28
Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 1 Introduction to color science Trichromacy Spectral matching functions CIE XYZ color system xy-chromaticity diagram Color gamut Color temperature Color balancing algorithms

Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 1

Introduction to color science Trichromacy Spectral matching functions CIE XYZ color system xy-chromaticity diagram Color gamut Color temperature Color balancing algorithms

Page 2: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 2

Newton’s Prism Experiment - 1666

Page 3: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 3

Color: visible range of the electromagnetic spectrum

380 nm 760 nm

Page 4: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 4

Radiometry overview

illuminant

spectral reflectance at receiver:

sensor (tri-stimulus) response

CIE XYZ

???

color conversion RGB

Page 5: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 5

Radiometric Quantities

Page 6: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 6

Photometric Quantities

Page 7: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 7

Human retina

Pseudo-color image of nasal retina, 1 degree eccentricity, in two male subjects, scale bar 5 micron

[Roorda, Williams, 1999]

Page 8: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 8

Absorption of light in the cones of the human retina

Sens

itivi

ty

Wavelength 𝜆 (nm)

535 nm 445 nm 575 nm

——𝐿: 𝑆𝑅 𝜆 ——𝑀: 𝑆𝐺 𝜆 ——𝑆: 𝑆𝐵 𝜆

Note: curves are normalized. Much lower sensitivity to Blue, since fewer S-cones absorb less light.

Page 9: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 9

Three-receptor model of color perception

Different spectra can map into the same tristimulus values and hence look identical (“metamers”)

Three numbers suffice to represent any color – Grassmann’s law

[T. Young, 1802] [J.C. Maxwell, 1890]

( ) ( )GS C dλ

λ λ λ∫

( ) ( )BS C dλ

λ λ λ∫

( )C λ

BαSpectral energy distribution

of incident light

Effective cone stimulation (“tristimulus values”)

Page 10: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 10

Color matching Suppose 3 primary light sources with spectra Pk( ), k =1,2,3 Intensity of each light source can be adjusted by factor k How to choose k, k =1,2,3, such that desired tristimulus values (⟨ R, ⟨ G, ⟨ B) result ?

( ) ( )GS C dλ

λ λ λ∫

( ) ( )RS C dλ

λ λ λ∫

( ) ( )BS C dλ

λ λ λ∫

Color matching is linear!

Page 11: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 11

Additive vs. subtractive color mixing

Page 12: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 12

Color matching experiment

Courtesy B. Wandell, from [Foundations of Vision, 1996]

Eyes

Page 13: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 13

Spectral matching functions

Color matching experiment: Monochromatic test light and monochromatic primary lights

Spectral RGB primaries (scaled, such that R=G=B matches spectrally flat white)

“Negative intensity”: color is added to test color Standard human observer: CIE (Commision

Internationale de L’Eclairage), 1931.

RGB Color Matching Functions

——𝑟 𝜆 ——𝑔 𝜆 ——𝑏 𝜆

435.8 nm 546.1 nm 700.0 nm Wavelength 𝜆 (nm)

Tris

timul

us v

alue

s

Page 14: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 14

Luminosity function

Experiment: Match the brightness of a white reference light and a monochromatic test light of wavelength λ

Links photometric to radiometric quantities

Wavelength 𝜆 (nm)

Peak 555nm

Lum

inou

s ef

ficie

ncy

reference light

Monochromatic test light

Page 15: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 15

CIE 1931 XYZ color system

Properties: All positive spectral matching functions

Y corresponds to luminance Equal energy white: X=Y=Z Virtual primaries

—— —— ——

XYZ Color Matching Functions

Tris

timul

us v

alue

s

Wavelength 𝜆 (nm)

.490 .310 .200

.177 .813 .011

.000 .010 .990

X RY GZ B

λ

λ

λ

=

Page 16: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 16

Y

Z

X

X+Y+Z=1

Color gamut and chromaticity

XxX Y Z

YyX Y Z

=+ +

=+ +

Page 17: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 17

CIE chromaticity diagram

Page 18: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 18

Perceptual non-uniformity of xy chromaticity

Just noticeable chromaticity differences (10X enlarged) [MacAdam, 1942]

Page 19: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 19

Color gamut

NTSC phosphors R: x=0.67, y=0.33 G: x=0.21, y=0.71 B: x=0.14, y=0.08 Reference white: x=0.31, y=0.32 Illuminant C

Page 20: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 21

White at different color temperatures

1500 2000

2500 3000

4000 6000 10000

25000

Tc(K)

Page 21: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 22

Blackbody radiation

Planck’s Law, 1900

Wien’s Law

414 nm

503 nm

725 nm

Wavelength λ (nm)

Planck’s Law Curves B

T(λ)

(W

m-2

sr-1

Hz-1

)

——7000 K ——5770 K ——4000 K

Page 22: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 23

Color balancing Effect of different illuminants can be cancelled only in the spectral domain (impractical) Color balancing in 3-d color space is practical approximation Color constancy in human visual system: gain control in cone space LMS [von Kries,1902] Von Kries hypothesis applied to image acquisition devices (cameras, scanners)

How to determine kL, kM, kS automatically?

3x3 matrix

kL

kM

kS

3x3 matrix

Camera sensors

R

G

B 1T 2T

L

M

S

L’

M’

S’

Page 23: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 24

Color balancing (cont.)

Von Kries hypothesis

If illumination (or a patch of white in the scene) is known, calculate

0 00 00 0

L

M

S

L k LM k MS k S

′ ′ = ′

; ; desired desired desiredL M S

actual actual actual

L M Sk k kL M S

= = =

Page 24: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 25

Color balancing with unknown illumination

Gray-world

Scale-by-max Shades-of-gray

[Finlayson, Trezzi, 2004]

» Special cases: gray-world (p = 1), scale-by-max ( ) » Best performance for p ≈ 6

Refinements: smooth image, exclude saturated color/dark pixels, use spatial derivatives instead (“gray-edge,” “max-edge”) [van de Weijer, 2007])

p = ∞

kL L

x ,y∑ p

x, y

1p

= kM Mx ,y∑ p

x, y

1p

= kS Sx ,y∑ p

x, y

1p

kL L x, y = kM

x ,y∑ M x, y =

x ,y∑ kS S

x ,y∑ x, y

Page 25: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 26

Color balancing example

Original Gray-world Scale-by-max Gray-edge Max-edge Shades-of-gray

Page 26: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 27

Color balancing example

Original image courtesy Ciurea and Funt

Original Gray-world Scale-by-max

Gray-edge Max-edge Shades-of-gray

Page 27: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 28

Daylight D65 CIE observer

Illuminant A CIE observer

Daylight D65 cheap camera

Page 28: Introduction to color scienceweb.stanford.edu/class/ee368/Handouts/Lectures/2015_Autumn/5-Color_16x9.pdfAll positive spectral matching functions Y corresponds to luminance Equal energy

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 29

Color conversion cheat sheet (e.g. for HW2)

great website for insights, every possible color conversion scheme, and much more: www.brucelindbloom.com spectrum to CIE XYZ: CIE XYZ to CIE xyY: (no illuminant)

CIE XYZ to CIE RGB: approximation of CIE gamma:

CIE RGB to CIE XYZ: