56
Introduction to Statistics Mahmoud Alhussami, DSc., PhD.

Introduction to statistics 2013

  • Upload
    -

  • View
    215

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Introduction to statistics 2013

Introduction to StatisticsMahmoud Alhussami, DSc., PhD.

Page 2: Introduction to statistics 2013

Course Objectives Understand the basic statistical concepts and their

application to health care research Develop and understand the necessary computer skills,

using the SPSS, to conduct basic statistical analyses Differentiate between parametric and nonparametric tests

and comprehend their underlying assumptions Decide what statistical technique will provide the best

answer to a given research question To expose students to a variety of statistical techniques for

dealing with the challenges presented by a given data.

Page 3: Introduction to statistics 2013

Purposes of Statistics To describe and summarize information

thereby reducing it to smaller, more meaningful sets of data.

To make predictions or to generalize about occurrences based on observations.

To identify associations, relationships or differences between the sets of observations.

Page 4: Introduction to statistics 2013

Useful Tips It is not possible to show all types of

statistical analysis for even one package. You will want to look at recent texts. Using clinical examples in learning. More focus will be on producing the right

analysis and how to interpret results. You cannot do anything until you have

entered the data.

Page 5: Introduction to statistics 2013

Population and Sampling Population. Universe. The entire category under consideration. This

is the data which we have not completely examined but to which our conclusions refer.   The population size is usually indicated by a capital N. The entire aggregation of cases that meet a designated set of criteria. Examples: every lawyer in Jordan; all single women in Jordan.

Sample. That portion of the population that is available, or to be made available, for analysis. A subset of the units that compose the population. A good sample is representative of the population. The sample size is shown as lower case n. If your company manufactures one million laptops, they might take a sample of

say, 500, of them to test quality. The population size is N = 1,000,000 and the sample size is n= 500.

Page 6: Introduction to statistics 2013

Population and Sampling Sampling: the process of selecting portion of

the population. Representativeness: the key characteristic of

the sample is close to the population. Strata: two or more subgroup Sampling bias: excluding any subject without

any scientific rational. Or not based on the major inclusion and exclusion criteria.

Page 7: Introduction to statistics 2013

Example Studying the self esteem and academic

achievement among college students. Population: all student who are enrolled in

any college level. Sample: students’ college at the University of

Jordan.

Page 8: Introduction to statistics 2013

What is sampling?

Sampling is the selection of a number of study units/subjects from a defined population.

Page 9: Introduction to statistics 2013

Questions to Consider

Reference population – to who are the results going to be applied?

What is the group of people from which we want to draw a sample (study population)?

How many people do we need in our sample? How will these people be selected?

Page 10: Introduction to statistics 2013

Sampling - Populations

Reference Population

Study Population

Sampling Frame

Study Subjects

Page 11: Introduction to statistics 2013

Population Is a complete set of persons or objects that

possess some common characteristic that is of interest to the researcher. Two groups:

The target population

The accessible population

Page 12: Introduction to statistics 2013

Target Population The entire group of people or objects to which the

researcher wishes to generalize the findings of a study.

Target population should meet the criteria of interest to the researcher

Example: all people who were admitted to the renal unit for dialysis in Al-Basheer hospital during the period of 2011 – 2012.

Page 13: Introduction to statistics 2013

Accessible Population The group of people or objects that is available to

the researcher for a particular study

Page 14: Introduction to statistics 2013

Sampling Element: The single member of the

population (population element or population member are used interchangeably

Sampling frame is the listing of all elements of a population, i.e., a list of all medical students in the university of Jordan, 2010-2012.

Page 15: Introduction to statistics 2013

Sampling Methods

Sampling depends on the sampling frame. Sampling frame: is a listing of all the units

that compose the study population.

Page 16: Introduction to statistics 2013

Primary vs Secondary Data Primary data. This is data that has been compiled by the

researcher using such techniques as surveys, experiments, depth interviews, observation, focus groups.

Types of surveys. A lot of data is obtained using surveys. Each survey type has advantages and disadvantages. Mail: lowest rate of response; usually the lowest cost Personally administered: can “probe”; most costly; interviewer

effects (the interviewer might influence the response) Telephone: fastest Web: fast and inexpensive

Page 17: Introduction to statistics 2013

Primary vs Secondary Data Secondary data. This is data that has been compiled

or published elsewhere, e.g., census data. The trick is to find data that is useful. The data was probably

collected for some purpose other than helping to solve the researcher’s problem at hand.

