56
Introduction to Calculus Preparation for MAT 1475: Single Variable Calculus I Supported by NSF MSP Grant # 1102729 NSF STEP Grant #0622493 and City Tech Black Male Initiative January 2014 New York City College of Technology Dr. Janet Liou-Mark Dr. Urmi Ghosh-Dastidar Department of Mathematics Christopher Chan, Yiming Yu, and Karmen Yu

Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

Introduction to Calculus Preparation for MAT 1475: Single Variable Calculus I

Supported by

NSF MSP Grant # 1102729

NSF STEP Grant #0622493 and

City Tech Black Male Initiative

January 2014

New York City College of Technology

Dr. Janet Liou-Mark

Dr. Urmi Ghosh-Dastidar Department of Mathematics

Christopher Chan, Yiming Yu, and Karmen Yu

dddddddd

Travion Joseph, Karmen Yu, and Yiming Yu

Page 2: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

Table on Contents

I. Finding Limits Graphically and Numerically 1

II. One-Sided Limits Graphically and Numerically 8

III. Evaluating Limits Analytically 17

IV. The Derivative of a Function and Tangent Lines 21

V. Differentiation Rules 32

VI. The Derivative of Trigonometric Functions 42

VII. Implicit Differentiation 47

VIII. Solutions 51

Page 3: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 1

Section 1: Finding Limits Graphically and Numerically 1. A function )(xf has a limit if the value of )(xf is the same as you approach x from both sides.

Lxfax

=β†’

)(lim If )(xf equals L as x approaches β€œ a ” from the left and right directions.

Example: Find1

1lim

3

1 βˆ’

βˆ’

β†’ x

x

x, 1x

x .75 .9 .99 .999 1 1.001 1.01 1.1 1.25

)(xf 2.313 2.170 2.970 2.997 Error 3.003 3.030 3.310 3.813

As x approaches 1 from the left and right directions, the values of )(xf approach 3.

Therefore the limit is 3 or 31

1lim

3

1=

βˆ’

βˆ’

β†’ x

x

x

x Approaches 1 from the right

x Approaches 1 from the left

)(xf Approaches 3 )(xf Approaches 3

Page 4: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 2

2. Create a table with values on both sides of the value x approaches and draw a graph to confirm the limit for each question.

a) 152

5lim

25 βˆ’βˆ’

βˆ’

β†’ xx

x

x

x 4.75 4.9 4.99 4.999 5 5.001 5.01 5.1 5.25

)(xf

Page 5: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 3

c) x

x

x

sinlim

0β†’

x 0

)(xf

Page 6: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 4

d) 4

1lim

4 +βˆ’β†’ xx

x - 4

)(xf

Page 7: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 5

e) x

x

x

33lim

0

βˆ’+

β†’

x 0

)(xf

Page 8: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 6

f) 22 )2(

1lim

βˆ’β†’ xx

x 2

)(xf

Page 9: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 7

3) Limits That Fail to Exist a) Behavior that differs from the right and left

b) Unbounded behavior

Page 10: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 8

c) Oscillating behavior

Section 2: One-Sided Limits, Infinite Limits, and Continuity 1) One-Sided Limits

Left-hand limit: )(lim xfax βˆ’β†’

means: compute the limit of )(xf as x approaches a from the left

Right-hand limit: )(lim xfax +β†’

means: compute the limit of )(xf as x approaches a from the right

Example: The left hand limit: 3)(lim =βˆ’β†’

xfax

The right hand limit: 1)(lim =+β†’

xfax

2) The Lxfax

=β†’

)(lim if and only if Lxfax

=βˆ’β†’

)(lim and Lxfax

=+β†’

)(lim .

Explain: _________________________________________________________ _________________________________________________________

Page 11: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 9

3) Infinite Limits

Infinite Limits: =β†’

)(lim xfax

Infinite Limits: βˆ’=β†’

)(lim xfax

Page 12: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 10

7) Draw a sketch of each of the following infinite limits.

=βˆ’β†’

)(lim xfax

=+β†’

)(lim xfax

βˆ’=βˆ’β†’

)(lim xfax

βˆ’=+β†’

)(lim xfax

Page 13: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 11

8) Find the limits and values.

𝑓(2)

limπ‘₯β†’2+

𝑓(π‘₯)

limπ‘₯β†’2βˆ’

𝑓(π‘₯)

limπ‘₯β†’2

𝑓(π‘₯)

𝑓(βˆ’1)

limπ‘₯β†’βˆ’1+

𝑓(π‘₯)

limπ‘₯β†’βˆ’1βˆ’

𝑓(π‘₯)

limπ‘₯β†’βˆ’1

𝑓(π‘₯)

𝑓(βˆ’3)

limπ‘₯β†’βˆ’3+

𝑓(π‘₯)

limπ‘₯β†’βˆ’3βˆ’

𝑓(π‘₯)

limπ‘₯β†’βˆ’3

𝑓(π‘₯)

𝑓(1)

limπ‘₯β†’1+

𝑓(π‘₯)

limπ‘₯β†’1βˆ’

𝑓(π‘₯)

limπ‘₯β†’1

𝑓(π‘₯)

Page 14: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 12

9) Find the limits and values.

