13
Introductory Oceanography (OCNG 251) Study Guide: Part 1 This half session dealt with the construction of all conditions responsible for the observed global circulation patterns in the World Ocean. In a sense, we started the course from the very end, trying to build an ocean and understanding its physical structure (the water part in this case). The objective of the entire session is to understand the concept behind Figure 1 below: Figure 1: General circulation pattern of the ocean. Surface currents are indicated in red while deep currents are presented in blue. In Figure 1, one can see that there is a link between surface circulation (red) and deep circulation (blue). Of course, to conserve mass, there must be a link between these wo circulation patterns. Areas of “deep water formation” will transfer water from the surface to the deep ocean whereas water returns to the surface via zones of upwelling. Transfer from the surface to the deep ocean will occur due to densification (increased density) of surface water (mostly through cooling but also through some increased salinity during ice formation and salt concentration in seawater). Upwelling will occur through physical transfer from current formation (Ekman circulation in eastern ocean basins) and as water is pushed up continental slope (like when the North Atlantic Deep Water is pushed up the slope of the Antarctic continent). These features are all shown in Figure 1 with areas of deep water formation as purple dots (North and South Atlantic), and areas of upwelling with blue‐to‐red arrows (eastern regions of ocean basins). Also note that surface currents are characterized by circular patterns, called gyres, in each oceanic basin for each hemisphere (Atlantic and Pacific each have 2 gyres, whereas the Indian has only 1). The entire purpose of the first session was thus to bring all the elements necessary to comprehend the processes responsible for the ocean circulation illustrated in Figure 1. These elements are:

Introductory Oceanography (OCNG 251) Study Guide: Part 1OCNG251... · 2012-07-16 · Introductory Oceanography (OCNG 251) Study Guide: Part 1 This half session dealt with the construction

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introductory Oceanography (OCNG 251) Study Guide: Part 1OCNG251... · 2012-07-16 · Introductory Oceanography (OCNG 251) Study Guide: Part 1 This half session dealt with the construction

IntroductoryOceanography(OCNG251)

StudyGuide:Part1ThishalfsessiondealtwiththeconstructionofallconditionsresponsiblefortheobservedglobalcirculationpatternsintheWorldOcean.Inasense,westartedthecoursefromtheveryend,tryingtobuildanoceanandunderstandingitsphysicalstructure(thewaterpartinthiscase).TheobjectiveoftheentiresessionistounderstandtheconceptbehindFigure1below:

Figure1:Generalcirculationpatternoftheocean.Surfacecurrentsareindicatedinredwhiledeepcurrentsarepresentedinblue.InFigure1,onecanseethatthereisalinkbetweensurfacecirculation(red)anddeepcirculation(blue).Ofcourse,toconservemass,theremustbealinkbetweenthesewocirculationpatterns.Areasof“deepwaterformation”willtransferwaterfromthesurfacetothedeepoceanwhereaswaterreturnstothesurfaceviazonesofupwelling.Transferfromthesurfacetothedeepoceanwilloccurduetodensification(increaseddensity)ofsurfacewater(mostlythroughcoolingbutalsothroughsomeincreasedsalinityduringiceformationandsaltconcentrationinseawater).Upwellingwilloccurthroughphysicaltransferfromcurrentformation(Ekmancirculationineasternoceanbasins)andaswaterispushedupcontinentalslope(likewhentheNorthAtlanticDeepWaterispusheduptheslopeoftheAntarcticcontinent).ThesefeaturesareallshowninFigure1withareasofdeepwaterformationaspurpledots(NorthandSouthAtlantic),andareasofupwellingwithblue‐to‐redarrows(easternregionsofoceanbasins).Alsonotethatsurfacecurrentsarecharacterizedbycircularpatterns,calledgyres,ineachoceanicbasinforeachhemisphere(AtlanticandPacificeachhave2gyres,whereastheIndianhasonly1).TheentirepurposeofthefirstsessionwasthustobringalltheelementsnecessarytocomprehendtheprocessesresponsiblefortheoceancirculationillustratedinFigure1.Theseelementsare:

Page 2: Introductory Oceanography (OCNG 251) Study Guide: Part 1OCNG251... · 2012-07-16 · Introductory Oceanography (OCNG 251) Study Guide: Part 1 This half session dealt with the construction

OCNG251(Dr.P.Louchouarn)–StudyGuide#1 2

‐ Systemsandcycles.Specifically,howmassandenergycyclethroughdifferentsectionofasystem(fromthemicro‐tomacro‐scales).Inthissectionweemphasizednotionsofreservoir,flux,source/sink,residencetime,steadystate,aswellaspositiveandnegativefeedbackmechanisms.

‐ Physicalpropertiesofwaterand,inparticular,howtemperatureandsalinityaffectthedensityofseawater.Wealsofocusedonheatcapacitytoexplainthetemperaturechangesdifferentmediaexperience(i.e.atmospherevs.ocean,continents,vs.oceans,etc)whensubjectedtoagainorlossofheat.

‐ Heatbudgetoftheearth,particularlywithrespecttotheunbalanceinincomingshortwaveradiationsandoutgoinglongwaveradiationsthatisobservedininter‐tropicalvs.highlatitudezones.

‐ Atmosphericcirculation,asitisdrivenbythatsameunbalanceintheearthheatbudgetandaffectedbytheearth’srotation(Coriolis).Theinterplayoftheseprocessesthenleadstoglobalaswellasseasonalwindpatterns(e.g.easterlies/westerliesandmonsoons,respectively).

‐ Surfaceoceancirculation,drivenitselfbythewinddragofconstantwindsandaffectedbycoriolis,vorticity,andgeostrophicforces.Exceptfortheeffectoflocalwinds,thegeneralsurfaceoceancirculationfollowstheatmosphericHigh/Lowdistributionpatternwithcircularmotion(gyres)ineachoceanbasin.Thecirculationisclockwiseinthenorthhemisphere,andcounterclockwiseinthesouthhemisphere.

‐ Deepoceancirculation,drivenbydensityformationinhighlatitudezones.Surfacewatercanundergolargeincreasesindensityduetoaninterplayofsalinityandtemperaturechanges.Whenwarmwatercools,itsdensityincreasesmarkedly.Similarly,whenwaterincreasesinsalinity,itsdensityincreasesaswell.Thecoolingofsurfaceseawaterinnorthernlatitudes(e.g.sub‐ArcticseasandaroundAntartica)leadstoanincreaseinitsdensityandthusverticaltransferofwatertowardsthedeepocean.Similarly,duringseaiceformation,theexpulsionofsaltsfromtheformingiceresultsinbrineformation(increaseinsalinityinseawaters)andthusanincreaseinthewaterdensity.Theseprocessesleadtodeepwater‐massformation,eachwithspecificdensityconditionsthathelporpreventtheirmixinginthedeepocean.

‐ Globaloceancirculation.Thesurfaceanddeepoceancirculationsaretiedatboth“ends”wheresurfacewatercools(athighlatitudes)toformdeepwaters,andwheredeepwatersareupwelledtowardstosurface(mostlyoneasternboundariesofoceans)toreintegratethesurfacecirculationloopsandeventuallyreachthecoolingsitesforanothercycle.Onaverage,afulloceancirculationcycletakesseveralhundredyearstocomplete(~500yrs)butthis“mixingspeed”isvariableandcanaccelerateordeceleratedependingontherateofdeepwaterformation(cooling,salinitychanges)andupwelling(windstrength,atmosphericpressureoscillation).

‐ Earthclimatebalance.Therelationshipbetweenatmosphericandoceancirculation,helpredistributeheatfromzonesofsurplusradiation(inter‐tropicalzones)tozonesofdeficit(highlatitudes).Inlowlatitudes,themajorityoftheheattransferoccursthroughoceancirculation,whereasatmosphericcirculationisresponsibleformostoftheheattransferinmid‐tohighlatitudes.Eventsuchashurricanesarerapidandnatural“pressurevalve”processesthattransferlargeamountsofheatfromtheinter‐tropicalzonestomid‐latituderegions.