Advantages: It can be gathered quickly and inexpensively. It enables researchers to build on past research.

Problems: Data may be outdated. Variation in definition of terms. Different units of measurement. May not be accurate (e.g., census undercount).

Page 18: Introduction to statistics 2013

Primary vs Secondary Data Typical Objectives for secondary data research

designs: Fact Finding. Examples: amount spend by industry and

competition on advertising; market share; number of computers with modems in U.S., Japan, etc.

Model Building. To specify relationships between two or more variables, often using descriptive or predictive equations. Example: measuring market potential as per capita income plus the number cars bought in various countries.

Longitudinal vs. static studies.

Page 19: Introduction to statistics 2013

Survey Errors Response Errors. Data errors that arise from issues with survey responses.

subject lies – question may be too personal or subject tries to give the socially acceptable response (example: “Have you ever used an illegal drug? “Have you even driven a car while intoxicated?”)

subject makes a mistake – subject may not remember the answer (e.g., “How much money do you have invested in the stock market?” 

interviewer makes a mistake – in recording or understanding subject’s response 

interviewer cheating – interviewer wants to speed things up so s/he makes up some answers and pretends the respondent said them.

interviewer effects – vocal intonation, age, sex, race, clothing, mannerisms of interviewer may influence response. An elderly woman dressed very conservatively asking young people about usage of illegal drugs may get different responses than young interviewer wearing jeans with tattoos on her body and a nose ring.

Page 20: Introduction to statistics 2013

Nonresponse error. If the rate of response is low, the sample may not be representative. The people who respond may be different from the rest of the population. Usually, respondents are more educated and more interested in the topic of the survey. Thus, it is important to achieve a reasonably high rate of response. (How to do this? Use follow- ups.)

Which Sample is better?

   

Answer: A small but representative sample can be useful in making inferences. But, a large and probably unrepresentative sample is useless. No way to correct for it. Thus, sample 1 is better than sample 2.

 

Sample 1Sample 2

Sample sizen = 2,00090%

Rate of Responsen = 1,000,00020%

Page 21: Introduction to statistics 2013

Types of samples Nonprobability Samples – based on convenience or

judgment Convenience (or chunk) sample - students in a class, mall intercept Judgment sample - based on the researcher’s judgment as to what constitutes

“representativeness” e.g., he/she might say these 20 stores are representative of the whole chain.

Quota sample - interviewers are given quotas based on demographics for instance, they may each be told to interview 100 subjects – 50 males and 50 females. Of the 50, say, 10 nonwhite and 40 white.

The problem with a nonprobability sample is that we do not know how representative our sample is of the population.

Page 22: Introduction to statistics 2013

Probability Samples Probability Sample. A sample collected in such a

way that every element in the population has a known chance of being selected.

One type of probability sample is a Simple Random Sample. This is a sample collected in such a way that every element in the population has an equal chance of being selected.

  How do we collect a simple random sample?

Use a table of random numbers or a random number generator.

Page 23: Introduction to statistics 2013

Probability Samples Other kinds of probability samples (beyond the scope

of this course). systematic random sample.

Choose the first element randomly, then every kth observation, where k = N/n

stratified random sample. The population is sub-divided based on a characteristic and a simple

random sample is conducted within each stratum cluster sample

First take a random sample of clusters from the population of cluster. Then, a simple random sample within each cluster. Example, election district, orchard.

Page 24: Introduction to statistics 2013

Types of Data Qualitative data result in categorical responses. Also called

Nominal, or categorical data Example: Sex MALE FEMALE

Quantitative data result in numerical responses, and may be discrete or continuous. Discrete data arise from a counting process.

Example: How many courses have you taken at this College? ____ Continuous data arise from a measuring process.

Example: How much do you weigh? ____

One way to determine whether data is continuous, is to ask yourself whether you can add several decimal places to the answer. For example, you may weigh 150 pounds but in actuality may weigh

150.23568924567 pounds. On the other hand, if you have 2 children, you do not have 2.3217638 children.

Page 25: Introduction to statistics 2013

Variables

Measurable characteristic of a person, object or phenomenon which can take on different values Weight Distance Monthly income Number of children Color Outcome of disease Types of food Sex

Variables allow clear definition of the core problem and influencing factors by introducing the concept of value

While factors are stated in negative form variables must be stated in neutral form to allow both negative and positive values

represent information that must be collected in order to meet the objectives of a study

Page 26: Introduction to statistics 2013

Types of Variables Continuous (e.g., height) Discrete (e.g., number of children) Categorical (e.g., marital status) Dichotomous (e.g., gender) Attribute variable vs. Active variable

Attribute Variable: Preexisting characteristics which researcher simply observes and measures. E.g. blood type.

Active Variable: Researcher creates or manipulates this. E.g. experimental drug.

Page 27: Introduction to statistics 2013

Types of Variables (cont.)

Independent variable—the presumed cause (of a dependent variable)

Dependent variable—the presumed effect (of an independent variable)

Example: Smoking (IV) Lung cancer (DV)

Page 28: Introduction to statistics 2013

Problem Diagram

Poor patientCompliance

With therapy

InappropriateManagement

Of complications

High rateOf severemalaria

Delayed Health Seeking

InsufficientPeripheralfacilities

High rate of Complicated

malaria

Page 29: Introduction to statistics 2013

Transforming factors into variables

patientCompliance

With therapy

ManagementOf

complications

rateOf severemalaria

Health Seeking

behaviour

Peripheralfacilities

High rate of Complicated

malaria

InsufficientPeripheralfacilities

Delayed Health Seeking

High rateOf severemalaria

InappropriateManagement

Of complications

Poor patientCompliance

With therapy

Page 30: Introduction to statistics 2013

Operationalizing variables Choosing appropriate indicators

level of knowledge may be assessed by asking several questions on whose basis categories can be defined

nutritional status may be assessed by standards already set (weight for age, weight for height, height for age and upper arm circumference)

Social class may be assessed be based on Occupation Education Income Crowding index, Residence Home amenities Self perception

Clearly define the variables age (age to the nearest year or age at last birthday?) waiting time in a clinic (from time of entering clinic or from time of

getting a card?)

Page 31: Introduction to statistics 2013

Scale of variable measurement Continuous variable

continuum of measurement. Ordinal variables

categorical variables with categories that can be ranked in increasing or decreasing order (high, medium or low income) Disability Seriousness of diseases Agreement with statement

Nominal variables categorical variables with categories that cannot be ranked in order

Sex Main food crops

Page 32: Introduction to statistics 2013

Dependent and Independent Variable

Dependent variable Describes or measures the problem of the study

Class performance HIV prevalence Incidence of hospital acquired infections

Independent variables Describes or measures factors that are assumed to cause or at least

influence the problem Mother’s education Occupation Residential area

Page 33: Introduction to statistics 2013

Confounding Variables

Effect/Outcome(Dependent var)

Cause(Independent variable)

Other factor(Confounding variable)

Mother’s income malnutrition

Family income

Page 34: Introduction to statistics 2013

Measurement Measurement is the process of assigning

numbers to variables to represent the amount of an attribute, using a specified set of rules by counting, ranking, and comparing objects or events.

Advantages: Removes guesswork. Provides precise information. Less vague than words.

Page 35: Introduction to statistics 2013

Levels of Measurement Nominal Ordinal Interval Ratio

Page 36: Introduction to statistics 2013

Levels of Measurement

Page 37: Introduction to statistics 2013

Nominal Level of Measurement Categories that are distinct from each

other such as gender, religion, marital status.

They are symbols that have no quantitative value.

Lowest level of measurement. Many characteristics can be measured on

a nominal scale: race, marital status, and blood type.

Dichotomas.

Page 38: Introduction to statistics 2013

Nominal Level of Measurement Nominal data is the same as Qualitative. It is a classification and

consists of categories. When objects are measured on a nominal scale, all we can say is that one is different from the other. Examples: sex, occupation, ethnicity, marital status, etc. [Question: What is the average SEX in this room? What is the average

RELIGION?] Appropriate statistics: mode, frequency We cannot use an average. It would be meaningless here.

