59
Introduction to Seismic Imaging Alison Malcolm Department of Earth, Atmospheric and Planetary Sciences MIT August 20, 2010

Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Embed Size (px)

Citation preview

Page 1: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Introduction to SeismicImaging

Alison MalcolmDepartment of Earth, Atmospheric and

Planetary SciencesMIT

August 20, 2010

Page 2: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Outline

• IntroductionI Why we image the EarthI How data are collectedI Imaging vs inversionI Underlying physical model

• Data Model• Imaging methods

I KirchhoffI One-way methodsI Reverse-time migrationI Full-waveform inversion

• Comparison of Methods

Page 3: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Approximate Techniques

• KirchhoffI Integral techniqueI Related to X-ray CT imagingI Generalized Radon TransformI Conventionally uses ray theory

• One-wayI Based on a paraxial approximationI Usually computed with finite

differences

Page 4: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

One-Way MethodsPhysical Motivation

• downward continuation• imaging condition

Claerbout 71, 85

rs

Page 5: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

One-Way MethodsPhysical Motivation

• downward continuation• imaging condition

v/2

s ss s

s ss s s s

r r r r r r r r rr

Page 6: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

One-Way MethodsPhysical Motivation

• downward continuation• imaging condition

Claerbout 71, 85

rs

Page 7: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

One-Way MethodsPhysical Motivation

• downward continuation

• imaging condition

r rs

V(x)

s

V(x)

Page 8: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

A Data Model

δG(s, r, t) =

∫X

∫T

G0(r, t−t0, x)V(x)∂2t G0(x, t0, s)dxdt0

δG(s, r, ω) = −∫

X

ω2G0(r, ω, x)V(x)G0(x, ω, s)dx

G0(r, t, x)

s

G0(x, t, s)

V(x)

r

Page 9: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

A Data Model

δG(s, r, t) =

∫X

∫T

G0(r, t−t0, x)V(x)∂2t G0(x, t0, s)dxdt0

δG(s, r, ω) = −∫

X

ω2G0(r, ω, x)V(x)G0(x, ω, s)dx

⇓∫X

ω2G−(r, ω, x)G−(s, ω, x)V(x)dx

Page 10: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

One-Way MethodsApproximating the Wave Equation

Idea (1D, c constant):

(∂2x − ∂2

t )u = (∂x − ∂t)(∂x + ∂t)u

c not constant:

(c(x)2∂2x − ∂2

t )u = (c(x)∂x − ∂t)(c(x)∂x + ∂t)u

− c(x)(∂xc(x))∂xu

c(x) smooth ⇒ better approximation

Page 11: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

One-Way MethodsApproximating the Wave Equation

Taylor (81), Stolk & de Hoop (05)

Multi-dimensional:Lu = f

∂z

(u

∂zu

)=

(0 1

−A 0

)(u

∂zu

)+

(0

−f

)A(z, x, ∂x, ∂t) = ∂2

x − c(z, x)−2∂2t

Page 12: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

One-Way MethodsApproximating the Wave Equation

Taylor (81), Stolk & de Hoop (05)

Diagonalize in smooth background

∂z

(u+

u−

)=

(iB+ 00 iB−

)(u+

u−

)+

(f+f−

)b±(ξ, x, ω) = ±

√ξ2 − c0(x)−2ω2

B± FIOs

Solution:

G0 =

(G+ 00 G−

)

G0 propagator in c0

Page 13: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

One-Way MethodsApproximating the Wave Equation

Taylor (81), Stolk & de Hoop (05)

Diagonalize in smooth background

∂z

(u+

u−

)=

(iB+ 00 iB−

)(u+

u−

)+

(f+f−

)Solution:

G0 =

(G+ 00 G−

)

G0 propagator in c0

Page 14: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

One-Way MethodsApproximating the Wave Equation

Taylor (81), Stolk & de Hoop (05)

Relate u± to u and ∂zu(u+

u−

)= 1

2

((Q+)−1 −HQ+

(Q∗−)−1 HQ−

) (u∂zu

)

q± =

[(ω

c(z, x)

)2

− ‖ξ‖2

]−1/4

Q± differ in sub-principal partsQ± ψDOs

Page 15: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

One-Way MethodsModeling Data Stolk & de Hoop (05)

