Introduction to Aspen Plus --2015

Embed Size (px)

Citation preview

  • 8/20/2019 Introduction to Aspen Plus --2015

    1/215

    Introduction to Aspen Plus

    Speaker: Bor-Yih Yu(余柏毅)

    Date: 2014/09/18

    [email protected]

    PSE Laboratory

    Department of Chemical EngineeringNation Taiwan University

    (綜合

     room 402)

    Edited by:程建凱

    /吳義章

    /余柏毅

     

  • 8/20/2019 Introduction to Aspen Plus --2015

    2/215

    2

    Introduction to Aspen Plus

    Part 1: Introduction

  • 8/20/2019 Introduction to Aspen Plus --2015

    3/215

  • 8/20/2019 Introduction to Aspen Plus --2015

    4/215

    What is Aspen Plus

    • Aspen Plus is a market-leading process modeling tool for

    conceptual design, optimization, and performance monitoring

    for the chemical, polymer, specialty chemical, metals and

    minerals, and coal power industries.

    4Ref: http://www.aspentech.com/products/aspen-plus.cfm

  • 8/20/2019 Introduction to Aspen Plus --2015

    5/215

    What Aspen Plus provides

    • Physical Property Models

     – World’s largest database of pure component and phase equilibrium

    data for conventional chemicals, electrolytes, solids, and polymers

     – Regularly updated with data from U. S. National Institute of Standards

    and Technology (NIST)

    • Comprehensive Library of Unit Operation Models

     – Addresses a wide range of solid, liquid, and gas processing equipment

     – Extends steady-state simulation to dynamic simulation for safety and

    controllability studies, sizing relief valves, and optimizing transition,

    startup, and shutdown policies

     – Enables you build your own libraries using Aspen Custom Modeler or

     programming languages (User-defined models)

    Ref: Aspen Plus® Product Brochure 5

    http://www.aspentech.com/brochures/Aspen_Plus.pdfhttp://www.aspentech.com/brochures/Aspen_Plus.pdfhttp://www.aspentech.com/brochures/Aspen_Plus.pdf

  • 8/20/2019 Introduction to Aspen Plus --2015

    6/215

    More Detailed

    • Properties analysis

     – Properties of pure component and mixtures (Enthalpy,

    density, viscosity, heat capacity,…etc) 

     – Phase equilibrium (VLE, VLLE, azeotrope calculation…etc)  – Parameters estimation for properties models (UNIFAC

    method for binary parameters, Joback method for boiling

    points…etc) 

     – Data regression from experimental deta• Process simulation

     – pump, compressor, valve, tank, heat exchanger, CSTR, PFR,

    distillation column, extraction column, absorber, filter,

    crystallizer…etc  6

  • 8/20/2019 Introduction to Aspen Plus --2015

    7/215

    What course Aspen Plus

    can be employed for• MASS AND ENERGY BALANCES

    • PHYSICAL CHEMISTRY

    • CHEMICAL ENGINEERING THERMODYNAMICS

    • CHEMICAL REACTION ENGINEERING

    • UNIT OPERATIONS

    • PROCESS DESIGN

    • PROCESS CONTROL

    7

  • 8/20/2019 Introduction to Aspen Plus --2015

    8/215

    Lesson Objectives

    • Familiar with the interface of Aspen Plus

    • Learn how to use properties analysis

    • Learn how to setup a basic process simulation

    8

  • 8/20/2019 Introduction to Aspen Plus --2015

    9/215

    Outline

    • Part 1 : Introduction• Part 2 : Startup

    • Part 3 : Properties analysis

    • Part 4 : Running Simulation in Aspen Plus (simple units)

    • Part 5 : Running Simulation in Aspen Plus (Reactors)• Part 6 : Running Simulation in Aspen Plus (Distillation)

    • Part 7 (additional): Running Simulation in Aspen Plus (Design,

    spec and vary)

    9

  • 8/20/2019 Introduction to Aspen Plus --2015

    10/215

    Introduction to Aspen Plus

    10

    Part 2: Startup

  • 8/20/2019 Introduction to Aspen Plus --2015

    11/215

    Start with Aspen Plus

    Aspen Plus User Interface

  • 8/20/2019 Introduction to Aspen Plus --2015

    12/215

    Aspen Plus Startup

    12

  • 8/20/2019 Introduction to Aspen Plus --2015

    13/215

    Interface of Aspen Plus

    Process Flowsheet Windows

    Model Library (View| Model Library )

    Stream

    Help

    SetupComponents

    Properties

    Streams

    Blocks

    Data Browser 

    Next

    Check Result

    StopReinitialize

    Step

    Start

    Control Panel

    Process Flowsheet Windows

    Model Library (View| Model Library )

    Status message13

  • 8/20/2019 Introduction to Aspen Plus --2015

    14/215

    More Information

    Help for Commands for Controlling Simulations 14

  • 8/20/2019 Introduction to Aspen Plus --2015

    15/215

    Data Browser

    • The Data Browser is a sheet and form viewer with a

    hierarchical tree view of the available simulation

    input, results, and objects that have been defined

    15

  • 8/20/2019 Introduction to Aspen Plus --2015

    16/215

    Setup  –  Specification

    Run Type

    Input mode

    16

  • 8/20/2019 Introduction to Aspen Plus --2015

    17/215

    Input components

    Remark: If available, are

    17

  • 8/20/2019 Introduction to Aspen Plus --2015

    18/215

    Properties

    Process type(narrow the number of

    methods available)

    Base method: IDEAL, NRTL, UNIQAC, UNIFAC… 

    18

  • 8/20/2019 Introduction to Aspen Plus --2015

    19/215

    Property Method Selection—General Rule

    19

    Example 1:

    water - benzene

    Example 2:

    benzene - toluene

  • 8/20/2019 Introduction to Aspen Plus --2015

    20/215

    Typical Activity Coefficient Models

    Non-Randon-Two Liquid Model (NRTL)

    Uniquac Model

    Unifac Model

  • 8/20/2019 Introduction to Aspen Plus --2015

    21/215

    Typical Equation of States

    Peng-Robinson (PR) EOS

    Redlich-Kwong (RK) EOS

    Haydon O’Conell (HOC) EOS

  • 8/20/2019 Introduction to Aspen Plus --2015

    22/215

    Thermodynamic Model – NRTL

    NRTL

    22

  • 8/20/2019 Introduction to Aspen Plus --2015

    23/215

    NRTL – Binary Parameters

    Click “NRTL” and then built-in binary parameters

    appear automatically if available.

    23

  • 8/20/2019 Introduction to Aspen Plus --2015

    24/215

    Access Properties Models and

    Parameters

    24

    Review Databank Data

  • 8/20/2019 Introduction to Aspen Plus --2015

    25/215

    Review Databank Data

    Description of each parameter

    Including:

    Ideal gas heat of formation at 298.15 KIdeal gas Gibbs free energy of formation at

    298.15 K

    Heat of vaporization at TB

    Normal boiling point

    Standard liquid volume at 60°F…. 

    25

  • 8/20/2019 Introduction to Aspen Plus --2015

    26/215

    Pure Component

    Temperature-Dependent Properties

    CPIGDP-1 ideal gas heat capacity

    CPSDIP-1 Solid heat capacityDNLDIP-1 Liquid density

    DHVLDP-1 Heat of vaporization

    PLXANT-1 Extended Antoine Equation

    MULDIP Liquid viscosity

    KLDIP Liquid thermal conductivity

    SIGDIP Liquid surface tension

    UFGRP UNIFAC functional group

    26

  • 8/20/2019 Introduction to Aspen Plus --2015

    27/215

    Example: PLXANT-1

    (Extended Antoine Equation)

    ?

    Corresponding Model

    Click “ ?” and then click where you don’t know

    27

  • 8/20/2019 Introduction to Aspen Plus --2015

    28/215

    Example: CPIGDP-1

    (Ideal Gas Heat Capacity Equation)

    ?

    Corresponding Model

    28

  • 8/20/2019 Introduction to Aspen Plus --2015

    29/215

    Basic Input---Summary

    • The minimum required inputs to run a simulation

    are:

     – Setup

     – Components – Properties

     – Streams

     – Blocks

    Property Analysis

    Process Simulation

    29

  • 8/20/2019 Introduction to Aspen Plus --2015

    30/215

    30

    Introduction to Aspen Plus

    Part 3: Property analysis

  • 8/20/2019 Introduction to Aspen Plus --2015

    31/215

    Overview of Property AnalysisUse this form To generate

    Pure Tables and plots of pure component properties as a function of temperature

    and pressure 

    Binary  Txy, Pxy, or Gibbs energy of mixing curves for a binary system 

    Residue  Residue curve maps 

    Ternary  Ternary maps showing phase envelope, tie lines, and azeotropes of ternarysystems 

    Azeotrope This feature locates all the azeotropes that exist among a specified set of

    components.

    Ternary Maps 

    Ternary diagrams in Aspen Distillation Synthesis feature: Azeotropes,

    Distillation boundary, Residue curves or distillation curves, Isovolatility curves,

    Tie lines, Vapor curve, Boiling point 

    31

    ***When you start properties analysis, you MUST specify components ,

    thermodynamic model and its corresponding parameters. (Refer to Part 2)

  • 8/20/2019 Introduction to Aspen Plus --2015

    32/215

    Find Components

    32

    Component ID : just for distinguishing in Aspen.Type : Conventional, Solid….etc 

    Component name : real component name

    Formula : real component formula

  • 8/20/2019 Introduction to Aspen Plus --2015

    33/215

    Find Components

    33

    TIP 1: For common components, you can

    enter directly the common name or molecular

    equation of the components in “component

    ID”. 

    (like water, CO2, CO, Chlorine…etc) 

  • 8/20/2019 Introduction to Aspen Plus --2015

    34/215

    Find Components

    34

    TIP 2: If you know the component name

    (like N-butanol, Ethanol….etc), you can

    enter it in “component name”. 

  • 8/20/2019 Introduction to Aspen Plus --2015

    35/215

  • 8/20/2019 Introduction to Aspen Plus --2015

    36/215

    Select Thermodynamic Model

    36

    Select NRTL 

  • 8/20/2019 Introduction to Aspen Plus --2015

    37/215

    Check Binary Parameter

    37

    Click This, it will automatically change to

    red if binary parameter exists. 

    Properties 

    Parameters 

    NRTL-1 

  • 8/20/2019 Introduction to Aspen Plus --2015

    38/215

    Find Components

    38

    TIP 2: If you know the component name

    (like N-butanol, Ethanol….etc), you can

    enter it in “component name”. 

  • 8/20/2019 Introduction to Aspen Plus --2015

    39/215

    Find Components

    39

     You can enter

    the way of

    searching… 

  • 8/20/2019 Introduction to Aspen Plus --2015

    40/215

    Properties Analysis – Pure Component

    40

  • 8/20/2019 Introduction to Aspen Plus --2015

    41/215

    Available Properties

    Property (thermodynamic) Property (transport)

    Availability Free energy Thermal conductivity

    Constant pressure

    heat capacityEnthalpy Surface tension

    Heat capacity ratio Fugacity coefficient Viscosity

    Constant volume heat

    capacity

    Fugacity coefficient

    pressure correction

    Free energy departure Vapor pressure

    Free energy departure

    pressure correctionDensity

    Enthalpy departure Entropy

    Enthalpy departure

    pressure correctionVolume

    Enthalpy of

    vaporizationSonic velocity

    Entropy departure 41

  • 8/20/2019 Introduction to Aspen Plus --2015

    42/215

    Example1: CP (Heat Capacity)

    1. Select property (CP)

    2. Select phase

    3. Select component

    4. Specify range of temperature

    5. Specify pressure

    6. Select property method

    7. click Go to generate the results

     Add “N-butyl-acetate” 

    42

  • 8/20/2019 Introduction to Aspen Plus --2015

    43/215

    Example1: Calculation Results of CP

    Data results 43

  • 8/20/2019 Introduction to Aspen Plus --2015

    44/215

    Properties Analysis – Binary Components

  • 8/20/2019 Introduction to Aspen Plus --2015

    45/215

    Binary Component Properties Analysis

    Use this Analysis type To generate

    TxyTemperature-compositions diagram at

    constant pressure

    Pxy Pressure-compositions diagram atconstant temperature

    Gibbs energy of mixing

    Gibbs energy of mixing diagram as a

    function of liquid compositions. The

    Aspen Physical Property System uses this

    diagram to determine whether the

    binary system will form two liquid phasesat a given temperature and pressure.