𝑓(2)

limπ‘₯β†’2+

𝑓(π‘₯)

limπ‘₯β†’2βˆ’

𝑓(π‘₯)

limπ‘₯β†’2

𝑓(π‘₯)

𝑓(βˆ’1)

limπ‘₯β†’βˆ’1+

𝑓(π‘₯)

limπ‘₯β†’βˆ’1βˆ’

𝑓(π‘₯)

limπ‘₯β†’βˆ’1

𝑓(π‘₯)

𝑓(βˆ’3)

limπ‘₯β†’βˆ’3+

𝑓(π‘₯)

limπ‘₯β†’βˆ’3βˆ’

𝑓(π‘₯)

limπ‘₯β†’βˆ’3

𝑓(π‘₯)

𝑓(1)

limπ‘₯β†’1+

𝑓(π‘₯)

limπ‘₯β†’1βˆ’

𝑓(π‘₯)

limπ‘₯β†’1

𝑓(π‘₯)

Page 15: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 13

10) Find the limits and values.

𝑓(7)

limπ‘₯β†’7+

𝑓(π‘₯)

limπ‘₯β†’7βˆ’

𝑓(π‘₯)

limπ‘₯β†’7

𝑓(π‘₯)

𝑓(5)

lim

π‘₯β†’5+𝑓(π‘₯)

limπ‘₯β†’5βˆ’

𝑓(π‘₯)

limπ‘₯β†’5

𝑓(π‘₯)

𝑓(1)

limπ‘₯β†’1+

𝑓(π‘₯)

limπ‘₯β†’1βˆ’

𝑓(π‘₯)

limπ‘₯β†’1

𝑓(π‘₯)

𝑓(βˆ’4)

lim

π‘₯β†’βˆ’4+𝑓(π‘₯)

limπ‘₯β†’βˆ’4βˆ’

𝑓(π‘₯)

limπ‘₯β†’βˆ’4

𝑓(π‘₯)

Page 16: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 14

11) Find the limits and values.

𝑓(βˆ’7)

limπ‘₯β†’βˆ’7+

𝑓(π‘₯)

limπ‘₯β†’βˆ’7βˆ’

𝑓(π‘₯)

limπ‘₯β†’βˆ’7

𝑓(π‘₯)

𝑓(βˆ’6)

limπ‘₯β†’βˆ’6+

𝑓(π‘₯)

limπ‘₯β†’βˆ’6βˆ’

𝑓(π‘₯)

limπ‘₯β†’βˆ’6

𝑓(π‘₯)

𝑓(βˆ’3)

limπ‘₯β†’βˆ’3+

𝑓(π‘₯)

limπ‘₯β†’βˆ’3βˆ’

𝑓(π‘₯)

limπ‘₯β†’βˆ’3

𝑓(π‘₯)

𝑓(3)

limπ‘₯β†’3+

𝑓(π‘₯)

limπ‘₯β†’3βˆ’

𝑓(π‘₯)

limπ‘₯β†’3

𝑓(π‘₯)

Page 17: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 15

12) Sketch the graph of a function )(xf that

at 3βˆ’=a shows that )3(βˆ’f is not defined,

at 2=a shows that )(lim2

xfx→

does not exist,

at 7=a shows that )7()(lim7

fxfx

β†’

, but is continuous elsewhere

13) Sketch the graph of a function )(xf that

at 6βˆ’=a shows that )(lim6

xfx βˆ’β†’

does not exist,

at 0=a shows that )0(f is not defined,

at 5=a shows that )5()(lim5

fxfx

β†’

, but is continuous elsewhere

Page 18: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 16

14) Continuity at a Point A function f is continuous at c if the following three conditions are met.

1. )(cf is defined.

2. )(lim xfcx→

exists.

3. )()(lim cfxfcx

=β†’

15) Discontinuity

Page 19: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 17

Section 3: Evaluating Limits Analytically

1) Properties of Limits

Suppose c is a constant and the limits )(lim xfax→

and )(lim xgax→

exists.

Limit Properties Example:

Let 22)( xxf = and xxg =)(

1. Sum )(lim)(lim)]()([lim xgxfxgxfaxaxax β†’β†’β†’

+=+

2. Difference )(lim)(lim)]()([lim xgxfxgxfaxaxax β†’β†’β†’

βˆ’=βˆ’

3. Scalar multiple

)(lim)]([lim xfcxcfaxax β†’β†’

=

4. Product )(lim)(lim)]()([lim xgxfxgxfaxaxax β†’β†’β†’

β€’=

5. Quotient

)(lim

)(lim

)(

)(lim

xg

xf

xg

xf

ax

ax

ax

β†’

β†’

β†’= if 0)(lim

β†’xg

ax

6. Power n

ax

n

axxfxf )](lim[)]([lim

β†’β†’=

where n is a positive integer

7. ccax

=β†’

lim

8. axax

=β†’

lim

9. nn

axax =

β†’lim where n is a positive integer

10. nn

axax =

β†’lim where n is a positive integer

If n is even, we assume that a > 0

11. Root nax

n

axxfxf )(lim)(lim

β†’β†’=

where n is a positive integer

If n is even, we assume that 0)(lim β†’

xfax

Page 20: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 18

2) Strategies for Finding Limits Method 1: The Direct Substitution Property is valid for all polynomial and rational functions with nonzero denominators. Example: Find the limit.

a) 22

3)54(lim +

β†’x

x b)

2

76lim

2

1 +

βˆ’+

βˆ’β†’ x

xx

x

Method 2: Dividing Out Technique – Factor and divide out any common factors Example: Find the limit.

a) 5

103lim

2

5 +

βˆ’+

βˆ’β†’ x

xx

x b)

x

xx

x

7lim

2

0

+

β†’

Page 21: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 19

Method 3: Rationalizing Technique – Rationalizing the numerator of a fractional expression Example: Find the limit.

a) x

x

x

11lim

0

βˆ’+

β†’ b)

x

x

x

33lim

0

βˆ’+

β†’

3) Find the limit.

a) )5(lim 23

4xx

x+βˆ’