δG(s, r, ω) ≈∫X

ω2Q∗−(r)G−(r, ω, x)V(x)G+(x, ω, s)Q+(s)dxdz

V(x) = 14Q−(z, x)δc(z, x)c0(z, x)

−3Q∗+(z, x)

Page 16: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

One-Way MethodsModeling Data Stolk & de Hoop (05)

δG(s, r, ω) ≈∫X

ω2Q∗−(r)G−(r, ω, x)V(x)G+(x, ω, s)Q+(s)dxdz

V(x) = 14Q−(z, x)δc(z, x)c0(z, x)

−3Q∗+(z, x)

Reciprocity:ss r r

Page 17: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

One-Way MethodsModeling Data Stolk & de Hoop (05)

δG(s, r, ω) ≈∫X

ω2Q∗−(r)G−(r, ω, x)V(x)G+(x, ω, s)Q+(s)dxdz

V(x) = 14Q−(z, x)δc(z, x)c0(z, x)

−3Q∗+(z, x)

Drop Qs∫X

∫Z

ω2G−(0, r, ω, z, x)G−(0, s, ω, z, x)

(E2E1a)(z, x)dzdx

E2 : b(z, r, s) 7→ δ(t)b(z, r, s)E1 : a(z, x) 7→ δ(r − s)a(z, r+s

2)

Page 18: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

One-Way MethodsImaging Claerbout (78) Stolk & de Hoop (06)

• downward continuation

• imaging condition

rs

Page 19: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

One-Way MethodsImaging Claerbout (78) Stolk & de Hoop (06)

• downward continuation

d(z, s, r, t) = H(z, 0)∗Q−1∗d(s, r, t)

(H(z, z0))(s, r, t, s0, r0) =

(G−(z, z0))(r, t, r0) ∗ (G−(z, z0))(s, t, s0)

H is an FIO H ∗ H is ΨDO

• imaging condition

Page 20: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

One-Way MethodsImaging Claerbout (78) Stolk & de Hoop (06)

• downward continuation

• imaging condition

V(z, x) ≈ d(z, x, x, 0)

V(x) = 14Q−(z)δc(z, x)c0(z, x)

−3Q∗+(z)

Recall Q are ΨDOs & H∗H is ΨDO

We have again located the singularities

Page 21: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

One-Way MethodsExample

0

5dep

th (

km)

130 135lateral position (km)

Page 22: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Approximate Techniques

• KirchhoffI Integral techniqueI Related to X-ray CT imagingI Generalized Radon TransformI Conventionally uses ray theory

• One-wayI Based on a paraxial approximationI Usually computed with finite

differences

Page 23: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

‘Exact’ Techniques

• Reverse-time migration (RTM)I Run wave-equation backwardI Usually computed with finite

differencesI “No” approximations (to the acoustic,

isotropic, linearized wave-equation, for

smooth media assuming single scattering)

• Full-waveform inversion (FWI)I Iterative method to match the entire

waveformI Gives smooth part of velocity model

Page 24: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Reverse-Time MigrationModeling Data

δG(s, r, t) =

∫X

∫T

G0(r, t−t0, x)V(x)∂2t G0(x, t0, s)dxdt0

δG(s, r, ω) = −∫

X

ω2G0(r, ω, x)V(x)G0(x, ω, s)dx

G0(r, t, x)

s

G0(x, t, s)

V(x)

r

Page 25: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Reverse-Time MigrationModeling Data

δG(s, r, t) =

∫X

∫T

G0(r, t−t0, x)V(x)∂2t G0(x, t0, s)dxdt0

δG(s, r, ω) = −∫

X

ω2G0(r, ω, x)V(x)G0(x, ω, s)dx

F : δc 7→ δG is again an FIO

Page 26: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Reverse-Time MigrationForming an image

δG(s, r, ω) = −∫

X

ω2G0(r, ω, x)V(x)G0(x, ω, s)dx

F : δc 7→ δG is again an FIO

F∗ : δG 7→ δc is again an FIO

F∗F is ΨDO for complete coverageStolk et al. (09)

• no direct rays (transversal intersection)• no source-side caustics• c0 ∈ C∞

Page 27: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Reverse-Time MigrationForming an Image

Procedure:Whitmore (83), Loewenthal & Mufti (83), Baysal et al (83)

• back propagate in time

• imaging condition

G0(r, t, x)

s

G0(x, t, s)

V(x)

r

Page 28: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Reverse-Time Migrationan Adjoint State Method

