23
Introduction to Diffraction analysis Luca Lutterotti Department of Materials Engineering and Industrial Technologies University of Trento – Italy

Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

Introduction to Diffraction analysis

Luca Lutterotti

Department of Materials Engineering and Industrial Technologies

University of Trento – Italy

Page 2: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

Outline: basic concepts

• The Bragg law

• The intensity of the diffraction

• Powder diffraction and instrumentation

– Bragg-Brentano

– Texture goniometers

– Residual stress measurements

• Diffraction analyses

Page 3: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

The Bragg law

• Constructive interference and interplanar spacing:

Page 4: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

Reciprocal space

!

dhkl

=VC

s11h2

+ s22k2

+ s33l2

+ 2s12hk + 2s

13hl + 2s

23kl

Page 5: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

The Bragg law and the intensities

!

"#$$%&'(#)*+,*(-*.#(#-.

/0&1(-%+2

34(5#*-

! ,*(%)64'(#)*

! 7'&((-%#*8+9:+-5-'(%)*.

! 7'&((-%#*8+9:+&();.

! 7'&((-%#*8+9:+&+4*#(+'-55

! 7(%4'(4%-+$&'()%.

! <)=6-%+6#$$%&'(#)*+#*(-*.#(:+'&5'45&(#)*.> ?45(#15#'#(:

> @)%-*(A+$&'()%

> B9.)%1(#)*C+"-9:-D7'0-%%-%+&*6+E%&88+E%-*(&*)

> F-;1-%&(4%-+$&'()%

> GH&;15-+'&5'45&(#)*.

! I-'#1%)'&5+.1&'-+&*6+6#$$%&'(-6+#*(-*.#(#-.

,*(%)64'(#)*! F0-+1).#(#)*.+)$+(0-+&();.+#*+&+4*#(+'-55+6-(-%;#*-+(0-+#*(-*.#(#-.+)$+(0-+%-$5-'(#)*.

! /)*.#6-%+6#$$%&'(#)*+$%);+JKK!L+15&*-.+#*

J&L J9L

J&L J9L

,$+(0-+1&(0+5-*8(0+9-(=--*+%&:.+!+

&*6+M+6#$$-%.+9:+!C+(0-+1&(0+5-*8(0+9-(=--*+%&:.+!+&*6+N+=#55+6#$$-%+9:+

!OM+&*6+6-.(%4'(#P-+#*(-%$-%-*'-+#*+J9L+=#55+5-&6+()+*)+6#$$%&'(-6+

#*(-*.#(:

7'&((-%#*8+9:+-5-'(%)*.

! G5-'(%)*.+&*6+)(0-%+'0&%8-6+1&%(#'5-.+.'&((-%+HD%&:.Q

> R&%:#*8+-5-'(%#'+$#-56+&..)'#&(-6+=#(0+HD%&:+#*64'-.+&*+).'#55&(#)*+)$+(0-+'0&%8-6+1&%(#'5-

> 3.'#55&(#*8+'0&%8-6+1&%(#'5-+#.+&+.)4%'-+)$+-5-'(%);&8*-(#'+%&6#&(#)*

! F0);.)*+&*&5:A-6+.'&((-%#*8+#*+6-(&#5Q+7'&((-%-6+#*(-*.#(:+&(+&+6#.(&*'-C+%C+$%);+&+.#*85-+-5-'(%)*+#.

""#

µ M

M

M

MM

2M

.#*.#*2 !

"#

!$

%## &

&& =!

""#

$%!

"#

$=

" > #.+(0-+&*85-+9-(=--*+(0-+.'&((-%#*8+6#%-'(#)*+&*6+(0-+6#%-'(#)*+#*+=0#'0+(0-+-5-'(%)*+#.+&''-5-%&(-6

<)5&%#A&(#)*+6-1-*6-*'-

! F0-+6-1-*6-*'-+)$+.'&((-%#*8+)*+(0-+&*85-+"C+;-&*.+(0&(+(0-+1)5&%#A&(#)*+)$+(0-+%&6#&(#)*+0&.+()+9-+')*.#6-%-6Q

! SD%&:.+');#*8+$%);+&+(49-+.)4%'-+&%-+4*1)5&%#A-6Q+T-+'&*+')*.#6-%+(0-+%&6#&(#)*+()+0&P-+-U4&5+');1)*-*(.+)$+#(.+-5-'(%#'+P-'()%+&5)*8+&55+6#%-'(#)*.+1-%1-*6#'45&%+()+(0-+1%)1&8&(#)*+6#%-'(#)*+)$+(0-+HD%&:+9-&;

