21
LECTURE 14: Introduction to Bayesian inference The big picture - motivation, applications problem types (hypothesis testing, estimation, etc.) • The general framework - Bayes' rule > posterior ( 4 versions) - point estimates (MAP, LMS) - performance measures) (prob. of error; mean squared error) - examples 1

Introduction to Probability: Lecture 14: Introduction to ... · In ere ce: the ig pict re . Predictions . Probabili y heory. Real world (Analysis) Data . Models . Inference/ Statist·

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • LECTURE 14: Introduction to Bayesian inference

    • The big picture

    - motivation, applications

    problem types (hypothesis testing, estimation, etc.)

    • The general framework

    - Bayes' rule > posterior ( 4 versions)

    - point estimates (MAP, LMS)

    - performance measures) (prob. of error; mean squared error)

    - examples

    1

  • In ere ce: the ig pict re

    Predictions Probabili y heoryReal world (Analysis)

    Data Models

    Inference/ Statist· cs

    2

  • Inference then and now

    • Then: 10 patients were treated: 3 died 10 patients were not treated: 5 died Therefore ...

    Now:

    • Big data

    • Big models

    • Big computers

    3

  • A sample of application domains

    • Design and interpretation of experiments

    STATE COUNTS A- polling 17 SOLIDLY DEMOCRTIC 23 SOLIDLY REPUBLICAN

    11 TOSSUP

    ELECTORAL VOTE COUNTS 237 LlKELY DEMOCRATIC 191 LIKELY REPUBLICAN

    110 TOSSUP

    Obama/Biden I Romne /Ryan

    © Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 4

  • A sample of application domains

    • marketing, advertising

    • recommendation systems

    - Netflix competition

    5

  • A sample of application domains

    • Finance

    © Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

    6

    https://ocw.mit.edu/help/faq-fair-use

  • ·-�-: =�-

    =-���

    H•.409223 15011

    l.....-------.. GPCR

    FAK -------

    Akt ,,,.,-- ' l I PKC Adenylate t

    PKA MEKK MAPK

    Bcl-2 _, '-

    -----+-------Ba d -.. -"' Mt._. Abnormality . J

    A mpl fa systems biology

    • Life sciences Chemokines

    Hormones.

    Survival Factors Transmitters Growth Factors Extracellular

    (e.g., interleukins, (e.g., TGFa, EGF) (e.g., IGFl) Matrix

    serotonin, etc.)genomics

    ,

    l

    Ideogra11.:tJ� Contia.:tl2Sl HsUniG:t)2Si Gene!_ seq� Symbol 0NT_08692S.NT.078US.

    Int ns

    GSK-313

    tAPC

    t P.catenin

    (

    ..'•l

  • A sample of application domains

    • Modeling and monitoring the oceans

    • Modeling and monitoring global climate

    • Modeling and monitoring pollution

    • Interpreting data from physics experiments

    • Interpreting astronomy data

    8

  • A sample of application domains

    • Signal processing

    - communication systems (noisy ... )

    - speech processing and understanding

    - image processing and understanding

    - tracking of objects

    - positioning systems (e.g., GPS)

    - detection of abnormal events

    9

  • Mode buil ·ng v s s infe ring unobserv d vari les

    Predictions Probability theoryReal world (Analysis)Decisions

    T-

    odel bu.lding .• - know .. sign a " S, observe X Inference/Statistics - in er a

    • Va iable est·ma ion: - know a, observe X - infer S

    10

  • Hypothesis testing versus estimation

    • Hypothesis testing:

    - unknown takes one of few possible

    - aim at small probability of incorrect

    values

    decision

    Is it an airplane or a bird?

    • Estimation:

    - numerical unknown(s)

    - aim at an estimate that is ,.close" to the true but unknown value

    11

  • The Bayes-an in e ence framework

    • Unk own e • Where doest e prior come from? - treated as a random variable symmetry

    prior distribution Pe or f e known range

    - ear ier stud·es • Observatio X

    subjective or arbitrary observation mode PxIe or f x1e

    • Use appropriate versio of the Bayes rule to find Pe ( IX - x) or fe1xC IX - x)

    12

  • e1xC Ix) or PDF fe di

    Th out u of

    ELECTORAL VOTE DI TRJBUTION FOR OBAMA R MNEY 14.62 84.59% OBAMA

    .7 ol

    h C t W i 0 io 6%

    PM (· 5%I X t: 4%

    270

    ...J

    < 3%

    � 2%

    1%

    0% 0 0 0 0 0 0 0 0 0 0

    0 l/) 0 l/) 0 l/) a l/) 0 ,... T"" N N M M v v l!)

