38
CG UFRGS Visgraf - Summer School in Computer Graphics - 2010 Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes [email protected] Manuel M. Oliveira [email protected]

Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes [email protected] Manuel M. Oliveira [email protected]

  • Upload
    others

  • View
    14

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

CG UFRGS

Visgraf - Summer School in Computer Graphics - 2010

Introduction to Geometric Algebra Lecture IV

Leandro A. F. Fernandes [email protected]

Manuel M. Oliveira [email protected]

Page 2: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Checkpoint

Lecture IV

2

Page 3: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

c

Visgraf - Summer School in Computer Graphics - 2010

Checkpoint, Lecture I

Multivector space

Non-metric products

The outer product

The regressive product

3

Page 4: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Checkpoint, Lecture II

Metric spaces

Bilinear form defines a metric on the

vector space, e.g., Euclidean metric

Metric matrix

Some inner products

Inner product of vectors

Scalar product

Left contraction

Right contraction

Visgraf - Summer School in Computer Graphics - 2010 4

The scalar product is a particular

case of the left and right contractions

These metric products are

backward compatible for 1-blades

Page 5: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Checkpoint, Lecture II

Dualization

Undualization

Visgraf - Summer School in Computer Graphics - 2010 5

Venn Diagrams

By taking the undual, the dual

representation of a blade can be correctly

mapped back to its direct representation

Page 6: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Checkpoint, Lecture III

Duality relationships between products

Dual of the outer product

Dual of the left contraction

Visgraf - Summer School in Computer Graphics - 2010 6

Page 7: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Checkpoint, Lecture III

Some non-linear products

Meet of blades

Join of blades

Delta product of blades

Visgraf - Summer School in Computer Graphics - 2010 Venn Diagrams 7

Page 8: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Today

Lecture IV – Mon, January 18

Geometric product

Versors

Rotors

Visgraf - Summer School in Computer Graphics - 2010 8

Page 9: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Geometric Product

Lecture IV

9

Page 10: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Geometric product of vectors

10

Inner Product Outer Product

Unique Feature

An invertible product for vectors!

Denoted by a white space, like

standard multiplication

Page 11: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Geometric product of vectors

11

Unique Feature

An invertible product for vectors!

The Inner Product is not Invertible

γ

** Euclidean Metric

Page 12: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Unique Feature

An invertible product for vectors!

Geometric product of vectors

12

The Outer Product is not Invertible

Page 13: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Geometric product of vectors

13

Inverse geometric product,

denoted by a slash,

like standard division

Unique Feature

An invertible product for vectors!

Page 14: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Intuitive solutions for simple problems

14

t

r

p

q

?

** Euclidean Metric

Page 15: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Geometric product and multivector space

The geometric product of two vectors is

an element of mixed dimensionality

15

Scalars Vector Space Bivector Space Trivector Space

Page 16: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Geometric product and multivector space

The geometric product of two vectors is

an element of mixed dimensionality

16

Scalars Vector Space Bivector Space Trivector Space

Geometric Meaning

The interpretation of the resulting

element depends on the operands.

Page 17: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Properties of the geometric product

Scalars commute

Distributivity

Associativity

Neither fully symmetric

nor fully antisymmetric

17

Page 18: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Geometric product of basis blades

Lecture IV

Visgraf - Summer School in Computer Graphics - 2010 18

Page 19: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Geometric product of basis blades

Let’s assume an orthogonal metric, i.e.,

Visgraf - Summer School in Computer Graphics - 2010 19

Kronecker

delta function

With an orthogonal metric,

there are two cases to be handled

Metric factor

Page 20: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Geometric product of basis blades

Let’s assume an orthogonal metric, i.e.,

Case 1: blades consisting of different orthogonal factors

Case 2: blades with some common factors

Visgraf - Summer School in Computer Graphics - 2010 20

The geometric product

is equivalent to

the outer product

The dependent-basis

factors are replaced

by metric factors

Page 21: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Geometric product of basis blades

Let’s assume a non-orthogonal metric, e.g.,

Visgraf - Summer School in Computer Graphics - 2010 21

Apply the spectral theorem from

linear algebra and reduce the problem

to the orthogonal metric case

** The spectral theorem states that a

matrix is orthogonally diagonalizable

if and only if it is symmetric.

