36

Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

  • Upload
    others

  • View
    21

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages
Page 2: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

2

Introduction

Applications

This catalog provides the latest information for Hamamatsu ruggedized high temperature photomultiplier tubes ranging in diameter from 13 mm (1/2") to 51 mm (2"). All listed tubes employ high temperature bialkali photo-cathode that feature stable operation and long life at temperatures up to 90 °C, 175 °C or 200 °C. The elec-trode supporting structures have been designed so that tubes can be used in severe environments such as may be found in oil well logging, geological exploration, and aerospace applications.If you do not find the tube that meets your needs in this brochure, we will be pleased to custom produce a tube or assembly for your unique requirements. We offer a wide variety of complete assemblies of tubes, sockets, voltage dividers and tube shields which have been quality tested to assure reliable operation.

Oil well logging (Wireline, MWD and LWD)Geological explorationGauge meterAerospace research

Page 3: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

3

Index by Type Number

Contents

Introduction & Application .................................................................................................................................. 2Index by Type Number ....................................................................................................................................... 3Quick Reference ................................................................................................................................................ 4Notes & Basing Diagram .................................................................................................................................... 513 mm (1/2") Dia. Types ..................................................................................................................................... 619 mm (3/4") Dia. Types ..................................................................................................................................... 825 mm (1") Dia. Types ...................................................................................................................................... 1028 mm (1-1/8") Dia. Types ................................................................................................................................ 1238 mm (1-1/2") Dia. Types ................................................................................................................................ 1451 mm (2") Dia. Types ...................................................................................................................................... 16Ceramic Stacked Types .................................................................................................................................... 16E678 Series Sockets ........................................................................................................................................ 18Cautions and Warranty ..................................................................................................................................... 19

1. General Characteristics of Photomultiplier Tubes .................................................................................. 20

1-1 General characteristics ........................................................................................................................... 201-2 LLD during plateau measurement .......................................................................................................... 231-3 Plateau measurement using a blue LED ................................................................................................ 24

2. Technical Information of Photomultiplier Tubes ...................................................................................... 26

2-1 Long life characteristics of R1288AH ..................................................................................................... 262-2 Plateau width natural radiation ............................................................................................................... 272-3 Plateau change with the LLD ................................................................................................................. 282-4 Count rate characteristics ...................................................................................................................... 29

3. Technical Information of Photomultiplier Tube Assembries .................................................................. 30

3-1 Handling the cables ................................................................................................................................ 303-2 Relation between the PMT / scintillator case and the surrounding electrical potential .......................... 303-3 How to clamp the PMT assembly ........................................................................................................... 303-4 Soldering the cables ............................................................................................................................... 313-5 Selecting components for +HV operation ............................................................................................... 32

R1288A ................................. 10R1288A-01............................ 10R1288A-04 ........................... 10R1288A-06 ........................... 10R1288A-07 ........................... 10R1288A-08 ........................... 10R1288A-27 ........................... 10R1288A-28 ........................... 10R1288A-31 ........................... 10R1288AH .............................. 10R1288AH-07 ......................... 10R1288AH-27 ......................... 10R1288AH-31 ......................... 10R3991A ................................... 8R3991A-04.............................. 8

R3991A-07.............................. 8R3991A-27.............................. 8R3991A-28.............................. 8R3991A-31.............................. 8R4177 ..................................... 6R4177-01 ................................ 6R4177-04 ................................ 6R4177-06 ................................ 6R4177-27 ................................ 6R4177-28 ................................ 6R4607A-01............................ 16R4607A-06............................ 16R4607A-27............................ 16R4607A-28............................ 16R5473-02 .............................. 16

R6877A ................................. 12R6877A-01............................ 12R6877A-04............................ 12R6877A-06............................ 12R6877A-07............................ 12R6877A-08............................ 12R6877A-27............................ 12R6877A-28............................ 12R6877A-31............................ 12R9722A ................................. 14R9722A-01............................ 14R9722A-04............................ 14R9722A-06............................ 14R9722A-27............................ 14R9722A-28............................ 14

Page 4: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

4

Quick Referemce

are suitable for MWD application.Type No.