    NUMBER OF ELECTORAL VOTES

    © Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

    I0 I

    I

    I

    I

    13

    https://ocw.mit.edu/help/faq-fair-use

  • Po-nt est-mates in Bayesian -nference

    he co lete a swer · a aster· dis ri io .

    PMF Psix( Ix) or PDF fs ixC Ix)

    • Maximum a

    Pe (0* I x)

    f SI (0* Ix) Conditional

    est-m te: {J- g(x)

    (number)

    st-mator: § - g(X)

    (random variab e)

    osteriori probability (MAP).

    - axePe x(0 I x)

    - · axof SI (0 I x)

    expectation. e IX - x (LMS : Least Mean Squares)

    14

  • 0.6

    0.3

    0.1

    -screte e, disc ete X

    values of e. alternative hypo eses PeJ

    Px(x

    Pe(0) p 1e(x I 0) (0 Ix) - P~ (x)

    ·) = .___Pe(01)Px 1e(x IB') 91

    • MAP rule:

    2

    iJ=

    3 0

    cond·tiona prob of error.

    (0 -=I=e Ix - x) sma

    overall probabirty of error.

    (8 e) = EP(§ -=I=e Ix X

    = EP(§ -=I=e Ie 6

    -

    =

    x)px(x)

    B)pe(B)

    15

  • Pe(0) f x1e(x I0) Pe ( 0 I x) - f (x)

    • Standard examp e.

    send signal e E {1, 2, 3} fx(x) = _Pe(B')fx 1e(x IB') 6'X-8 W

    W N(O, u 2 ), ·ndep. of ef"-.J • conditional prob of error :

    f x1e(x I0) = /w(x - 8) (0:j=. - IX-x)

    a st u e t e MA r ,e

    • overa I p obability of er or:

    (§ :/=-e) = / P(9 :/=-e Ix = x)/x(x) dx

    =LP(§:/=- 01e = 0)pe(B) 6

    0.6

    0.3

    0.1

    ,

    1 2 3 0

    • MAP r le. 0-16

  • Cont-nuo s e, co tinuous X _ fe(0) f 1e(x I 0)

    f SI (0 I x) - f x(x) • linear norm .al models

    fx(x) = j fe(0 1)f xie(x IB') d01 est·ma ion o a noisy signal

    e

    e and W: independe - t normals

    multi-d·mensional versions (many norma para eters, many observatio s)

    • est·mating t e parameter of a un·form ---• 8 - g(X) • i -terested · :oe

    ' e. nI or [ , ] E[(9 - 9) 2 IX = x]

    E[(9- 9) 2] 17

  • Inferr-ng the unknown bias of a coin and the eta dist ibut-on

    • S andard exa p e. ., (O I k) = fe(0) PK1e(k I 0

    - coi wit b·as e; prior fe(·) JS[K PK(k) - fix n, K =number of heads

    PK(k) = j fe(0 1)PKle(k I01) d0' • Assume fa(·) is un·form in 0, 1]

    - 1 0k(l - 0)n - k .. Beta distr·bu ·o , with parameters (k + 1, n - k + 1)"d(n,k) • If prior is Beta. fe(0) = .!0°(1 - 0)13

    C

    fe1K(B Ik) = 18

  • In r - g the u known b-as o a co-n: point es imates

    { 1 a {3 - a:! ,B! Jo 9 (1 - 9) d0 - (a+ ,B

    • S andard examp e.

    - coi with b·as e; prior fe(·) - fix n, K =number of heads

    • Assume fa(·) is un·form in 0, 1] E[9 I K = k] = 1 k( )n k

    fe1K(8 I k) = d(n,k) 0 1 - 0 -

    • MAP estima e:

    19

  • Summary

    • Problem data: Pe(·), Px 1e(· I ·)

    • Given the value x of X: find , e.g., Pe1x(· Ix)

    - using appropriate version of the Bayes rule

    .-... • Estimator e = g(X) Estimate {J= g(x)

    - MAP: UMAP = 9MAP(x) maximizes Peix(B I x) - LMS: OLMS = 9LMs(x) = E[e I X = x]

    .-... • Performance evaluation of an estimator e

    P(9 -:/=e Ix = x) E((9- 9) 2 1 X = x] P(§-:/= 9) E[(S- e) 2]

    20

  • MIT OpenCourseWare https://ocw.mit.edu

    Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

    The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

    For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

    21

    https://ocw.mit.eduhttps://ocw.mit.edu/terms

    cover.pdfBlank Page