63
Introduction to Synchrotron Radiation Detectors Heinz Graafsma Photon Science Detector Group DESY-Hamburg; Germany [email protected]

Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

Introduction to

Synchrotron Radiation

Detectors

Heinz Graafsma Photon Science Detector Group

DESY-Hamburg; Germany

[email protected]

Page 2: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

2

The Detector Challenge:

1900 1960 1980 2000

PETRA-3

Second generation

First generation

X-ray

tubes

ESRF (2000)

ESRF (1994)

1900 1920 1940 1960 1980 2000

ESRF (1994)

2ème generation

1ère génération

Tubes àrayons X

Années

ESRF (futur)

Limite de diffraction

ESRF (2000)3ème

generation

Lasers àélectrons libres

Rayonnementsynchrotron

1020

1018

1016

1014

1012

1010

108

1021

1022

1023

1019

1017

1015

1013

1011

109

107

106

Brillance

(photons/s/mm2/mrad2/0.1%B.F.)

Synchrotron Sources

bri

llia

nce

Free-Electron Lasers

Page 3: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

3

The Detector Challenge:

Page 4: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

XFEL Beamline Layout

4

Page 5: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

5

The Detector Challenge:

• Spectroscopy (determine energy of the X-rays): – meV – 1 keV resolution

– time resolved (100 psec) – static

• Imaging (determine intensity distribution) – Micro-meter – millimeter resolution

– Tomographic

– Time resolved

• Scattering (determine intensity as function momentum transfer = angle) – Small angel – protein crystallography

– Diffuse – Bragg

– Crystals - liquids

Page 6: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

6

What are the basic principles ?

1. In order to detect you have to transfer energy from the particle to the detector

2. X-ray light is quantized (photons)

3. A photon is either fully absorbed or not at all (no track like for MIPs)

4. The energy absorbed is transferred into an electrical signal and then into a number (digitized).

Page 7: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

7

Signal Generation Needs transfer of Energy

Any form of elementary excitation can be used to detect the radiation signal:

Ionization (gas, liquids, solids)

Excitation of optical states (scintillators)

Excitation of lattice vibrations (phonons)

Breakup of Cooper pairs in superconductors

Typical excitation energies:

Ionization in semiconductors: 1 – 5 eV

Scintillation: appr. 20 eV

Phonons: meV

Breakup of Cooper pairs: meV

Page 8: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

8

Ge Si GaAs

Eg = 0.7 eV Eg = 1.1 eV Eg = 1.4 eV

Indirect band gap Direct band gap

Band structure (3)

Page 9: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

9

What would you like to know about your X-rays?

1. Intensity or flux (photons/sec)

2. Energy (wavelength)

3. Position (or mostly angles)

4. Arrival time (time resolved

experiments)

5. Polarization

Page 10: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

10

4 modes of detection

1. Current (=flux) mode operation

2. Integration mode operation

3. Photon counting mode operation

4. Energy dispersive mode operation

Page 11: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

11

Current mode operation

detector I

X-ray

Integrating mode operation

X-ray

detector C V(t)

Page 12: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

12

Photon counting mode

V(t) detector

X-ray

C R

Lower threshold

Upper threshold

Page 13: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

13

Energy dispersive mode

detector

X-ray

C V(t) R

Height total charge = energy of the photon

Page 14: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

14

Some general detector parameters

• QE = quantum efficiency = fraction of incoming photons

detected (<1.0). You want this to be as high as possible.

• DQE = detective quantum efficiency =

You can never increase signal, nor decrease noise! So

signal to noise will always degrade in the detector. (NB:

signal to noise is the most important parameter when

you measure something!)

• Gain = relation between your signal strength (V, A, ADU)

and the number of photons.

01.in

out

noisesignal

noisesignal

Page 15: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

15

Some more parameters for 2D systems

• Point Spread Function (PSF) (Line spread function (LSF) or spatial resolution):

A very small beam (smaller than the pixel size) will produce a spot with a certain size and shape. Very important are the FWHM; and the tails of the PSF.

This is experimentally difficult use sharp edge and LSF

Note: pixel size is not spatial resolution! (but should be close to it in an optimal design).

Page 16: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

16

Some more parameters for 2D systems

• Modulation Transfer Function (MTF):

How is a spatially modulated signal (line pattern)

recorded (transferred) by the detector?

This depends on the frequency.