AssemblyTemporary baseDiameter Page MaximumTemperature Button stem

13 mm(1/2") 6

90 °C

90 °C

90 °C

90 °C

90 °C

90 °C

175 °C

175 °C

175 °C

175 °C

175 °C

175 °C

175 °C

200 °C

8

10

12

14

16

16

19 mm(3/4")

25 mm(1")

28 mm(1-1/8")

38 mm(1-1/2")

51 mm(2")

25 mm(1")

R4177-04 R4177-06 R4177-28

R1288AHR1288AH-07R1288AH-27R1288AH-31

R9722A-04 R9722A-06 R9722A-28

R9722A R9722A-01 R9722A-27

R4607A-06 R4607A-28

R4607A-01 R4607A-27

R1288A-04 R1288A-06R1288A-08R1288A-28

R6877A-04R6877A-08R6877A-28

R1288A R1288A-01R1288A-07R1288A-27

R4177 R4177-01

R6877A-01

R6877A-06

R4177-27

R3991A-04 R3991A-28

R3991AR3991A-07R3991A-27R3991A-31

R1288A-31

R6877AR6877A-07R6877A-27R6877A-31

R5473-02

Standard Types

Ceramic Stacked Types

Page 5: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

5

TPMHC0105EA

TPMHC0185EC

TPMOC0068EC

Note 1q Temperature cycling tests are performed for all 175 °C and 200 °C type tubes.w A socket will be supplied with a tube. (Assembly type is excluded)e Screening tests are performed all R1288A-31, R1288AH-31, R3991A-31, R6877A-31 tubes. See Figure 16 and Figure 17 on page 25.r The voltage distribution ratios are shown in the bottom table of each page.t Averaged over any interval of 30 seconds maximum.y These voltages are applied when the anode sensitivity and characteristics are measured.u Only initial production tubes are tested for these Shock tests. Conditions are as follows: 3 impact shocks per direction (6 directions)i Only initial production tubes are tested for these sine wave vibration tests. Conditions are as follows: 50 Hz to 2000 Hz, 1 oct. per

minute, 3 sweeps per axis (3 axes)o The light source is a tungsten filament lamp operated at a distribution temperature of 2856K.

The light input is 0.01 lumen and 150 volts are applied between the cathode and all other electrodes connected together as anode.In the case of blue sensitivity, a blue filter of Corning CS 5-58 polished to 1/2 stock thickness is interposed between the light source and the tube.

!0 The light source is a tungsten filament lamp operated at a distribution temperature of 2856K.!1 Measured after 30 min. storage in darkness.

Note 2In use of this assembly at +HV potential, the load resistor (RL) and the high voltage resistant capacitor (C) must be wired as follows :

SIGNAL

P

DY

K

DY

+H.V

RECOMMENDED VALUERLC

: 100 kΩ to 1 MΩ: 0.005 µF, 3 kV to 5 kV

RL

C

: Dynode: Grid (Focusing Electrode): Photocathode: Anode: Internal Connection (Do not use)

DYG(F)KPIC

Short IndexPin

FlyingLead

Key

Pin

BASING DIAGRAM SYMBOLSAll base diagrams show terminals viewed from the base end of the tube.

Figure 1: An Example of the Temperature Cycling Test Chart

1

: MEASURING POINT

NOTE: 1 Temperature cycling tests are performed for all 175 °C and 200 °C type tubes.

2 Temperature slope (rise/down condition) 3 °C/min. Max.

3 PMT output: < 10 %

TEMPERATURECYCLING

PMT OUTPUT

175 °C

50 °C

2 3 4 5 6

B

16 h 16 h8 h 16 h

A

C

(B-A)A

4 PMT noise edge < 60 keV (Measured at C of PMT OUTPUT)

5 The plateau characteristic is measured by LED in C point.

Description of the following dataDescription of the following data

Page 6: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

6

MaximumTemp.

(°C)

Type No.

R4177-04

R4177-06

R4177-28

R4177

R4177-01

R4177-27

Temporary base

Button stem

Assembly (S/S Case)

Temporary base

Button stem

Assembly (S/S Case)

S/S: Stainless Steel

E678-12R

E678-13E

1R=2 MΩ

E678-12R

E678-13E

1R=2 MΩ

Linear Focused/10 1800—

A

B

A

B

0.02

0.02

0.01

0.02

0.02

0.01

1500

1500

5000 m/s2

(500 g)

0.5 ms

90

175

Base Configration

Socketor

ResistorValue

Dynode Structure

Number of Stages

MWDAppl.