<%)1&8&(#)*+6#%-'(#)*+#.+H

7'&((-%#*8+15&*-+#.+HA

3*+&P-%&8-+GAMV+G:

M #*+4*1)5&%#A-6+

'&.-

/&*+')*.#6-%+.'&((-%#*8+)$+:+&*6+A+

');1)*-*(.+.-1&%&(-5:+&*6+&66+(0-;+

41+5&(-%

<)5&%#A&(#)*+6-1-*6-*'-

!/)*.#6-%+.'&((-%#*8+)$+');1)*-*(+1)5&%#A-6+

&5)*8+:

!/)*.#6-%+.'&((-%#*8+)$+');1)*-*(+1)5&%#A-6+

&5)*8+A

!7)+9:+&66#*8+(0-+#*(-*.#(:+)$+(0-+(=)+

');1)*-*(.

M!

"## '()( = " V+WK+.)+.#*" V+!

$M').MM!

"## '*)* = B.+" V+WKDM$

!""#

$ +=M

M').! M

M

$!

"## ')

• Consider diffraction from the (001) plane

Page 6: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

Diffraction intensities

• The intensity in a powder diffractometer

• The structure factor:

!

Iicalc = SF

f j

V j

2Lk Fk, j

2

S j 2"i # 2"k, j( )Pk, j A j + bkgik=1

Npeaks

$j=1

Nphases

$

!

Fk, j2

= mk fne"Bn

sin2#

$2 e2%i hxn +kyn + lzn( )( )

n=1

N

&2

Page 7: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

Atomic scattering factor and Debye-Waller

• The atomic scattering factor for X-ray decreases with the

diffraction angle and is proportional to the number of electrons. For neutron is not correlated to the atomic number.

!"##$%&'"()*+%,"&,-*.%$'*/*

!"#$"%#$&'()'*%+$,'-.'/011022)3'40#'567899:99;3'<1=#0&>?=@01'=0'A:-%)'60B&$#'C@44#%?=@013'7"#@1D';99EF'

01%'2$"%3*")*'4",*5(&672)'*",*8($$(925*#$(7*7%):*,(6$&2,;*%33*($"<")%3*7%'2$"%3*",*=/>>?*8:*@%72,*AB*C())(33:D*

0A2E","()*5%'2F*/GHI28H>?D* * .%<2*J*(#*K/'

G%2>$,'40#'=H$'?0$44@?@$1=,'%#$'=%(>2%=$&'@1'=H$'<1=$#1%=@01%2'I%(2$,'40#'/#),=%220D#%"H).''<1'

%?=>%2'"#%?=@?$3'=H$,$'?0##$?=@01,'%#$'012)',@D1@4@?%1='40#'=H0,$'$2$+$1=,'40#'BH@?H'%(,0#"=@01'

$&D$'42>0#$,?$1?$'$44$?=,'%#$',@D1@4@?%1=.'''

!"#$%&'()*+,*-(

IH$'=H$#+%2'J@(#%=@01%2'%+"2@=>&$'04'=H$'%=0+'B@22'H%J$'%1'$44$?='01'K:#%)',?%==$#@1D.''IH$'

$44$?=@J$',?%==$#@1D'@,'&$,?#@($&'()'=H$'40220B@1D'#$2%=@01,H@"L'

!"

#$%

&!=

;

;

9

,@1$K"

"#!

"" '

!'@,'=H$'C$()$:M%22$#'=$+"$#%=>#$'4%?=0#'%1&'@,'&$4@1$&'%,L' ;;N #! $= .'''#$'@,'=H$'+$%1:

,O>%#$'%+"2@=>&$'04'J@(#%=@01'04'%1'%=0+3'%1&'@,'&@#$?=2)'#$2%=$&'=0'=H$'=H$#+%2'$1$#D)'!%IF'

%J%@2%(2$'B@=H'0=H$#'=$#+,'#$2%=$&'=0'%=0+@?'+%,,'%1&'=H$',=#$1D=H'04'@1=$#%=0+@?'(01&,.''

