t gases.

C lear ly , xenon prope l lan t i s super io r t o e i t h e r argon o r krypton pro-

pel 1 ants. The performance curves, along w i t h the correspondi ng optimum

p rope l l an t e f f i c i e n c i e s , a re given i n Fig. 22b fo r the cases where

these th ree prope l lan ts a re used.

Page 99: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

PROPELLANT UTILIZATION. 7,

Figure 20a. Ef fect o f Bo on Payload F rac t i on

Figure 20b. E f f e c t o f Bo on the Performance Curve and the Optimum Propel 1 ant U t i 1 i z a t i on

Page 100: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

0.0 . 1 . Z .3 . 4 .S .6 .7 .B . 9 1.0

PROPELLANT UTILIZATION. 7,

Figure 21a. E f f e c t o f fB on Payload Frac t ion

PROPELLANT UTILIZATION. 1,

Figure 21b. E f fec t o f f on the Performance Curve and the Optimum Prope l lan t 1 t i l i z a t i o n

Page 101: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

0.0 .I . 2 .3 . 4 . 5 . 8 .7 . 8 . g 1.0

PROPELLANT UTILIZATION. 7,

F i g u r e 22a. E f f e c t o f P r o p e l l a n t on Payload F r a c t i o n

0 . 4 .S .6 - 7 .8 .Q 1.0

PROPELLANT UTILIZATION. 1,

F i g u r e 22b. E f f e c t o f P r o p e l l a n t on t h e Performance Curve and t he Optimum Propel l a n t U t i l i z a t i o n

Page 102: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

V I . CONCLUSIONS

A simple t h r u s t e r performance model, t h a t has l e d t o an improved

understanding of i o n t h r u s t e r discharge chamber operat ion, has been

developed. This model describes i o n th rus te r performance i n terms o f

four parameters: the plasma i o n energy cos t ( E ), the extracted i o n P

f r a c t i o n (fB), t he i o n cu r ren t f r a c t i o n t o cathode po ten t ia l surfaces

( fC) and t h e discharge vol tage (VD).

The equation developed t o describe the behavior o f the plasma i o n

energy cos t agrees w i t h the r e s u l t s of a v a r i e t y of experiments. This

equation provides an expression f o r the func t iona l dependence o f t he

plasma i o n energy cost on t h e neut ra l dens i ty parameter, i ( ~ - ~ ~ ) .

Experiments i n d i c a t e good agreement between the predicted funct ional

form o f t he model and the experimental data. These experiments a lso

suggest t h a t t he primary e l e c t r o n u t i l i z a t i o n fac tor (Co) and the base-

l i n e plasma i o n energy cos t (€*) are independent o f t he neutra l dens i ty P

parameter under many condi t ions. The model c o r r e c t l y p red ic ts the

v a r i a t i o n i n plasma i o n energy cos t f o r changes i n : p rope l lan t gas,

g r i d transparency t o neutra l atoms, beam e x t r a c t i o n area, discharge

vol tage and e f f e c t i v e discharge chamber wa l l temperature. The model i s

app l i cab le t o both r i n g and l i n e cusp th rus te r designs.

Measurements o f the extracted i o n f rac t i on i n d i c a t e t h a t t h i s

parameter i s r e l a t i v e l y independent of the neutra l dens i ty parameter.

The extracted i o n f r a c t i o n does, however, appear t o be a funct ion of

Page 103: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

cathode. Consequently, there i s a need t o ve r i f y t he p red i c t i ons o f

the model on a hol low cathode equipped i o n th rus te r .

F i n a l l y , i t i s o f i n t e r e s t t o t e s t the v a l i d i t y of the model on

the 01 der s t y le , low magnetic f i e l d s t rength t h r u s t e r designs, such as

the SERT I 1 [63] o r the J-Series [64] th rus ters . These t h r u s t e r designs

d i f f e r from the cusped magnetic f i e l d designs considered i n t h i s inves-

t i g a t i o n i n t h a t e lect rons, i n the discharge chamber plasma, can on l y

reach the anode surface by crossing magnetic f i e l d l i n e s . I n t he

cusped f i e l d designs, however, t he m a j o r i t y of e lec t rons a r e be1 ieved t o

reach the anode by going along the f i e l d l i n e s . The mechanism f o r elec-

t r o n l o s s i n t he low magnetic f i e l d t h r u s t e r designs i s s u f f i c i e n t l y

d i f f e r e n t from t h a t i n the cusped f i e l d designs t h a t experimental v e r i -

f i c a t i o n o f t h e model on these low f i e l d s t rength designs i s requi red.

Page 104: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

REFERENCES

Kaufman, H. R. and Reader, P. D., "Experimental Performance of I on Rockets Employing E l ectron-Bombardment I on Sources," American Rocket Society Paper 1374-60, 1960.

Kaufman, H. R., "An Ion Rocket w i t h an Electron-Bombardment I on Source," NASA Tech. Note TN D - 585, 1961.

Mi lder , N. L., "A Survey and Evaluat ion o f Research on the Dis- charge Plasma of a Kaufman Thruster," Journal of Spacecraft and Rockets, Vol . 7, pp. 641-649, 1970.

Kaufman, H. R., "Techno1 ogy of El ectron-Bombardment Ion Thrusters ,I' i n Advances i n E lec t ron i cs and Elect ron Physics, Vol . 36, Academic Press, Inc . , Ne'w York, 1974.

Masek, T. D., "Plasma Propert ies and Performance of Mercury I o n 'Thrusters," A I A A Journal, Vol. 9, pp. 205-212, 1971.

Beat t i e, J. R., "Numerical Procedure f o r Analyzing Langmui r Probe Data," A I A A Journal, Vol . 13, No. 7, pp. 950-952, 1975.

Robinson, R. S., "Physical Processes i n Di rected Ion Beam Sput ter- ing," NASA CR-159567, 1979.

Ward, J. W. and Masek, T. C., "A Discharge Computer Model fo r an E l ec t ron Bombardment Thruster, " A I A A Paper No. 76-1 009, 1976.

Peters, R. R., "Double Ion Product ion i n Mercury Thrusters, NASA CR-135019, 1976.

Beat t ie , J. R. and Wilbur, P. J., "Cusped Magnetic F i e l d Mercury Ion Thruster," Journal o f Spacecraft and Rockets, Vol . 14, No. 2, PP* 747-755, 1977.

Wilbur, P. J. and Kaufman, H. R., "Double Ion Product ion i n Argon and Xenon Ion Thrusters," Journal o f Spacecraft and ~ o c k e t s , Vol. 16, NO. 4, pp. 264-2679 1979.

Wilbur, P. J., "A Model f o r Ni t rogen Chemisorption i n I on Thrusters,'' A I A A Paper No. 79-2062, 1979.