Example: Asking about the “average sex” in this class makes no sense (!). Say we have 20 males and 30 females. The mode – the data value that occurs

most frequently - is ‘female’. Frequencies: 60% are female. Say we code the data, 1 for male and 2 for female: (20 x 1 + 30 x 2) / 50 = 1.6 Is the average sex = 1.6? What are the units? 1.6 what? What does 1.6 mean?

Page 39: Introduction to statistics 2013

Ordinal Level of Measurement The exact differences between the ranks

cannot be specified such as it indicates order rather than exact quantity.

Involves using numbers to designate ordering on an attribute.

Example: anxiety level: mild, moderate, severe. Statistics used involve frequency distributions and percentages.

Page 40: Introduction to statistics 2013

Ordinal Level of Measurement Ordinal data arises from ranking, but the intervals between the points are not

equal We can say that one object has more or less of the characteristic than another

object when we rate them on an ordinal scale. Thus, a category 5 hurricane is worse than a category 4 hurricane which is worse than a category 3 hurricane, etc. Examples: social class, income as categories, class standing, rankings of football teams, military rank (general, colonel, major, lieutenant, sergeant, etc.), …

Example: Income (choose one)_Under $20,000 – checked by, say, John Smith_$20,000 – $49,999 – checked by, say, Jane Doe_$50,000 and over – checked by, say, Bill GatesIn this example, Bill Gates checks the third category even though he earns several billion dollars. The

distance between Gates and Doe is not the same as the distance between Doe and Smith. Appropriate statistics: – same as those for nominal data, plus the median; but not

the mean.

Page 41: Introduction to statistics 2013

Ordinal Level of Measurement

Ranking scales are obviously ordinal. There is nothing absolute here.

Just because someone chooses a “top” choice does not mean it is really a top choice.

Page 42: Introduction to statistics 2013

Interval level of Measurement They are real numbers and the difference

between the ranks can be specified. Involves assigning numbers that indicate both

the ordering on an attribute, and the distance between score values on the attribute

They are actual numbers on a scale of measurement.

Example: body temperature on the Celsius thermometer as in 36.2, 37.2 etc. means there is a difference of 1.0 degree in body temperature.

Page 43: Introduction to statistics 2013

Interval level of Measurement Equal intervals, but no “true” zero. Examples: IQ,

temperature, GPA. Since there is no true zero – the complete absence of the

characteristic you are measuring – you cannot speak about ratios.

Example: Suppose New York temperature is 40 degrees and Buffalo temperature is 20 degrees. Does that mean it is twice as cold in Buffalo as in NY? No.

Appropriate statistics same as for nominal same as for ordinal plus, the mean

Page 44: Introduction to statistics 2013

Ratio level of Measurement Is the highest level of data where data

can categorized, ranked, difference between ranks can be specified and a true or natural zero point can be identified.

A zero point means that there is a total absence of the quantity being measured.

Example: total amount of money.

Page 45: Introduction to statistics 2013

Ratio level of Measurement Ratio data has both equal intervals and a “true”

zero. Examples: height, weight, length, units sold

All scales, whether they measure weight in kilograms or pounds, start at 0. The 0 means something and is not arbitrary.

100 lbs. is double 50 lbs. (same for kilograms) $100 is half as much as $200

Page 46: Introduction to statistics 2013

What type of data to collect? The goal of the researcher is to use the

highest level of measurement possible. Example: Two ways of asking about Smoking

behavior. Which is better, A or B?(A) Do you smoke? Yes No (B) How many cigarettes did you smoke in the last 3 days (72

hours)?

(A) Is nominal, so the best we can get from this data are frequencies. (B) is ratio, so we can compute: mean, median, mode, frequencies.

Page 47: Introduction to statistics 2013

What type of data to collect?Example Two: Comparing Soft Drinks. Which is better, A or B?

(A) Please rank the taste of the following soft drinks from 1 to 5 (1=best, 2= next best, etc.) __Coke __Pepsi __7Up __Sprite __Dr. Pepper

(B) Please rate each of the following brands of soft drink:Scale (B) is almost interval and is usually treated so – means are computed. We

call this a rating scale. By the way, if you hate all five soft drinks, we can determine this by your responses. With scale (A), we have no way of knowing whether you hate all five soft drinks.