Anode toCathodeVoltage

AverageAnodeCurrent

Shock

Maximum Ratings

(mA)

Anode toCathodeVoltage

(V)(V)

q w e y u

r t

13 mm (1/2") Dia. Types

Dimensional Outlines and Basing Diagrams (Unit: mm)

Voltage Distribution Ratios

R4177-01/-06 R4177/-04

Number ofStages

A

B

K

1

1

Dy1

1

1

Dy2

1

1

Dy3

1

1

Dy4

1

1

Dy5

1

1

Dy6

1

1

Dy7

1

1

Dy8

1

1

(0.01)

Dy9

1

1

(0.01)

Dy10

1

1

(0.01)

P

10

DistributionRatio Codes

Voltage Distribution RatioK: Cathode Dy: Dynode P: Anode

The parentheses indicate the value of capacitors in µF.

DY10

765

4

89

10

11

1213

3

21

DY8P

DY6

DY4

DY2

IC

K

DY9

DY7

DY5

DY3

DY1

SHORT PIN

14.5 ± 0.7

FACEPLATE

PHOTOCATHODE

61 ±

213

MA

X.

10 MIN.

13 PIN BASE

TPMHA0006EA TPMHA0007EB

FACEPLATE

PHOTOCATHODE

13 M

AX

.

33 M

IN.

61 ±

2

12 PIN BASEJEDEC No. B12-43

DY1

DY3

DY5

DY7

DY9

P

12

3

4

56 7

8

9

10

1112

DY10

DY8

DY6

DY4

DY2

K

DY1

DY3

DY5

DY7

P

DY9 DY6

DY4

DY2

K1

2

3

4

56

9

10

11

13

7 8

DY10 DY8

B Temporary Base Removed

A Lead Orientation Bottom View

C Bottom ViewC

SEMIFLEXIBLELEADS 0.5 MAX.

A

B

37.3 ± 0.5

4.0 ± 0.5

10 MIN.

14.5 ± 0.7

7.9

± 0.

5

14 × 0.5 ±0.05

Page 7: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

7

R4177-04

R4177-06

R4177-28

R4177

R4177-01

R4177-27

20

20

30

40

3.0

4.0

4.5

6.0

6

10

15

20

0.5

0.5

10

10

5 (90 °C)

100

5.0 × 105200 m/s2

(20 g)

Type No.Sine

Vibration

Gainat 25 °C

Luminousat 25 °C

Cathode Sensitivity Anode Sensitivity and Characteristics

Blue SensitivityIndex (CS 5-58)

at 25 °C

(µA/lm)

Min.

(µA/lm)

Typ.

Luminousat 25 °C

Dark Current

at 25 °C at 175 °C

(A/lm)

Min.

(A/lm) (nA) (nA) (nA)

Typ. Typ. Max. Typ.Min. Typ. Typ.

oi

!0 !1

R4177-27/-28 (See Note 2 on page 5)

TPMHA0032ED

100

± 1

PHOTOCATHODE

FACEPLATE

10 MIN.

GND/+H.V: AWG22 (RED)

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

K-H.V/GND: AWG22 (BLACK)

ANODE OUTPUT: AWG22 (VIOLET)GND/+H.V: AWG22 (RED)R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

R1 to R11:C1 to C3:

2 MΩ0.01 µF

18.0 ± 0.2

0.5

± 0.

320

3 M

IN.