Page 22: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Geometric product of basis blades

For non-orthogonal metrics

1. Compute the eigenvectors and eigenvalues of

the metric matrix

2. Represent the input with respect to the eigenbasis

• Apply a change of basis using the inverse of

the eigenvector matrix

3. Compute the geometric product on this new

orthogonal basis

• The eigenvalues specify the new orthogonal metric

4. Get back to the original basis

• Apply a change of basis using the original eigenvector matrix

Visgraf - Summer School in Computer Graphics - 2010 22

Page 23: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Geometric product of basis blades

For non-orthogonal metrics

1. Compute the eigenvectors and eigenvalues of

the metric matrix

2. Represent the input with respect to the eigenbasis

• Apply a change of basis using the inverse of

the eigenvector matrix

3. Compute the geometric product on this new

orthogonal basis

• The eigenvalues specify the new metric

4. Get back to the original basis

• Apply a change of basis using the original eigenvector matrix

Visgraf - Summer School in Computer Graphics - 2010 23

See the Supplementary Material A of the

Tutorial at Sibgrapi 2009 for a purest

treatment of the geometric product

Page 24: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Subspace Products from

Geometric Product

Lecture IV

Visgraf - Summer School in Computer Graphics - 2010 24

Page 25: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

The most fundamental product of GA

The subspace products can be derived

from the geometric product

25

The “grade extraction” operation

extracts grade parts from multivector

A general multivector

variable in

Page 26: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

The most fundamental product of GA

The subspace products can be derived

from the geometric product

26

Outer product Scalar product

Left contraction Right contraction

Delta product The largest grade such

that the result is not zero

Page 27: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Orthogonal Transformations

as Versors

Lecture IV

27

Page 28: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Reflection of vectors

28

Vector a was reflected in

vector v, resulting in vector a´

Input vector

Mirror

Page 29: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

k-Versor

29

V is a k-versor. It is computed

as the geometric product of

k invertible vectors.

Page 30: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Rotation of subspaces

30

How to rotate vector a in

the plane by radians.

Page 31: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Rotation of subspaces

31

How to rotate vector a in

the plane by radians.

Page 32: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Rotation of subspaces

32

Rotors

Unit versors encoding rotations.

They are build as the geometric product

of an even number of unit invertible vectors.

How to rotate vector a in

the plane by radians.

Page 33: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Visgraf - Summer School in Computer Graphics - 2010

Versor product for general multivectors

33

Grade Involution

The sign change under the grade involution

exhibits a + - + - + - … pattern over the value of t.

Page 34: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

The ○ symbol represents any product

of geometric algebra

The structure preservation property

Visgraf - Summer School in Computer Graphics - 2010 34

The structure preservation of

versors holds for the geometric product,

and hence to all other products

in geometric algebra.

as a consequence, any operation

defined from the products

The ○ symbol represents any product

of geometric algebra, and,

Page 35: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Inverse of versors

Visgraf - Summer School in Computer Graphics - 2010 35

Inverse

Reverse (+ + – – + + – – … pattern over k)

The inverse of versors is

computed as for the inverse of invertible blades

Squared (reverse) norm

The norm of rotors is equal to one,

so the inverse of a rotor is its reverse

Page 36: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Multivector classification

It can be used for blades and versors

Use Euclidean metric for blades

Use the actual metric for versors

Test if is truly the inverse of the multivector

Test the grade preservation property

If the multivector is of a single grade then it is a blade; otherwise it is a versor

Visgraf - Summer School in Computer Graphics - 2010 36

𝑀 𝑀 𝑀

grade 𝑀 𝑀−1 = 0 𝑀 𝑀−1 = 𝑀−1𝑀

grade 𝑀 𝐞𝑖 𝑀 = 1

Page 37: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Credits

Visgraf - Summer School in Computer Graphics - 2010 37

Hermann G. Grassmann

(1809-1877)

Grassmann, H. G. (1877) Verwendung der Ausdehnungslehre fur die allgemeine Theorie

der Polaren und den Zusammenhang algebraischer Gebilde. J. Reine Angew. Math.

(Crelle's J.), Walter de Gruyter Und Co., 84, 273-283

W. R. Hamilton (1844) On a new species of imaginary quantities connected with the theory

of quaternions. In Proc. of the Royal Irish Acad., vol. 2, 424-434

William R. Hamilton

(1805-1865)

Clifford, W. K. (1878) Applications of Grassmann's extensive algebra. Am. J. Math.,

Walter de Gruyter Und Co., vol. 1, n. 4, 350-358

William K. Clifford

(1845-1879)

Page 38: Introduction to Geometric Algebra - VISGRAF Lab...Introduction to Geometric Algebra Lecture IV Leandro A. F. Fernandes laffernandes@inf.ufrgs.br Manuel M. Oliveira oliveira@inf.ufrgs.br

Differences between algebras

Clifford algebra

Developed in nongeometric directions

Permits us to construct elements by a universal addition

Arbitrary multivectors may be important

Geometric algebra

The geometrically significant part of Clifford algebra

Only permits exclusively multiplicative constructions • The only elements that can be added are

scalars, vectors, pseudovectors, and pseudoscalars

Only blades and versors are important

Visgraf - Summer School in Computer Graphics - 2010 38