Isaacson, G. C. and Kaufman, H. R., "1 5-cm Mu1 t i p o l e Gas I o n Thruster," Journal o f Spacecraft and ~ o c k e t s , Vol . 14, No. 8, pp. 469-473, 1977.

Page 105: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

14. Kaufman, H. R. and Robinson, R. S,, "Plasma Processes i n I n e r t Gas Thrusters, " AIAA Paper No. 79-2055, 1979.

15. Kaufman, H. R. and Robinson, R. S,, " Ion Source Design f o r ~ n d u s t r i a l Appl ications': AIAA- ~ o u r n a l , Vol . 20,-NO. 6, pp. 745-7609 1982.

16. Longhurst, G. R. and Wilbur, P. J., "Plasma Property and Performance Pred ic t ion f o r Mercury I o n Thrusters, AIAA Paper No. 79-2054, 1979.

17. Arakawa, Y. and Kawasaki, Y., "Discharge Plasma i n a M u l t i p l e Ion Thruster," AIAA Paper No. 82-1 931 , 1982.

18. Arakawa, Y., Hamatani, C. and Kawasaki, Y., "Wall Losses of Charged P a r t i c l e s i n a M u l t i p l e Discharge Plasma:' I n t ' l E l e c t r i c Pro- puls ion Conference Paper I E P C 84-69, Tokyo, Japan, 1984.

19. D i v e r g i l i o , W. F., Goede, H. and Fosnight, V. V., "High Frequency Plasma Generators f o r I on Thrusters," NASA CR-167957, In te r im Report, Nov. 1981

20. Holmes, A. J. T., "Role o f the Anode Area i n the Behavior o f Magnetic Mu1 ti pole Discharges," Rev. Sci . Instrum., Vol . 52, NO. 12, pp. 1814-1823, 1981

21. Goede, A. P. H. and Green, T. S., "Operational L im i t s of Mu1 t i p o l e I o n Sources," Phys. Fluids, Vol. 25, No. 10, pp. 1797-1810, 1982.

22. Goebel , D. M., " Ion Source Discharge Performance and S t a b i l i t y , " Phys. Fluids, Vol. 25, No. 6, pp. 1093-1102, 1982

23. Sovey, J. S., "Performance o f a Magnetic Mu1 t i p l e Line-Cusp Argon Ion Thruster," Journal o f spacecraft and Rockets, ~ o l . 19, NO. 3, pp. 257-262, 1982.

24. Sovey, J. S., "Irr~proved Ion Containment Using a Ring-Cusp Ion Thruster," Journal o f Spacecraft and Rockets, Vol . 21 , No. 5, pp. 488-495, 1984.

25. S iegf r ied , D. E., "A Phenomenological Model fo r Or i f i ced Hollow Cathodes , " NASA CR-168026, December 1982.

26. Medicus, G., "D i f f us ion and E l a s t i c C o l l i s i o n losses of the 'Fast Electrons ' i n Plasmas," Journal o f Applied Physics, Vol . 29, No. 6, pp. 903, 1958.

27. Bechtel, R. T., Cisky, G. A. and Byers, D. C., "Performance of a 15-Centimeter Diameter, Hol 1 ow Cathode Kaufman Thruster, " A I A A paper No. 68-88, 1968.

Page 106: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

28. Poeschel, R. L., Ward, J. W. and Knauer, W., "Study and Optimiza- t i o n o f 15-cm Kaufman Thruster Discharges," A I A A Paper No. 69-257, 1969.

29. Bechtel, R. T., "Performance and Control o f a 30-cm. d ia . Low- Impulse, Kaufman Thruster," AIAA Paper 69-238, 1969.

30. Cohn, A. J., "Onset o f Anomal us D i f f u s i o n i n Electron-Bombardment I o n Thrusters," NASA TN D-3731, 1966.

31. Poeschel, R. L. and Vahrankamp, R., "The Radial Magnetic F i e l d Geometry as an Approach t o Total I o n U t i l i z a t i o n i n Kaufman Thrusters, " AIAA Paper No. 72-481 , 1972.

Brophy, J. R. and Wilbur, P. J., "The F l e x i b l e Magnetic F i e l d Thruster," Journal o f Spacecraft and Rockets, Vol. 20, No. 6, pp. 611-618, 1983.

Brophy, J. R. and Wilbur, P. J., "Recent Developments i n I o n Sources fo r Space Propulsion," Proc. I n t ' l I on Engineering Congress - ISIAT '83 and IPAT '83, Kyoto, Japan, pp. 411-422, 1983.

Brophy, J . R. and Wilbur, P. J., "Simple Performance Model f o r Ring and L ine Cusp Ion Thrusters," I n t ' l E l e c t r i c Propuls ion Con- ference Paper IEPC 84-68, Tokyo, Japan, 1984.

Brophy, J. R. and Wilbur, P. J., "An Experimental I n v e s t i g a t i o n o f Cusped Magnetic F i e l d Discharge Chambers," I n t '1 El e c t r i c Pro- pul s i o n Conference Paper IEPC 84-70, Tokyo, Japan, L984.

Wilbur, P. J. and Brophy, J. R., "The E f f e c t of Discharge Wall Temperature on Ion Thruster Performance," I n t '1 E l e c t r i c Pro- pu l s ion Conference Paper, IEPC 84-67, Tokyo, Japan, 1984.

Bohm, D., "Minimum I o n i c K i n e t i c Energy f o r a S tab le Sheath," i n Charac ter is t i cs o f E l e c t r i c a l Discharges i n Magnetic F ie lds, A. Guthr ie and R. K. Wakerl i ng, eds., McGraw-Hill , Inc., New York. 1949.

Dugan, J. V . and Sovie, R. J., "Volume Ion Product ion Costs i n Tenuous Plasmas: A General Atom Theory and Deta i led Results f o r He1 ium, Argon and Cesium," NASA TN D-40150, 1967.

Lee, J. F., Sears, F. W., and Turcotte, D. L., S t a t i s t i c a l Thermo- dynamics, Addison-Wesl ey, 1973.

40. Knief, R. A., Nuclear Energy Technology, McGraw-Hill , Hemisphere Publ ish ing Co., 1981, pp. 111.

41. Chapman, B., Glow Discharge Processes, John W i l ey & Sons, Inc., New Yo'rk, 1980.

Page 107: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

42. Vahrenkamp, R. P., "Measurement of Double Charqed Ions i n the Beam o f a' 30-cm ~ e r c u r y Bombardment Thruster, "~AIAA Paper 73-1 057, 1973.

43. Hershkow'l'tz, N., e t .a l ., "Plasma Leakage through a Low 6 L ine Cusp;' Physical Review Let te rs , Vol . 35, No. 5, 1975, pp. 277-280.

44. Leung, K. N., e t .a1 . , "Pl asma Confinement by Local i zed Cusps, " - The Physics of Fluids, Vol. 19, No. 7, 1976, pp. 1045-1053.