P>%2@=%=@J$2)3'%,'I'@1?#$%,$,'!0=H$#'4%?=0#,'?01,=%1=F3'Q'B@22'@1?#$%,$.''MH$1'Q'R'93'=H$'

,?%==$#@1D'B@22'40220B'=H$'IH0+",01'$O>%=@01.''S,'Q'@1?#$%,$,3',?%==$#@1D'B@22'($'#$&>?$&'@1'

%+"2@=>&$.''IH@,'#$2%=@01,H@"'@,',H0B1'@1'T@D'E.U8'!*$1V@1,'%1&'71)&$#3'UWWXF'($20BL''

'

Y12@V$'0=H$#',?%==$#@1D'4%?=0#,3'=H$'?0+">=%=@01'04'=H$'=$+"$#%=>#$'4%?=0#'@,'$K=#$+$2)'

?0+"2$K3'(%,$&'01'=$1,0#'#$2%=@01,H@",'01'BH@?H'=H$#$'@,'10='B@&$,"#$%&'D$1$#%2'%D#$$+$1=.'''

./&++#$,-0(*1(234&56(75(&(8-,+(9#'':(!"#(.+$;/+;$#(<&/+*$(

IH$'>1@='?$22,'04'+0,='?#),=%22@1$',>(,=%1?$,'?01=%@1'%',$J$#%2'&@44$#$1='$2$+$1=,'BH0,$'

%=0+,'%#$'%##%1D$&'@1'%'?0+"2$K'+0=@4'&$4@1$&'()'%'J%#@$=)'04'"0@1='D#0>"',)++$=#)'

$2$+$1=,'%1&'#$"2@?%=$&'()'=#%1,2%=@01%2'$2$+$1=,'@1=0'%'=H#$$:&@+$1,@01%2'2%==@?$'%##%).'''

IH$',=#>?=>#$'+%)'($'=H0>DH='04'%,'#$"$%=@1D'"2%1%#'%##%),'04'%=0+,.''IH$'D$0+$=#)'04'"$%V,'

@,'#$2%=$&'4>1&%+$1=%22)'=0'"0,@=@01,'04'=H0,$'%=0+,'B@=H'2@==2$'#$D%#&'=0'BH%='=H0,$'%=0+,'%#$.''

<1=$1,@=)3'01'=H$'0=H$#'H%1&3'@,'&$4@1@=$2)'#$2%=$&'=0'=H$'?0+"0,@=@01'($?%>,$'=H$'@1=$1,@=)'04'

Page 8: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

Neutron scattering factors

• For light atoms neutron scattering has some advantages

• For atoms very close in the periodic table, neutron scattering may help distinguish them.

Neutron & X-Ray Scattering Lengths

Q, Å-1

0

5

10

15

20

25

30

0 2 4 6 8

f,e-

CoFe

Ti

Co-6e-

MgO

• X-Ray similarity of Co & Fe - can be removed with !!!! tuned to Co K edge• f’ offset of entire scattering factor curve

-0.40

0.00

0.40

0.80

1.20

Element

bx1

0

cm

-12

H

Be

Sc

Ti Mn

Xe

NiFe

CoV

Li

N Cl

• Neutron b’s - vary erratically across Periodic Table• Strong scattering for “light” elements• Isotope effect - H vs. D• “Negative” b’s

Page 9: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

X-ray and neutron diffraction

10.0 0.05 155.9 CPD RRRR PbSO4 1.909A neutron data 8.8

Scan no. = 1 Lambda = 1.9090 Observed Profile

D-spacing, A

Cou

nts

1.0 2.0 3.0 4.0

X10

E 3

.5

1

.0

1

.5

2

.0

2

.5

10.000 0.025 159.00 CPD RRRR PbSO4 Cu Ka X-ray data 22.9.

Scan no. = 1 Lambda1,lambda2 = 1.540 Observed Profile

D-spacing, A

Cou

nts

1.0 2.0 3.0 4.0

X10

E 4

.0

.

5

1.0

1.5

X-ray Diffraction - CuKaPhillips PW1710• Higher resolution• Intensity falloff at small dspacings• Better at resolving small lattice distortions

Neutron Diffraction - D1a, ILL !!!!=1.909 Å• Lower resolution• Much higher intensity at small d-spacings• Better atomic positions/thermal parameters

Compare x-ray & neutron powder patterns (both CW)

Page 10: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

Thermal or Debye-Waller factor

• It causes a decrease of the

intensities at high angle

• It is proportional to the thermal

vibrations

• Intensities decrease increasing

the temperature

• From the Debye-Waller it is

possible to estimate the Debye temperature

!