-H.V/GND: AWG22 (BLACK)

ANODE OUTPUT: AWG22 (VIOLET)

STAINLESSSTEEL CASE

14.5 ± 0.7

HA

CO

AT

ING

, µ-M

ET

AL

WR

AP

PIN

G

Page 8: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

8

R3991A-04

R3991A-28

R3991A

R3991A-07

R3991A-27

R3991A-31

Temporary base

Assembly (S/S Case)

Temporary base

Assembly

Assembly (S/S Case)

Assembly (S/S Case)

E678-12R

1R=2 MΩ

E678-12R

1R=2 MΩ

1R=2 MΩ

1R=2 MΩ

Circular and

Linear Focused/101800

C

D

C

D

0.02

0.01

0.02

0.01

0.01

0.01

1500

1500

10 000 m/s2

(1000 g)

0.5 ms

YES

90

175

19 mm (3/4") Dia. Types

Dimensional Outlines and Basing Diagrams (Unit: mm)

Voltage Distribution Ratios

R3991A/-04 R3991A-07 (See Note 2 on page 5)

Number ofStages

C

D

K

3

3

Dy1

1

1

Dy2

1

1

Dy3

1

1

Dy4

1

1

Dy5

1

1

Dy6

1

1

Dy7

1

1

Dy8

1

1

(0.01)

Dy9

1

1

(0.01)

Dy10

1

1

(0.01)

P

10

DistributionRatio Codes

Voltage Distribution RatioK: Cathode Dy: Dynode P: Anode

The parentheses indicate the value of capacitors in µF.

TPMHA0361EB TPMHA0563EA

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY2

DY3

DY1

ANODE OUTPUT: AWG 24 (VIOLTET)

+H.V/GND: AWG 24 (RED)

GND/-H.V: AWG24 (BLACK)

P

K

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

: 6 MΩ: 2 MΩ: 0.01 µF

R1R2 to R11C1 to C3

MA

GN

ET

IC S

HIE

LD C

AS

E

203

MIN

.44

.0 ±

0.2

50.

5 ±

0.3

FACEPLATE

GND/-H.V: AWG24 (BLACK)

+H.V/GND: AWG24 (RED)

ANODE OUTPUT: AWG24 (VIOLET)

END CAP

PHOTO-CATHODE

MAGNETICSHIELD CASE

21.0 ± 0.3

15 MIN.

18.6 ± 0.7

DY1

DY3

DY5

DY7

P

DY9

DY2

K1

2

3

4

56 7

8

9

10

1112

DY10

DY8

DY6

DY4

C Bottom View

B Temporary Base Removed

DY1

DY3

DY5

DY7

P

DY9 DY10

DY8

DY6

12

3

4

56

9

10

11

1314

12DY4

K DY2

A Lead Orientation Bottom View

6.0 ± 0.5

12.0

± 0

.5

14 × 0.7 ±0.05

18.6 ± 0.7

15 MIN.

13 M

AX

.

28.0

± 1

.545

MIN

.

FACEPLATE

PHOTOCATHODE

SEMIFLEXIBLELEADS 0.7 MAX.

12 PIN BASEJEDECNo. B12-43

B

A

C

37.3 ± 0.5

MaximumTemp.

(°C)

Type No. Base Configration

Socketor

ResistorValue

Dynode Structure

Number of Stages

MWDAppl.

Anode toCathodeVoltage

AverageAnodeCurrent

Shock

Maximum Ratings

(mA)

Anode toCathodeVoltage

(V)(V)

q w e y u

r t

S/S: Stainless Steel

Page 9: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

9

R3991A-04

R3991A-28

R3991A

R3991A-07

R3991A-27

R3991A-31

20

20

30

40

3.0

4.0

4.5

6.0

5

5

10

20

0.1

0.1

10

10

10 (90 °C)

200

3.3 × 105

5.0 × 105

300 m/s2

(30 g)

R3991A-27/-28/-31 (See Note 2 on page 5)

TPMHA0350EB

203

MIN

.46

.0 ±

0.2

5

23.0 ± 0.25

15 MIN.

0.5

± 0.

3

1

FACEPLATE

GND/+H.V: AWG22 (RED)

-H.V/GND: AWG22 (BLACK)

ANODE OUTPUT: AWG22 (VIOLET)

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY2

DY3

DY1

ANODE OUTPUT: AWG 22 (VIOLTET)

GND/+H.V: AWG 22 (RED)

-H.V/GND: AWG22 (BLACK)

P

K

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

: 6 MΩ: 2 MΩ: 0.01 µF

R1R2 to R11

C1 to C3

PHOTOCATHODE

STAINLESSSTEEL CASE

18.6 ± 0.7

HA

CO

AT

ING

, µ-M

ET

AL

WR

AP

PIN

G

Type No.Sine

Vibration

Gainat 25 °C

Luminousat 25 °C

Cathode Sensitivity Anode Sensitivity and Characteristics

Blue SensitivityIndex (CS 5-58)

at 25 °C

(µA/lm)

Min.

