14
4/14/2015 1 Introduction to Flow Reactors Advanced Atmospheric chemistry CHEM5152 Spring 2015 Prof. J.L. Jimenez 1 Types of Reactors Which ones can be simulated w KinSim? A. Batch B. Batch and Plug C. All D. Batch & CSTR E. I don’t know 2 http://ocw.mit.edu/courses/chemicalengineering/1037chemicalandbiologicalreactionengineeringspring2007/lecturenotes/lec05_02212007_g.pdf

Introduction to Flow Reactors - welcome | CIREScires.colorado.edu/jimenez/CHEM-5152/Lect/Flow_Reactors.pdf4/14/2015 1 Introduction to Flow Reactors Advanced Atmospheric chemistry CHEM‐5152

  • Upload
    others

  • View
    30

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction to Flow Reactors - welcome | CIREScires.colorado.edu/jimenez/CHEM-5152/Lect/Flow_Reactors.pdf4/14/2015 1 Introduction to Flow Reactors Advanced Atmospheric chemistry CHEM‐5152

4/14/2015

1

Introduction to Flow Reactors

Advanced Atmospheric chemistry

CHEM‐5152

Spring 2015

Prof. J.L. Jimenez

1

Types of Reactors

• Which ones can be simulated w KinSim?

A. Batch B. Batch and Plug C. All D. Batch & CSTR  E. I don’t know2http://ocw.mit.edu/courses/chemical‐engineering/10‐37‐chemical‐and‐biological‐reaction‐engineering‐spring‐2007/lecture‐notes/lec05_02212007_g.pdf

Page 2: Introduction to Flow Reactors - welcome | CIREScires.colorado.edu/jimenez/CHEM-5152/Lect/Flow_Reactors.pdf4/14/2015 1 Introduction to Flow Reactors Advanced Atmospheric chemistry CHEM‐5152

4/14/2015

2

Flow inReactors: Laminar vs Plug Flow

3

• Laminar flow has a distribution of speeds and residence times

• “Plug Flow” is a simplification for analysis purposes

• Turbulent flow is closer to plug, but more wall contact

http://hyperphysics.phy‐astr.gsu.edu/hbase/pfric.html & http://en.wikipedia.org/wiki/Chemical_reactor#PFR_.28Plug_Flow_Reactor.29

Residence Time Distribution 

4

Laminar Flow Reactor

http://www.comsol.com/paper/download/200363/junior_paper.pdfhttp://authors.library.caltech.edu/25070/9/FundChemReaxEngCh8.pdf

Page 3: Introduction to Flow Reactors - welcome | CIREScires.colorado.edu/jimenez/CHEM-5152/Lect/Flow_Reactors.pdf4/14/2015 1 Introduction to Flow Reactors Advanced Atmospheric chemistry CHEM‐5152

4/14/2015

3

Finlayson‐Pitss Nucleation Flow Reactor I

5

78 cm x 6.5 cmVolume = 5.9 LS/V = 53 m2 m‐3

6‐17 LPM (Re ~200)v ~ 5 cm s‐1

t ~ 30 s

NO  NO2in Flow Reactor

6

Page 4: Introduction to Flow Reactors - welcome | CIREScires.colorado.edu/jimenez/CHEM-5152/Lect/Flow_Reactors.pdf4/14/2015 1 Introduction to Flow Reactors Advanced Atmospheric chemistry CHEM‐5152

4/14/2015

4

Finlayson‐Pitts Large Flow Reactor I

7

Ezell et al., AS&T 2010

Finlayson‐Pitts Large Flow Reactor II

• Very large volume to reduce wall effects

• Very long length to allow long reaction times

• Controlled flow to keep laminar profile8

850 cm x 46 cm Volume = 1200 LS/V = 10 m2 m‐3 20 LPM (Re ~61)v ~ 0.2 cm s‐1 t ~ 60 min

Page 5: Introduction to Flow Reactors - welcome | CIREScires.colorado.edu/jimenez/CHEM-5152/Lect/Flow_Reactors.pdf4/14/2015 1 Introduction to Flow Reactors Advanced Atmospheric chemistry CHEM‐5152

4/14/2015

5

Potential Aerosol Mass (PAM) Oxidation Flow Reactor (OFR)

Studies using OFRs: Kang et al., ACP 2007, 2011; Lambe et al., AMT 2011…Our work: Ortega et al. ACP 2013, Li et al. ES&T 2013; Li et al. JPCA 2015; Hu et al. ACPD in press; Peng et al. AMTD in press; Palm et al. and Ortega et al. in prep. 