"#$%&'$(%'$)*(+,$(-,./'$(/0++$12%0,3

!43(5,%&(+06)(13/(/0++$12%,)%'$()'1*#$')'3%*(,+(-,./'$(/0++$12%0,3(/1%1(,367(1(-1$%(,+(%&'(/0++$12%'/(2,3'(0*(%7-021667($'2,$/'/8(9&0*(6'1/*(%,(13(1//0%0,316(2,$$'2%0,3(%'$)(/'-'3/'3%(,3(*03(:!;

9&'(<,$'3%=>?,61$0=1%0,3(+12%,$

!",$(-,./'$(/0++$12%0,3(166(%&'(2,)-,3'3%*(,+(%&'(<,$'3%=(2,$$'2%0,3(2,)503'(%,(@0A'B C(DE*03:! 2,*!FB G&'3(2,)503'/(.0%&(%&'(-,61$0=1%0,3(2,$$'2%0,3H(%&'$'(0*(1(-$,3,#32'/('3&132')'3%(,+(%&'(6,.(13/(&0@&(13@6'($'+6'2%0,3*($'61%0A'(%,(%&,*'(1%(03%'$)'/01%'(13@6'*

I5*,$-%0,3

! 43($'16(*1)-6'*H(5,%&(0320/'3%(13/(/0++$12%'/(J>$17*()17(5'(15*,$5'/(57(%&'(*1)-6'8(9&0*($'/#2'*(%&'(03%'3*0%7(,+(%&'(/0++$12%'/(5'1)8

! 97-021667H(.&'3(.'(%$'1%(*#2&(-$,56')*(.'(2162#61%'(13('++'2%0A'(603'1$(15*,$-%0,3(2,'++020'3%(+,$(%&'(*1)-6'(%&1%(0*(2,$$'2%'/(+,$(*1)-6'(/'3*0%7(1*(+,66,.*

! 9&0*(1--$,12&(213(6'1/(%,(-$,56')*(D)02$,15*,$-%0,3F(.&'3(%&'(*1)-6'(&1*(1(&0@&(15*,$-%0,3(2,'++020'3%> 4/'1667(7,#(*&,#6/(#*'(1(),/'6(%&1%(%1K'*(03%,(122,#3%(%&'(/0*%$05#%0,3(13/(*&1-'(,+(%&'(@$103*(13/(-,$'*

!""#

$=

!"#$%

&$'(%#

!"#$%&$'(%# ""

µµ

I5*,$-%0,3(03(L'57'>M2&'$$'$(@',)'%$7! L'57'>M2&'$$'$ *1)-6'(%7-021667(2,3*0*%(,+(%&03(27603/'$(,+()1%'$016(,$(*,)'%0)'*(1(%&03(2,1%03@(,3(%&'(,#%*0/'(,+(1(%#5'B 9&'$'(0*()#2&(6'**(15*,$-%0,3(1%(&0@&(13@6'*(%&13(1%(6,.

N 4O(PQ9RPSP(TIMPMH(<UG(IOV<P(I;MUR?94UO(TIO(V4WP(9XP(I??PIRIOTP(U"(M?<49(<4OPM(IM(OU(Q>RIYM(TIO(?IMM(9XRUZVX(9XP(S4LL<P(U"(9XP(MIS?<P

B I5*,$-%0,3(2,$$'2%0,3(/,'*(3,%(&1A'(1(*0)-6'(13167%0216(+,$)H(5#%(%&'$'(1$'(%15#61%0,3*(,+(%&0*(2,$$'2%0,3(1A106156'

<,.(15*,$-%0,3M21%%'$03@(+$,)(%&$,#@&,#%(%&'(*1)-6'

X0@&(15*,$-%0,3M21%%'$03@(+$,)(%&'(*#$+12'(,367

I5*,$-%0,3(03(*7))'%$0216(+61%(-61%'(@',)'%$7

! I(#30+,$)(+61%(-61%'(,+(03+030%'(%&02K3'**(1$$13@'/(*,(%&1%(0%*(3,$)16(50*'2%*(%&'(0320/'3%(13/(/0++$12%'/(5'1)(&1*(13(15*,$-%0,3(+12%,$([(C\:µB 9&'$'(0*(3,(13@6'(/'-'3/'32'(%,(%&'(15*,$-%0,3(+12%,$B 9&0*(1$0*'*(5'21#*'(1%(6,.(13@6'*(1(61$@'(*#$+12'(1$'1(0*(066#)031%'/(5#%(%&'(5'1)(,367(-'3'%$1%'*(1(*)166(/0*%132'(5'6,.(%&'(*#$+12'H(5#%(1%(&0@&(13@6'*(1(*)166'$(1$'1(0*(066#)031%'/(13/(%&'(5'1)(-'3'%$1%'*(/''-'$(5'6,.(%&'(*#$+12'