βˆ’β†’

b) 42lim6

+β†’

xx

c) xx

x

x 3

5lim

21 βˆ’

βˆ’

βˆ’β†’

Page 22: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 20

d) 49

7lim

27 βˆ’

βˆ’

βˆ’β†’ x

x

x

e) 158

103lim

2

2

5 +βˆ’

βˆ’βˆ’

β†’ xx

xx

x

f) 2

8lim

3

2 βˆ’

βˆ’

β†’ x

x

x

Page 23: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 21

g) x

xx

5

1

5

1

lim0

++

β†’

h) x

x

x

66lim

0

βˆ’+

β†’

i) 4

35lim

4 βˆ’

βˆ’+

β†’ x

x

x

Page 24: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 22

Section 4: The Derivative of a Function

Calculus is primarily the study of change. The basic focus on calculus is divided in to two

categories, Differential Calculus and Integral Calculus. In this section we will introduce differential

calculus, the study of rate at which something changes.

Consider the example at which π‘₯ is to be the independent variable and 𝑦 the dependent variable.

If there is any change βˆ†π‘₯ in the value of π‘₯, this will result in a change βˆ†π‘¦ in the value of 𝑦. The

resulting change in 𝑦 for each unit of change in π‘₯ remains constant and is called the slope of the

line.

The slope of a straight line is represented as:

βˆ†π‘¦

βˆ†π‘₯=

𝑦2βˆ’π‘¦1

π‘₯2βˆ’π‘₯1=

Change in the 𝑦 coordinate

Change in the π‘₯ coordinate

TANGENT LINES

Calculus is concerned with the rate of change that is not constant. Therefore, it is not possible to

determine a slope that satisfies every point of the curve. The question that calculus presents is:

β€œWhat is the rate of change at the point P?” And we can find the slope of the tangent line to the

curve at point P by the method of differentiation. A tangent line at a given point to a plane curve is

a straight line that touches the curve at that point.

Page 25: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 23

SECANT LINES

Like a tangent line, a secant line is also a straight line; however a secant line passes through two

points of a given curve.

Therefore we must consider an infinite sequence of shorter intervals of βˆ†π‘₯, resulting in an infinite

sequence of slopes. We define the tangent to be the limit of the infinite sequence of slopes. The

value of this limit is called the derivative of the given function.

The slope of the tangent at P = limβˆ†π‘₯β†’0

βˆ†π‘¦

βˆ†π‘₯

Page 26: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 24

THE DEFINITION OF THE DERIVATIVE

THE DIFFERENCE QUOTIENT

To find the slope of the tangent line to the function 𝑦 = 𝑓(π‘₯) at, we must choose a point of

tangency, (π‘₯, 𝑓(π‘₯)) and a second point (π‘₯ + β„Ž, 𝑓(π‘₯ + β„Ž)), where β„Ž = βˆ†π‘₯.

The derivative of a function f at x is defined as:

𝑓′(π‘₯) = limβˆ†π‘₯β†’0

βˆ†π‘¦

βˆ†π‘₯= lim

βˆ†π‘₯β†’0

𝑓(π‘₯+βˆ†π‘₯)βˆ’π‘“(π‘₯)

βˆ†π‘₯ = lim

β„Žβ†’0

𝑓(π‘₯+β„Ž)βˆ’π‘“(π‘₯)

β„Ž

Consider the example where the function 𝑓(π‘₯) = 7π‘₯ + 11. Find 𝑓′(π‘₯) by using the definition of

the derivative.

𝑓(π‘₯) = 7π‘₯ + 11

𝑓(π‘₯ + β„Ž) = 7(π‘₯ + β„Ž) + 11

Now by the definition of the derivative:

𝑓′(π‘₯) = limβ„Žβ†’0

7(π‘₯ + β„Ž) + 11 βˆ’ (7π‘₯ + 11)

β„Ž

𝑓′(π‘₯) = limβ„Žβ†’0

7π‘₯ + 7β„Ž + 11 βˆ’ 7π‘₯ βˆ’ 11

β„Ž

𝑓′(π‘₯) = limβ„Žβ†’0

7β„Ž

β„Ž

𝑓′(π‘₯) = limβ„Žβ†’0

(7)

𝑓′(π‘₯) = 7

Therefore the derivative of 𝑓(π‘₯) is 7.

Page 27: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 25

Consider the example where the function 𝑔(π‘₯) = 3π‘₯2 + 6π‘₯ βˆ’ 9. Find 𝑔′(π‘₯) by using the

definition of the derivative.

𝑔(π‘₯) = 3π‘₯2 + 6π‘₯ βˆ’ 9

𝑔(π‘₯ + β„Ž) = 3(π‘₯ + β„Ž)2 + 6(π‘₯ + β„Ž) βˆ’ 9

Now by the definition of the derivative:

𝑔′(π‘₯) = limβ„Žβ†’0

3(π‘₯ + β„Ž)2 + 6(π‘₯ + β„Ž) βˆ’ 9 βˆ’ (3π‘₯2 + 6π‘₯ βˆ’ 9)

β„Ž

𝑔′(π‘₯) = limβ„Žβ†’0

3(π‘₯2 + 2π‘₯β„Ž + β„Ž2) + 6π‘₯ + 6β„Ž βˆ’ 9 βˆ’ 3π‘₯2 βˆ’ 6π‘₯ + 9

β„Ž

𝑔′(π‘₯) = limβ„Žβ†’0

3π‘₯2 + 6π‘₯β„Ž + 3β„Ž2 + 6π‘₯ + 6β„Ž βˆ’ 9 βˆ’ 3π‘₯2 βˆ’ 6π‘₯ + 9

β„Ž

𝑔′(π‘₯) = limβ„Žβ†’0

6π‘₯β„Ž + 3β„Ž2 + 6β„Ž

β„Ž

𝑔′(π‘₯) = limβ„Žβ†’0

(6π‘₯ + 3β„Ž + 6)

𝑔′(π‘₯) = 6π‘₯ + 3(0) + 6

𝑔′(π‘₯) = 6π‘₯ + 6

Therefore the derivative of 𝑔(π‘₯) is 6π‘₯ + 6 .

Page 28: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 26

3) Find the derivative of the following functions using the definition of derivative.

a) xxxf 43)( 2 βˆ’=

b) xxg 51)( βˆ’=

Page 29: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 27

c) 1

6)(

+=

y

yyh

d) xxxp +=)(

Page 30: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 28

e) 2

1)(

ttk =

4) What does derivative of )(xf mean graphically?

Answer: It is the slope ( m ) of the tangent line of the graph )(xfy = at the point ),( yx

Tangent line

y = f(x)

),( yx

The slope of the tangent line is given by

tan0 0

( ) ( ) ( ) ( )lim lim

( )gent

h h

f x h f x f x h f xm

x h x h→ →

+ βˆ’ + βˆ’= =

+ βˆ’ = )(' xf if this limit exists.

This is actually the derivative of )(xf .

Page 31: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 29

5) Find the slope of the tangent line to the curve 2)( 2 += xxf at the point )3,1(βˆ’ using the definition

of the derivative, and find the equation of the tangent line.

By definition, the slope of the tangent line at any point is given by )(' xf .

Therefore )(' xf equals to the following:

0

2 2

0

2 2 2

0

2

0

0

0

( ) ( )lim

(( ) 2) ( 2)lim

( 2 2) 2lim

2lim

(2 )lim

lim( 2 )

2 0

2

h

h

h

h

h

h

f x h f xm

h

x h xm

h

x xh h xm

h

xh hm

h

h x hm

h

m x h

m x

m x

β†’

β†’

β†’

β†’

β†’

β†’

+ βˆ’=

+ + βˆ’ +=

+ + + βˆ’ βˆ’=

+=

+=

= +

= +

=

Now this is the slope of the tangent at a point ))(,( xfx of the graph. Since the line is tangent at )3,1(βˆ’ ,

we have to evaluate m at )3,1(βˆ’ . Therefore, 2)1(2 βˆ’=βˆ’=m .

The slope of the tangent at )3,1(βˆ’ is 2βˆ’ .

To find the equation of the tangent line to the curve 2)( 2 += xxf use the point-slope formula to find

the equation:

))1((2)3( βˆ’βˆ’βˆ’=βˆ’ xy

223 βˆ’βˆ’=βˆ’ xy

12 +βˆ’= xy

The equation of the tangent is 12 +βˆ’= xy .

Page 32: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 30

6) Find the slope of the tangent line to the curve xxxf +βˆ’= 23)( at the point )10,2( βˆ’ using the

definition of the derivative, and find the equation of the tangent line.

7) Find the slope of the tangent line to the curve 3)( xxf = at the point )8,2( βˆ’βˆ’ using the definition of

the derivative, and find the equation of the tangent line.

Page 33: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 31

8) Find the slope of the tangent line to the curve 6

1)(

βˆ’=

xxf at the point )1,5( βˆ’ using the definition

of the derivative, and find the equation of the tangent line.

Page 34: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 32

Section 5: Differentiation Rules

1) The Differentiation Formulas

1.

Derivative of a Constant Function 0)( =c

dx

d

2.

The Power Rule

1)( βˆ’= nn nxxdx

d

where n is any real number

3.

The Constant Multiple Rule )()]([ xf

dx

dcxcf

dx

d=

4.

The Sum Rule )()()]()([ xg

dx

dxf

dx

dxgxf

dx

d+=+

5.

The Difference Rule )()()]()([ xg

dx

dxf

dx

dxgxf

dx

dβˆ’=βˆ’

6.

The Product Rule )]([)()]([)()]()([ xf

dx

dxgxg

dx

dxfxgxf

dx

d+=

or in prime notation

fggffg +=)(

7.

The Quotient Rule

2)]([

)]([)()]([)(

)(

)(

xg

xgdx

dxfxf

dx

dxg

xg

xf

dx

dβˆ’

=

or in prime notation

2g

gffg

g

f βˆ’=

8.

The Chain Rule )())](([))](([ xg

dx

dxgf

dx

dxgf

dx

d=

2) Examples:

Page 35: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 33

1. Derivative of a Constant Function 0)( =cdx

d

a) 60)( =xf b) 𝑦 =8800718

369+

40πœ‹

47βˆ’ 62768.32

2. The Power Rule 1)( βˆ’= nn nxx

dx

d where n is any real number

c) 5xy = d)

63)( βˆ’= xxg

3. The Constant Multiple Rule )()]([ xfdx

dcxcf

dx

d=

e) xy 4βˆ’= f) 73)( xxp =

Page 36: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 34

4.