45. Hershkowi tz, N., e t . a1 . , "E lec t ros ta t i c Self-plugging of a Picket Fence Cusped Magnetic Field," The Physics of Fluids, Vol . 21, NO. 1, 1979, pp. 122-125.

46. Kozima, H., e t .a l . , "On the Leak Width o f L ine and Po in t Cusp Mag- n e t i c Fields," Physics Let ters, Vol. 86A, No. 6, 7, 1981. pp. 373-375.

47. Clausing, P., "bber Die Stromung Sehr Verdt'nnter Case Durch ~ E r e n Von Be1 ieb ige r LBnge," ~ n n a l e n Der Physi k, Vol . 12, 1932, PP. 961 -989.

48. deHeer, F. J., e t .a l . , "Total Cross Sections o f E lec t ron Scat te r ing by Ne, Ar , Kr and Xe," Journal o f Physics B: Atomic 'and Molecular Physics, Vol. 12, No. 6, 1979, pp. 979-1002.

49. Hayashi, M., "Determi na t ion of El ectron-Xenon Total Exc i ta t i on Cross Sections, from Threshold t o 100 eV, from Experimental Values o f own send's a," Journal of physics D: ~ p p l i e d Physics, Vol. 16, pp. 581-589, 1983.

50. Rapp, D. and Englander-Golden, P., "Total Cross Sections f o r Ion iza- t i o n and Attachment i n Gases by Electron Impact. I. Pos i t i ve Ionizat ion," Journal o f chemical Physics, ~ o l . 34, No. 5, pp. 1464-1479, 1965.

51 . Gryzinski , M., "Classical Theory of Atomic Col 1 is ions, I. Theory of I n e l a s t i c Col l is ions," physical Review,Vol. 138, A p r i l 19, 1965, p . A34.1.

52. S iegf r ied , D., "Xenon and Argon Hollow Cathode Research," i n "Advanced I o n Thruster Research," P. J. W i l bur ed., NASA CR- 168340, Jan. 1984.

53. Kaufman, H. R. and Cohen, A. J., "Maximum Prope l lan t U t i l i z a t i o n i n an E l ect ron Bombardment Thruster," Proceedings of the Symposium on Ion Sources and Formation of Ion Beams, ed i ted by Th.J.M. S l uy ters , Brookhaven National Laboratory. 1971 , pp. 61 -68.

54. Poeschel , R. L., "Development o f Advanced Inert-Gas I o n Thrusters," NASA CR-168206, June 1983.

55. Beat t ie , J. R. and Poeschel, R. L., "Ring-Cusp I o n Thrusters," I n t ' l E l e c t r i c Propul s ion Conference Paper, I E P C 84-71 , Tokyo, Japan, 1984.

Page 108: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

56. Wilbur, P. J., "Advanced Space Propulsion Thruster Research," NASA CR-165584, December 1981 , pp. 85.

57. Jones, R. M., "Comparison of Potent ia l E l e c t r i c Propulsion Systems f o r O r b i t Transfer, " Journal of Spacecraft and Rockets, Vo1 . 21, NO. 1, pp. 88-95, 1984.

58. Kaufman, H. R. and Robinson, R. S., " E l e c t r i c Thruster Performance f o r O r b i t Raising and Manuevering," Journal of Spacecraft and Rockets, Vol . 21, No. 2. pp. 180-186, 1984.

59. Parker, J. H., "E lect ron E jec t i on by Slow P o s i t i v e Ions Inc iden t on Flashed and as-covered M e t a l l i c Surfaces," Physical Review, Vo1 . 93, No. 6, 1954, pp. 1148-11 56.

60. Samson, J. A. and Haddad, G. N., "Secondary E lec t ron Emission f r o m Metal s by Slow P o s i t i v e Ion Bombardment, " In te rna t i ona l Jou rna l of Mass Spectrometry and I o n Physics, Vol . 1 5, No. 1 , 1974 , pp. 113-115.

61. Holman, J. P. and Gajda, W . J., Experimental Methods f o r Engineers, McGraw-Hill , Inc., New York, 1978.

62. N i l bur, P. J., "An Experimental I n v e s t i g a t i o n o f a Hol low cathode Discharge, " NASA CR-120847, December 1971 .

63. Kerslake, W. R., Go1 dman, R. G. and Nieberding, W. C., "SERT I 1 : Mission, Thruster Performance, and I n - F l i g h t Thrust Measure- ments," Journal o f Spacecraft and Rockets, Vol . 8, 1971, pp. 21 3-224.

64. Bechtel, R. T., "The 30 cm J Series Mercury Bombardment Thruster," AIAA Paper No. 81 -071 4, Apr i 1 21 -23, 1981 .

Page 109: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

APPENDIX A

THEORETICAL CALCULATION OF THE BASELINE PLASMA I O N ENERGY COST, c i

The d e f i n i t i o n of the basel ine plasma ion energy cost (E*) i s given P

by Eq. 27, and i s repeated here f o r convenience,

The parameter E, i n Eq. A-1 accounts f o r the energy t h a t i s expended i n

i o n i z a t i o n and e x c i t a t i o n react ions and i s def ined i n Eq. 15 as,

The brackets i n t h i s equation represent the enclosed product averaged

over the e n t i r e e lec t ron speed d i s t r i b u t i o n funct ion, i .e.,

where F(ve) represents the e n t i r e e lec t ron d i s t r i b u t i o n funct ion.

For a plasma w i t h an e lectron populat ion characterized by a

Maxwell i a n d i s t r i b u t i o n o f temperature T,,,, and a monoenergetic

(pr imary) &oup o f energy E Eq. A-2 becomes, P '

Page 110: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

where < >M represents the enclosed product averaged over t h e

Maxwellian speed d i s t r i b u t i o n func t ion .

The term under the summation s ign i n Eq. A-4 may be approximated

by consider ing o n l y a s ing le equivalent lumped exc i ted s ta te character-

ized by a t o t a l e x c i t a t i o n c o l l i s i o n cross sec t ion oeX and a lumped

e x c i t a t i o n energy Uex. For ra re gases, Uex may be approximated by [38],

where UL i s t h e lowest e x c i t a t i o n energy l e v e l . Using t h i s lumped

e x c i t a t i o n approximation Eq. A-4 becomes,

Subs t i t u t i ng Eq. A-6 i n t o A-1 y i e l d s the f o l l o w i n g expression f o r E*, P

n [l 0;x Vp + 'uexve'~] "ex

U+ + +

94 + <(Jv > l e ~ ; ~ , + e , y

€* = "M (A-7) P

9

1 - (VC + / VD

The value of E* may be e a s i l y ca lcu la ted using Eq. A-7 f o r a given P

Page 111: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

Maxwell i a n ' e l e c t r o n temperature, primary-to-Maxwell i a n e l e c t r o n d e n s i t y

r a t i o , discharge vo l tage and value o f Vc. I n a d d i t i o n , t h e average

energy o f a Maxwel l ian e l e c t r o n l o s t t o t he anode ( E ~ ) must be known.