Lailly (83,84), Tarantola (84,86,87) Symes (09)

For a fixed source, s,

(c−2∂2t − ∇2)q(x, t; s) =

∫Rs

δG(r, t; s)δ(x − r)dr

q(·, t, ·) = 0 for t > T

receivers act as sources, reversed in time

Im(x) =2

c2(x)

∫ ∫q(x, t; s)∂2

t G0(x, t, s)dtds

Page 29: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Reverse-Time MigrationExample Liu et al (07)

Page 30: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Reverse-Time MigrationExample Liu et al (07)

Page 31: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Reverse-Time MigrationExample Liu et al (07)

Page 32: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

‘Exact’ Techniques

• Reverse-time migration (RTM)I Run wave-equation backwardI Usually computed with finite

differencesI “No” approximations (to the acoustic,

isotropic, linearized wave-equation, for

smooth media assuming single scattering)

• Full-waveform inversion (FWI)I Iterative method to match the entire

waveformI Gives smooth part of velocity model

Page 33: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Full-waveform InversionProblem Setup Tarantola (87), Virieux & Operto (09)

Recall our initial formulation:

Lu := (∇2 −1

c2∂2

t )u = f

u = 0 t < 0

∂zu|z=0 = 0

FWI attempts to solve for c directly given u,f

no splitting of cbut band limited data ⇒ smooth solution

Page 34: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Full-waveform InversionProblem Setup Tarantola (87), Virieux & Operto (09)

Recall our initial formulation:

Lu := (∇2 −1

c2∂2

t )u = f

Compute:

minc‖Lu − d‖L2((S,R)×[0,T])

Page 35: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Full-waveform InversionSome Issues Symes (09)

Compute:

minc‖Lu − d‖L2((S,R)×[0,T])

• Objective function appears non-convexCan we restrict the domain of models sothat it is? e.g. cmin < c < cmax

• What space must c be in for objectivefunction to be differentiable?

• Data are finite bandwidth – we cannotresolve structures on all scales

Page 36: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Full-waveform InversionWork-around 1: Partial Linearization Symes (09)

Idea: Extend δc(x) from X to XExample: δc(x) 7→ δc(x, h) = δ(h)δc(x)

x

s

form image here

r

x + h/2x − h/2 image here

form extended

Claerbout (85) suggested this extension

Page 37: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Full-waveform InversionWork-around 1: Partial Linearization Symes (09)

Idea: Extend δc(x) from X to XExample: δc(x) 7→ δc(x, h) = δ(h)δc(x)

Now extendF[δc] 7→ δG

toF[δc(x, h)] 7→ δG

s.t. F is ‘invertible’ (I − F†F is smoothing)

Find c0 s.t. supp (δc(x, h)) ⊂ {(x, h)|h = 0}Stolk & de Hoop (2001), Stolk et al (2005) show invertibility

Page 38: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Full-waveform InversionWork-around 2: Separation of Scales

Pratt (99), Virieux (09)

minc‖Lu − d‖L2((S,R)×[0,T]) not convex

⇒ ‖cinitial − ctrue‖ must be small

Solve for G(ω) from ωmin to ωmax

No proof optimization converges

Page 39: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Full-waveform InversionWork-around 2: Separation of Scales, example

Virieux (09)

Page 40: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Outline

• IntroductionI Why we image the EarthI How data are collectedI Imaging vs inversionI Underlying physical model

• Data Model• Imaging methods

I KirchhoffI One-way methodsI Reverse-time migrationI Full-waveform inversion

• Comparison of Methods

Page 41: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Comparison of MethodsKirchhoff vs One-way Fehler & Huang (02)

Kirchhoff

Page 42: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Comparison of MethodsKirchhoff vs One-way Fehler & Huang (02)

Phase-shift

Page 43: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Comparison of MethodsKirchhoff vs One-way Fehler & Huang (02)

Split-step

Page 44: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Comparison of MethodsKirchhoff vs RTM Zhu & Lines (98)

Page 45: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Comparison of MethodsKirchhoff vs RTM Zhu & Lines (98)

Kirchhoff

Page 46: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Comparison of MethodsKirchhoff vs RTM Zhu & Lines (98)

Reverse-time

Page 47: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Comparison of MethodsOne-Way vs RTM Farmer (06)

Model

Page 48: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Comparison of MethodsOne-Way vs RTM Farmer (06)