The Sum Rule )()()]()([ xg

dx

dxf

dx

dxgxf

dx

d+=+

g) 3

2

2

1

42 xxy += h) 142)( 5 ++= βˆ’ xxxt

5. The Difference Rule )()()]()([ xgdx

dxf

dx

dxgxf

dx

d+=+

i) xxxy 752 24 βˆ’βˆ’βˆ’= βˆ’ j)

17 34)( βˆ’βˆ’ βˆ’= xxxh

Page 37: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 35

6. The Product Rule

)]([)()]([)()]()([ xfdx

dxgxg

dx

dxfxgxf

dx

d+=

or in prime notation fggffg +=)(

k) )32(4 += xxy l) )6)(73()( 2 xxxxa +βˆ’=

7. The Quotient Rule

2)]([

)]([)()]([)(

)(

)(

xg

xgdx

dxfxf

dx

dxg

xg

xf

dx

dβˆ’

=

or in prime notation 2g

gffg

g

f βˆ’=

m) 13 +

=x

xy n)

xx

xxq

23

9)(

2

2

βˆ’=

Page 38: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 36

8. The Chain Rule )())](([))](([ xgdx

dxgf

dx

dxgf

dx

d=

o) 82 )3( += xy p)

1000)5005(2)( βˆ’= xxs

3) Find the derivative of the following functions:

a) 235)( 63 βˆ’+= βˆ’βˆ’ xxxf

b) 36 xxy βˆ’=

Page 39: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 37

c) )7)(34()( βˆ’+= ttth

d) 9

5)(

2 βˆ’

+=

x

xxp

e) 2

2 5)(

ttts +=

Page 40: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 38

f) 2

23 84

x

xxy

+βˆ’=

g) 6

1

2

3

3)( xxxm +=

βˆ’

h) 432 )142(4 βˆ’βˆ’= xxy

Page 41: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 39

i) x

xxxf

125)(

2 +βˆ’=

j) xx

y 92

3+=

k) 1003 )42()( xxxv βˆ’βˆ’=

Page 42: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 40

4)

a) Find the slope of the tangent line to the curve xxxf +βˆ’= 23)( at the point )10,2( βˆ’ using the

differentiation formulas, and find the equation of the tangent line.

b) Find the slope of the tangent line to the curve 3)( xxf = at the point )8,2( βˆ’βˆ’ using the

differentiation formulas, and find the equation of the tangent line.

Page 43: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 41

c) Find the slope of the tangent line to the curve 6

1)(

βˆ’=

xxf at the point )1,5( βˆ’ using the

differentiation formulas, and find the equation of the tangent line.

Page 44: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 42

Section 6: The Derivative of Trigonometric Functions

Derivative of all six Trigonometric Functions

1. Sine 𝑑

𝑑π‘₯sin(π‘₯) = cos (π‘₯)

2. Cosine 𝑑

𝑑π‘₯cos(π‘₯) = βˆ’sin (π‘₯)

3. Tangent 𝑑

𝑑π‘₯tan(π‘₯) = sec2(π‘₯)

4. Cosecant 𝑑

𝑑π‘₯cot(π‘₯) = βˆ’ csc2(π‘₯)

5. Secant 𝑑

𝑑π‘₯sec(π‘₯) = sec(x) tan (π‘₯)

6. Cotangent 𝑑

𝑑π‘₯csc(π‘₯) = βˆ’ csc(x) cot (π‘₯)

Page 45: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 43

Example: Find the derivative of the trigonometric function 𝑓(π‘₯) = 2π‘₯3cos (π‘₯) using the rules of differentiation.

A derivative that requires the Product Rule

𝑑

𝑑π‘₯(2π‘₯3 cos(π‘₯)) = [

𝑑

𝑑π‘₯(2π‘₯3)] cos(π‘₯) + 2π‘₯3 [

𝑑

𝑑π‘₯cos(π‘₯)]

Therefore, the derivative of the function 𝑓(π‘₯) is 6π‘₯2 cos(π‘₯) βˆ’ 2π‘₯3sin (π‘₯). 2) Find the derivative of the following trigonometric functions using the rules of differentiation.

a) 𝑦 = 7 sin(π‘₯) βˆ’ π‘₯

b) π‘Ÿ(π‘₯) = π‘₯cos(2π‘₯2)

Page 46: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 44

c) 𝑔(π‘₯) = tan ( 3x

4 )

d) 𝑦 =cos(x)

2sin (βˆ’3π‘₯)

e) 𝑛(π‘₯) = 5cos3(π‘₯) βˆ’ sin(2π‘₯)

Page 47: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 45

f) 𝑦 = √sin2(π‘₯) + 5

g) 𝑣(π‘₯) = tan(√π‘₯3 + 2)

h) 𝑔(π‘₯) = 2π‘₯2sec2(8π‘₯)

Page 48: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 46

i) 𝑓(π‘₯) = 3π‘₯2 sin(π‘₯) sec(5π‘₯)

j) Given 𝑓(π‘₯) = tan(π‘₯) and 𝑔(π‘₯) = sec2(π‘₯). Show 𝑑

𝑑π‘₯𝑓(π‘₯) = 𝑔(π‘₯).

Page 49: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 47

Section 7: Implicit Differentiation

IMPLICIT DIFFERENTIATON

Consider the two equations:

𝑦 = π‘₯2 βˆ’ 5 and π‘₯2 + 𝑦2 = 4

The first equation defines 𝑦 as a function of π‘₯ explicitly. For each value of π‘₯, the equation returns

an explicit formula 𝑦 = 𝑓(π‘₯) for finding the corresponding value of 𝑦. However, the second

equation does not define a function, as it fails the vertical line test.

If we look at a general case, consider the example:

π‘₯2 + 𝑦2 = π‘Ÿ2

This is an equation of a circle with the radius π‘Ÿ. In order for us to solve for the derivative 𝑑𝑦

𝑑π‘₯, we

may treat 𝑦 as a function of π‘₯ and apply the chain rule. This process is called implicit

differentiation.

