12
3/12/15 1 Introduction to Heat Transfer in Soils and Other Materials ME 7710 Spring 2015 Instructor: Pardyjak Surface/Skin Temperature T s - The temperature at the air-soil interface. For an idealsurface which varies in time in response to energy fluxes at the surface Depends on: Radiation Balance Surface exchange processes (e.g. turbulence) Vegetative cover Thermal properties of the subsurface Difficult to Measure (very large temperature gradients near the surface both in the air & soil) Extrapolate air/soil temps Radiometer – uses 4 ~ s L T R εσ

Introduction to Heat Transfer in Soils and Other Materials ...pardyjak/efd/Lecture3_SoilHeatTransfer… · Thermal Properties of Soil • Specific Heat – c (J kg-1 K-1) – the

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction to Heat Transfer in Soils and Other Materials ...pardyjak/efd/Lecture3_SoilHeatTransfer… · Thermal Properties of Soil • Specific Heat – c (J kg-1 K-1) – the

3/12/15  

1  

Introduction to Heat Transfer in Soils and Other Materials

ME 7710 Spring 2015

Instructor: Pardyjak

Surface/Skin Temperature

•  Ts - The temperature at the air-soil interface. For an “ideal” surface which varies in time in response to energy fluxes at the surface –  Depends on:

•  Radiation Balance •  Surface exchange processes (e.g. turbulence) •  Vegetative cover •  Thermal properties of the subsurface

–  Difficult to Measure (very large temperature gradients near the surface both in the air & soil) •  Extrapolate air/soil temps •  Radiometer – uses

4~ sL TR εσ−↑

Page 2: Introduction to Heat Transfer in Soils and Other Materials ...pardyjak/efd/Lecture3_SoilHeatTransfer… · Thermal Properties of Soil • Specific Heat – c (J kg-1 K-1) – the

3/12/15  

2  

Diurnal Soil & Air Temperatures

Atmosphere

Soil

Fig from Stull, 1988 An Introduction to Boundary Layer Meteorology

Surface/Skin Temperature •  Diurnal Range –  In dry desert ~ 40-50 oC – Surface & subsurface moisture moderate range •  Increased evaporation from the surface •  Increased heat capacity (c) & conductivity of the soil (k)

– Wet soils may dry changing the temperature response

– Vegetation moderates diurnal range •  Intercepts incoming solar – lower surface temps during

the day •  Intercepts outgoing longwave •  Enhanced latent heat flux due to evapotranspiration

(ET) •  Increased Turbulence

Page 3: Introduction to Heat Transfer in Soils and Other Materials ...pardyjak/efd/Lecture3_SoilHeatTransfer… · Thermal Properties of Soil • Specific Heat – c (J kg-1 K-1) – the

3/12/15  

3  

Sub-surface Soil Temperature •  Much easier to measure – thermocouple •  Amplitude of the temperature fluctuations

decrease exponentially with depth •  Depends on – – Latitude – Time of year – Net radiation – Soil texture (porosity) and moisture content – Ground cover – Surface weather conditions

Thermal Properties of Soil •  Specific Heat – c (J kg-1 K-1) – the amount of heat absorbed by

a material to raise the temperature of a unit mass of material by 1o K

•  Thermal Conductivity – k (W m-1 K-1) – material property; the ability of a material to conduct heat

•  Thermal Diffusivity – αh (m2 s-1) Ratio of thermal conductivity to heat capacity

( ) 2

2

zTkcT

t ∂

∂=

∂ρ

1D Thermal Conduction

2

2

zT

tT

h ∂

∂=

∂α

Ck

ck

h ==ρ

α

( )zHcT

tG

∂−=

∂ρ z

TkHG ∂

∂−=

Soil heat capacity

Fourier’s  conduc2on  law  T(z)

z  

HG

Page 4: Introduction to Heat Transfer in Soils and Other Materials ...pardyjak/efd/Lecture3_SoilHeatTransfer… · Thermal Properties of Soil • Specific Heat – c (J kg-1 K-1) – the

3/12/15  

4  

Solu2ons  

•  Analy2cal  –  mul2ple  methods  •  Numerical  (e.g.)  –  e.g.  finite  difference  •  Force  Restore  –  2  Layer  Slab  Model  (See  Stull  Ch.  7,  Blackadar,  1976)  

Diurnal & Annual Soil Temperature Temporal Variability

Diurnal Wave

Annual Wave

Page 5: Introduction to Heat Transfer in Soils and Other Materials ...pardyjak/efd/Lecture3_SoilHeatTransfer… · Thermal Properties of Soil • Specific Heat – c (J kg-1 K-1) – the

3/12/15  

5  

Soil Heat Transfer •  1D Thermal Conduction

( )

( ) ( ) ( )

( )∫

=

=

=

=

=

=

∂+=

∂==−=

⎭⎬⎫

⎩⎨⎧

∂−=

Dz

zDG

Dz

z

Dz

z

dzCTt

HH

dzCTt

DzHzH

dzzHCT

t

0

0

0

0

T(z)

z  

Reference  depth  

HG

Surface  Heat  Flux  Storage  

Governing  Parameters  

•  Thermal  conduc2vity  -­‐  k •  Heat  Capacity  -­‐  Cs  •  Thermal  Diffusivity  –  α  (some2me  κ)  •  Thermal  AdmiXance  -­‐  μ  

Page 6: Introduction to Heat Transfer in Soils and Other Materials ...pardyjak/efd/Lecture3_SoilHeatTransfer… · Thermal Properties of Soil • Specific Heat – c (J kg-1 K-1) – the

3/12/15  

6  

Governing  Parameters  

•  Thermal  conduc2vity  –  k (W m-1 K-1) – Def. - the ability of a material to conduct heat – Depends on: •  Soil particles •  Porosity •  Moisture content

Governing  Parameters  

•  Heat  Capacity  –  Cs = ρ c (J m-3 K-1) – c specific heat of the soil (J kg-1 K-1) – Relates to the ability of a material to store heat – Def. The amount of heat (J) necessary to increase a

unit volume (m3) of a substance by 1 K. – Water (~5 J m-3 K-1) has a very high heat capacity,

air is quite low – Depends on porosity, mineral content, organic

content, air, etc.