  • 8/20/2019 Introduction to Aspen Plus --2015

    46/215

    Example: T-XY

    1. Select analysis type (Txy)

    2. Select phase (VLE, VLLE)

    2. Select two component

    4. Specify composition range

    5. Specify pressure

    6. Select property method

    3. Select compositions basis

    7. click Go to generate the results

  • 8/20/2019 Introduction to Aspen Plus --2015

    47/215

    Example: calculation result of T-XY

    Data results

  • 8/20/2019 Introduction to Aspen Plus --2015

    48/215

    Example: Generate XY plot

    Click “plot wizard” to generate XY plot 

  • 8/20/2019 Introduction to Aspen Plus --2015

    49/215

    Example: Generate XY plot (cont’d) 

    Properties Analysis – Ternary

  • 8/20/2019 Introduction to Aspen Plus --2015

    50/215

    Properties Analysis   Ternary

    (add one new components)

    Properties Analysis – Ternary

  • 8/20/2019 Introduction to Aspen Plus --2015

    51/215

    Properties Analysis   Ternary

    (Check NRTL binary parameter)

    3 components -> 3 set of binary parameter

    (How about 4 components??)

  • 8/20/2019 Introduction to Aspen Plus --2015

    52/215

    Properties Analysis – Ternary

  • 8/20/2019 Introduction to Aspen Plus --2015

    53/215

    Ternary Map

    4. Select phase (VLE, LLE)

    1. Select three component

    5. Specify pressure

    3. Select property method

    2. Specify number of tie line

    7. click Go to generate the results

    6. Specify temperature

    (if LLE is slected)

  • 8/20/2019 Introduction to Aspen Plus --2015

    54/215

    Calculation Result of Ternary Map (LLE)

    Data results

  • 8/20/2019 Introduction to Aspen Plus --2015

    55/215

    Property Analysis – Conceptual Design

    Use this form To generate

    PureTables and plots of pure component properties as a function of temperature

    and pressure

    Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

    Residue Residue curve maps

    TernaryTernary maps showing phase envelope, tie lines, and azeotropes of ternary

    systems

    AzeotropeThis feature locates all the azeotropes that exist among a specified set of

    components.

    Ternary Maps

    Ternary diagrams in Aspen Distillation Synthesis feature: Azeotropes,

    Distillation boundary, Residue curves or distillation curves, Isovolatility curves,

    Tie lines, Vapor curve, Boiling point

    55

    (Optional)

  • 8/20/2019 Introduction to Aspen Plus --2015

    56/215

    Conceptual Design

  • 8/20/2019 Introduction to Aspen Plus --2015

    57/215

    Azeotrope Analysis

  • 8/20/2019 Introduction to Aspen Plus --2015

    58/215

    Azeotrope Analysis

    4. Select phase (VLE, LLE)

    1. Select components (at least two) 2. Specify pressure

    3. Select property method

    5. Select report Unit

    6. click Report to generate the results

  • 8/20/2019 Introduction to Aspen Plus --2015

    59/215

    Error Message

    Close analysis input dialog box (pure or binary analysis)

  • 8/20/2019 Introduction to Aspen Plus --2015

    60/215

    Azeotrope Analysis Report

  • 8/20/2019 Introduction to Aspen Plus --2015

    61/215

    Ternary Maps

  • 8/20/2019 Introduction to Aspen Plus --2015

    62/215

    Ternary Maps

    4. Select phase (VLE, LLE)1. Select three components

    2. Specify pressure

    3. Select property method

    5. Select report Unit

    6. Specify temperature of LLE(If liquid-liquid envelope is selected)

    6. Click Ternary Plot to generate the results

  • 8/20/2019 Introduction to Aspen Plus --2015

    63/215

    Ternary Maps

    Ternary Plot Toolbar:

    Add Tie line, Curve,

    Marker… 

    Change pressure or

    temperature

  • 8/20/2019 Introduction to Aspen Plus --2015

    64/215

    64

    Introduction to Aspen Plus

    Part 4: Running simulation

    Simple Units

    (Mixer, Pump, valve, flash, heat exchanger) 

    Example 1: Calculate the mixing

  • 8/20/2019 Introduction to Aspen Plus --2015

    65/215

    Example 1: Calculate the mixing

    properties of two stream

    1

    23

    4

    Mixer Pump

      1 2 3 4

    Mole Flow kmol/hr

    WATER 10 0 ? ?

    BUOH 0 9 ? ?

    BUAC 0 6 ? ?

    Total Flow kmol/hr 10 15 ? ?Temperature C 50 80 ? ?

    Pressure bar 1 1 1 10

    Enthalpy kcal/mol ? ? ? ?

    Entropy cal/mol-K ? ? ? ?

    Density kmol/cum ? ? ? ?65

  • 8/20/2019 Introduction to Aspen Plus --2015

    66/215

    Setup  –  Specification

    Select Flowsheet

    66

  • 8/20/2019 Introduction to Aspen Plus --2015

    67/215

    Reveal Model Library

    View|| Model Libraryor press F10

    67

  • 8/20/2019 Introduction to Aspen Plus --2015

    68/215

    Adding a Mixer

    Click “one of icons”and then click again on the flowsheet window

    Remark: The shape of the icons are meaningless

    68

  • 8/20/2019 Introduction to Aspen Plus --2015

    69/215

    Adding Material Streams

    Click “Materials” and then click

    again on the flowsheet window

    69

  • 8/20/2019 Introduction to Aspen Plus --2015

    70/215

  • 8/20/2019 Introduction to Aspen Plus --2015

    71/215

    Adding Material Streams (cont’d) 

    When moving the mouse on the arrows, some description appears. 

    Blue arrow: Water

    decant for Free water

    of dirty water.

    Red arrow(Left) Feed

    (Required;  one ore more

    if mixing material

    streams)

    Red arrow(Right):

    Product (Required;  if

    mixing material streams)

    71

  • 8/20/2019 Introduction to Aspen Plus --2015

    72/215

    Adding Material Streams (cont’d) 

    After selecting “Material Streams”, click and pull a stream line. Repeat it three times to generate three stream lines. 

    72

    Reconnecting Material Streams

  • 8/20/2019 Introduction to Aspen Plus --2015

    73/215

    Reconnecting Material Streams

    (Feed Stream)

    Right Click on the stream and

    select Reconnect Destination

    73

    Reconnecting Material Streams

  • 8/20/2019 Introduction to Aspen Plus --2015

    74/215

    Reconnecting Material Streams

    (Product Stream)

    Right Click on the stream and

    select Reconnect Source

    B1

    1

    2

    3

    74

  • 8/20/2019 Introduction to Aspen Plus --2015

    75/215

  • 8/20/2019 Introduction to Aspen Plus --2015

    76/215

    Specifying Feed Condition (cont’d) 

    1 2

    76

  • 8/20/2019 Introduction to Aspen Plus --2015

    77/215

    Specifying Input of Mixer

    Right Click on the block and select Input

    77

  • 8/20/2019 Introduction to Aspen Plus --2015

    78/215

    Specifying Input of Mixer (cont’d) 

    Specify Pressure and valid phase

    78

    l

  • 8/20/2019 Introduction to Aspen Plus --2015

    79/215

    Run Simulation

    Click to run the simulation

    Check “simulation status” 

    “Required Input Complete” means the input is ready to run simualtion 

    Run Start or continue calculationsStep Step through the flowsheet one block at a time

    Stop Pause simulation calculations

    Reinitialize Purge simulation results

    79

  • 8/20/2019 Introduction to Aspen Plus --2015

    80/215

    S l

  • 8/20/2019 Introduction to Aspen Plus --2015

    81/215

    Stream Results

    Right Click on the block and

    select Stream Resu lts

    81

    1 2 3

  • 8/20/2019 Introduction to Aspen Plus --2015

    82/215

      1  2  3

    Substream: MIXED 

    Mole Flow kmol/hr 

    WATER  10  0  10 

    BUOH  0  9  9 BUAC  0  6  6 

    Total Flow kmol/hr  10  15  25 

    Total Flow kg/hr  180.1528 1364.066 1544.218 

    Total Flow cum/hr  0.18582  1.74021  1.870509 

    Temperature C  50  80  70.08758 

    Pressure bar  2  1  1 

    Vapor Frac  0  0  0 

    Liquid Frac  1  1  1 

    Solid Frac  0  0  0 

    Enthalpy kcal/mol  -67.81  -94.3726  -83.7476 

    Enthalpy kcal/kg  -3764.03  -1037.77  -1355.82 

    Enthalpy Gcal/hr  -0.6781  -1.41559  -2.09369 

    Entropy cal/mol-K  -37.5007  -134.947  -95.6176 Entropy cal/gm-K  -2.0816  -1.48395  -1.54799 

    Density kmol/cum  53.81564 8.619647 13.36534 

    Density kg/cum  969.5038  783.851  825.5604 

    Average MW  18.01528 90.93771 61.76874 

    Liq Vol 60F cum/hr  0.1805  1.617386 1.797886 

    Pull down the list and select

    “Full” to show more properties

    results. 

    82

    Enthalpy and Entropy 

    Ch U i f C l l i R l

  • 8/20/2019 Introduction to Aspen Plus --2015

    83/215

    Change Units of Calculation Results

    83

    S D fi i Y O U i S

  • 8/20/2019 Introduction to Aspen Plus --2015

    84/215

    Setup – Defining Your Own Units Set

    84

    S t R t O ti

  • 8/20/2019 Introduction to Aspen Plus --2015

    85/215

    Setup – Report Options

    85

    Stream Results with Format of

  • 8/20/2019 Introduction to Aspen Plus --2015

    86/215

    Mole Fraction

    86

    Add P Bl k

  • 8/20/2019 Introduction to Aspen Plus --2015

    87/215

    Add Pump Block

    87

    Add A M t i l St

  • 8/20/2019 Introduction to Aspen Plus --2015

    88/215

    Add A Material Stream

    88

  • 8/20/2019 Introduction to Aspen Plus --2015

    89/215

    P S ifi ti

  • 8/20/2019 Introduction to Aspen Plus --2015

    90/215

    Pump – Specification

    2. Specify pump outlet specificati(pressure, power)

    1. Select “Pump” or “turbine” 

    3. Efficiencies (Default: 1)

    90

    R Si l ti

  • 8/20/2019 Introduction to Aspen Plus --2015

    91/215

    Run Simulation

    Click to generate the results

    Check “simulation status” 

    “Required Input Complete”

    91

    Block Results (Pump)

  • 8/20/2019 Introduction to Aspen Plus --2015

    92/215

    Block Results (Pump)

    Right Click on the block and select Results

    92

  • 8/20/2019 Introduction to Aspen Plus --2015

    93/215

    93

  • 8/20/2019 Introduction to Aspen Plus --2015

    94/215

    Calculation Results

  • 8/20/2019 Introduction to Aspen Plus --2015

    95/215

    (Mass and Energy Balances)

    1

    23

    4

    Mixer Pump

     

    1 2 3 4

    Mole Flow kmol/hr

    WATER 10 0 10 10

    BUOH 0 9 9 9

    BUAC 0 6 6 6

    Total Flow kmol/hr 10 15 25 25Temperature C 50 80 70.09 71.20

    Pressure bar 1 1 1 10

    Enthalpy kcal/mol -67.81 -94.37 -83.75 -83.69

    Entropy cal/mol-K -37.50 -134.95 -95.62 -95.46

    Density kmol/cum 969.50 783.85 825.56 824.29

    95

  • 8/20/2019 Introduction to Aspen Plus --2015

    96/215

    Example 2: Flash Separation

  • 8/20/2019 Introduction to Aspen Plus --2015

    97/215

    Example 2: Flash Separation

    Saturated Feed

    P=1atm

    F=100 kmol/hr

    zwater =0.5zHAc=0.5

    T=105 C

    P=1atm

    What are flowrates and compositions of the two outlets?