Reference 19 g i ves t h i s energy as,

where TA i s t he e l e c t r o n temperature a t t h e anode and vA i s t he

d i f f e r e n c e between plasma p o t e n t i a l and anode p o t e n t i a l . Experiments

presented e a r l i e r i nd i ca ted t h e e l e c t r o n temperature a t t h e anode was

approximately 2/3 o f the center1 i n e temperature. Therefore, EM wi 11

be taken as,

Langmuir probe measurements a l s o i n d i c a t e t h a t f o r t h e t h r u s t e r c o n f i g -

u r a t i o n s t es ted i n t h i s i n v e s t i g a t i o n VA was always approx imate ly 2v,

thus, t h i s value o f VA w i l l be used i n these c a l c u l a t i o n s toge ther w i t h

Eq. A-9.

For xenon, t he values o f t h e t o t a l e x c i t a t i o n c o l l i s i o n c ross

sec t i on requ i red by Eq. A-7 were taken f rom Reference 49. I o n i z a t i o n

c ross sec t ion data were obta ined from Reference 50. These data, a long

w i t h polynomial curve f i t s used t o f a c i l i t a t e i n t e r p o l a t i o n between

data p o i n t s are g iven i n Figs. A-la and A-lb.

Wi th these data,Eq. A-7 was used t o c a l c u l a t e t h e va lues o f E* as P

a f u n c t i o n o f e l e c t r o n temperature w i t h t h e pr imary-to-Maxwel l ian

e l e c t r o n dens i t y r a t i o as a parameter. The r e s u l t s o f these ca l cu la -

t i o n s a re g iven i n F ig . A-2 where the va lues VD=40v, Vc=Ov and VA=2v

were used. From t h i s f i g u r e , i t i s seen t h a t t he base l ine plasma i o n

energy c o s t can vary over a wide range o f values, and i t i s n o t c l e a r

Page 112: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

x10-20 XENON

ELECTRON ENERGY. E , <eV)

. I o n i z a t i o n C o l l i s i o n Cross Sect ion f o r Xenon

XENON

0 I I I 1 I I I I I

0 20 40 60 &O 100

ELECTRON ENERGY, E , <eV)

F igu re A-1 b. Tota l E x c i t a t i o n C o l l i s i o n Cross Sect ion f o r Xenon (Ref. 49)

Page 113: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

e" r XENON

ELECTRON TEMPERATURE. TM , <eV)

Figure A-2. Basel ine Plasma I o n Energy Cost Var ia t i on Calculated from Eq.A-7 f o r Xenon

Page 114: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

a t t h i s p o i n t which value o r values o f E* are appropr iate. Th is d i f f i - P

c u l t y a r i ses because the Maxwell i a n e l e c t r o n temperature and pr imary-to-

Maxwell ian e l e c t r o n dens i t y r a t i o may n o t be selected independently as

was done f o r the c a l c u l a t i o n s i n F ig. A-2.

To reso lve t h i s d i f f i c u l t y a second equat ion f o r E* i s requi red. * P

T h i s second equat ion f o r E may be der ived i n the f o l l o w i n g manner. P

Equation 40 provides an expression f o r the r a t i o o f i o n cu r ren t pro-

duced by pr imary e lec t rons t o the t o t a l i o n cur ren t produced, i .e.,

The t o t a l i o n cu r ren t produced, however, i s g iven by Eq. 52 as,

and the i o n cu r ren t produced by pr imary e lec t rons i s given by Eq. 30 as,

J; = n n ev a ' v O P P +

d i v i d i n g Eq. A-12 by A-11 y ie lds ,

Equating Eq. A-13 t o A-10 and so l v ing f o r E* y i e l d s the des i red second P

equat ion f o r the basel ine plasma i o n energy cost .

Page 115: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

The appropr iate values o f E* , determined from t h e c o r r e c t corres- P

ponding e lec t ron temperatures and dens i t y r a t i o s , may be found by

so l v ing Eqs. A-7 and A-14 simultaneously f o r E* and t h e e lec t ron P

temperature f o r spec i f i ed values o f the primary-to-Maxwell i a n e lec t ron

dens i t y r a t i o . Th is procedure i s most e a s i l y accomplished graph ica l l y ,

as shown i n Fig. A-3, where the i n t e r s e c t i o n o f the curves corresponding

t o the same values of n / g ives bo th E* and t h e e l e c t r o n temperature. P l.l P

The locus o f these i n t e r s e c t i o n po in t s i nd i ca tes the v a r i a t i o n o f the

basel ine plasma i o n energy cos t w i t h t h e e l e c t r o n temperature and

primary-to-Maxwell i a n e lec t ron dens i t y r a t i o . Figure A-3 i nd i ca tes

tha t , under the assumptions used f o r these ca lcu la t ions , E* does not P

vary s u b s t a n t i a l l y over wide v a r i a t i o n s i n . e l e c t r o n temperature and

"1% . This agrees w i t h the experimental observat ion t h a t E* i s a P.

constant f o r operat ion .w i th xenon propel 1 an t a t a discharge vol tage o f

40 v.

The measured value o f E* i s shown along w i t h the ca lcu la ted values P

i n Fig. A-3. The experimental value, a t low e lec t ron temperatures, i s

seen t o be genera l l y s l i g h t l y h igher t h a n the ca l cu la ted values. The

most 1 i k e l y explanat ion f o r t h i s i s a systematic measurement e r r o r o f

the t o t a l i o n cu r ren t produced as discussed i n Appendix B. Also i n d i -

cated i n F ig. A-3 i s the theo re t i ca l maximum value o f E* f o r t h i s case P

(as ca lcu la ted from Eq. 41). F i n a l l y , i t should be noted t h a t the

above r e s u l t s are somewhat sens i t i ve t o the choice o f EM which i s

assumed here t o be given by Eq. A-9.

Page 116: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

r XENON

Vo- 40. Ov 0 SOLUTIONS

0 1 2 3 4 5 6 7 8 Q 10 ELECTRON TEMPERATURE, TM . (eV)

F igu re A-3. So lu t i ons f o r t h e Base l ine Plasma I o n Enegry Cost f o r Xenon

Page 117: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

APPENDIX B

ERROR ANALYSIS

The experiments described i n t h i s i n v e s t i g a t i o n requ i re the

measurement o f several quan t i t i es . These q u a n t i t i e s may be separated

i n t o f o u r groups according t o the technique requ i red t o make the mea-

surement. These f o u r groups are:

1. Measurement o f P , P* and fB. P P

2. Measurement o f the neut ra l dens i t y parameter, &-nu)

3. Measurement o f the plasma proper t ies : nM , n , and TM . P

4. Measurement o f doubly charged ions.

The e r r o r s associated w i t h the measurements o f the q u a n t i t i e s i n each

o f these groups w i l l be discussed separate ly . I n each case, both

systematic and random e r r o r s w i l l be discussed.