Is directly related to the LSF and the DQE

MinMax

MinMaxcontrastModulation

Page 17: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

17

100 %

0 %

Page 18: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

18

Some more parameters for 2D systems

• Modulation Transfer Function (MTF) Example

010100

0100.

contrastIdeal:

Effect of noise: 5050150

50150.

contrast

Effect of PSF: 502575

2575.

contrast

Page 19: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

• Pulse length: 103 shorter (100 fsec vs 100

psec)

• Emmittance: 102 horizontal, 3 vertical

lower

• Intensity per pulse: 3x102 higher (1012 ph)

• Monochromaticity: 10 better

Peak brilliance: 109 higher

FEL Sources vs. Storage Rings

19

Page 20: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

FEL Challenge: Different Science

• Completely new

science

• Fast science 100 fsec

• “Single shot” science

x109

Page 21: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

1. Single shot-science: 1012 ph in 100 fsec

(complete) ionization of sample;

followed by coulomb explosion.

• Fortunately scattering is faster: “diffract-and-

destroy”. (<50 fsec) (Nature 406, 752, (2000)).

• Crystal diffraction is “self-gating” (Nature Photonics, 6,

35, (2012)).

Consequences for the detector: (H.Graafsma; Jinst, 4, P12011, (2009))

21

Page 22: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

Single shot imaging…

K. J. Gaffney and H. N. Chapman,

Science 8 June 2007

Page 23: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

1. Single shot-science: 1012 ph in 100 fsec

(complete) ionization of sample; followed by

coulomb explosion.

• Fortunately scattering is faster: “diffract-and-destroy”.

(<50 fsec) (Nature 406, 752, (2000)).

• Crystal diffraction is “self-gating” (Nature Photonics, 6, 35,

(2012)).

2. Central hole in detector & no beamstop: 1012 ph

@ 12 keV 1K rise in mm3 Cu 3000 K per

bunch train + huge background

Consequences for the detector:

23

Page 24: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

Radiation doses: worst case (?)

> 5000 h User-operation per year

> Undulator shared between 2 experiments 2500 hrs/exp./year

> Date taking 50% (rest alignment etc.) 1250 hrs/year

> Each branch can take ½ of the load: 15000 pulses/sec

6.75 1010 pulses/year

> Certain experiments expect 5 x104 photons per pixel (200 mm) per

pulse. Small angle and liquid scattering always same place on detector

3.4 1015 photons/year = 1016 ph/3 years

(@ 12 keV silicon surface dose of 1 Giga Gray!!!)

Page 25: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

Angular coverage / detector size:

> 12 keV = 0.1 nm in order to study features (d) to atomic resolution.

> Bragg’s law (2dsin(q) = l) 2q = 60 degrees 120 degrees total

2q

Liquid scattering: momentum transfer 10 A-1 200 degrees back scattering

Page 26: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

Angular resolution 2 examples:

Coherent Diffractive Imaging (CDI):

> 0.1 nm spatial features: dmin

> 100 nm samples (e.g. virus): D

Nyquist >2000 sampling points (pixels) 0.5 mrad

D2q = dmin x asin(l/2dmin) / 2D

X-ray Photon Correlation Spectroscopy:

Speckle size: Qs = l/D, D is sample or beam size

Compromise between sample heating (large beam) and speckle size

(small beam)

25 mm beam at l=0.1 nm 4 mrad speckles (80 mm at 20 m)

Page 27: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

E-XFEL Challenge: Time structure = difference with “others”

600 ms

99.4 ms

100 ms 100 ms

220 ns

FEL

process

X-ray photons

<100 fs

Electron bunch trains; up to 2700 bunches in 600 msec, repeated 10 times per second.

Producing 100 fsec X-ray pulses (up to 27 000 bunches per second).

27 000 bunches/s

But with

4.5 MHz rep rate

Page 28: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

XFEL Detector requirements

4.5 MHz

Page 29: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

The XFEL solutions:

Hybrid Pixel Array Detectors

Page 30: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

Hybrid Pixel Array Detector (HPAD)

Diode Detection Layer

• Fully depleted, high resistivity

• Direct x-ray conversion

• Silicon, GaAs, CdTe, etc.

Connecting Bumps

• Solder or indium

• 1 per pixel

CMOS Layer

• Signal processing

• Signal storage & output

Gives enormous flexibility!

X-rays

Page 31: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

31

Hybrid Pixel Detectors

Particle / X-ray Signal Charge Electr. Amplifier Readout Digital Data

Pixelated

Particle

Sensor

Amplifier &

Readout Chip

CMOS

Indium Solder

Bumpbonds Data Outputs

Power

Clock Inputs

Connection

wire pads

Power

Inputs

Outputs

Particle / X-ray

Qsignal

Page 32: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

32

The new generation: Medipix et al.

Au

Sensor Substrate

InGaAs

UBM

Insulator

CMOS ROIC

Au

UBM

Al

bump Au

Sensor Substrate

InGaAs

UBM

Insulator

Au

UBM

Al

Au

Sensor Substrate

Al

UBM

Insulator

UBM

Al

Page 33: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

33

Why are HPADs so popular ?

• Custom design of functionality: you design

your readout chip specific for your

application (unlike CCDs).