Page 3: Introductory Oceanography (OCNG 251) Study Guide: Part 1OCNG251... · 2012-07-16 · Introductory Oceanography (OCNG 251) Study Guide: Part 1 This half session dealt with the construction

OCNG251(Dr.P.Louchouarn)–StudyGuide#1 3

1) SystemsandcyclesSomeDefinitions

Transportandtransformationprocesseswithindefinitereservoirs:Carbon,Rock,WaterCyclesReservoir:(box,compartment:Minmassunitsormoles)Anamountofmaterialdefinedbycertainphysical,chemical,orbiologicalcharacteristicsthatcanbeconsideredhomogeneous:O2intheatmosphere;carboninlivingorganicmatterintheOcean;oceanwaterinsurfacewatermasses.Flux:(F)Theamountofmaterialtransferredfromonereservoirtoanotherperunittime(perunitarea):Therateofevaporationofwaterfromthesurfaceocean;therateofdepositionofinorganiccarbon(carbonatesinmarinesediments);therateofcontaminantinputtoalakeorabaySource:(Q)AfluxofmaterialintoareservoirSink:(S)AfluxofmaterialoutofareservoirBudget:Abalancesheetofallsourcesandsinksofareservoir.Ifsourcesandsinksbalanceeachotheranddonotchangewithtime,thereservoirisinsteady‐state(Mdoesnotchangewithtime).Ifsteady‐stateprevails,thenafluxthatisunknowncanbeestimatedbyitsdifferencefromtheotherfluxesTurnovertime:Theratioofthecontent(M)ofthereservoirtothesumofitssinks(S)orsources(Q).Thetimeitwilltaketoemptythereservoiriftherearen’tanysources.Itisalsoameasureoftheaveragetimeanatom/moleculespendsinthereservoir.Cycle:Asystemconsistingoftwoormoreconnectedreservoir,wherealargepartofthematerialistransferredthroughthesysteminacyclicfashionFeedback:Allclosedandopensystemsrespondtoinputsandhaveoutputs.Afeedbackisaspecificoutputthatservesasaninputtothesystem.NegativeFeedback(stabilizing):Thesystem’sresponseisintheoppositedirectionasthatoftheoutput.Anexamplegiveninclassistheincreasedreflectionofsolarradiation(albedo)fromupperlevelclouds.Increasedheatevaporationcloudsincreasedalbedoloweredincomingradiationdecreasedoverallheat.PositiveFeedback(destabilizing):Thesystem’sresponseisinthesamedirectionasthatoftheoutput.Anexamplegiveninclassistheincreasedtrappingofinfraredradiationfromlowerlevelclouds.IncreasedheatevaporationcloudsincreasedI.R.trappingincreasedoverallheat.Wealsosentsometimeontheconceptofresidencetime(aconceptwewillbeusingalsointhesecondsectionofthiscoursetoexplainthesaltcompositionofseawaterandbiogeochemicalcycles).ResidenceTimeisahighprobabilitythatacertainfractionofasubstance(atomsormolecules)formingthereservoir(M)willbeofacertainage(meanageoftheelementwhenitleavesthereservoir).Theresidencetimeofwaterintheatmosphereisveryshort(~10‐20days).TheresidencetimeofwaterintheOceansismuchlonger(~4000years).However,theresidencetimeindifferentcomponentsoftheatmosphereandoceans,andthereforethetimeofexchangebetweenthesedifferentreservoirs,varywidely.