Measurement o f oD, E: and fs

Determination o f the q u a n t i t i e s i n t h i s group requ i res the measure-

ment o f the t h r u s t e r e l e c t r i c a l operat ing parameters inc lud ing : the

discharge voltage, discharge cu r ren t and beam cur ren t . I n add i t ion ,

the t o t a l i on cu r ren t produced (J ) must be measured. The t o t a l i o n P

cu r ren t produced i s given as the sum o f t he i o n cu r ren ts leav ing the

plasma. i .e. ,

The acce lera tor g r i d impingement cu r ren t (Jimp) i s genera l l y l e s s than

Page 118: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

one percent o f the beam cur ren t , and can probably be neglected. I n t h i s

inves t iga t ion , however, t he impingement cu r ren t was a1 ways i nc l uded i n

the t o t a l i o n product ion cu r ren t f o r compl eteness.

Measurements of the t h r u s t e r e l e c t r i c a l operat ing parameters were

made using the i o n source inst rumentat ion shown schemat ica l ly i n

Fig. B-1. The measurement of the i o n cu r ren t t o cathode p o t e n t i a l sur-

faces (JC) was accompl ished by b ias ing these surfaces 30v negat ive o f

cathode p o t e n t i a l . With t h i s bias, e l e c t r o n c o l l e c t i o n a t these surfaces

was e l im ina ted a l l ow ing the incoming i o n cu r ren t t o be measured. The

i o n cur ren t t o anode p o t e n t i a l surfaces (JA) and t o the cathode support

posts could n o t be measured w i t h t h i s technique. The measured i o n pro-

duct ion current, consequently, does no t i nc l ude these currents.

Three p o t e n t i a l l y s i g n i f i c a n t systematic e r r o r s associated w i t h

the measurements of J (and thus E and fB) have been i d e n t i f i e d . These P P

are :

1. Neglect ing the i o n cu r ren t t o anode po ten t i a l surfaces and the

cathode support posts.

2. Secondary e lec t rons emit ted by ions s t r i k i n g the negat ive ly

biased surfaces.

3. The presence of doubly charged ions.

The most ser ious o f these i s t he neglect of the ions reaching the

anode surfaces and the cathode support posts. The e r r o r i n J and E P P

r e s u l t i n g from t h i s omission i s d i f f i c u l t t o assess accurate ly . How-

ever, t he physical area o f these surfaces was 5% and 2%, respect ive ly ,

o f the t o t a l i n t e r i o r sur face area o f t he discharge chamber. Thus, one

might take 7% t o be the maximum systematic e r r o r i n J r e s u l t i n g from P

the neglected i o n currents. Because o f these neglected currents, the

Page 119: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

Figure B-1. Ion Source Instrumentation Schematic

Page 120: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

t r u e value of J should be l a r g e r than the measured value. This imp1 i e s P

t h a t the t r u e values of E and E* should be smal ler than the measured P P

val ues according t o Eq. 2. A 7% e r r o r i n J can resul t i n approximately P

a 13% e r r o r i n E* . It should be noted, however, t h a t Reference 43 P

through 46 i n d i c a t e t h a t t he e f f e c t i v e anode area f o r i o n c o l l e c t i o n a t

a magnetic f i e l d cusp should be less than the physical area. Conse-

quent ly, i t i s bel ieved t h a t the measured values of E and E* are no P P

more than 10% greater than the t r u e values. I n add i t ion , the t r u e

value o f fg would be expected t o be s l i g h t l y smal ler than the measured

value as a r e s u l t of the neglected i o n currents.

Secondary electrons, emi t ted as a resul t of ions s t r i k i n g the

negat ive ly biased surfaces, produce an e r r o r i n the measurement of the

i o n cu r ren t t o those surfaces r e s u l t i n g i n measured values of Jc t h a t

are l a r g e r than the actual values. The l a r g e s t secondary e lec t ron

y i e l d s a t low energies, f o r the ions and metal surfaces of concern i n

t h i s study, appear t o be f o r argon ions i nc iden t on a c lean molybdenum

sur face [41]. The secondary e lec t ron y i e l d f o r low energy (< 100 eV)

argon ions s t r i k i n g molybdenum i s approximately 12% [41]. If hal f of

the ions produced s t r i k e c lean molybdenum surfaces then the measured

value of J would be approximately 6% greater than the t r u e value as a P

resu l t o f secondary e lec t ron emission.

I t has been observed, however, t h a t the secondary e lec t ron y i e l d

o f a c lean surface decreases a f t e r exposure t o a i r [59,60]. Reference

60 concludes t h a t secondary e l e c t r o n y i e l d s are l ess than 1 % f o r low

i n t e n s i t y and low energy i o n i nc iden t on a metal e lec t rode which has

been exposed t o a i r and the ambient gas pressure i s i n the mtor r range

Page 121: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

dur ing operation. I n . the course of the experiments i n t h i s inves t iga-

t i o n :he discharge chamber surfaces were f requent ly exposed t o a i r

between tes ts . I t i s be1 ieved t h a t the e r r o r i n the measurement of 3 P

resu l t i n g from secondary e lec t ron emission i s l ess than 1%.

I n the ca lcu la t ions of E , E* and fB i t i s assumed t h a t only s i n g l y P P

charged ions ex i s t . On the basis o f t h i s assumption, a doubly charged

i o n 1 eaving the plasma i s i n te rp re ted as two s i n g l y charged ions. The

effect, however, of these doubly charged ions on E , 6; and fB should P

no t be substant ia l f o r two reasons. F i r s t , the f r a c t i o n of doubly-to-

s i n g l y charged ions i s general l y small. Second, the energy required t o

produce one doubly charged i o n should not be v a s t l y d i f f e r e n t than the

energy required t o produce two s i n g l y charged ions. The presence o f

doubly charged ions does have a s i g n i f i c a n t e f f e c t on the value of the

neut ra l densi ty parameter, however, and t h i s problem i s addressed l a t e r

i n t h i s appendix.

Of the th ree systematic e r r o r s mentioned above on ly the neglect of

the i o n currents t o anode surfaces and t o the cathode support posts

appears t o be s ign i f i can t . The measured values of E and E* are, there- P P

fore, bel ieved t o be no more than 10% greater than the t r u e values as a

resul t of systematic measurement er rors .