! 4+(%&'(-61%'(0*(%&03H(,$(0+(%&'(-61%'(0*(3,%(*7))'%$021667(-612'/(%&'$'(.066(5'(13(13@6'(/'-'3/'32'(%,(%&'(15*,$-%0,3(2,$$'2%0,3

9')-'$1%#$'(+12%,$! 43($'16(2$7*%16*(%&'(-'$0,/02(1$$13@')'3%(,+(1%,)*(0*(*,)'.&1%(/0*$#-%'/(1*(%&'(1%,)*(1$'(#3/'$@,03@(A05$1%0,316(),%0,3B 9&0*(6,**(,+(-'$+'2%(,$/'$($'/#2'*(%&'(/0++$12%'/(03%'3*0%7N R'/#2%0,3(,+(03%'3*0%7(0*(),/'6'/(57(1(%')-'$1%#$'(+12%,$('>:S H(.&'$'(S([(;D*03!\#F: [(]$:#:D*03!\#F:13/(#: 0*(%&'()'13(*^#1$'(/0*-612')'3%(,+(%&'(1%,)(+$,)(0%*(1A'$1@'(-,*0%0,3

N I*(%&'()'13(*^#1$'(/0*-612')'3%(213(5'(61$@'(+,$(*,)'()1%'$016*(D1A'$1@'(/0*-612')'3%(_8C`(a(+,$(I6(1%($,,)(%')-F(%&'(%')-'$1%#$'(+12%,$(213(6'1/(%,(1(/$1)1%02(/'2$'1*'(03(/0++$12%'/(03%'3*0%7H(-1$%02#61$67(.&'3(%&'(*1)-6'(0*(1%(&0@&(%')-'$1%#$'

N <,**(,+(03%'3*0%7(0*(),*%(,5A0,#*(1%(&0@&(13@6'*

N I*(-'1K*(1$'(*#--$'**'/(57(%&'$)16(),%0,3(%&'(512K@$,#3/($0*'*(/#'(%,(%&'$)16(/0++#*'(*21%%'$03@(

Page 11: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

Powder diffraction and Debye-Scherrer camera

!

"#$%&'$(%'$)*(+,$(-,./'$(/0++$12%0,3

!43(5,%&(+06)(13/(/0++$12%,)%'$()'1*#$')'3%*(,+(-,./'$(/0++$12%0,3(/1%1(,367(1(-1$%(,+(%&'(/0++$12%'/(2,3'(0*(%7-021667($'2,$/'/8(9&0*(6'1/*(%,(13(1//0%0,316(2,$$'2%0,3(%'$)(/'-'3/'3%(,3(*03(:!;

9&'(<,$'3%=>?,61$0=1%0,3(+12%,$

!",$(-,./'$(/0++$12%0,3(166(%&'(2,)-,3'3%*(,+(%&'(<,$'3%=(2,$$'2%0,3(2,)503'(%,(@0A'B C(DE*03:! 2,*!FB G&'3(2,)503'/(.0%&(%&'(-,61$0=1%0,3(2,$$'2%0,3H(%&'$'(0*(1(-$,3,#32'/('3&132')'3%(,+(%&'(6,.(13/(&0@&(13@6'($'+6'2%0,3*($'61%0A'(%,(%&,*'(1%(03%'$)'/01%'(13@6'*

I5*,$-%0,3

! 43($'16(*1)-6'*H(5,%&(0320/'3%(13/(/0++$12%'/(J>$17*()17(5'(15*,$5'/(57(%&'(*1)-6'8(9&0*($'/#2'*(%&'(03%'3*0%7(,+(%&'(/0++$12%'/(5'1)8

! 97-021667H(.&'3(.'(%$'1%(*#2&(-$,56')*(.'(2162#61%'(13('++'2%0A'(603'1$(15*,$-%0,3(2,'++020'3%(+,$(%&'(*1)-6'(%&1%(0*(2,$$'2%'/(+,$(*1)-6'(/'3*0%7(1*(+,66,.*

! 9&0*(1--$,12&(213(6'1/(%,(-$,56')*(D)02$,15*,$-%0,3F(.&'3(%&'(*1)-6'(&1*(1(&0@&(15*,$-%0,3(2,'++020'3%> 4/'1667(7,#(*&,#6/(#*'(1(),/'6(%&1%(%1K'*(03%,(122,#3%(%&'(/0*%$05#%0,3(13/(*&1-'(,+(%&'(@$103*(13/(-,$'*

!""#

$=

!"#$%

&$'(%#

!"#$%&$'(%# ""

µµ

I5*,$-%0,3(03(L'57'>M2&'$$'$(@',)'%$7! L'57'>M2&'$$'$ *1)-6'(%7-021667(2,3*0*%(,+(%&03(27603/'$(,+()1%'$016(,$(*,)'%0)'*(1(%&03(2,1%03@(,3(%&'(,#%*0/'(,+(1(%#5'B 9&'$'(0*()#2&(6'**(15*,$-%0,3(1%(&0@&(13@6'*(%&13(1%(6,.