Page 4: Introductory Oceanography (OCNG 251) Study Guide: Part 1OCNG251... · 2012-07-16 · Introductory Oceanography (OCNG 251) Study Guide: Part 1 This half session dealt with the construction

OCNG251(Dr.P.Louchouarn)–StudyGuide#1 4

Figure2:Timeexchangeforexchangeofairandwaterbetweentheatmosphereandocean.AdvantagesofCycleApproach

• Providesoverviewoffluxes,reservoircontents,andturnovertime• Givesabasisforquantitativemodeling• Helpstoestimatetherelativemagnitudesofnaturalandanthropogenicfluxes• Stimulatesquestionssuchas:Whereisthematerialcomingfrom?,whereisitgoingnext?• Helpsidentifygapsinknowledge

DisadvantagesofCycleApproach

• Analysis,bynecessity,superficial.Littleornoinsightintowhatgoesinsidethereservoir(“blackbox”)

• Givesfalseimpressionofcertainty.Often,atleastoneofthefluxesisderivedfrombalanceconsiderations(maybeerroneous!)

• Analysisbasedonaveragequantitiesthatcannotalwaysbeeasilymeasuredbecauseofspatialandtemporalvariations,aswellasotherfactors.

2) PhysicalpropertiesofwaterWatermolecule:DipoleUnevenchargeHydrogenbonds!(DNAanyone?)Higherenergyrequirementforchangeofstate(solidtoliquid,liquidtogaseous)thansimilarmolecules.Makesureyoucanexplainthefigurebelow:

Figure3:Meltingandboilingtemperaturesforwaterandaseriesofmoleculeswithsimilarchemicalcomposition.

Page 5: Introductory Oceanography (OCNG 251) Study Guide: Part 1OCNG251... · 2012-07-16 · Introductory Oceanography (OCNG 251) Study Guide: Part 1 This half session dealt with the construction

OCNG251(Dr.P.Louchouarn)–StudyGuide#1 5

Thestructureofthewatermoleculethusleadstoveryhighenergyrequirementsforchangesofstate(LatentHeat),inparticularforchangesbetweenliquidtogaseousstate.Inthefigurebelow,theheatrequiredtoforchangesinphase(state)areillustratedashorizontallines.Thisdemonstratesthatheathastoconstantlybesuppliedtowaterforhischangeofphasewithout,however,resultinginanychangeoftemperature.Latentheatisjustthat,andchangeinheatwithoutachangeintemperature.Notethemuchmoreimportantheatrequirementforvaporization(580cal/gram)thanforfusion(80cal/gram).Alsonotethatthisheattransferisreversible,meaningthat540calofheatisreleasedtotheatmospherewhen1gramofwatervaporcondensed(rain)and620calofheatisreleasedwhen1gramofvaporsolidifies(snow).Latentheatisthusanimportantcomponentoftheearthheatredistributionprocess(e.g.evaporationininter‐tropicalzonesandcondensationinmid‐tohighlatitudes).

Figure4:Heatandtemperaturechangesinwateracrossitsphasechangecontinuum.WealsospentsometimeontheconceptofHeatCapacity.Heatcapacityisdefinedasthequantityofheatrequiredtoraisethetemperatureof1gramofasubstanceby1°C.• Moreenergyisrequiredtoraisethetemperatureofasubstancewithhighheatcapacity• Atconstantenergyinputs,thesubstancewithlowerheatcapacitywillshowahigherincreaseintemperature

• Highheatcapacitysubstancescanstorelargeamountofenergy.

Weusedtheconceptofheatcapacitytoexplainmajordifferencesintemperatureobservedbetweencontinentsandoceans.Thiswasthenappliedtoexplainthethreefollowingfigures.

Figure5:SeasonaltemperaturecurvesatSanFrancisco(green)andNorfolk(blue).Bothcitiesarelocatedonthesamelatitude.Hence,differencesarenotduetosolarradiationdifference.

Page 6: Introductory Oceanography (OCNG 251) Study Guide: Part 1OCNG251... · 2012-07-16 · Introductory Oceanography (OCNG 251) Study Guide: Part 1 This half session dealt with the construction

OCNG251(Dr.P.Louchouarn)–StudyGuide#1 6

Instead,themoistureintheairinSanFranciscotransportedfromthePacificthroughwesterliesmaintainstheairtemperaturemorestableoverwintertosummerseasonalchanges.Incontrast,thelackofmoistureintheairatNorfolk(windsblowaboutlandbeforereachingVirginia)isresponsibleformuchlargesseasonalchangesintemperature.

Figure6:Dailywindpatternsincoastalregions.Thewindsaregeneratedbypressuredifferencesintheatmosphere,whicharethemselvestheresultofheatcapacitydifferencesbetweenlandandwater.

Figure7:Seasonalwindpatternsinsomecoastalregions.Thewindsaregeneratedbypressuredifferencesintheatmosphere,whicharethemselvestheresultofheatcapacitydifferencesbetweenlandandwater.

ChangeinTemperaturebutnotinHeat

Adiabaticchange:Waterisslightlycompressible(inthedeepoceanwheretheweightofthewatercolumninducesahighpressure).Thisinducesfrictionandthushigherkineticenergyincreaseintemperature.Insitutemperature:temperaturemeasureonsite(insitu).Theutilizationofinsitutemperaturecangivethewrongimpressionthatthewatercolumninunstable(lighterwater–warmer–indeepwatermasses).Temperatureindeepwatermasses

Page 7: Introductory Oceanography (OCNG 251) Study Guide: Part 1OCNG251... · 2012-07-16 · Introductory Oceanography (OCNG 251) Study Guide: Part 1 This half session dealt with the construction

OCNG251(Dr.P.Louchouarn)–StudyGuide#1 7

needstobecorrectedfortheeffectofpressure.TheresultingtemperatureiscalledPotentialTemperature.ChangeofPhase­Density

Duringthetransitionfromliquidtosolidstate,atthefreezingpoint,thebondanglebetweenoxygenandhydrogenatomsexpandsfromabout105°toabout109°.Thischangeallowsicetoformahexagonalcrystallattice.Thespacetakenby24moleculesinsolidstatecouldbeoccupiedby27intheliquidstateWaterexpandsabout9%!Icehasadensityof0.917vs.~1.000g/cm3.Freshwatermaximumdensityat~4°CDensity

Densityofseawaterisaffectedbyacombinationofparameters:temperature(densitywhentemperature),salinity(densitywhensalinity),pressure(densitywhenpressure).Wecan,however,removetheeffectofpressurebyusingpotentialtemperature(whichitselfiscorrectedforpressure).Hence,seawaterdensitycanbecalculatedasafunctionofbothtemperatureandsalinity:ItisthedensityofaparcelofwaterofspecificTandSthatisbroughtuptothesurface(nopressureeffect!)

σT=((1.02594/1.0000)–1)x1000=25.94(Nounits!)

Figure8:Sigma‐Tvaluesforwaterofdifferentsalinity(S)andtemperature(T).ToobtainthedensityofseawateryouneedtouseσTandintegrateitinthefollowingequation:Density=[(σT×10‐3)+1]g/cm3.NotealsothatyoucanobtainseawaterofsimilardensitiesbyvaryingSandT.Theexamplescircledinred,blue,andgreenshowseawaterofsimilardensities(withineachcolorcode)despitechangesinparameters(e.g.astemperatureincreases,salinityhastoincreaseforthewatertomaintainthesamedensity).

Page 8: Introductory Oceanography (OCNG 251) Study Guide: Part 1OCNG251... · 2012-07-16 · Introductory Oceanography (OCNG 251) Study Guide: Part 1 This half session dealt with the construction

OCNG251(Dr.P.Louchouarn)–StudyGuide#1 8

Temperature­Salinity(TS)DiagramsInTSDiagrams(Figure9),salinity(S)isrepresentedonthex‐axiswhiletemperature(T)isrepresentedonthey‐axis.Thesigma‐T(σT)linesindicateconditionsofsimilardensities.Themovementfromtheupperlefttothelowerrightisadirectionofincreaseddensity(thelargestshiftindensityoccurswhenthemovementisperpendiculartotheσTlines).