    0.0 0.2 0.4 0.6 0.8 1.0100

    105

    110

    115

    120

       T

       (  o   C   )

    xWater 

     and yWater 

     T-x

     T-y

    Input Components

  • 8/20/2019 Introduction to Aspen Plus --2015

    98/215

    Input Components

  • 8/20/2019 Introduction to Aspen Plus --2015

    99/215

  • 8/20/2019 Introduction to Aspen Plus --2015

    100/215

    Association parameters of HOC

  • 8/20/2019 Introduction to Aspen Plus --2015

    101/215

    Association parameters of HOC

    Binary Parameters of NRTL

  • 8/20/2019 Introduction to Aspen Plus --2015

    102/215

    Binary Parameters of NRTL

  • 8/20/2019 Introduction to Aspen Plus --2015

    103/215

    T-xy plot

  • 8/20/2019 Introduction to Aspen Plus --2015

    104/215

    T-xy plot

    1. Select analysis type (Txy) 2. Select phase (VLE, VLLE)

    2. Select two component

    4. Specify composition range

    5. Specify pressure

    6. Select property method3. Select compositions basis

    7. click Go to generate the results

  • 8/20/2019 Introduction to Aspen Plus --2015

    105/215

    Generate xy plot

  • 8/20/2019 Introduction to Aspen Plus --2015

    106/215

    Generate xy plot

    Generate xy plot (cont’d) 

  • 8/20/2019 Introduction to Aspen Plus --2015

    107/215

    Add Block: Flash2

  • 8/20/2019 Introduction to Aspen Plus --2015

    108/215

    Add Block: Flash2

    Add Material Stream

  • 8/20/2019 Introduction to Aspen Plus --2015

    109/215

    Add Material Stream

    Specify Feed Condition

  • 8/20/2019 Introduction to Aspen Plus --2015

    110/215

    Specify Feed Condition

    Saturated Feed

    (Vapor fraction=0)

    P=1atm

    F=100 kmol/hr

    zwater =0.5

    zHAc

    =0.5

    Block Input: Flash2

  • 8/20/2019 Introduction to Aspen Plus --2015

    111/215

    Block Input: Flash2

    Flash2: Specification

  • 8/20/2019 Introduction to Aspen Plus --2015

    112/215

    Flash2: Specification

    T=105 C

    P=1atm

    Required Input Complete

  • 8/20/2019 Introduction to Aspen Plus --2015

    113/215

    Required Input Complete

    Click to run simulation

    **Before running simulation, property

    analysis should be closed.

    Stream Results

  • 8/20/2019 Introduction to Aspen Plus --2015

    114/215

    Stream Results

    Stream Results (cont’d)

  • 8/20/2019 Introduction to Aspen Plus --2015

    115/215

    Stream Results (cont d) 

    Saturated Feed

    P=1atm

    F=100 kmol/hr

    zwater =0.5

    zHAc=0.5

    T=105 C

    P=1atm

    42.658 kmol/hr

    zwater =0.501

    zHAc=0.409

    57.342 kmol/hr

    zwater =0.432

    zHAc=0.568

    HEAT EXCHANGE

  • 8/20/2019 Introduction to Aspen Plus --2015

    116/215

    HEAT EXCHANGE

    熱物流

     入口温度:200  入口壓力:0.4 MPa

    流量:10000kg/hr

    组成:苯 50%,苯乙烯 20%,水 10%

    冷卻水

     入口温度:20  入口压力:1.0 MPa

    流量:60000 kg/hr 

    熱流出口氣相分率為

     0(飽和液相)

     

    COMPONENTS  –  SPECIFICATION

  • 8/20/2019 Introduction to Aspen Plus --2015

    117/215

    117

    Thermodynamic Model – NRTL 

  • 8/20/2019 Introduction to Aspen Plus --2015

    118/215

    118

    ADD BLOCK: HEATX

  • 8/20/2019 Introduction to Aspen Plus --2015

    119/215

    Feeds Conditions

  • 8/20/2019 Introduction to Aspen Plus --2015

    120/215

    Feeds Conditions

    HOT-INCLD-IN

    BLOCK INPUT

  • 8/20/2019 Introduction to Aspen Plus --2015

    121/215

    Check result

  • 8/20/2019 Introduction to Aspen Plus --2015

    122/215

    122

    Check result

    Check result

  • 8/20/2019 Introduction to Aspen Plus --2015

    123/215

    123

  • 8/20/2019 Introduction to Aspen Plus --2015

    124/215

    124

    Introduction to Aspen Plus

    Part 5: Running simulation

    Reactor Systems

    (RGIBBS, RPLUG,RCSTR) 

  • 8/20/2019 Introduction to Aspen Plus --2015

    125/215

    Equilibrium Reactor: RGIBBS

  • 8/20/2019 Introduction to Aspen Plus --2015

    126/215

    126

    q

    222

    2422

    242

    24

    3

     H COO H CO

    O H CH  H CO

    O H CH  H CO

    Reactions:

    Fresh Feed

    Flow rate 1000 (kmol/h)CO 0.2368

    H2 0.7172

    H2O 0.0001

    CH4 0.0098

    CO2 0.0361

    T=300 k

    P=470 psia

    Equilibrium Reactor: RGIBBS

  • 8/20/2019 Introduction to Aspen Plus --2015

    127/215

    127

    q

    Equilibrium Reactor: RGIBBS

  • 8/20/2019 Introduction to Aspen Plus --2015

    128/215

    q

    Inside the Block:

    Check result

  • 8/20/2019 Introduction to Aspen Plus --2015

    129/215

    129

    KINETICS REACTORS: RPLUG

  • 8/20/2019 Introduction to Aspen Plus --2015

    130/215

    KINETICS REACTORS: RPLUG

    Reaction :Exothermic & reversible

    222  H COO H CO     )/(09.41   mol  KJ  H   

    )

    85458

    exp(1.3922

    )47400

    exp(545.51

    )(222

     RT k 

     RT k 

     skgcat 

    kmol Y Y k Y Y k  Rate

     f  

     H COr O H CO f  

    Rate [=] Kmol/Kgcat/s

    Activation Energy [=] KJ/Kmol

    KINETICS REACTORS: RPLUG

  • 8/20/2019 Introduction to Aspen Plus --2015

    131/215

    KINETICS REACTORS: RPLUG

    Reaction :Exothermic & reversible

    222  H COO H CO     )/(09.41   mol  KJ  H   

    Catalyst Loading = 0.1865 Kg

    Bed Voidage = 0.8928

    Feed Temperature = 583K

    Feed Pressure = 1 bar

    Reactor Length = 10 m

    Reactor Diameter = 5m

    Fresh Feed

    Flow rate 200 (mol/h)