(µA/lm)

Typ.

Luminousat 25 °C

Dark Current

at 25 °C at 175 °C

(A/lm)

Min.

(A/lm) (nA) (nA) (nA)

Typ. Typ. Max. Typ.Min. Typ. Typ.

oi

!0 !1

Page 10: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

10

R1288A-04

R1288A-06

R1288A-08

R1288A-28

R1288A

R1288A-01

R1288A-07

R1288A-27

R1288A-31

R1288AH

R1288AH-07

R1288AH-27

R1288AH-31

Temporary base

Button stem

Assembly

Assembly (S/S Case)

Temporary base

Button stem

Assembly

Assembly (S/S Case)

Assembly (S/S Case)

Temporary base

Assembly

Assembly (S/S Case)

Assembly (S/S Case)

S/S: Stainless Steel

E678-12R

E678-14-03

1R=2 MΩ

1R=2 MΩ

E678-12R

E678-14-03

1R=2 MΩ

1R=2 MΩ

1R=2 MΩ

E678-12R

1R=2 MΩ

1R=2 MΩ

1R=2 MΩ

Circular and

Linear Focused/10

YES

YES

1800

C

E

C

E

C

E

0.02

0.02

0.01

0.01

0.02

0.02

0.01

0.01

0.01

0.02

0.01

0.01

0.01

1500

1500

1500

10 000 m/s2

(1000 g)

0.5 ms

90

175

200

25 mm (1") Dia. Types

Dimensional Outlines and Basing Diagrams (Unit: mm)

Voltage Distribution Ratios

R1288A/-04, R1288AH R1288A-01/-06

Number ofStages

C

E

K

3

3

Dy1

1

1

Dy2

1

1

Dy3

1

1

Dy4

1

1

Dy5

1

1

Dy6

1

1

Dy7

1

1

Dy8

1

1

(0.022)

Dy9

1

1

(0.022)

Dy10

1

1

(0.022)

P

10

DistributionRatio Codes

Voltage Distribution RatioK: Cathode Dy: Dynode P: Anode

The parentheses indicate the value of capacitors in µF.

TPMHA0363EC TPMHA0362EB

17

B Temporary Base Removed

DY1

DY3

DY5

DY7

P

DY9

DY2

K1

2

3

4

56 7

8

9

10

1112

DY10

DY8

DY6

DY4

C Bottom View

DY1

DY3

DY5

DY7

PDY9DY10

DY8

DY6

DY4

DY2

3

4

56

10

11

12

13

14

K

2

8

14

B Temporary Base Removed

DY1

DY3

DY5

DY7

P

DY9

DY2

K1

2

3

4

56 7

8

9

10

1112

DY10

DY8

DY6

DY4

C Bottom View

DY1

DY3

DY5

DY7

DY9

P DY10

DY8

DY6

DY4

DY2

3

4

5

6

10

9

11

12

13

K

21

R1288A, -04 R1288AH 25.4 ± 0.5

22 MIN.FACEPLATE

13 M

AX

.

43.0

± 1

.550

MIN

.

C

37.3 ± 0.5

PHOTOCATHODE

A Lead Orientation Bottom View

6.0 ± 0.5

17.3

± 0

.5

18 × 0.7 ±0.05

A Lead Orientation Bottom View

6.25 ± 0.5

17.3

± 0

.5

15 × 0.7 ±0.05

12 PIN BASEJEDECNo. B12-43

B

A

SEMIFLEXIBLELEADS 0.7 MAX.

MaximumTemp.

(°C)

Type No. Base Configration

Socketor

ResistorValue

Dynode Structure

Number of Stages

MWDAppl.