The f o l l owi ng analys is was performed t o est imate the uncertai n t y

associated w i t h the experimental ly measured values of E The uncer- P '

t a i n t y i n e r e s u l t s from the uncerta inty i n the measurements of the P

independent variables which appear on the r ight-hand-side of Eq. 2. I n

general , the uncer ta in ty o f a quan t i t y y which i s a funct ion of the

measurabl e i ndependent v a r i abl es xl , x2, xj. . . xn i s given by [61],

Page 122: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

where nxi i s the uncer ta in ty o f the i th independent var iable. For

t he plasma i o n energy cos t equat ion given by*,

Eq. B-1 becomes,

Car ry ing o u t the p a r t i a l d i f f e ren t i a t i ons , Eq. B-3 becomes,

To use Eq. B-4 the unce r ta in t i es i n the measurements o f the discharge

c u r r e n t (bJD), the discharge vo l tage (AVD) and the t o t a l i o n cu r ren t

produced (AJ ) must be determined. These unce r ta in t i es r e s u l t from the P

unce r ta in t i es of t he d i g i t a l meters used t o make the measurements and

any v a r i a t i o n i n the t h r u s t e r operat ing s e t p o i n t which may occur w h i l e

the data i s being recorded.

Simpson d i g i t a l panel meters were used t o measure the discharge

current , discharge vo l tage and beam cur ren t . These meters have an

unce r ta in t y o f 0.1 % p lus 1 d i g i t . The i o n cur ren t t o the negat ive ly

biased surfaces was measured us ing a K i e t h l y d i g i t a l mult imeter. This

meter has an unce r ta in t y o f 0.5% p lus 1 d i g i t . The v a r i a t i o n i n t he

t h r u s t e r opera t ing s e t p o i n t was taken t o be 1 d i g i t on each o f the

* This form o f Eq. 2 i s appropr iate f o r the case where JA may be neglected and the impingement cu r ren t i s inc luded i n JB.

Page 123: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

d i g i t a l meters. I n add i t ion , 3 v was added t o the unce r ta in t y i n the

discharge vol tage because o f the vol tage drop across the thermonic

cathode wires. With these uncer ta in t ies , t h e unce r ta in t y i n e was P

ca l cu la ted usding Eq. B-4. The r e s u l t s o f these ca l cu la t i ons are shown

i n Fig. B-2 where the v e r t i c a l e r r o r bars represent t he measurement

uncer ta in ty . The ho r i zon ta l e r r o r bars represent the unce r ta in t y i n

the neu t ra l dens i t y parameter and i s discussed i n the next sect ion.

The data i n F ig. B-2 i s t he same as t h a t i n Fig. 6a. The unce r ta in t y

i n t he measured values o f e range from approximately 7 t o 11%. P

Measurement o f m(l -nu)

Three systematic e r r o r s e x i s t i n the measurement of t h e neu t ra l

dens i t y parameter, m(1-nu). The f i r s t i s t he e f f e c t o f doubly charged

ions on t h e p rope l l an t u t i l i z a t i o n e f f i c i e n c y . The second i s t he use

o f a gas f l o w meter w i t h argon, krypton and xenon gases t h a t has on l y

been c a l i b r a t e d f o r a i r . The t h i r d i s t he backf low o f neut ra l atoms

froni the vacuum chamber i n t o the discharge chamber through t h e g r i ds .

The presence o f doubly charged ions i n the beam leads t o a r t i f i c -

a1 l y h igh measurements o f t h e p rope l l an t u t i l i z a t i o n and, consequently,

low values o f the neu t ra l dens i t y parameter. Measurements o f t h e ++ + doubly- to-s ingly charged i o n beam cu r ren t JB /JB were made along the

t h r u s t e r cen te r l ine. Th i s in fo rmat ion can be used t o co r rec t the

propel 1 ant u t i 1 i z a t i o n according t o the equat ion.

++ + Since t h e value o f JB /JB a t t h e cen te r l i n e i s genera l l y h igher than

Page 124: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

ARGON VD 50. OV

0 1 I I 1 I I I I

0.0 . 2 . 4 . 6 . 8 1.0 1.2 1 .4

NEUTRAL DENS 1 TY PARAMETER. i (1 -1,). (A mq. )

F igure B-2. Unce r ta in t y i n the Plasma I o n Energy Cost Measurements

Page 125: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

the average value i t s use i n Eq. B-5 should tend t o over co r rec t the

p rope l l an t u t i l i z a t i o n s l i g h t l y . The r e s u l t i n g e r r o r i n the neu t ra l

dens i t y parameter i s be1 ieved t o be small, however.

A Teledyne Hastings-Raydst f low meter w i t h a range o f 0 t o 50

sccm was used t o measure the p rope l l an t f l o w r a t e i n t o the th rus te r .

The f l o w meter was c a l i b r a t e d f o r air , r e q u i r i n g the output readings t o

be a n a l y t i c a l l y corrected f o r operat ion w i t h the gases argon, krypton

and xenon. The use o f t h e a n a l y t i c a l co r rec t i ons r a t h e r than r e c a l i -

b r a t i n g the f l o w meter f o r the d i f f e r e n t gases i s expected t o in t roduce

on ly a very s l i g h t e r r o r i n the f l o w r a t e measurement. Thus, t h e

systematic e r r o r s i n the measurement o f t he neut ra l dens i t y para~iieter

are be1 ieved t o be negl i g i b l e .

The backflow of neut ra l atoms from t h e vacuum f a c i l i t y i n t o the

discharge chamber was ca lcu la ted based on measurements o f the f a c i l i ty

pressure made ~ l m downstream o f the th rus te r . These ca l cu la t i ons were

used t o co r rec t the t o t a l p rope l l an t f l o w r a t e i n t o the discharge

chamber.

The accuracy o f the f l o w meter i s 1% o f f u l l scale. This t u rns

ou t t o be the major unce r ta in t y i n the determinat ion o f the neut ra l

dens i t y parameter. The unce r ta in t y i n t he neut ra l dens i ty parameter

i s ind ica ted by the hor izonta l e r r o r bars i n Fig. B-2.

P l asma Property Measurement

Plasma proper ty measurements were made using one Langniuir probe

pos i t ioned along the discharge chamber center1 i n e and a second probe

pos i t ioned on a magnetic f i e l d cusp. De ta i l s o f the Langmuir probe

Page 126: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

c i r c u i t r y used are given i n Reference 62. There are two major sources

o f e r r o r i n using Langmuir probes t o obta in plasma property data. The

f i r s t o f these deals w i t h obta in ing the probe t race i t s e l f ( i .e.,

measurement o f co l l ec ted cur rent versus probe vol tage) . The second

source o f e r r o r a r i ses from the ana lys is o f the probe t race t o ob ta in

the desi red plasma property information.

Er rors associated w i t h obta in ing the probe t race inc lude such

th ings as: the v a r i a t i o n i n work func t i on over the probe surface area,

secondary e lec t ron emission from the probe, probe i n s u l a t o r contamina-

t i on , noise i n the plasma, e l e c t r i c a l noise i n the probe c i r c u i t r y ,

plasma per turbat ion by the probe, and magnetic f i e l d e f f e c t s . Plasma

per turbat ion by the probe i s minimized by using a probe w i t h a small

surface area. Biasing the probe negative o f cathode p o t e n t i a l when

data i s no t being co l l ec ted tends t o sput te r clean the surface and

minimizes the v a r i a t i o n i n work func t ion over the probe surface area.