π‘₯2 + 𝑦2 = π‘Ÿ2

𝑑𝑦

𝑑π‘₯π‘₯2 +

𝑑𝑦

𝑑π‘₯𝑦2 =

𝑑𝑦

𝑑π‘₯π‘Ÿ2

2π‘₯ + 2𝑦𝑑𝑦

𝑑π‘₯= 0

𝑑𝑦

𝑑π‘₯= βˆ’

π‘₯

𝑦

The derivative of an implicit function 𝑔(𝑦) is defined as

𝑑

𝑑π‘₯𝑔(𝑦) = 𝑔′(𝑦)𝑦′(π‘₯)

Example: Find 𝑦′(π‘₯) for π‘₯2𝑦2 βˆ’ 2π‘₯ = 4 βˆ’ 4𝑦 using the method of implicit differentiation.

𝑑

𝑑π‘₯(π‘₯2𝑦2 βˆ’ 2π‘₯) =

𝑑

𝑑π‘₯(4 βˆ’ 4𝑦)

2π‘₯𝑦2 + π‘₯2(2𝑦)𝑦′(π‘₯) βˆ’ 2 = βˆ’4𝑦′(π‘₯)

(2π‘₯𝑦2 + 4)𝑦′(π‘₯) = 2 βˆ’ 2π‘₯𝑦2

𝑦′(π‘₯) =(2 βˆ’ 2π‘₯𝑦2)

2π‘₯2𝑦 + 4

Page 50: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 48

1) Find the derivative 𝑦′(π‘₯) using the method of implicit differentiation for the following.

a) π‘₯5 + 𝑦4 = 9

b) 5βˆšπ‘¦ + √2π‘₯ = 4

c) π‘₯𝑦 βˆ’ 3𝑦 = π‘₯

Page 51: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 49

d) 2π‘₯3𝑦 + 6𝑦 = 1 βˆ’ 2π‘₯

e) βˆšπ‘¦π‘₯ βˆ’ 3𝑦3 = 20

f) sin(𝑦) βˆ’ 𝑦2 = 15

Page 52: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 50

g) √2π‘₯ + 𝑦 βˆ’ 5π‘₯2 = 𝑦

h) tan(5𝑦) βˆ’ π‘₯𝑦2 = 3π‘₯

Page 53: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 51

Section 8: Solutions Section 1

2.a. 4.75 0.129032

2.b. -0.1 0.998334

4.9 0.126582 -0.01 0.999983 4.99 0.125156 -0.001 1 4.999 0.125016 -0.0001 1 5 undefined 0 undefined 5.001 0.124984 0.0001 1 5.01 0.124844 0.001 1 5.1 0.123457 0.01 0.999983 5.25 0.121212 0.1 0.998334 Hole @ (5,

1

8), VA@ π‘₯ = βˆ’3, HA @ 𝑦 = 0

Hole @ (0,1)

2.c. -4.1 -10

2.d. -0.1 0.291122

-4.01 -100 -0.01 0.288916 -4.001 -1000 -0.001 0.288699 -4.0001 -10000 -0.0001 0.288678 -4 undefined 0 undefined -3.9999 10000 0.0001 0.288673 -3.999 1000 0.001 0.288651 -3.99 100 0.01 0.288435 -3.9 10 0.1 0.286309

VA @ π‘₯ = βˆ’4, HA @ 𝑦 = 0

Hole @ (0,√3

6), HA @ 𝑦 = 0, Endpoint @ (βˆ’3,

√3

3)

2.e. 1.9 100

1.99 10000 1.999 1000000 1.9999 1E+08 2 undefined 2.0001 1E+08 2.001 1000000 2.01 10000 2.1 100 VA @ π‘₯ = 2, HA @ 𝑦 = 0

7. Answers may vary.

Page 54: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 52

8. 𝑓(2) = 4

limπ‘₯β†’2+

𝑓(π‘₯) = 4

limπ‘₯β†’2βˆ’

𝑓(π‘₯) = 4

limπ‘₯β†’2

𝑓(π‘₯) = 4

𝑓(βˆ’1) = 2

limπ‘₯β†’βˆ’1+

𝑓(π‘₯) = 1

limπ‘₯β†’βˆ’1βˆ’

𝑓(π‘₯) = 2

limπ‘₯β†’βˆ’1

𝑓(π‘₯) = 𝐷𝑁𝐸

𝑓(βˆ’3) = 3

limπ‘₯β†’βˆ’3+

𝑓(π‘₯) = βˆ’2

limπ‘₯β†’βˆ’3βˆ’

𝑓(π‘₯) = βˆ’2

limπ‘₯β†’βˆ’3

𝑓(π‘₯) = βˆ’2

𝑓(1) = undefined

limπ‘₯β†’1+

𝑓(π‘₯) = 1

limπ‘₯β†’1βˆ’

𝑓(π‘₯) = 1

limπ‘₯β†’1

𝑓(π‘₯) = 1

9. 𝑓(2) = βˆ’1

limπ‘₯β†’2+

𝑓(π‘₯) = 2

limπ‘₯β†’2βˆ’

𝑓(π‘₯) = βˆ’2

limπ‘₯β†’2

𝑓(π‘₯) = 𝐷𝑁𝐸

𝑓(βˆ’1) = 1

limπ‘₯β†’βˆ’1+

𝑓(π‘₯) = 1

limπ‘₯β†’βˆ’1βˆ’

𝑓(π‘₯) = 1

limπ‘₯β†’βˆ’1

𝑓(π‘₯) = 1

𝑓(βˆ’3) = 1

limπ‘₯β†’βˆ’3+

𝑓(π‘₯) = 3

limπ‘₯β†’βˆ’3βˆ’

𝑓(π‘₯) = 1

limπ‘₯β†’βˆ’3

𝑓(π‘₯) = 𝐷𝑁𝐸

𝑓(1) = undefined

limπ‘₯β†’1+

𝑓(π‘₯) = βˆ’1

limπ‘₯β†’1βˆ’