N 4O(PQ9RPSP(TIMPMH(<UG(IOV<P(I;MUR?94UO(TIO(V4WP(9XP(I??PIRIOTP(U"(M?<49(<4OPM(IM(OU(Q>RIYM(TIO(?IMM(9XRUZVX(9XP(S4LL<P(U"(9XP(MIS?<P

B I5*,$-%0,3(2,$$'2%0,3(/,'*(3,%(&1A'(1(*0)-6'(13167%0216(+,$)H(5#%(%&'$'(1$'(%15#61%0,3*(,+(%&0*(2,$$'2%0,3(1A106156'

<,.(15*,$-%0,3M21%%'$03@(+$,)(%&$,#@&,#%(%&'(*1)-6'

X0@&(15*,$-%0,3M21%%'$03@(+$,)(%&'(*#$+12'(,367

I5*,$-%0,3(03(*7))'%$0216(+61%(-61%'(@',)'%$7

! I(#30+,$)(+61%(-61%'(,+(03+030%'(%&02K3'**(1$$13@'/(*,(%&1%(0%*(3,$)16(50*'2%*(%&'(0320/'3%(13/(/0++$12%'/(5'1)(&1*(13(15*,$-%0,3(+12%,$([(C\:µB 9&'$'(0*(3,(13@6'(/'-'3/'32'(%,(%&'(15*,$-%0,3(+12%,$B 9&0*(1$0*'*(5'21#*'(1%(6,.(13@6'*(1(61$@'(*#$+12'(1$'1(0*(066#)031%'/(5#%(%&'(5'1)(,367(-'3'%$1%'*(1(*)166(/0*%132'(5'6,.(%&'(*#$+12'H(5#%(1%(&0@&(13@6'*(1(*)166'$(1$'1(0*(066#)031%'/(13/(%&'(5'1)(-'3'%$1%'*(/''-'$(5'6,.(%&'(*#$+12'

! 4+(%&'(-61%'(0*(%&03H(,$(0+(%&'(-61%'(0*(3,%(*7))'%$021667(-612'/(%&'$'(.066(5'(13(13@6'(/'-'3/'32'(%,(%&'(15*,$-%0,3(2,$$'2%0,3

9')-'$1%#$'(+12%,$! 43($'16(2$7*%16*(%&'(-'$0,/02(1$$13@')'3%(,+(1%,)*(0*(*,)'.&1%(/0*$#-%'/(1*(%&'(1%,)*(1$'(#3/'$@,03@(A05$1%0,316(),%0,3B 9&0*(6,**(,+(-'$+'2%(,$/'$($'/#2'*(%&'(/0++$12%'/(03%'3*0%7N R'/#2%0,3(,+(03%'3*0%7(0*(),/'6'/(57(1(%')-'$1%#$'(+12%,$('>:S H(.&'$'(S([(;D*03!\#F: [(]$:#:D*03!\#F:13/(#: 0*(%&'()'13(*^#1$'(/0*-612')'3%(,+(%&'(1%,)(+$,)(0%*(1A'$1@'(-,*0%0,3

N I*(%&'()'13(*^#1$'(/0*-612')'3%(213(5'(61$@'(+,$(*,)'()1%'$016*(D1A'$1@'(/0*-612')'3%(_8C`(a(+,$(I6(1%($,,)(%')-F(%&'(%')-'$1%#$'(+12%,$(213(6'1/(%,(1(/$1)1%02(/'2$'1*'(03(/0++$12%'/(03%'3*0%7H(-1$%02#61$67(.&'3(%&'(*1)-6'(0*(1%(&0@&(%')-'$1%#$'

N <,**(,+(03%'3*0%7(0*(),*%(,5A0,#*(1%(&0@&(13@6'*

N I*(-'1K*(1$'(*#--$'**'/(57(%&'$)16(),%0,3(%&'(512K@$,#3/($0*'*(/#'(%,(%&'$)16(/0++#*'(*21%%'$03@(

Page 12: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

A modern diffractomer

Page 7.7 © 1999 Scintag Inc. All Rights Reserved.