OFR185: H2O + hv(185nm) OH + HO2 + hv(185nm) O3

OFR185 & OFR254: O3 + hv(254nm) + H2O 2 OH

9

Am

bien

t Air

Residence Time distribution in PAM OFR

• In the field we use it w/o an inlet plate, distribution will be narrower

10

With Inlet Plate Vs. Laminar Flow Reactor

Li et al., JPCA 2015

Page 6: Introduction to Flow Reactors - welcome | CIREScires.colorado.edu/jimenez/CHEM-5152/Lect/Flow_Reactors.pdf4/14/2015 1 Introduction to Flow Reactors Advanced Atmospheric chemistry CHEM‐5152

4/14/2015

6

Why we use the PAM OFR in the Field 

11Ortega et al. in prep. 

1.7

0.6

0.6

1.7

2.2

1.7

1.7

OFR185

O3

O2

4.2x 1018

128.21.6x 10104.9x 1013

OH

6.1x 10116.3x 1010

H2O2

2.1x 1017

H2O

HO2

8.3

5.1

5.1

9.1

10.9

10.9

8.3

9.1

10

1% water mixing ratio; medium lamp setting; no external OH reactivity

Peng et al., AMTD, in press

Page 7: Introduction to Flow Reactors - welcome | CIREScires.colorado.edu/jimenez/CHEM-5152/Lect/Flow_Reactors.pdf4/14/2015 1 Introduction to Flow Reactors Advanced Atmospheric chemistry CHEM‐5152

4/14/2015

7

Time Evolution of Species in OFR185

13Li et al., JPCA 2015

55.6

28.9

55.6

28.9

28.9

28.9

34

O3

1.8x 10101.1x 1015

OH

9.0x 1012

2.5x 1011

H2O2

2.1x 1017

H2O

HO2

171.2

146.4146.4

51.5

51.5

171.2

OFR254‐70: using 254 nm photons only, with 70 ppm O3 injected

11

1% water mixing ratio; medium lamp setting; no external OH reactivity

Peng et al., AMTD, in press

Page 8: Introduction to Flow Reactors - welcome | CIREScires.colorado.edu/jimenez/CHEM-5152/Lect/Flow_Reactors.pdf4/14/2015 1 Introduction to Flow Reactors Advanced Atmospheric chemistry CHEM‐5152

4/14/2015

8

Clicker Questions

• The OH exposure in OFR185 will change with water vaporA. Increase strongly

B. Increase a little

C. No change

D. Decrease

E. I don’t know

• The OH exposure in OFR185 will change with external OH reactivity (OHRext)A. Increase strongly

B. Increase a little

C. No change

D. Decrease

E. I don’t know

15

16

OFR185External OH reactivity = 0

OH exposure

1 h

1 mo

1 d

OH+SO2→HSO3

Δ[HSO3] = k*[SO2] * [OH]*t

OH reactivity OH exposure

http://tinyurl.com/ac-cheat

Peng et al., AMTD, in press

Page 9: Introduction to Flow Reactors - welcome | CIREScires.colorado.edu/jimenez/CHEM-5152/Lect/Flow_Reactors.pdf4/14/2015 1 Introduction to Flow Reactors Advanced Atmospheric chemistry CHEM‐5152

4/14/2015

9

17

OFR185 OFR254‐70

External OH reactivity = 0

External OH reactivity = 10 s‐1

External OH reactivity = 100 s‐1

(Remote or clean urban 

air)

(Polluted urban air)

1 h

1 mo

1 d

1 h

1 mo

1 d

OH exposure

Peng et al., AMTD, in press

18

OH suppression

OFR254‐70

OH suppression = 1 – [OH]0/[OH]s

[OH]0: OH conc. without external OH reactivity[OH]s: OH conc. with external OH reactivity