Figure9:TSDiagram.Note:Adropof5°Cinwarmwater(25°C)generatesagreaterincreaseindensitythanasimilarcoolingincoldwater(5°C).Inshort,themoreperpendiculartotheσTlinesthechangeis,themoreintensethechangeindensity.PlottingactualvaluesofTandSonsuchaTSDiagramwillgiveyouthenumberofwatermassesinthewatercolumnandtheirspecificTandScharacteristics.

Figure10:DepthprofilesoftemperatureandsalinityforastationintheNorthAtlantic.

Page 9: Introductory Oceanography (OCNG 251) Study Guide: Part 1OCNG251... · 2012-07-16 · Introductory Oceanography (OCNG 251) Study Guide: Part 1 This half session dealt with the construction

OCNG251(Dr.P.Louchouarn)–StudyGuide#1 9

Figure11:TSDiagramforthestationshowninFigure10.Surfacewateristhelightestandthusappearsatthetopofthediagram.Heaviestwaterappearsatthebottomofthediagram.Asstatedinthefigure,every“bend”inthecurvedenotesawatermassthatdoesnotmixwithwateraboveandbelow.Caballing:Whentwowatermassesofsimilardensitiesmerge(pointsaandbinFigure12below),thecombinationoftheirtemperaturesandsalinitiesresultsindensificationverticaladvectionofwater.

Figure12:TSDiagramshowingtheeffectofcabaling.Thewaterinc(a50:50mixtureofwateraandb)isdenserthanthetwooriginalwatermasses.

Page 10: Introductory Oceanography (OCNG 251) Study Guide: Part 1OCNG251... · 2012-07-16 · Introductory Oceanography (OCNG 251) Study Guide: Part 1 This half session dealt with the construction

OCNG251(Dr.P.Louchouarn)–StudyGuide#1 10

Light

Autotrophs–withafewexceptions–dependonenergyfromsunlight.Asdolandplants,marineplantsusechlorophyllandotherpigmenttocapturethevisiblelightfromthesuntoperformphotosynthesis.AssolarradiationstrikesthesurfaceoftheOcean,alargefractionofitisreflectedbacktotheatmosphere(dependentontheangleofthesun’sraysandthesmoothnessofthewatersurface).Theamountthatentersisultimatelyabsorbedbywatermolecules(~65%ofvisiblelightisabsorbedwithin1mdepth!):Absorbedenergymanifestsitselfasheat(elevatingthetemperatureofthesurfacewater)

Figure13:Spectrumoflightabsorptionwithrespecttowaterdepth.Absorptionisgreatestatlongerwavelength.Inclearwater,only~1%ofsurfaceenergyremainsat100m(incoastalwaterswithlotsofparticles,lightdoesn’tpenetratemorethanafewmeters).3) HeatbudgetoftheearthBasedonthetemperatureofthesunandtheearth,andonphysicallawsofradiation(Stefan­Boltzmann’sandWien’slaws),thesunemitsradiationmostlyinthevisibletoultraviolet(UV),whereastheearthemitsmostlyintheinfrared(IR)spectrum.Thesedifferencesinradiationwavelengthsarecrucialtoexplaintheearthactualvs.theoreticalaveragetemperature.Basedonthesolarradiationthatearthreceivesperunitarea,thetheoreticaltemperatureoftheearthshouldbe‐18°C.Buttheactualtemperatureofearthismuchhigherthanthat(+15°C).The+33°differencecanbeexplainedbywhatiscalledthegreenhouseeffect.Inshort,gasesintheatmosphere(e.g.water,CO2,CH4,CFCs,N2O)arerelativelytransparenttoshortwaveradiation(meaningtheyletthesepassthrough),whereastheyabsorblongerwavelengthradiation.Figure14illustratesthisprocess.ThesubstantialabsorptionofIRbackradiationbytheearthatmospherethuspermitstheearthtoretainheatwithininfluidenvelopeandthuswarmbeyondthetheoreticalvaluedeterminedbysolarradiationalone(Figure15).

Page 11: Introductory Oceanography (OCNG 251) Study Guide: Part 1OCNG251... · 2012-07-16 · Introductory Oceanography (OCNG 251) Study Guide: Part 1 This half session dealt with the construction

OCNG251(Dr.P.Louchouarn)–StudyGuide#1 11

Figure14:Proportionoflightabsorptionintheearthatmospherewithrespecttoradiationwavelength.Therearetwo“window”oftransparency.TheatmosphereisnearlytransparenttovisibleandnearUVradiation(majorityofsolarradiation),whereasitabsorbsstronglyintheUV(fromO3)andnearIR(water,CO2,CH4,CFCs,N2O).ThesecondwindowisintheIRandpermitssomelongwavelengthradiationtoescapetheearth’satmosphere.

Figure15:Warmingoftheearthbysolarradiationalone(left)andthroughthecombinationofsolarradiationandgreenhouseeffect(right).

Figure16.Althoughaveragetemperaturesvaryseasonallyandspatially,theearth’soverallTchangesonlyslightlyovertheyears“must”returntospacethesameamountofenergyitabsorbed.Totalenergyinput=100units(perunittime).Note:Albedoisthefractionofthesunradiationthatisreflectedbacktospacewithoutbeingincorporatedintheheatbudgetofearth.

Page 12: Introductory Oceanography (OCNG 251) Study Guide: Part 1OCNG251... · 2012-07-16 · Introductory Oceanography (OCNG 251) Study Guide: Part 1 This half session dealt with the construction

OCNG251(Dr.P.Louchouarn)–StudyGuide#1 12

Twoconditions/processesaffecttheamountofsolarradiation(andthereforetheincomingenergysource)differentregionsoftheearthreceive:SphericityandSeasonality.Sphericity(below):IftheEarthwereadiskwithitssurfaceperpendiculartotheraysofsunlight,eachpointonitwouldreceivethesameamountofradiation.However,theEarthisasphereanditssurfacetiltswithrespecttotheincomingraysofenergywiththeregionsfurthestawayalignedinparalleltotheradiationandthusreceivingnoenergyatall.

Seasonality(right):TheEarth’saxisistiltedinrelationtotheplaneoftheecliptic(theSun‐Earthplanethatcutsthroughbothcenters).Higherlatitudesthusreceiveincomingradiationwithdifferentanglesthroughtheseasons(verylowangleinthewinterandcloseto90°inthesummer).

Theeffectofseasonalityandsphericityisillustratedinthefigurebelowwhereshortwaveincomingradiationismaximuminhighlatitudesummers(julyinthenorthhemisphereandJanuaryinthesouthhemisphere)andconstantattheequator.

Page 13: Introductory Oceanography (OCNG 251) Study Guide: Part 1OCNG251... · 2012-07-16 · Introductory Oceanography (OCNG 251) Study Guide: Part 1 This half session dealt with the construction

OCNG251(Dr.P.Louchouarn)–StudyGuide#1 13

Becauseofthesegeographicalandtemporalvariationsinshortwaveincomingradiation,longwaveradiationalsoshowsimilarvariations(IR).Thefigurebelowillustratesthesegeographicalandtemporaldifferences.

Figure17.Longwaveradiationfortheearth.Lefthandpanel:January.Righthandpanel:June.ThesefiguresshowgraphicallythatthethereisanequatortopolechangeinincomingradiationΔHeatingaswellasaseasonalchangeinincomingradiationΔHeating.Theearthheatbudgetisthusapparentlyunbalancedwiththeinter‐tropicalregionapparentlycontinuouslygainingheatandthehighlatituderegionsapparentlycontinuouslylosingheat(Figure18).However,becausetheinter‐tropicalzonesdonotheatcontinuouslyorthehighlatituderegionsdonotfreezecontinuously,thenheattransferfromzonesofheatsurplustothezonesofheatdeficitmustoccur.Thisisthefoundingconditionthatleadstocirculationpatternsinthefluidenvelopesofearth(atmosphereandocean).

Figure18Shortwave(Qs)minuslongwave(Qb)radiationfortheearth.