• Direct detection good spatial resolution

• Massive parallel detection high flux

• But: development takes long and is

expensive.

Page 34: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

The Adaptive Gain Integrating Pixel Detector The AGIPD consortium:

PSI/SLS -Villingen: chip design; interconnect and module assembly

Universität Bonn: chip design

Universität Hamburg: radiation damage tests, “charge explosion” studies; and sensor design

DESY: chip design, interface and control electronics, mechanics, cooling; overall coordination

Some Facts

6 years development

~ 20 people

Some Milestones

First 16x16 pixels prototype End 2010

Definition of final design Summer 2011

Production, assembly and test >2013

Page 35: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

The Adaptive Gain Integrating Pixel Detector

C1

Leakage comp.

C2

C3

Discr.

Contr

ol lo

gic

Trim DAC

Vthr VADCmax

Analo

gue

encodin

g

Normal Charge

sensitive amplifier

High dynamic range:

Dynamically gain switching system

Extremely fast readout (200ns):

Analogue pipeline storage

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

0 5000 10000 15000Number of 12.4 KeV - Photons

Ou

tpu

t V

olta

ge

[V

]

Cf=100fF Cf=1500fF Cf=4800fF

Page 36: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

2,50E+03

3,00E+03

3,50E+03

4,00E+03

4,50E+03

5,00E+03

5,50E+03

6,00E+03

6,50E+03

7,00E+03

0,00E+000 1,00E+003 2,00E+003 3,00E+003 4,00E+003 5,00E+003 6,00E+003 7,00E+003 8,00E+003 9,00E+003 1,00E+004

Charge [Clk]

Am

pli

tud

e [

LS

B]

Analogue Pix 0 Analogue Pix 1 Analogue Pix 2 Analogue Pix 3

Gain Pix 0 Gain Pix 1 Gain Pix 2 Gain Pix 3

2,87E+3 + 3,26E+1x 2,80E+3 + 2,77E+1x 2,75E+3 + 2,52E+1x 2,77E+3 + 2,94E+1x

3,61E+3 + 1,42E+0x 3,54E+3 + 1,20E+0x 3,49E+3 + 1,11E+0x 3,47E+3 + 1,28E+0x

3,96E+3 + 3,03E-1x 3,79E+3 + 2,84E-1x 3,70E+3 + 2,70E-1x 3,76E+3 + 2,87E-1x

AGIPD03 Gains 0 Gy

>Gain Ratios:

>H/M= 23.0 (23.1; 23.0; 22.8; 23.0)

>M/L= 4.37 (4.67; 4.23; 4.10; 4.46)

Not corrected for variation of charge injection circuit

Page 37: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

AGIPD – Analogue Memory &

Radiation Hardness

+ -

THR

DAC SW CTRL

Analogue Mem

Analogue Mem

CDS

RO Amp

R O

B u s

>Droop (loss of signal)

•Time

•Radiation dose

Page 38: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

600 ms

99.4 ms

100 ms 100 ms

Electron bunch trains; up to 2700 bunches in 600 msec, repeated 10 times per second.

Producing 100 fsec X-ray pulses (up to 27 000 bunches per second).

Store and read: for 100 msec

Write: within 220 nsec

Page 39: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

AGIPD - Analogue Memory

100 msec “loss free” Charge Storage in Analogue Pipeline

• Switch design is the challenge

• Thick oxide & MIM caps in IBM process are OK

AGIPD analogue memory:

• DGNCAP (thick oxide n-FET in n-well) caps

• Minimise voltage drop across T1

– Floating n-well

– Special precautions for radiation hardness needed

Page 40: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

AGIPD03 Memory Leakage

-120

-100

-80

-60

-40

-20

0

20

1,00E-004 1,00E-003 1,00E-002 1,00E-001 1,00E+000

Storage time [s]

Dro

op

(a

v. r

ed

uc

tio

n o

f d

yn

am

ic r

an

ge

) [%

]

RVT-IN-GND (0Gy) RVT-VDD-GND (0Gy)

RVT-IN-GND (100kGy) RVT-VDD-GND (100kGy)

RVT-IN-GND (1MGy) RVT-VDD-GND (1MGy)

LP-IN-GND (0Gy) LP-VDD-GND (0Gy)

LP-IN-GND (100kGy) LP-VDD-GND (100kGy)

LP-IN-GND (1MGy) LP-VDD-GND (1MGy)

LP-VDD-VDD (0Gy) RVT-VDD-VDD (0Gy)

LP-VDD-VDD (100kGy) RVT-VDD-VDD (100kGy)

LP-VDD-VDD (1MGy) RVT-VDD-VDD (1MGy)