Anode toCathodeVoltage

AverageAnodeCurrent

Shock

Maximum Ratings

(mA)

Anode toCathodeVoltage

(V)(V)

q w e y u

r t

12

3

4

56

7 89

10

11

12

1314

KDY1

DY6

DY5

DY7

DY9P IC

IC

DY10

DY8

DY3

DY4DY2

SHORT PIN

25.4 ± 0.5

22 MIN.

13 M

AX

.43

.0 ±

1.5

FACEPLATE

PHOTOCATHODE

14 PIN BASE

Page 11: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

11

R1288A-04

R1288A-06

R1288A-08

R1288A-28

R1288A

R1288A-01

R1288A-07

R1288A-27

R1288A-31

R1288AH

R1288AH-07

R1288AH-27

R1288AH-31

20

20

30

30

40

50

3.0

4.0

5.0

4.5

6.0

7.0

5

8

10

10

20

25

0.1

0.1

0.1

10

10

10

20 (90 °C)

400

4000

(200 °C)

3.3 × 105

5.0 × 105

5.0 × 105

300 m/s2

(30 g)

*R1288A-07/-08/-16, R1288AH-07 (See Note 2 on page 5) R1288A-27/-28/-31, R1288AH-27/-31 (See Note 2 on page 5)

TPMHA0029EE TPMHA0351EB

* CAUTION: These tubes have open ends potted with silicon.Do not apply force to this potted portion, or do not fill any addi-tional potting material. Either actions could damage the voltage divider built in.

203

MIN

.71

.5 ±

0.5

30.0 ± 0.25

22 MIN.

0.5

± 0.

3

GND/+H.V: AWG22 (RED)

-H.V/GND: AWG22 (BLACK)

ANODE OUTPUT: AWG22 (VIOLET)

FACEPLATE

PHOTOCATHODE

STAINLESS STEEL CASE

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

K-H.V/GND: AWG22 (BLACK)

ANODE OUTPUT: AWG22 (VIOLET)

GND/+H.V: AWG22 (RED)

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

R1R2 to R11C1 to C3

: 6 MΩ: 2 MΩ: 0.022 µF

DY10

25.4 ± 0.5

HA

CO

AT

ING

, µ-M

ET

AL

WR

AP

PIN

G

203

MIN

.

MAGNETICSHIELD CASE

71.5

± 0

.50.

5 ±

0.3

22 MIN.

27.0 ± 0.6

GND/+H.V: AWG22 (RED)

-H.V/GND: AWG22 (BLACK)

ANODE OUTPUT: AWG22 (VIOLET)

FACEPLATE

PHOTOCATHODE

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

K-H.V/GND: AWG22 (BLACK)

ANODE OUTPUT: AWG22 (VIOLET)

GND/+H.V: AWG22 (RED)

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

R1R2 to R11C1 to C3

: 6 MΩ: 2 MΩ: 0.022 µF

25.4 ± 0.5

MA

GN

ET

IC S

HIE

LD C

AS

E

Type No.Sine

Vibration

Gainat 25 °C

Luminousat 25 °C

Cathode Sensitivity Anode Sensitivity and Characteristics

Blue SensitivityIndex (CS 5-58)

at 25 °C

(µA/lm)

Min.

(µA/lm)

Typ.

Luminousat 25 °C

Dark Current

at 25 °C at 175 °C

(A/lm)

Min.

(A/lm) (nA) (nA) (nA)

Typ. Typ. Max. Typ.Min. Typ. Typ.

oi

!0 !1

Page 12: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

12

R6877A-04

R6877A-06

R6877A-08

R6877A-28

R6877A

R6877A-01

R6877A-07

R6877A-27

R6877A-31

Temporary base

Button stem

Assembly

Assembly (S/S Case)

Temporary base

Button stem

Assembly

Assembly (S/S Case)

Assembly (S/S Case)

E678-12R

E678-14-03

1R=2 MΩ

1R=2 MΩ

E678-12R

E678-14-03

1R=2 MΩ

1R=2 MΩ

1R=2 MΩ

Circular and

Linear Focused/10

YES

1800

C

E

C

E

0.02

0.02

0.01

0.01

0.02

0.02

0.01

0.01

0.01

1500

1500

5000 m/s2

(500 g)

0.5 ms

90

175

28 mm (1-1/8") Dia. Types

Dimensional Outlines and Basing Diagrams (Unit: mm)

Voltage Distribution Ratios

R6877A/-04

Number ofStages

C

E

K

3

3

Dy1

1

1

Dy2

1

1

Dy3

1

1

Dy4

1

1

Dy5

1

1

Dy6

1

1

Dy7

1

1

Dy8

1

1

(0.022)

Dy9

1

1

(0.022)

Dy10

1

1

(0.022)

P

10

DistributionRatio Codes

Voltage Distribution RatioK: Cathode Dy: Dynode P: Anode

The parentheses indicate the value of capacitors in µF.