Peng et al., AMTD, in press

Page 10: Introduction to Flow Reactors - welcome | CIREScires.colorado.edu/jimenez/CHEM-5152/Lect/Flow_Reactors.pdf4/14/2015 1 Introduction to Flow Reactors Advanced Atmospheric chemistry CHEM‐5152

4/14/2015

10

19

OHRO3 = k(OH+O3)   * [O3]OHRext = k(OH+SO2) * [SO2]

OH suppression vs. OH reactivity

Peng et al., AMTD, in press

Fate of NOx / RO2

• NOx  destroyed quickly

NO + O3 NO2 + O 2NO2 + OH + M  HNO3

(HNO3+ hv is slow)

• HO2is very high

• RO2 + HO2 dominates

• No way to study high‐NO chemistry in this type of reactor has been reported

20Li et al., JPCA 2015

Page 11: Introduction to Flow Reactors - welcome | CIREScires.colorado.edu/jimenez/CHEM-5152/Lect/Flow_Reactors.pdf4/14/2015 1 Introduction to Flow Reactors Advanced Atmospheric chemistry CHEM‐5152

4/14/2015

11

Uncertainty on OH exposure due to k and σ• The uncertainties on rate constants and photolysis rates propagate to the species you predict

• Easy to do a Montecarlo simulation to study the impact• Change the rate constant by a random amount within its uncertainty distribution

• Further details in Z. Peng et al. in AMTD

21

Case labels:water mixing ratio/ lamp setting / external OH reactivity

0=no; L=low; M=medium; H=high

e.g., LH0=low water mixing ratio, high lamp setting, no external OH reactivity Peng et al., AMTD, in press

Introduction to Flow Reactors II

Advanced Atmospheric chemistry

CHEM‐5152

Spring 2015

Prof. J.L. Jimenez

22

Page 12: Introduction to Flow Reactors - welcome | CIREScires.colorado.edu/jimenez/CHEM-5152/Lect/Flow_Reactors.pdf4/14/2015 1 Introduction to Flow Reactors Advanced Atmospheric chemistry CHEM‐5152

4/14/2015

12

Advantages & Limitations of PAM OFRsAdvantages

• Fast (~3‐5 min), can do lots of experiments quickly

• Wide range of OHexp (~0.5‐40 days)

• Easily portable to sources & field sites

• Can do the same exp. in field & lab

• “Non‐tropospheric” chemistry not enhanced relative to OH if careful

Limitations• Can only do low‐NO chemistry

• Can’t study processes that don’t scale w/ [OH]

• E.g. reactive uptake of IEPOX (next slide)

• Autooxidation?• Crounse et al. (2013): “Experiments that use very high radical abundances and therefore very short RO2lifetimes may not be fully characterizing the in‐situ chemistry.”

• But Ehn et al. (Nature 2014) quotes 0.5 s‐1, would still compete at lower OH/HO2

• “Non‐tropospheric” chemistry can dominate if not careful

23

Details on OFR Limitations

• Reminder of autooxidation reactions:

• Fate of IEPOX in OFR during SOAS:

24

Crounse et al., 2013

Hu et al., in prep.

Page 13: Introduction to Flow Reactors - welcome | CIREScires.colorado.edu/jimenez/CHEM-5152/Lect/Flow_Reactors.pdf4/14/2015 1 Introduction to Flow Reactors Advanced Atmospheric chemistry CHEM‐5152

4/14/2015

13

25http://pubs.acs.org/doi/pdf/10.1021/ac5042395

Dg,X: gas=phase diffusion coeff of X.

Sherwood Number

Dimensionless Axial Distance z*

X: thermal molecular velocity XX: wall uptake coefficient

26

Page 14: Introduction to Flow Reactors - welcome | CIREScires.colorado.edu/jimenez/CHEM-5152/Lect/Flow_Reactors.pdf4/14/2015 1 Introduction to Flow Reactors Advanced Atmospheric chemistry CHEM‐5152

4/14/2015

14

Penetration of Aerosol Particles

27

= Dgp ltube/Q

• What fraction of 50 nm particles will penetrate 25 m of tubing at 0.1 lpm?A. ~100%

B. ~30%

C. ~10%

D. ~1%

E. I don’t know