    CO 0.030

    H2 0.430

    H2O 0.392CO2 0.148

    KINETICS REACTORS: RPLUG

  • 8/20/2019 Introduction to Aspen Plus --2015

    132/215

    KINETICS REACTORS: RPLUG

    Feed Stream:

    KINETICS REACTORS: RPLUG

  • 8/20/2019 Introduction to Aspen Plus --2015

    133/215

    KINETICS REACTORS: RPLUG

    Reaction Setting:

    KINETICS REACTORS: RPLUG

  • 8/20/2019 Introduction to Aspen Plus --2015

    134/215

    KINETICS REACTORS: RPLUG

    Reaction Setting:

  • 8/20/2019 Introduction to Aspen Plus --2015

    135/215

    KINETICS REACTORS: RPLUG

  • 8/20/2019 Introduction to Aspen Plus --2015

    136/215

    KINETICS REACTORS: RPLUG

    RPLUG Setting:

    KINETICS REACTORS: RPLUG

  • 8/20/2019 Introduction to Aspen Plus --2015

    137/215

    KINETICS REACTORS: RPLUG

    RPLUG Setting:

    Check result

  • 8/20/2019 Introduction to Aspen Plus --2015

    138/215

    138

    Check result

  • 8/20/2019 Introduction to Aspen Plus --2015

    139/215

    139

    Check result

  • 8/20/2019 Introduction to Aspen Plus --2015

    140/215

    140

    Select Reactor Length column

    Plot -> x-Axis variable

    Select Temperature Column

    Plot -> y-Axis variable

    Display Plot

    Check result

  • 8/20/2019 Introduction to Aspen Plus --2015

    141/215

    141

    Block B2 (RPlug) Profiles Process Stream

    Reactor length MIXED meter 

       T   E   M   P   E   R   A   T   U   R

       E   K

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

       5   8   5 .   0

       5   8   7 .   5

       5   9   0 .   0

       5   9   2 .   5

       5   9   5 .   0   5

       9   7 .   5

       6   0   0 .   0

       6   0   2 .   5

       6   0   5 .   0

       6   0   7 .   5

    Temperature MIXED

  • 8/20/2019 Introduction to Aspen Plus --2015

    142/215

    Check result

  • 8/20/2019 Introduction to Aspen Plus --2015

    143/215

    143

    Select Reactor Length column

    Plot -> x-Axis variable

    Select all other columns

    Plot -> y-Axis variable

    Display Plot

    Check result

  • 8/20/2019 Introduction to Aspen Plus --2015

    144/215

    Block B2 (RPlug) Profiles Process Stream

    Reactor length MIXED meter 

     

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

       0 .   0   5

       0 .   1

       0 .   1   5

       0 .   2

       0 .   2   5

       0 .   3

       0 .   3   5

       0 .   4

       0 .   4

       5

       0 .   5

    Mole fraction MIXED CO

    Mole fraction MIXED H2OMole fraction MIXED CO2

    Mole fraction MIXED H2

    KINETICS REACTORS: RCSTR

  • 8/20/2019 Introduction to Aspen Plus --2015

    145/215

    Reaction :Exothermic & Irreversible

     Aniline + Hydrogen Cyclohexylamine (CHA) 

    C6H7N + 3H2  C6H13N

    Reactor Conditions

  • 8/20/2019 Introduction to Aspen Plus --2015

    146/215

    Reactor :

    Reactor

    condition

    Reactor type

    Reactor liquid level

    595 psi

    250 F

    1200 ft3

    Temperature

    Volume

    Vertical cylindrical vessel

    80%

    Pressure

    Reactor Conditions Input

  • 8/20/2019 Introduction to Aspen Plus --2015

    147/215

    Reaction Kinetics

  • 8/20/2019 Introduction to Aspen Plus --2015

    148/215

    CHA R A H   R kV C C 

    8

    0   10k   

    0 exp( ) E k k   RT 

    3lbmole  ft 

    Reaction rate :

    Where

    VR: reactor volume

    C A: concentration of AnilineCH: concentration of Hydrogen

    • Reaction kinetics :

    Where

    E : activity energy

    T : temperature (R)2000 Btu E 

    lbmole

    3lbmole

     ft 

    3  ft 

    Reaction Kinetics Input

  • 8/20/2019 Introduction to Aspen Plus --2015

    149/215

    Reaction Kinetics Input

  • 8/20/2019 Introduction to Aspen Plus --2015

    150/215

    Reaction Kinetics Input

  • 8/20/2019 Introduction to Aspen Plus --2015

    151/215

    Feeds Conditions

  • 8/20/2019 Introduction to Aspen Plus --2015

    152/215

    1

    100 lbmolhr 

      1400 lbmolhr 

    Two fresh feed stream :

    Aniline feed Hydrogen feed

    mole rate

    temperature

     pressure

    100 F 100 F

    650 psia 650 psia

  • 8/20/2019 Introduction to Aspen Plus --2015

    153/215

    Check result

  • 8/20/2019 Introduction to Aspen Plus --2015

    154/215

    154

    (1) Compare the conversion between RSTOIC and RCSTR.

    (2) Compare the net duty inside the RSTOIC and RCSTRQuestion:

  • 8/20/2019 Introduction to Aspen Plus --2015

    155/215

    155

    Introduction to Aspen Plus

    Part 6: Running simulation

    Distillation Process

    (DSTWU, RADFRAC) 

    Distillation Separation

  • 8/20/2019 Introduction to Aspen Plus --2015

    156/215

    1

    2

    39

    Saturated Feed

      P=1.2atm

      F=100 kmol/hr 

      zwater =0.5  zHAc=0.5

    xwater =0.99

    xHAc=0.99

    40

    20

    • There are two degrees offreedom to manipulate

    distillate composition and

    bottoms composition to

    manipulate the distillate andbottoms compositions.