TPMHA0451EB

R6877A-01/-06

TPMHA0564EA

S/S: Stainless Steel

17

DY1

DY3

DY5

DY7

P

DY9

DY2

K1

2

3

4

56 7

8

9

10

1112

DY10

DY8

DY6

DY4

DY1

DY3

DY5

DY7

PDY9 DY10

DY8

DY6

DY4

DY2

3

4

56 10

11

12

13

14

K

2

8

B Temporary Base Removed

C Bottom View

C

PHOTOCATHODE

A Lead Orientation Bottom View

6.0 ± 0.5

17.3

± 0

.5

18 × 0.7 ±0.05

12 PIN BASEJEDECNo. B12-43

B

A

SEMIFLEXIBLELEADS 0.7 MAX.

13 M

AX

. 44.0

± 1

.550

MIN

.

FACEPLATE

28.5 ± 0.5

25 MIN.

MaximumTemp.

(°C)

Type No. Base Configration

Socketor

ResistorValue

Dynode Structure

Number of Stages

MWDAppl.

Anode toCathodeVoltage

AverageAnodeCurrent

Shock

Maximum Ratings

(mA)

Anode toCathodeVoltage

(V)(V)

q w e y u

r t

12

3

4

56

7 89

10

11

12

1314

KDY1

DY6

DY5

DY7

DY9P IC

IC

DY10

DY8

DY3

DY4DY2

SHORT PIN

28.5 ± 0.5

25 MIN.

44.0

± 1

.513

MA

X.

14 PIN BASE

FACEPLATE

PHOTO-CATHODE

Page 13: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

13

R6877A-04

R6877A-06

R6877A-08

R6877A-28

R6877A

R6877A-01

R6877A-07

R6877A-27

R6877A-31

20

20

30

40

3.0

4.0

4.5

6.0

5

8

10

20

0.2

0.2

20

10

30 (90 °C)

500

3.3 × 105

5.0 × 105

200 m/s2

(20 g)

R6877A-07/-08

TPMHA0452EC

R6877A-27/-28/-31

TPMHA0518EB

203

MIN

.65

.5 ±

0.5

34.0 ± 0.25

0.5

± 0.

3

STAINLESSSTEEL CASE

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

K

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

R1R2 to R11C1 to C3

: 6 MΩ: 2 MΩ: 0.022 µF

DY10

25 MIN.

28.5 ±0.5

ANODE OUTPUT: AWG22 (VIOLET)GND/+HV: AWG22 (RED)

-HV/GND: AWG22 (BLACK)

PHOTOCATHODE

GND/+H.V: AWG22 (RED)

-H.V/GND: AWG22 (BLACK)

ANODE OUTPUT: AWG22 (VIOLET)

HA

CO

AT

ING

, µ-M

ET

AL

WR

AP

PIN

G

203

MIN

.65

.5 ±

0.5

31.5 ± 0.3

0.5

± 0.

3

MAGNETICSHIELDCASE

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

K

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

R1R2 to R11C1 to C3

: 6 MΩ: 2 MΩ: 0.022 µF

DY10

25 MIN.

28.5 ± 0.5

ANODE OUTPUT: AWG22 (VIOLET)GND/+HV: AWG22 (RED)

-HV/GND: AWG22 (BLACK)

PHOTOCATHODE

GND/+H.V: AWG22 (RED)

-H.V/GND: AWG22 (BLACK)

ANODE OUTPUT: AWG22 (VIOLET)

MA

GN

ET

IC S

HIE

LD C

AS

E

Type No.Sine

Vibration

Gainat 25 °C

Luminousat 25 °C

Cathode Sensitivity Anode Sensitivity and Characteristics

Blue SensitivityIndex (CS 5-58)

at 25 °C

(µA/lm)

Min.

(µA/lm)

Typ.

Luminousat 25 °C

Dark Current

at 25 °C at 175 °C

(A/lm)

Min.