Rating Scales – what level of measurement? Probably better than ordinal, but not necessarily exactly interval. Certainly not ratio. Are the intervals between, say, “excellent” and “good” equal to

the interval between “poor” and “very poor”? Probably not. Researchers typically assume that a rating scale is interval.

Page 48: Introduction to statistics 2013

Parameter and Statistic Parameter: A characteristic of a population. The population

mean, μ, and the population standard deviation, σ, are two examples of population parameters. If you want to determine the population parameters, you have to take a census of the entire population. Taking a census is very costly. Parameters are numerical descriptive measures corresponding to populations. Since the population is not actually observed, the parameters are considered unknown constants.

Statistic: Is a measure that is derived from the sample data. For example, the sample mean, xZ , and the standard deviation, s, are statistics. They are used to estimate the population parameters.

Page 49: Introduction to statistics 2013

Statistics It is a branch of applied mathematics that deals with

collecting, organizing, & interpreting data using well-defined procedures in order to make decisions.

The term parameter is used when describing the characteristics of the population. The term statistics is used to describe the characteristics of the sample.

Types of Statistics: Descriptive Statistics. It involves organizing, summarizing &

displaying data to make them more understandable. Inferential Statistics. It reports the degree of confidence of the sample

statistic that predicts the value of the population parameter

Page 50: Introduction to statistics 2013

Descriptive Statistics Those statistics that summarize a sample of numerical data

in terms of averages and other measures for the purpose of description, such as the mean and standard deviation. Descriptive statistics, as opposed to inferential statistics, are not concerned

with the theory and methodology for drawing inferences that extend beyond the particular set of data examined, in other words from the sample to the entire population. All that we care about are the summary measurements such as the average (mean).

Thus, a teacher who gives a class, of say, 35 students, an exam is interested in the descriptive statistics to assess the performance of the class. What was the class average, the median grade, the standard deviation, etc.? The teacher is not interested in making any inferences to some larger population.

This includes the presentation of data in the form of graphs, charts, and tables.

Page 51: Introduction to statistics 2013

A Distribution of Data values for Quantitative Variables

can be Described in Terms of Three Characteristics Measures of LocationMeasures of Location

Measures of Central Tendency:Measures of Central Tendency: MeanMean MedianMedian ModeMode

Measures of noncentral Tendency-Quantiles:Measures of noncentral Tendency-Quantiles: Quartiles.Quartiles. Quintiles.Quintiles. Percentiles.Percentiles.

Measure of Dispersion (Variability):Measure of Dispersion (Variability): RangeRange Interquartile rangeInterquartile range VarianceVariance Standard DeviationStandard Deviation Coefficient of variation Coefficient of variation

Measures of Shape:Measures of Shape: Mean Mean > Median-positive or right Skewness > Median-positive or right Skewness Mean = Median- symmetric or zero Skewness Mean = Median- symmetric or zero Skewness Mean Mean < Median-Negative of left Skewness < Median-Negative of left Skewness

Page 52: Introduction to statistics 2013

Statistical Inference

Page 53: Introduction to statistics 2013

Inferential Statistics Inferential statistics are used to test hypotheses

(prediction) about relationship between variables in the population. A relationship is a bond or association between variables.

It consists of a set of statistical techniques that provide prediction about population characteristics based on information in a sample from population. An important aspect of statistical inference involves reporting the likely accuracy, or of confidence of the sample statistic that predicts the value of the population parameter.

Page 54: Introduction to statistics 2013

Inferential Statistics Bivariate Parametric Tests:

One Sample t test (t) Two Sample t test (t) Analysis of Variance/ANOVA (F). Pearson’s Product Moment Correlations (r).

Nonparametric statistical tests: Nominal Data: Chi-Square Goodness-of-Fit Test Chi-Square Test of Independence

Nonparametric statistical tests: Ordinal Data: Mann Whitney U Test (U Kruskal Wallis Test (H)

Page 55: Introduction to statistics 2013

Statistics Unvariate statistics. It involves one variable at

a time. Example include the percentage of men and women in the sample.

Bivariate statistics. It involves two variables examined simultaneously.

Multivariate statistics. It involves three or more variables.

Page 56: Introduction to statistics 2013