Chapter 7: Basics of X-ray Diffraction

GONIOMETER

The mechanical assembly that makes up the sample holder, detector arm and associated gearing is referred to as go-

niometer. The working principle of a Bragg-Brentano parafocusing (if the sample was curved on the focusing circle

we would have a focusing system) reflection goniometer is shown below.

The distance from the X-ray focal spot to the sample is the same as from the sample to the detector. If we drive the

sample holder and the detector in a 1:2 relationship, the reflected (diffracted) beam will stay focused on the circle of

constant radius. The detector moves on this circle.

For the THETA : 2-THETA goniometer, the X-ray tube is stationary, the sample moves by the angle THETA and the

detector simultaneously moves by the angle 2-THETA. At high values of THETA small or loosely packed samples

may have a tendency to fall off the sample holder.

Page 13: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

A typical spectrum

Page 14: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

Parafocusing circle (Bragg-Brentano)

Bragg-Brentano Diffractometer – “parafocusing”

Diffractometer

circle

Sample

Receiving slit

X-ray sourceFocusing circle

Divergent beam optics

Incident beam

slit

Beam footprint

Page 15: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

Theta-theta diffractometer

Page 7.8 © 1999 Scintag Inc. All Rights Reserved.

Chapter 7: Basics of X-ray Diffraction

GONIOMETER

For the THETA:THETA goniometer, the sample is stationary in the horizontal position, the X-ray tube and the de-

tector both move simultaneously over the angular range THETA.

Page 16: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

Slits system in Bragg-Brentano

soller slits

sample

divergenge slit

soller slits

receiving slit

antiscatter slitscatter slit

tub

e ta

rget

dete

cto

r

Page 17: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

Texture goniometer

Page 7.14 © 1999 Scintag Inc. All Rights Reserved.

Chapter 7: Basics of X-ray Diffraction

APPLICATIONS

coordinate system from a position coincident with the specimen coordinate system to a

given position.

The ODF is a function of three independent angular variables and gives the

probability of finding the corresponding unit cell (lattice) orientation.

Polefigure data collection : The systematic change in angular orientation of the sample is normally achieved by

utilizing a four-circle diffractometer. We collect the intensity data for various settings

of CHI and Phi. Normally we measure all PHI values for a given setting of CHI, we

then change CHI and repeat the process.

Four circle diffractometer

Page 18: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

Texture orientations

Page 7.20 © 1999 Scintag Inc. All Rights Reserved.

Chapter 7: Basics of X-ray Diffraction

TEXTURE ANALYSIS

The determination of the preferred orientation of the crystallites in a polycrystalline aggregate is referred to as tex-

ture analysis. The term texture is used as a broad synonym for preferred crystallographic orientation in a

polycrystalline material, normally a single phase. The preferred orientation is usually described in terms of pole fig-

ures.

The Pole Figure : Let us consider the plane (h, k, l) in a given crystallite in a sample. The direction of the plane

normal is projected onto the sphere around the crystallite. The point where the plane normal

intersects the sphere is defined by two angles, a pole distance a and an azimuth ß. The azimuth

angle is measured counter clock wise from the point X.

Let us now assume that we project the plane normals for the plane (h, k, l) from all the crystallites irradiated in the

sample onto the sphere.

Each plane normal intercepting the sphere represents a point on the sphere. These points in return represent the

Poles for the planes (h, k, l) in the crystallites. The number of points per unit area of the sphere represents the pole

density.

X

N

a = 55°

ß = 210° D

( h, k, l)

! !

!

! "#

$%&'()!*+'(,+-%.+/0&!)01/2),&!3!*&4+0+()!*)22)!4,).+/0&!5/2%6&(,+7)!*898!*&+!

7,+'()22+! 7:&! :)00/! 2)! 2/,/! *+,&.+/0&! :! ;*+! <%&2! *)(/! =+)0/>?! =),)22&2)! )22)!

*+,&.+/0&! @! *&2! 7)6=+/0&A! B)2&! 7/07&((/! 5+&0&! <%+! *+! '&1%+(/! &'=,&''/!

)0)2+(+7)6&0(&!*)22)!'&1%&0(&!&<%).+/0&C!

!

!*898!D!;#9E!>!F!G:;@>*@?!!!!!@!D!H!?"I?!!!!!*@!D!'+0!!*!!*"!!!!!J"KL!

!

!M0! =),/2&! =/5&,&?! +2! 7)6=+/0&! 3! 7/'(+(%+(/! *)! 6/2(+! 7,+'()22+?! /10+%0/! *&+!

