Introduction to Relativistic Collisions

  • Upload
    ahsbon

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

  • 7/29/2019 Introduction to Relativistic Collisions

    1/14

    IntroductiontoRelativisticCollisions

    FrankW.K.FirkTheHenryKoernerCenterforEmeritusFaculty,YaleUniversity

    NewHavenCT06520

    Abstract:ThisintroductionisintendedforstudentstakingafirstcourseinNuclearandParticlePhysics.Electronpositronannihilationinflightisdiscussedasatopicalexampleofanexactrelativisticanalysis.

    1.4-momentumandtheenergy-momentuminvariant

    In Classical Mechanics, the concept of momentum is important

    becauseofitsrleasaninvariantinanisolatedsystem.Wetherefore

    introduce the concept of 4momentum in Relativistic Mechanics in

    order to find possible Lorentz invariants involving this new quantity.

    Thecontravariant4momentumisdefinedas:

    P=mV (1)

    wheremis themassof theparticle(it isaLorentzscalar themass

    measured in the rest frame of the particle), and V[c, vN] is the 4

    velocity. Here, is the relativistic factor and vN is theNewtonian 3

    velocity,

    Now,VV=c2,wherecistheinvariantspeedoflight,therefore

    PP=(mc)2. (2)

    The4momentumcanbewritten,

    P=[mc,mvN](3)

  • 7/29/2019 Introduction to Relativistic Collisions

    2/14

    2

    therefore,

    PP=(mc)2(mvN)2.

    Writing M=m,therelativisticmass,weobtain

    PP=(Mc)2(MvN)2=(mc)2. (4)

    Multiplyingthroughoutbyc2gives

    M2c4M2vN2c2=m2c4. (5)

    ThequantityMc2hasdimensionsofenergy;wethereforewrite

    E=Mc2, (6)

    thetotalenergyofafreelymovingparticle.

    Thisleadstothefundamentalinvariantofdynamics

    c2PP=E2(pc)2=Eo2 (7)

    where

    Eo=mc2istherestenergyoftheparticle,andpisitsrelativistic3-

    momentum.

    Thetotalenergycanbewritten:

    E=Eo

    =Eo

    +T, (8)

    where

    T=Eo(1), (9)

    therelativistickineticenergy.

  • 7/29/2019 Introduction to Relativistic Collisions

    3/14

    3

    Themagnitudeofthe4momentumisaLorentzinvariant

    |P|=mc. (10)

    The4momentumtransformsasfollows: P=LP,whereListheLorentzoperator. (11)

    2.TherelativisticDopplershift

    Forrelativemotionalongthexaxis,theequationP=LPisequivalent

    totheequations(here,=v/c)

    E=Ecpx (12)

    and,

    cpx=E+cpx. (13)

    UsingthePlanckEinsteinequationsE=handE=pxcforphotons,

    theenergyequationbecomes

    =

    =(1)

    =(1)/(12)1/2

    ={(1)/(1+)}1/2. (14)

    ThisistherelativisticDopplershiftforthefrequency,measuredinan

    inertialframe(primed)intermsofthefrequency measuredinanother

    inertialframe(unprimed).

  • 7/29/2019 Introduction to Relativistic Collisions

    4/14

    4

    3. Relativistic collisions and the conservation of 4-momentum

    Considertheinteractionbetweentwoparticles,1and2,toform

    twoparticles,3and4.(3and4arenotnecessarilythesameas1and2).Thecontravariant4momentaareP i:

    BeforeAfter3P3P1P2124P41+23+4 Allexperimentsareconsistentwiththefactthatthe4momentum

    of the system is conserved. We have, for the contravariant 4

    momentumvectorsoftheinteractingparticles.

    P1+P2=P3+P4 (15)____________initialfreestatefinalfreestate

    andasimilarequationforthecovariant4momentumvectors,

    P1+P2=P3+P4. (16)

    IfweareinterestedinthechangeP1P3,thenwerequire

    P1P3=P4P2 (17)

  • 7/29/2019 Introduction to Relativistic Collisions

    5/14

  • 7/29/2019 Introduction to Relativistic Collisions

    6/14

    6

    Thisisthebasicequationforallinteractionsinwhichtworelativistic

    entitiesintheinitialstateinteracttogivetworelativisticentitiesinthe

    finalstate.Itappliesequallywelltointeractionsthatinvolvemassiveandmasslessentities.

    3.1TheComptoneffect

    Thegeneralmethoddiscussedintheprevioussectioncanbeused

    toprovideanexactanalysisofComptonsfamousexperimentinwhich

    thescatteringofaphotonbyastationary,freeelectronwasstudied.In

    thisexample,wehave

    E1=Eph(theincidentphotonenergy),E2=Ee0(therestenergyof

    the stationary electron, the target), E3 = Eph (the energy of the

    scatteredphoton),andE4=Ee(theenergyoftherecoillingelectron).