Changing the probe s u ~ p o r t i n s u l a t o r f requent ly ( s every 6 hours) m i n i -

mizes the problem o f i n s u l a t o r contamination. Noise i n the plasma was

minimized by using a D.C. cur rent heated therminoic cathode. Magnetic

f i e l d e f f e c t s were minimized by p lac ing the probe on the discharge

chamber cen te r l i ne where the magnetic f l u x dens i ty was l e s s than 0.001

tes la . For the probe posi t ioned on the magnetic f i e l d cusp, where the

magnetic f l u x dens i ty i s approximately 0.2 tes la , the magnetic f i e l d

e f f e c t s are substant ia l . I n t h i s case, on l y the e lec t ron temperature

and primary e lec t ron energy data obtained from these t races are be1 ieved

t o be meaningful.

Page 127: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

The probe t races were analyzed us ing a non-l inear numerical curve

f i t t i n g r o u t i n e s i m i l a r t o the one described by Bea t t i e [6]. This

r o u t i n e assumes an e l e c t r o n populat ion t h a t i s charac.terized by a Max-

we1 1 i a n p lus mono-energetic (pr imary) e lec t ron energy d i s t r i b u t i o n .

Probe t races were d i g i t i z e d using an HP-7470A graphics p l o t t e r together

w i t h an HP-85 mini-computer. 'The p l o t t e r may be used as a d i g i t i z e r

when equipped w i t h a specia l d i g i t i z i n g s igh t . Accurate d i g i t i z i n g i s

c r u c i a l t o ob ta in ing good pr imary e lec t ron in format ion.

The e r r o r s in t roduced dur ing probe t r a c e d i g i t i z i n g and ana lys is

may be determined by generat ing i dea l i zed probe t races w i t h known

plasma p rope r t i es and then analyzing these t races i n the usual manner.

E igh t such idea l i zed probe t races were generated and analyzed, covering

a wide range o f plasma condi t ions. The r e s u l t s ind ica ted t h a t t he data

ana lys is can accura te ly d i s t i n g u i s h primary-to-Maxwel 1 i a n e lec t ron

dens i t y r a t i o s as small as 0.2% provided the Maxwell i an e lec t ron temper-

t u r e i s low. The most d i f f i c u l t t r aces t o analyze are those correspond-

i n g t o low primary-to-Maxwell i an e lec t ron dens i ty r a t i o s i n a plasma

w i t h a high Maxwell ian e lec t ron temperature. Th is p a r t i c u l a r plasma

condi t ion, however, was no t observed exper imenta l ly i n t he course o f

t h i s i nves t i ga t i on . The r e s u l t s i n Chapters 111, I V and Appendix A o f

t h i s r e p o r t i n d i c a t e t h a t when the primary-to-Maxwell i a n e lec t ron

dens i t y r a t i o i s small the Maxwell i a n e lec t ron temperature i s low and

when the e lec t ron temperature' i s h igh ' the primary-to-Maxwel 1 i an e l ec-

t r o n d e n s i t y r a t i o i s la rge . 'These types o f probe t races are accura te ly

analyzed w i t h the data reduct ion system used i n t h i s i nves t i ga t i on .

The i dea l i zed pr.obe t race ana lys is ind ica ted t h a t under most cond i t ions

Page 128: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

t 'he f o l l o w i n g e r r o r s may be expected from the d i g i t i z i n g and curve

f i t t i n g procedures:

P l asma Potent ional f 0.3 v

Maxwell I a n E lec t ron Density, nM i: 5%

Maxwell i a n E lec t ron Temperature, TM + - 3%

Primary E lec t ron Density, n P

f 15%

Primary E lec t ron Energy, E P

+ 5%

The o v e r a l l unce r ta in t y associated w i t h .the p l asma proper ty measure-

ments are be1 ieved t o be the fo l l ow ing :

Plasma Po ten t i a l f 1 . 0 ~

Maxwell i a n E lec t ron Density, nM ? 20T

Maxwell i a n E lec t ron Temperature, TM + 10%

Primary E lec t ron Density, n ? 30% P

Primary E lec t ron Energy, E P

+ 10%

Measurement o f Doubly Charged Ions

Measurements o f doubly charged ions i n the bean1 were made using an -f + E x B probe s i m i l a r t o t h a t described i n Reference 42. E r ro rs associ-

a ted w i t h these measurements include: the accuracy o f the picoammeter

used t o read the probe cur ren t , se lec t i on o f t he proper probe d e f l e c t i o n

vol tage t o ob ta in the maxiniu~ii s ignal corresponding t o the p a r t i c u l a r

charged specie o f i n t e r e s t , and v a r i a t i o n i n the t h r u s t e r operat ing

cond i t i ons dur ing data c o l l e c t i o n .

Page 129: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

Probe current readings were made using a Ke i th l y model 410A

picoamneter w i th an accuracy o f f 4% o f f u l l scale. Select ion o f the

proper probe de f lec t ion voltage i s a f a i r l y d i f f i c u l t t h i ng t o do

accurately because o f the slow response t ime o f the picoamneter

(between 0.4 and 12s). This i s espec ia l ly t rue f o r currents i n the

lowest ranges o f the amneter. Errors resu l t i v g from the uncerta inty

i n probe def 1 ect ion voltage and va r i a t i on i n thruster operating condi - t i ons are be1 ieved t o introduce a maximum e r ro r o f 10% i n thie measured

values o f the s ingle and double i on currents, The t o t a l uncertanties

i n the measured values o f the doubly-to-singly charged ion current

r a t i o , resu l t i ng from the sources o f e r r o r mentioned above, are i n d i -

cated i n Fig. 6-3 by the v e r t i c q l e r r o r bars. The hor izonta l e r ro r

bars indicate the uncer ta in ty i n the corrected propel l a n t u t i l i r a t i o n

e f f i c i ency as mentioned ear l i e r .