One-way

Page 49: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Comparison of MethodsOne-Way vs RTM Farmer (06)

Reverse-time

Page 50: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Comparison of MethodsOne-Way vs RTM Farmer (06)

One-way

Page 51: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Comparison of MethodsOne-Way vs RTM Farmer (06)

Reverse-time

Page 52: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Comparison of MethodsReal Data Farmer 2006

Kirchhoff

Page 53: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Comparison of MethodsReal Data Farmer 2006

One-way

Page 54: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Comparison of MethodsReal Data Farmer 2006

Reverse-time

Page 55: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Summary of Methods

• Kirchhoff requires a lot of rays(or a simple model)

• One-way doesn’t handle turning waves

• RTM separation of up/down-going wavesis challenging

c0 is key• FWI optimization doesn’t convergence

from an arbitrary starting model

. . . and we never spoke about the source . . .

. . . or multiple-scattering . . .

Page 56: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

Edip Baysal, Dan D. Kosloff, and John W. C. Sherwood.

Reverse time migration.Geophysics, 48(11):1514–1524, 1983.

J. F. Claerbout.

Imaging the Earth’s Interior.Blackwell Sci. Publ., 1985.

Jon F. Claerbout.

Toward a unified theory of reflector mapping.Geophysics, 36(3):467–481, 1971.

P. A. Farmer.

Reverse time migration: Pushing beyond wave equation.EAGE Annual Meeting, 2006.

Michael C. Fehler and Lianjie Huang.

Modern imaging using seismic reflection data.Annual Review of Earth and Planetary Sciences, 30(1):259–284, 2002.

P. Lailly.

The Seismic Inverse Problem as a Sequence of Before-Stack Migrations, pages 206–220.Conference on Inverse Scattering: Theory and Applications. SIAM, Philadelphia, 1983.

P. Lailly.

Migration Methods: Partial but Efficient Solutions to the Seismic Inverse Problem.Inverse Problems on Acoustic and Elastic Waves. SIAM, Philadelphia, 1984.

Faqi Liu, Guanquan Zhang, Scott A. Morton, and Jacques P. Leveille.

Reverse-time migration using one-way wavefield imaging condition.SEG Technical Program Expanded Abstracts, 26(1):2170–2174, 2007.

Dan Loewenthal and Irshad R. Mufti.

Reversed time migration in spatial frequency domain.Geophysics, 48(5):627–635, 1983.

Page 57: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

C. C. Stolk and M. V. de Hoop.

Modeling of seismic data in the downward continuation approach.SIAM J. Appl. Math., 65(4):1388 – 1406, 2005.

C. C. Stolk and M. V. de Hoop.

Seismic inverse scattering in the downward continuation approach.Wave Motion, 43(7):579–598, 2006.

Christiaan C. Stolk, Maarten V. de Hoop, and William W. Symes.

Kinematics of shot-geophone migration.Geophysics, 74(6):WCA19–WCA34, 2009.

W. W. Symes.

The seismic reflection inverse problem.Inverse Problems, 25:123008, 2009.

A. Tarantola.

Inverse Problem Theory.Elsevier, 3 edition, 1987.

Albert Tarantola.

Inversion of seismic reflection data in the acoustic approximation.Geophysics, 49(8):1259–1266, 1984.

Albert Tarantola.

A strategy for nonlinear elastic inversion of seismic reflection data.Geophysics, 51(10):1893–1903, 1986.

M. E. Taylor.

Pseudodifferential Operators.Princton University Press, Princton, NJ, 1981.

J. Virieux and S. Operto.

An overview of full-waveform inversion in exploration geophysics.Geophysics, 74(6):WCC1–WCC26, 2009.

Page 58: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

N. D. Whitmore.

Iterative depth migration by backward time propagation.In Expanded Abstracts, page S10.1. Society of Exploration Geophysicists, 1983.

Jinming Zhu and Larry R. Lines.

Comparison of kirchhoff and reverse-time migration methods with applications to prestack depthimaging of complex structures.Geophysics, 63(4):1166–1176, 1998.

Page 59: Introduction to Seismic Imaging - Earth Sciencesamalcolm/part2.pdf · I Reverse-time migration ... • Introduction I Why we image the Earth I How data are collected ... Introduction

[10, 11, 2] [17, 12, 8] [3, 19, 9] [1, 6, 7] [15, 16, 14] [13, 5, 20] [4, 18]