𝑓(π‘₯) = βˆ’1

limπ‘₯β†’1

𝑓(π‘₯) = βˆ’1

10. 𝑓(7) = 7

limπ‘₯β†’7+

𝑓(π‘₯) = βˆ’1

limπ‘₯β†’7βˆ’

𝑓(π‘₯) = βˆ’1

limπ‘₯β†’7

𝑓(π‘₯) = βˆ’1

𝑓(5) = 3

lim

π‘₯β†’5+𝑓(π‘₯) = βˆ’5

limπ‘₯β†’5βˆ’

𝑓(π‘₯) = 3

limπ‘₯β†’5

𝑓(π‘₯) = 𝐷𝑁𝐸

𝑓(1) = 3

limπ‘₯β†’1+

𝑓(π‘₯) = 3

limπ‘₯β†’1βˆ’

𝑓(π‘₯) = 6

limπ‘₯β†’1

𝑓(π‘₯) = 𝐷𝑁𝐸

𝑓(βˆ’4) = 3

limπ‘₯β†’βˆ’4+

𝑓(π‘₯) = 6

limπ‘₯β†’βˆ’4βˆ’

𝑓(π‘₯) = 3

limπ‘₯β†’βˆ’4

𝑓(π‘₯) = 𝐷𝑁𝐸

11. 𝑓(βˆ’7) = βˆ’1

limπ‘₯β†’βˆ’7+

𝑓(π‘₯) = βˆ’1

limπ‘₯β†’βˆ’7βˆ’

𝑓(π‘₯) = βˆ’1

limπ‘₯β†’βˆ’7

𝑓(π‘₯) = βˆ’1

𝑓(βˆ’6) = undefined

limπ‘₯β†’βˆ’6+

𝑓(π‘₯) = 3

limπ‘₯β†’βˆ’6βˆ’

𝑓(π‘₯) = βˆ’βˆž

limπ‘₯β†’βˆ’6

𝑓(π‘₯) = 𝐷𝑁𝐸

𝑓(βˆ’3) = 3

limπ‘₯β†’βˆ’3+

𝑓(π‘₯) = 3

limπ‘₯β†’βˆ’3βˆ’

𝑓(π‘₯) = 3

limπ‘₯β†’βˆ’3

𝑓(π‘₯) = 3

𝑓(3) = 6

limπ‘₯β†’3+

𝑓(π‘₯) = 6

limπ‘₯β†’3βˆ’

𝑓(π‘₯) = βˆ’3

limπ‘₯β†’3

𝑓(π‘₯) = βˆ’3

12. Answers may vary. 13. Answers may vary. Section 2 2. Answers may vary. Sample response: β€œA limit exists if and only if the left-hand and

right-hand limit exists.” 7. Answers may vary. 12. Answers may vary. 13. Answers may vary.

Page 55: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 53

Section 3 (*Answers may vary depending on constant) 1.1. lim

π‘₯β†’π‘Ž(2π‘₯2 + π‘₯) = lim

π‘₯β†’π‘Ž2π‘₯2 + lim

π‘₯β†’π‘Žπ‘₯ 1.2. lim

π‘₯β†’π‘Ž(2π‘₯2 βˆ’ π‘₯) = lim

π‘₯β†’π‘Ž2π‘₯2 βˆ’ lim

π‘₯β†’π‘Žπ‘₯

1.3 * limπ‘₯β†’π‘Ž

(12.86(2π‘₯2)) = 12.86 limπ‘₯β†’π‘Ž

(2π‘₯2) 1.4 limπ‘₯β†’π‘Ž

(2π‘₯2 β‹… π‘₯) = limπ‘₯β†’π‘Ž

2π‘₯2 β‹… limπ‘₯β†’π‘Ž

π‘₯

1.5 limπ‘₯β†’π‘Ž

(2π‘₯2

π‘₯) =

limπ‘₯β†’π‘Ž

2π‘₯2

limπ‘₯β†’π‘Ž

π‘₯ 1.6 lim

π‘₯β†’π‘Ž(2π‘₯2)5 = (lim

π‘₯β†’π‘Ž(2π‘₯2))

5

1.7. * limπ‘₯β†’π‘Ž

πœ‹ = πœ‹ 1.8. * limπ‘₯→𝑒

π‘₯ = 𝑒 1.9. * limπ‘₯β†’6

π‘₯3 = 63 = 216

1.10. * limπ‘₯β†’32

√π‘₯5

= √325

= 2 1.11. * limπ‘₯β†’π‘Ž

√2π‘₯25= √lim

π‘₯β†’π‘Ž2π‘₯25

2.1.a. 1681 2.1.b. 0 2.2.a. βˆ’7 2.2.b. 7 2.3.a. 1

2 2.3.b.

√3

6

3.a. 144 3.b. 4 3.c. βˆ’3

2 3.d. DNE 3.e.

7

2 3.f. 12

3.g. DNE 3.h. √6

12

Section 4

3.a. 6π‘₯ βˆ’ 4 3.b. βˆ’5

2√1βˆ’5π‘₯ 3.c.