Page 130: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

0.00 1 I I I I I I I I I I

0.0 . 2 . 4 . 6 . 8 1.0

PROPELLANT UTILIZATION. 1,

Figure 6-3. Uncer ta i nt.y i n the Doubly- to-Si ng l y Charged I o n Beam Current Measurements

Page 131: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

APPENDIX C

NOMENCLATURE

Ag = Area of g r i d s through which the i o n beam i s ex t rac ted (m2)

Bo = mCo

Co = Primary e l e c t r o n u t i l i z a t i o n fac tor defined by Eq. 26 ( A eq.)'l

Ep = Primary E lec t ron Energy (eV)

e = E lec t ron i c Charge (1.6 x coul.)

fA = Frac t ion o f i o n cu r ren t t o anode surfaces

fB = Extracted i o n f r a c t i o n

fC = Frac t ion of i o n cu r ren t t o cathode surfaces

JA = Ion cu r ren t t o anode p o t e n t i a l surfaces (A)

JB = Ion beam c u r r e n t (A)

J: = S ing ly charged i o n beam cu r ren t (A)

J: = Doubly charged i o n beam cu r ren t (A)

JC = Ion cu r ren t t o cathode p o t e n t i a l surfaces (A)

JD = Discharge c u r r e n t (A)

JE = Cathode Emission Current (A) I

= Total product ion r a t e of exc i ted neut ra l atoms by pr imary Jex e lect rons - expressed as a cur ren t (A)

Jimp = Accelerator g r i d i o n impingement cu r ren t (A)

Jj = Product ion r a t e of j t h exc i ted s t a t e expressed as a cu r ren t (A)

JL = Primary e lec t ron cu r ren t t o the anode (A)

JM = Maxwell i a n e l e c t r o n cu r ren t t o t he anode (A)

P = Total i o n cu r ren t product ion r a t e expressed as a cu r ren t (A)

Page 132: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

I

P = Ion production r a t e by primary electrons expressed as a

current (A)

J; = Production r a t e of singly charged ions expressed as a

current ( A )

J: = Production r a t e of doubly charged ions expressed as a current ( A )

J = Ion production r a t e by Maxwell ian electrons expressed as a p 9 m current ( A )

'e = Primary electron contai r~ment 1 ength (m)

Mf = Final spacecraft mass (kg)

Mg = Generator mass (kg)

Mi = In i t i a l spacecraft mass (kg)

Ma = Payload mass (kg)

Mpo = In i t i a l propellant mass (kg)

m e = Electron Mass (kg)

m i = Ion mass ( k g

m = Thruster propellant flow r a t e ( A eq.)

1;1 P

= Total spacecraft propel 1 ant flow r a t e (kg/s)

ne = Total electron density (m-3)

i = Total ion density ( n ~ ' ~ )

n M

= Maxwell ian electron density ( n ~ ' ~ )

n P

= Primary electron density (nr3)

no = Neutral atom density (w3)

io = Neutral atom loss r a t e - (A eq.)

Pg = Generator Power ( W )

P: = Primary electron r a t e fac tor fo r ionization of neutral atoms (m3/s)

Ptt = Primary electron r a t e factor fo r double ionization of 0 neutral atoms :(m3/s)

Page 133: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

PT = Primary e lec t ron r a t e f a c t o r f o r the product ion o f double ions from s ing le ions (m3/s)

9: = Maxwell ian e lec t ron r a t e f a c t o r fo r i o n i z a t i o n o f neut ra l atoms (m3/s)

QF = Maxwell i a n e lec t ron r a t e f a c t o r fo r double i o n i z a t i o n o f neu t ra l atoms (11131s)

Q? = Maxwell i a n e lec t ron r a t e f a c t o r f o r the product ion o f double ions from s ing le ions (m3/s)

TA = Maxwell i a n e lec t ron temperature a t anode surface (eV)

TM = Maxwell i a n e lec t ron temperature i n bu lk plasma (eV)

t = Mission dura t ion ( s )

u = I o n exhaust v e l o c i t y (m/s)

U = Lumped e x c i t a t i o n energy (eV)

U+ = I o n i z a t i o n energy (eV)

= E x c i t a t i o n energy o f j t h exc i ted s ta te (eV)

U, = Lowest e x c i t a t i o n energy (eV)

VA = Anode sheath vol tage ( v )

VC = Plasma p o t e n t i a l from which e lec t rons emit ted by the cathode are accelerated t o become primary e lec t rons

VD = Discharge (Anode) vol tage (v )

VN = Net acce lera t ing voltage ( v )

V+ = Screen g r i d supply vol tage (v)

V - = Accelerator g r i d supply vol tage (v)

vb = Bohm v e l o c i t y (mls)

ve = E lec t ron v e l o c i t y (m/s)

v = Primary e lec t ron v e l o c i t y (m/s) P

vo = Neutral atom v e l o c i t y (mls)

+ = Volume o f i on product ion region (m3)

x = Independent va r iab le

y = Dependent va r iab le

Page 134: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

a = Power p l a n t spec i f i c mass (kglw)

AJ D = Discharge cu r ren t unce r ta in t y (A)

A J p = I o n product ion cu r ren t unce r ta in t y (A)

AV = Charac te r i s t i c v e l o c i t y (mls)

A v ~ = Discharge vol tage unce r ta in t y (V)

Ax = Uncer ta in ty o f independent va r i ab le

A y = Uncer ta in ty o f dependent va r i ab le

EB = Average beam i o n energy cos t (eV1beam ion )

EM = Average energy o f Maxwell i a n e lec t rons leav ing the plasma

a t t h e anode (eV)

cP = Average plasma i o n energy cos t (eV/plasma ion)

6; = Basel ine plasma i o n energy cos t (e~ /p lasma ion)

e = Average plasma i o n energy cos t consider ing i o n i z a t i o n and O e x c i t a t i o n processes o n l y (eV)

nt = Thruster e l e c t r i c a l e f f i c i e n c y

llu = Prope l lan t u t - i l i z a t i o n e f f i c i e n c y

a = Tota l e x c i t a t i o n c o l l i s i o n cross sec t ion (m2) ex

a,' = Tota l e x c i t a t i o n c o l l i s i o n cross sec t ion a t the pr imary ex e l e c t r o n e n e r g y ( m 2 )

a = E x c i t a t i o n c o l l i s i o n cross sec t ion o f t h e j t h s t a t e (m2) j

a' = E x c i t a t i o n c o l l i s i o n cross sec t ion o f t he j t h s t a t e a t t he j pr imary e l e c t r o n energy (m2)

a' = To ta l i n e l a s t i c c o l l i s i o n cross sec t ion a t the pr imary O e l e c t r o n energy (m2)

at = I o n i z a t i o n c o l l i s i o n cross sec t ion (m2)

a' = I o n i z a t i o n c o l l i s i o n cross sec t ion a t the pr imary e lec t ron t energy (ni2)

@a = Transparency o f the acce lera tor g r i d to. neut ra l atoms

@ = Transparency o f the screen g r i d t o ions

Page 135: ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS … · 2008. 2. 20. · ION THRUSTER PERFORMANCE MODEL PREPARED FOR LEWIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINIS'TRATION

4s = Transparency o f the screen g r i d t o neutral atoms

4 = E f f e c t i v e transparency o f the g r i d system t o neutral atoms

< > = Average over the e n t i r e e lec t ron energy d i s t r i b u t i o n funct ion

< >M = Average over the Maxwellian energy d i s t r i b u t i o n funct ion