    Therestenergyofthephotoniszero:

    EphEph=pphcEe0>

    EeThegeneralequationisnow

    02(EphEphEphEphcos)=Ee022Ee0(Eph+Ee0Eph)+Ee02(23)

    or

  • 7/29/2019 Introduction to Relativistic Collisions

    7/14

    7

    2EphEph(1cos)=2Ee0(EphEph)

    sothat

    EphEph=EphEph(1cos)/Ee0

    . (24)

    Comptonmeasuredtheenergylossofthephotononscatteringand its

    cosdependence.

    4.Relativisticinelasticcollisions

    Weshallconsideraninelasticcollisionbetweenaparticle1anda

    particle2(initiallyatrest)toformacompositeparticle3.Insucha

    collision,the4momentumisconserved(asit isin anelasticcollision)

    however,thekineticenergyisnotconserved.Partofthekineticenergy

    of particle 1 is transformed into excitation energy of the composite

    particle3.Thisexcitationenergycantakemanyformsheatenergy,

    rotational energy, and the excitation of quantum states at the

    microscopiclevel.Theinelasticcollisionisasshown:

    BeforeAfter123

    p1p2=0p3 Restenergy:E10E20E30 Totalenergy:E1E2=E20E3 3momentum:p1p2=0p3 Kineticenergy:T1T2=0T3

  • 7/29/2019 Introduction to Relativistic Collisions

    8/14

    8

    In this problem, we shall use the energymomentum invariants

    associatedwitheachparticle,directly:

    i)E12(p1c)2=E102 (25)

    ii)E22=E202 (26)

    iii)E32(p3c)2=E302. (27)

    Thetotalenergyisconserved,therefore

    E1+E2=E3=E1+E20. (28)

    Introducingthekineticenergiesoftheparticles,wehave

    (T1+E10)+E20=T3+E30. (29)

    The3momentumisconserved,therefore

    p1+0=p3. (30)

    Using

    E302=E32(p3c)2, (31)

    weobtain

    E302=(E1+E20)2(p3c)2

    =E12+2E1E20+E202(p1c)2

    =E102+2E1E20+E202

    =E102+E202+2(T1+E10)E20 (32)

    or

  • 7/29/2019 Introduction to Relativistic Collisions

    9/14

    9

    E302=(E10+E20)2+2T1E20(E30>E10+E20). (33)

    UsingT1=1E10E10,where1=(112)1/2and1=v1/c,wehave

    E30

    2

    =E10

    2

    +E20

    2

    +21E10

    E20

    . (34)

    Iftwoidenticalparticlesmakeacompletelyinelasticcollisionthen

    E302=2(1+1)E102. (35)

    5.TheMandelstamvariables

    In discussions of relativistic interactions it is often useful to

    introduceadditionalLorentzinvariantsthatareknownasMandelstam

    variables.Theyare,forthespecialcaseoftwoparticlesintheinitialand

    finalstates(1+23+4):

    s = (P1 + P2)[P1 + P2], the total 4momentum

    invariant

    =((E1+E2)/c,(p1+p2))[(E1+E2)/c,(p1+p2)]

    =(E1+E2)2/c2(p1+p2)2 (36)

    Lorentzinvariant,

    t = (P1 P3)[P1 P3], the 4momentum transfer

    (13)invariant

    =(E1E3)2/c2(p1p3)2 (37)

    Lorentzinvariant,

  • 7/29/2019 Introduction to Relativistic Collisions

    10/14

    10

    and

    u = (P1 P4)[P1 P4], the 4momentum transfer

    (14)invariant

    =(E1E4)2/c2(p1p4)2 (38)

    Lorentzinvariant.

    Now,

    sc2=E12+2E1E2+E22(p12+2p1p2+p22)c2

    =E102+E202+2E1E22p1p2c2

    =E102+E202+2(E1,p1c)[E2,p2c]. (39) _____________ Lorentzinvariant

    The Mandelstam variable sc2 has the same value in all inertial

    frames. We therefore evaluate it in the LAB frame, defined by the

    vectors

    [E1L,p1Lc]and[E2L=E20,p2Lc=0], (40)

    sothat

    2(E1LE2Lp1Lp2Lc2)=2E1LE20, (41)

    and

    sc2=E102+E202+2E1LE20. (42)

  • 7/29/2019 Introduction to Relativistic Collisions

    11/14

    11

    Wecanevaluatesc2inthecenterofmass(CM)frame,definedby

    thecondition

    p1CM

    +p2CM

    =0(thetotal3momentumiszero): sc2=(E1CM+E2CM)2. (43)

    ThisisthesquareofthetotalCMenergyofthesystem.