    • If the feed condition and the

    number of stages are given,

    how much of RR and QR are

    required to achieve the

    specification.

    RR ?

    QR  ? 

    Distillation SeparationExample :

  • 8/20/2019 Introduction to Aspen Plus --2015

    157/215

    Example :

    A mixture of benzene and toluene containing 40 mol% benzeneis to be separated to dive a product containing 90 mol%

    benzene at the top, and no more than 10% benzene in bottom

    product. The feed enters the column as saturated liquid, and

    the vapor leaving the column which is condensed but not

    cooled, provide reflux and product. It is proposed to operate

    the unit with a reflux ratio of 3 kmol/kmol product. Please

    find:

    (1) The number of theoretical plates.

    (2) The position of the entry.

    (Problem is taken from Coulson & Richardson’s Chemical

    Engineering, vol 2, Ex 11.7, p.564)

    1. By what you learned in Material balance and

    unit operation

  • 8/20/2019 Introduction to Aspen Plus --2015

    158/215

    1

    Saturated Feed

      P=100 Kpa

     F=100 kmol/hr 

      xben=0.4

      xtol=0.6

    xben=0.9

    xben

  • 8/20/2019 Introduction to Aspen Plus --2015

    159/215

    From thermodynamic phase equilibrium, and the calculation of operating line:

    We can get the number of theoretical plate to be 7.

  • 8/20/2019 Introduction to Aspen Plus --2015

    160/215

    2. By the shortcut method in Aspen Plus (DISTWU)(Select property method)

  • 8/20/2019 Introduction to Aspen Plus --2015

    161/215

    Select NRTL

  • 8/20/2019 Introduction to Aspen Plus --2015

    162/215

    2. By the shortcut method in Aspen Plus (DSTWU)

  • 8/20/2019 Introduction to Aspen Plus --2015

    163/215

    Add the unit “DSTWU” 

    The red arrows are the required material stream!

    2. By the shortcut method in Aspen Plus (DSTWU)

  • 8/20/2019 Introduction to Aspen Plus --2015

    164/215

    Connect the required material stream 

    2. By the shortcut method in Aspen Plus (DSTWU)

  • 8/20/2019 Introduction to Aspen Plus --2015

    165/215

    “Feed1” Stream specification 

    2. By the shortcut method in Aspen Plus(Column Specification)

  • 8/20/2019 Introduction to Aspen Plus --2015

    166/215

    From the problem Assume no pressure drop

    Inside the column

  • 8/20/2019 Introduction to Aspen Plus --2015

    167/215

  • 8/20/2019 Introduction to Aspen Plus --2015

    168/215

    2. By the shortcut method in Aspen Plus(Column Specification)

  • 8/20/2019 Introduction to Aspen Plus --2015

    169/215

    Get results by varying the

    number of stages. (Initial

    Guess)

    2. By the shortcut method in Aspen Plus (DSTWU)

  • 8/20/2019 Introduction to Aspen Plus --2015

    170/215

    RUN THE SIMULATION

    2. By the shortcut method in Aspen Plus(Stream Results)

  • 8/20/2019 Introduction to Aspen Plus --2015

    171/215

    Click right button on the unit, and select “Stream

    Results” 

    2. By the shortcut method in Aspen Plus(Stream Results)

  • 8/20/2019 Introduction to Aspen Plus --2015

    172/215

    The required product

    quality

    2. By the shortcut method in Aspen Plus(RR vs number of stage)

  • 8/20/2019 Introduction to Aspen Plus --2015

    173/215

    For RR=3, at least 7

    theoretical stages are

    required.

    3. More rigorous method in Aspen Plus (RADFRAC)

  • 8/20/2019 Introduction to Aspen Plus --2015

    174/215

    Add the unit “RADFRAC” 

    The red arrows are the required material stream!

    3. More rigorous method in Aspen Plus (RADFRAC)

  • 8/20/2019 Introduction to Aspen Plus --2015

    175/215

    Connect the required material stream 

    3. More rigorous method in Aspen Plus (RADFRAC)(Feed Specification)

  • 8/20/2019 Introduction to Aspen Plus --2015

    176/215

    Same as Case 2 

    3. More rigorous method in Aspen Plus (RADFRAC)(Column Specification)

  • 8/20/2019 Introduction to Aspen Plus --2015

    177/215

    Double click left button on the unit…. 

  • 8/20/2019 Introduction to Aspen Plus --2015

    178/215

    3. More rigorous method in Aspen Plus (RADFRAC)(Column Specification)

  • 8/20/2019 Introduction to Aspen Plus --2015

    179/215

    Specify the feed stage.

    3. More rigorous method in Aspen Plus (RADFRAC)(Column Specification)

  • 8/20/2019 Introduction to Aspen Plus --2015

    180/215

    Specify the pressure at the top of column

    3. More rigorous method in Aspen Plus (RADFRAC)(Calculation of tray size—Tray Sizing)

  • 8/20/2019 Introduction to Aspen Plus --2015

    181/215

  • 8/20/2019 Introduction to Aspen Plus --2015

    182/215

    3. More rigorous method in Aspen Plus (RADFRAC)(Pressure drop calculation – Tray Rating)

  • 8/20/2019 Introduction to Aspen Plus --2015

    183/215

    3. More rigorous method in Aspen Plus (RADFRAC)(Pressure drop calculation – Tray Rating)

  • 8/20/2019 Introduction to Aspen Plus --2015

    184/215

    *Calculation from 2th tray from the top to

    2th tray from the bottom. (WHY??)

    *Initial guess of the tray size

    3. More rigorous method in Aspen Plus (RADFRAC)(Pressure drop calculation – Tray Rating)

  • 8/20/2019 Introduction to Aspen Plus --2015

    185/215

    3. More rigorous method in Aspen Plus (RADFRAC)(Stream Results)

  • 8/20/2019 Introduction to Aspen Plus --2015

    186/215

    Click right button on the unit, and select “Stream

    Results” 

    3. More rigorous method in Aspen Plus (RADFRAC)(Stream Results)

  • 8/20/2019 Introduction to Aspen Plus --2015

    187/215

    Different from the shorcut method.

    (WHY??) 