Transistor type – connection of upper n-well – potential of guard ring

Page 41: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

AGIPD ASIC

Sensor ASIC per pixel

ASIC

periphery

Chip output driver

Mux

HV

+ -

THR

DAC SW CTRL

Analog Mem

Analog Mem

CDS

RO Amp

Calibration circuitry

Adaptive gain amplifier

352 analog memory cells

… … R

O b

us (

per

colu

mn)

Pixel matrix

Page 42: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

Imaging with AGIPD 0.2 prototype

Page 43: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

The Adaptive Gain Integrating Pixel Detector

Connector to interface HDI Base plate

sensor chip wire bond bump bond

~ 2mm

~220 mm

1k x 1k (2k x 2k)

64 x 64

pixels

Basic parameters

•1 Megapixel detector (1k 1k)

•200mm 200mm pixels

•Flat detector

•Sensor: Silicon 128 x 512 pixel tiles

•Single shot 2D-imaging

•4.5 MHz frame rate

•2 104 photons dynamic range

•Adaptive gain switching

•Single photon sensitivity at 12keV

•Noise 300e

•Storage depth 350 images

•Analogue readout between bunch-trains

Page 44: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

Calibration challenges:

> 106 x 3 gains; with > 10 points per gain curve: O(107)

> 106 x 350 storage cells > 10 points per droop curve: O(109)

> How to store the calibration data and how to correct data?

> How often do we need to recalibrate

> On-chip calibration sources

> Cross calibration with physics (photons, alpha, …)

> How long does this all take?

Page 45: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

45

Some reflections on the future

• Active Sensors (DSSC)

Page 46: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

DSSC - DEPMOS Sensor with Signal Compression

> MPI-HLL, Munich

> Universität Heidelberg

> Universität Siegen

> Politecnico di Milano

> Università di Bergamo

> DESY, Hamburg

>Hexagonal pixels 200mm pitch

• combines DEPFET

• with small area drift detector (scaleable)

> DEPFET per pixel

> Very low noise (good for soft X-rays)

> non linear gain (good for dynamic range)

> per pixel ADC

> digital storage pipeline

46

Page 47: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

Output voltage as function of charge

injected charge

DEPMOS Sensor with Signal Compression

DEPFET: Electrons are collected in a storage well

⇒Influence current from source to drain

source drain

gate

Fully depleted silicon e-

Storage well

injected charge

DSSC

47

Page 48: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

48

Some reflections on the future

• Active Sensors (DSSC)

• Built-in intelligence per pixel (AGIPD)

Page 49: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

49

Some reflections on the future

• Active Sensors (DSSC)

• Built-in intelligence per pixel (AGIPD)

• Communication pixels (Medipix-3)

Page 50: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

50

55m

The winner takes

all

• Charge processed is

summed in every 4

pixel cluster on an

event-by-event basis

• The incoming

quantum is assigned as

a single hit

Medipix3 – charge summing concept

Page 51: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

51

Some reflections on the future

• Active Sensors (DSSC)

• Built-in intelligence per pixel (AGIPD)

• Communication pixels (Medipix-3)

• More functionality per area/pixel: 3D-ASIC

technology (Helmholtz Cube)

Page 52: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

52

Hybridization

Cut the sensor as close as possible

Use thinned readout chips

Stay within the exact n-fold pixel pitch

Page 53: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

53

XFS Module Specification: PSI/SLS

Operate 2x4 (8) Chips per Module. ~78 x 39 mm2

Page 54: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

54

PILATUS @ SLS

Courtesy: Ch. Brönnimann, PSI SLS Detector Group

Sensor

Read-out chips

Wire bonds

Base plate

Al support

Module Control Board MCB Cable

Page 55: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

55

Page 56: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

Current State-of-the-art

Page 57: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

The “Helmholtz-Cube” Vertically Integrated Detector Technology

Replace standard sensor with:

3D and edgeless sensors, as well

as High-Z

Replace standard bump-

bonds with new

interconnect techniques

Replace standard ASIC and wire

bonds with thinned ASICs and

TSV as well as ball-grid arrays

Replace standard

ASIC with 3D-ASICs

Develop new high speed IO’s

Page 58: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

58

Page 59: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

59

3D-ASIC technology

Page 60: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

60

Page 61: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

The “Helmholtz-Cube” Vertically Integrated Detector Technology

S

Electrical + Cooling + Support

Power-in Optical I/O

Sensor Analogue ASIC Digital ASIC I/O ASIC

Page 62: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

62

Page 63: Introduction to Synchrotron Radiation Detectors - DESYgarutti/LECTURES/ParticleDetectorSS12/L7_IntroductionSync... · Introduction to Synchrotron Radiation Detectors Heinz Graafsma

63

Summary Detectors

• Signal-to-noise ratio most fundamental parameter in measurements.

• A detector is always a compromise (ex. speed vs. noise). Application determines what you compromise.

• Never take a detector as a “perfect black box”, be aware of limitations.

• Understanding your detector is part of understanding your science.