Page 7: Introduction to Heat Transfer in Soils and Other Materials ...pardyjak/efd/Lecture3_SoilHeatTransfer… · Thermal Properties of Soil • Specific Heat – c (J kg-1 K-1) – the

3/12/15  

7  

Governing  Parameters  

•  Thermal  Diffusivity  –  α  = k/Cs (m2 s-1) – Controls the speed at which temperature waves

move through the soil & the depth of thermal influence of an active surface

– Water (~5 x 10^6 J m-3 K-1) has a very high heat capacity, air is quite low

Let’s  Look  at  example  Data  from  Sage  Brush  at  DPG  

Governing  Parameters  

•  Thermal  AdmiXance  –  Surface  Property  (not  a  “soil  property”)  

•  μ  = (kCs)1/2 (J m-2 s-1/2 K-1) – Def. The ability of a surface to accept or release

heat – High μ  –  metals    –  low μ  –  wood – High μ  materials  feel  cooler  to  the  touch  even  though  they  have  the  same  surface  temperature

Page 8: Introduction to Heat Transfer in Soils and Other Materials ...pardyjak/efd/Lecture3_SoilHeatTransfer… · Thermal Properties of Soil • Specific Heat – c (J kg-1 K-1) – the

3/12/15  

8  

Thermal  AdmiXance  

•  See  MATERHORN  surface  temperature  video  •  k  =  thermal  conduc2vity  ~  0.9  W  m-­‐1  K-­‐1  

•  α  =  thermal  diffusivity  ~  0.4  x  10-­‐6  m2s-­‐1  •  C  =  rho*c  =  heat  capacity  ~  2.2  x  10^6    •  μs    =  (kCs)1/2  thermal  admiXance  ~  1407  J  m^-­‐2  s^-­‐1/2  K^-­‐1  

 

Typical  Values  

From  Oke,  1988  

Page 9: Introduction to Heat Transfer in Soils and Other Materials ...pardyjak/efd/Lecture3_SoilHeatTransfer… · Thermal Properties of Soil • Specific Heat – c (J kg-1 K-1) – the

3/12/15  

9  

Effect  of  Soil  Moisture  on  Thermal  Proper2es  

From  Oke,  1988  

Comparison  between  the  WRF-­‐simulated  and  Data  from  a  tower  in  Oklahoma  City    

D01  

D03  D04  

D05  

Ver2cal  momentum  fluxes  observed  by  crane  sonics  (points),  and  simulated  by  WRF  (lines)  

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.20

10

20

30

40

50

60

70

80

90

vetical momentum flux u’w’, v’w’ [m2/s2]

Heig

h [m

]

Vertical momentum fluxes at the location of crane sonics for IOP 2 (07.02.2003 16:00UTC)

u’w’ sonicsu’w’ WRFv’w’ sonicsv’w’ WRF

0 0.05 0.1 0.15 0.2 0.250

10

20

30

40

50

60

70

80

90

vertical turbulent heat flux w’T’ [m K/s]

Heig

ht [m

]

w’T’ at the location of crane sonics for IOP 2 (07.02.2003 16:00UTC)

w’T’ sonicsw’T’ WRF

Ver2cal  heat  flux  observed  by  crane  sonics  (points),  and  simulated  by  WRF    (lines)  

From  Kochanski  et  al  2014  

Page 10: Introduction to Heat Transfer in Soils and Other Materials ...pardyjak/efd/Lecture3_SoilHeatTransfer… · Thermal Properties of Soil • Specific Heat – c (J kg-1 K-1) – the

3/12/15  

10  

Varia2on  of  Fluxes  in  Urban  Areas  

From  Kastner-­‐Klein,  P.,  &  Rotach,  M.  W.  (2004).  Mean  Flow  and  Turbulence  Characteris2cs  in  an  Urban  Roughness  Sublayer.  Boundary-­‐Layer  Meteorology,  111(1),  55–84.    

Varia2on  of  Fluxes  in  Urban  Areas  

From  Kastner-­‐Klein,  P.,  &  Rotach,  M.  W.  (2004).  Mean  Flow  and  Turbulence  Characteris2cs  in  an  Urban  Roughness  Sublayer.  Boundary-­‐Layer  Meteorology,  111(1),  55–84.    

Page 11: Introduction to Heat Transfer in Soils and Other Materials ...pardyjak/efd/Lecture3_SoilHeatTransfer… · Thermal Properties of Soil • Specific Heat – c (J kg-1 K-1) – the

3/12/15  

11  

Hysteresis

Net all-wave Radiation

( )dzCTt

HS ρ∫ ∂∂

Urban Areas

Grimmond & Oke 1999

Increasing time

More Energy is transferred to the “urban fabric” in the morning - Asymmetry

Page 12: Introduction to Heat Transfer in Soils and Other Materials ...pardyjak/efd/Lecture3_SoilHeatTransfer… · Thermal Properties of Soil • Specific Heat – c (J kg-1 K-1) – the

3/12/15  

12  

Urban Areas

Grimmond & Oke 1999