    5.1ThetotalCMenergyandtheproductionofnewparticles

    Thequantitycsistheenergyavailablefortheproductionofnew

    particles,orforexcitingtheinternalstructureofparticles.Wecannow

    obtaintherelationbetweenthetotalCMenergyandtheLABenergyof

    theincidentparticle(1)andthetarget(2),asfollows:

    sc2=E102+E202+2E1LE20=(E1CM+E2CM)2=W2,say.(6.44)

    Here,wehaveevaluatedthelefthandsideintheLABframe,andthe

    righthandsideintheCMframe!

    Atveryhighenergies,cs>>E10andE20,therestenergiesofthe

    particlesintheinitialstate,inwhichcase,

    W2=sc22E2LE20. (45)

    The total CM energy,W, available for theproductionof new particles

    thereforedependsonthesquarerootoftheincidentlaboratoryenergy.

    Thisresultledtothedevelopmentofcolliding,orintersecting,beamsof

    particles (such as protons and antiprotons) in order to produce

  • 7/29/2019 Introduction to Relativistic Collisions

    12/14

    12

    sufficient energy to generate particleswith restmasses typically 100

    timestherestmassoftheproton(~109eV).

    6.Positron-electronannihilation-in-flight

    Adiscussionoftheannihilationinflightofarelativisticpositron

    and a stationary electron provides a topical example of the use of

    relativisticconservationlaws. Thisprocess, inwhichtwophotonsare

    spontaneously generated, has been used as a source of nearly

    monoenergetic highenergy photons for the study of nuclear photo

    disintegration since 1960. The general result for a 1 + 2 3 + 4

    interaction,giveninsection3,providesthebasisforanexactcalculation

    ofthisprocess;wehave

    E1=Epos(theincidentpositronenergy),E2=Ee0(therestenergyof

    the stationary electron), E3 = Eph1 (the energy of the forwardgoing

    photon),andE4=Eph2(theenergyofthebackwardgoingphoton).The

    restenergiesofthepositronandtheelectronareequal.Thegeneral

    equationnowreads

    Ee02

    2{EposEph1cpposEph1(cos)}+0=0Ee02

    2Ee0

    (EposEph1)(46)

    therefore

    Eph1{Epos+Ee0[Epos2Ee02]1/2cos}=(Epos+Ee0)Ee0,

    giving

  • 7/29/2019 Introduction to Relativistic Collisions

    13/14

    13

    Eph1=Ee0/(1kcos) (47)

    where

    k=[(EposEe0

    )/(Epos+Ee0

    )]1/2

    . Themaximum energyof thephoton,Eph1maxoccurswhen=0,

    correspondingtomotionintheforwarddirection;itsenergyis

    Eph1max=Eoe/(1k). (48)

    If,forexample,theincidenttotalpositronenergyis30MeV,and

    Ee0=0.511MeVthen

    Eph1max=0.511/[1(29.489/30.511)1/2]MeV

    =30.25MeV.

    Theforwardgoingphotonhasenergyequaltothekineticenergyofthe

    incidentpositron(T1=300.511MeV)plusaboutthreequartersofthe

    totalrestenergyofthepositronelectronpair(2Ee0=1.02MeV).Using

    the conservation of the total energy of the system, we see that the

    energyofthebackwardgoingphotonisabout0.25MeV.

    Themethodofpositronelectron annihilationinflight provides oneof

    theveryfewwaysofgeneratingnearlymonoenergeticphotonsathigh

    energies.ThemethodwasfirstproposedbyTzara(1957).

  • 7/29/2019 Introduction to Relativistic Collisions

    14/14

    14

    References

    Thefollowingreferencesplacethesubjectofrelativisticcollisionsinthe

    general context of Special Relativity, and provide many specificexamplesoftheapplicationofthetheorytoexperiments.

    1.G.StephensonandC.W.Kilmister,SpecialRelativityforPhysicists,

    DoverPublications,Inc,NewYork(1987).

    2.WolfgangRindler,IntroductiontoSpecialRelativity,2ndedition,

    ClarendonPress,Oxford(1991).

    3.C.Tzara,Compt.Rend.245,56(1957).

    4.C.SchuhlandC.Tzara,Nucl.Instr.Meth.10,217(1961).

    5.A.M.Baldin,V.I.GoldanskiiandI.L.Rozenthal,KinematicsofNuclear

    Reactions,Oxford,(1961).

    6.C.F.Powell,P.H.FowlerandP.H.Perkins,TheStudyofElementary

    ParticlesbythePhotographicMethod,PergamonPress,Oxford

    (1959).