6

(𝑦+1)2 3.d. 1

2√π‘₯+ 1

3.e. βˆ’2

𝑑3 6. derivative: 𝑓′(π‘₯) = βˆ’6π‘₯ + 1 slope: βˆ’11 tangent: 𝑦 = βˆ’11π‘₯ + 12 7. derivative: 𝑓′(π‘₯) = βˆ’3π‘₯2 slope: 12 tangent: 𝑦 = 12π‘₯ + 16 8. derivative: 𝑓′(π‘₯) = βˆ’(π‘₯ βˆ’ 6)βˆ’2 slope: βˆ’1 tangent: 𝑦 = βˆ’π‘₯ + 4 Section 5 (Note: Equivalent solutions may be calculated, depending on rules applied.) 2.1.a. 0 2.1.b. 0 2.2.c. 5π‘₯4 2.2.d. βˆ’18π‘₯βˆ’7 2.3.e. βˆ’4 2.3.f. 21π‘₯6

2.4.g. π‘₯βˆ’1

2 +8

3π‘₯βˆ’

1

3 2.4.h. 4 βˆ’ 10π‘₯βˆ’6 2.5.i. 8π‘₯βˆ’5 βˆ’ 10π‘₯ βˆ’ 7 2.5.j. 3π‘₯βˆ’2 βˆ’ 28π‘₯βˆ’8

2.6.k. 10π‘₯4 + 12π‘₯3 2.6.l. 9π‘₯2 + 22π‘₯ βˆ’ 42 2.7.m. 1

(3π‘₯+1)2 2.7.n. βˆ’18

(3π‘₯βˆ’2)2

2.8.o. 16π‘₯(π‘₯2 + 3)7 2.8.p. 10000(5π‘₯ βˆ’ 500)999

3.a. βˆ’15π‘₯βˆ’4 βˆ’ 18π‘₯βˆ’7 3.b. 3π‘₯βˆ’1

2 βˆ’1

3π‘₯βˆ’

2

3 3.c. 8𝑑 βˆ’ 25 3.d. βˆ’π‘₯2+10π‘₯+9

(π‘₯2βˆ’9)2

3.e. 2𝑑 βˆ’ 10π‘‘βˆ’3 3.f. 1 βˆ’ 16π‘₯βˆ’3 3.g. 1

2π‘₯βˆ’

5

6 βˆ’3

2π‘₯βˆ’

5

2

3.h. βˆ’896π‘₯(π‘₯3 βˆ’ 7)3(π‘₯3 βˆ’ 1) 3.i. 5 βˆ’ π‘₯βˆ’2 3.j. 9 βˆ’2

3π‘₯βˆ’

4

3

3.k. 2100π‘₯2(206π‘₯ βˆ’ 3)(1 βˆ’ 2π‘₯)99 4.a. derivative: 𝑓′(π‘₯) = βˆ’6π‘₯ + 1 slope: βˆ’11 tangent: 𝑦 = βˆ’11π‘₯ + 12 4.b. derivative: 𝑓′(π‘₯) = βˆ’3π‘₯2 slope: 12 tangent: 𝑦 = 12π‘₯ + 16 4.c. derivative: 𝑓′(π‘₯) = βˆ’(π‘₯ βˆ’ 6)βˆ’2 slope: βˆ’1 tangent: 𝑦 = βˆ’π‘₯ + 4

Page 56: Introduction to calculus i...MAT 1475 INTRODUCTION TO CALCULUS I NEW YORK CITY COLLEGE OF TECHNOLOGY 2 2. Create a table with values on both sides of the value x approaches and draw

MAT 1475 INTRODUCTION TO CALCULUS I

NEW YORK CITY COLLEGE OF TECHNOLOGY 54

Section 6 2.a. 𝑦′ = 7 cos(π‘₯) βˆ’ 1 2.b. π‘Ÿβ€²(π‘₯) = cos(2π‘₯2) βˆ’ 4π‘₯2sin (2π‘₯2)

2.c. 𝑔′(π‘₯) =3

4sec2 (

3π‘₯

4) 2.d. 𝑦′ =

sin(π‘₯) sin(3π‘₯)+3 cos(3π‘₯) cos(π‘₯)

2 sin2(3π‘₯)

2.e. 𝑛′(π‘₯) = 15cos2(π‘₯) sin(π‘₯) βˆ’ 2 cos(2π‘₯) =15

2cos(π‘₯) sin(2π‘₯) βˆ’ 2cos (2π‘₯)

2.f. 𝑦′ = sin(π‘₯) cos(π‘₯)

√sin2(π‘₯)+5=

sin(2π‘₯)

2√sin2(π‘₯)+5 2.g. 𝑣′(π‘₯) =

3π‘₯2 sec2(√π‘₯3+2)

2√π‘₯3+2

2.h. 𝑔′(π‘₯) = 4π‘₯ sec2(8π‘₯) + 32π‘₯2 sec2(8π‘₯) tan(8π‘₯) 2.i. 𝑓′(π‘₯) = 6π‘₯ sin(π‘₯) sec(5π‘₯) + 3π‘₯2 cos(π‘₯) sec(5π‘₯) + 15π‘₯2 sin(π‘₯) sec (5π‘₯) tan(5π‘₯) 2.j. Answers may vary.

Suggested ideas include quotient rule using tan(π‘₯) =sin(π‘₯)

cos(π‘₯) or use limit definition of

𝑓’(π‘₯) using angle sum identities.

Section 7

1.a. βˆ’5π‘₯4

4𝑦3 1.b. βˆ’βˆš2π‘₯𝑦

5π‘₯ 1.c.

1βˆ’π‘¦

π‘₯βˆ’3 1.d. βˆ’

3π‘₯2𝑦+1

π‘₯3+3

1.e. (18𝑦3

√π‘₯𝑦+π‘₯𝑦)

324π‘₯𝑦5βˆ’π‘₯2 1.f. 0, y ∈ {y ∈ ℝ: cos(y) β‰  2y} 1.g. 20π‘₯√2π‘₯+π‘¦βˆ’2

1βˆ’2√2π‘₯+𝑦

1.h. 𝑦2+3

5 sec2(5𝑦)βˆ’2π‘₯𝑦