<%)2+! =/''+&*&! *+5&,'+! =+)0+! 7,+'()22/1,)4+7+N! /10+! =+)0/! 7,+'()22/1,)4+7/! 3!

,)==,&'&0()(/!*)!%0!5&,'/,&!)*!&''/!0/,6)2&!&!<%+0*+!3!+*&0(+4+7)(/!*)!%0)!7&,()!

*+,&.+/0&!;<%&22)!7:&!=,+6)!)5&5)6/!7:+)6)(/!:>?!2)!<%)2&!=%O!&''&,&!7/,,&2)()!

)22)!*+,&.+/0&!*+!,+4&,+6&0(/!@!*&2!6+/!7)6=+/0&A!!

B)0(/!=+P!7,+'()22+!'),)00/!/,+&0()(+!+0!6/*/!*)!)5&,&!+2!=+)0/!7,+'()22/1,)4+7/!

:! 2%01/! %0)! 7&,()! *+,&.+/0&! <%)0(/! =+P!5/2%6&!*+!6)(&,+)2&! '),Q! 5+'%)2+..)(/!

'%22&!4+1%,&!=/2),+?!0&22&!./0&!7/,,+'=/0*&0(+!)!<%&22)!*)()!*+,&.+/0&!;R+1%,)!S>A!

T&!4+1%,&!=/2),+!=/''/0/!&''&,&!*&4+0+(&!=&,!<%)2'+)'+!*+,&.+/0&!7,+'()22/1,)4+7)!

'7&2()A!T)!7/')!+6=/,()0(&!*)!/''&,5),&!3!7:&!2)!*&4+0+.+/0&!*+!4+1%,)!=/2),&!3!

-)')()!'%!%0)!*+,&.+/0&!7,+'()22/1,)4+7)!+0*+5+*%)2&!J:#!:"!:UL!&!0/0!'%!*+!%0!'&(!

*+!*+,&.+/0+!'+66&(,+7)6&0(&!&<%+5)2&0(+!V!:#!:"!:UWA!

!$%&'(/! '+10+4+7)! 7:&! 2)! 4+1%,)! =/2),&! 7:&! ,)==,&'&0()! :! D! J:#! :"! :UL! 3!

*+'(+0()!*)!<%&22)!7:&!,)==,&'&0()!X:!D!JY:#!Y:"!Y:ULA!

!

!!!!

Figura 9.! Z)==,&'&0().+/0&! &! *&4+0+.+/0&! *+! 4+1%,&! =/2),+A! T)! 4,).+/0&! 5/2%6&(,+7)!!

*&2! 6)(&,+)2&! )5&0(&! 2)! *+,&.+/0&! 7,+'()22/1,)4+7)! J:[2L! =),)22&2)! )22)! *+,&.+/0&! *&2!

Pole figure representation

Page 19: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

Pole figure projections (and inverse)

Page 20: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

Residual stress measurement

Goniometer

PSD detector

X-ray tube and

collimator

Psi movement

Phi movement

X-ray generator

Electronic for PSD

Ratemeter

Software

Page 21: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

Residual stress analysis

! > 0

! < 0

!"#$% #&'"#(% )(% *)'"% )+%", -.%"/ -% 0(#% $)$12#().% 3% 4#056(#3% 0'% 7)5&'&8#% 0$3$#90'&8#%:5&% ;&<<% *#% 3&++#(#$'% 36#% ')% '"#% 0(964#$'% 5&$/:5&% 055)=&0'#3;&'"% '"#5#% '#(45% =065&$9% 0%>57< &'?% &$% '"#% 3% @/1'"#'0A%8 5B% 5&$/:5&% 30'0BC"&5% #++#='% &5% '#(4#3%>:5&157<&''&$9?B

Page 22: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

Diffraction analyses

• Phase identifications (crystalline and amorphous)

• Crystal structure determination

• Crystal structure refinements (cell parameters and atomic

positions)

• Quantitative phase analysis (and crystallinity determination)

• Microstructural analyses (crystallite sizes – microstrain distributions etc.)

• Texture analysis

• Residual stress analysis

• Order-disorder transitions and compositional analyses

• Thin films

Page 23: Introduction to Diffraction analysis - UniTrentoluttero/laboratoriomateriali/IntroductionDiffraction.pdfS c a n n o . = 1 L a m b d a 1 ,la m b d a 2 = 1 .5 4 0 O b s e r v e d P r

Search-Match and the PDF system