  • 8/20/2019 Introduction to Aspen Plus --2015

    188/215

    188

    Introduction to Aspen Plus

    Part 7: Running simulation(Additional)

    Design, spec, and vary in RADFRAC 

    3. More rigorous method in Aspen Plus (RADFRAC)(Design , Spec and Vary)

  • 8/20/2019 Introduction to Aspen Plus --2015

    189/215

  • 8/20/2019 Introduction to Aspen Plus --2015

    190/215

    3. More rigorous method in Aspen Plus (RADFRAC)(Design , Spec and Vary)

  • 8/20/2019 Introduction to Aspen Plus --2015

    191/215

    What do we want??

    --- 90% Benzene at top.

    Select “Mole Purity”… 

    And the target is 0.9.

  • 8/20/2019 Introduction to Aspen Plus --2015

    192/215

  • 8/20/2019 Introduction to Aspen Plus --2015

    193/215

    3. More rigorous method in Aspen Plus (RADFRAC)(Design , Spec and Vary)

  • 8/20/2019 Introduction to Aspen Plus --2015

    194/215

    Add a Vary

    (1 Design Spec 1 Vary)

    3. More rigorous method in Aspen Plus (RADFRAC)(Design , Spec and Vary)

  • 8/20/2019 Introduction to Aspen Plus --2015

    195/215

    Varying Reflux ratio to

    reach the design target. 

  • 8/20/2019 Introduction to Aspen Plus --2015

    196/215

    3. More rigorous method in Aspen Plus (RADFRAC)(Design , Spec and Vary)

  • 8/20/2019 Introduction to Aspen Plus --2015

    197/215

    2nd Design Spec

    3. More rigorous method in Aspen Plus (RADFRAC)(Design , Spec and Vary)

  • 8/20/2019 Introduction to Aspen Plus --2015

    198/215

    What do we want??

    --- 10% Benzene at bot.

    Select “Mole Purity”… 

  • 8/20/2019 Introduction to Aspen Plus --2015

    199/215

    3. More rigorous method in Aspen Plus (RADFRAC)(Design , Spec and Vary)

  • 8/20/2019 Introduction to Aspen Plus --2015

    200/215

    Select the Benzene

    3. More rigorous method in Aspen Plus (RADFRAC)(Design , Spec and Vary)

  • 8/20/2019 Introduction to Aspen Plus --2015

    201/215

    Select the bottom stream

    3. More rigorous method in Aspen Plus (RADFRAC)(Design , Spec and Vary)

  • 8/20/2019 Introduction to Aspen Plus --2015

    202/215

    2nd Vary

    3. More rigorous method in Aspen Plus (RADFRAC)(Design , Spec and Vary)

  • 8/20/2019 Introduction to Aspen Plus --2015

    203/215

    Varying distillate rate to

    reach the design target. 

    Specify the varying range.

    (Should contain the initial value)

    3. More rigorous method in Aspen Plus (RADFRAC)(Design , Spec and Vary)

  • 8/20/2019 Introduction to Aspen Plus --2015

    204/215

    RUN THE SIMULATION,

    and click right button on

    the unit, select “Stream

    results” 

    3. More rigorous method in Aspen Plus (RADFRAC)(Stream Results)

  • 8/20/2019 Introduction to Aspen Plus --2015

    205/215

    The required product

    quality

    3. More rigorous method in Aspen Plus (RADFRAC)(Column Results--top)

  • 8/20/2019 Introduction to Aspen Plus --2015

    206/215

    Calculated Reflux Ratio = 6.14

    (from problem: 3)

    3. More rigorous method in Aspen Plus (RADFRAC)(Column Results--bottom)

  • 8/20/2019 Introduction to Aspen Plus --2015

    207/215

    The required heat duty for

    separation is 2341.8 (KW)

    3. More rigorous method in Aspen Plus (RADFRAC)(Profile Inside the Column)

  • 8/20/2019 Introduction to Aspen Plus --2015

    208/215

    T : Temperature

    P : Pressure

    F : Liquid and vapor flow rate.

    Q: Heat Duty

    3. More rigorous method in Aspen Plus (RADFRAC)(Profile Inside the Column)

  • 8/20/2019 Introduction to Aspen Plus --2015

    209/215

     You can select the vapor or

    liquid composition profile.

    (also in mole or mass basis)

    3. More rigorous method in Aspen Plus (RADFRAC)(Plotting Temp. Profile)

  • 8/20/2019 Introduction to Aspen Plus --2015

    210/215

    Select the column “Stage” 

    Click “Plot” 

    Select “X-axis variable” 

    3. More rigorous method in Aspen Plus (RADFRAC)(Plotting Temp. Profile)

  • 8/20/2019 Introduction to Aspen Plus --2015

    211/215

    Select the column “Temp.” 

    Click “Plot” 

    Select “ Y-axis variable” 

    3. More rigorous method in Aspen Plus (RADFRAC)(Plotting Temp. Profile)

  • 8/20/2019 Introduction to Aspen Plus --2015

    212/215

    Then, select “Display

    Plot” 

    3. More rigorous method in Aspen Plus (RADFRAC)(Plotting Temp. Profile)

  • 8/20/2019 Introduction to Aspen Plus --2015

    213/215

    ExerciseExample:

    Typically 90 mol% product purity is not enough for a product to

  • 8/20/2019 Introduction to Aspen Plus --2015

    214/215

    Typically, 90 mol% product purity is not enough for a product to

    sale. In the same problem, assume the number of stages

    increase to 10. Try the following exercises:

    (1) Is it possible to separate the feed to 95 mol% of benzene in

    the distillate, and less than 5% of benzene in the bottom

    product? If yes, what is the RR and Qreb?

    (2) As in (1), is it possible to separate the feed to 99 mol% of

    benzene in the distillate, and less than 1%  of benzene in the

    bottom product? If yes, what is the RR and Qreb?

    (3) As in (2), if no, how many number of stages is required to

    reach this target?

    (Hint: Use design, spec, and vary to do this problem)

  • 8/20/2019 Introduction to Aspen Plus --2015

    215/215

    Thanks for your attention!

    PSE LaboratoryDepartment of Chemical Engineering

    Nation Taiwan University(綜合 room 402)