(A/lm) (nA) (nA) (nA)

Typ. Typ. Max. Typ.Min. Typ. Typ.

oi

!0 !1

Page 14: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

14

Dimensional Outlines and Basing Diagrams (Unit: mm)

R9722A/-04 R9722A-01/-06

R9722A-04

R9722A-06

R9722A-28

R9722A

R9722A-01

R9722A-27

Temporary base

Button stem

Assembly (S/S Case)

Temporary base

Button stem

Assembly (S/S Case)

E678-12R

E678-14-03

1R=2 MΩ

E678-12R

E678-14-03

1R=2 MΩ

Circular and

Linear Focused/101800—

F

G

F

G

0.02

0.02

0.01

0.02

0.02

0.01

1500

1500

5000 m/s2

(500 g)

0.5 ms

90

175

38 mm (1-1/2") Dia. Types

Voltage Distribution RatiosNumber of

Stages

F

G

K

2

2

Dy1

1

1

Dy2

1

1

Dy3

1

1

Dy4

1

1

Dy5

1

1

Dy6

1

1

Dy7

1

1

Dy8

1

1

(0.022)

Dy9

1

1

(0.022)

Dy10

1

1

(0.022)

P

10

DistributionRatio Codes

Voltage Distribution RatioK: Cathode Dy: Dynode P: Anode

The parentheses indicate the value of capacitors in µF.

TPMHA0042EC TPMHA0043EA

S/S: Stainless Steel

MaximumTemp.

(°C)

Type No. Base Configration

Socketor

ResistorValue

Dynode Structure

Number of Stages

MWDAppl.

Anode toCathodeVoltage

AverageAnodeCurrent

Shock

Maximum Ratings

(mA)

Anode toCathodeVoltage

(V)(V)

q w e y u

r t

DY1

DY3

DY5

DY7

P

DY9

DY10DY8

DY6

DY4

DY23

4

5

6 10

11

12

13

151K

B Temporary Base Removed

DY1

DY3

DY5

DY7

P

DY9

DY2

K1

2

3

4

56 7

8

9

10

1112

DY10

DY8

DY6

DY4

C Bottom View

2

9

A Lead Orientation Bottom View

7.5 ± 0.5

23.0

± 0

.5

16 × 0.7 ±0.05

12 PIN BASEJEDECNo. B12-43

B

A

SEMIFLEXIBLELEADS 0.7 MAX.

C

37.3 ± 0.5

69.0

± 1

.5

13 M

AX

.

70 M

IN.

38.0 ± 0.7

34 MIN.

FACEPLATE

PHOTOCATHODE

12

3

4

56

7 89

10

11

12

1314

KDY1

DY6

DY5

DY7

DY9P IC

IC

DY10

DY8

DY3

DY4DY2

SHORT PIN

38.0 ± 0.7

34 MIN.

69.0

± 1

.513

MA

X.

FACEPLATE

PHOTOCATHODE

14 PIN BASE

Page 15: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

15

R9722A-27/-28

R9722A-04

R9722A-06

R9722A-28

R9722A

R9722A-01

R9722A-27

20

20

30

40

3.0

4.0

4.5

6.0

5

5

10

20

0.5

0.5

10

10

40 (90 °C)

1000

3.3 × 105

5.0 × 105

200 m/s2

(20 g)

TPMHA0517EB

Type No.Sine

Vibration

Gainat 25 °C

Luminousat 25 °C

Cathode Sensitivity Anode Sensitivity and Characteristics

Blue SensitivityIndex (CS 5-58)

at 25 °C

(µA/lm)

Min.

(µA/lm)

Typ.

Luminousat 25 °C

Dark Current

at 25 °C at 175 °C

(A/lm)

Min.

(A/lm) (nA) (nA) (nA)

Typ. Typ. Max. Typ.Min. Typ. Typ.

oi

!0 !1

203

MIN

.96

.0 ±

0.8

44.0 ± 0.5

0.5

± 0.

3

STAINLESSSTEELCASE DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

K

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

R1R2 to R11C1 to C3

: 4 MΩ: 2 MΩ: 0.022 µF

DY10

34 MIN.

38.0 ± 0.7

PHOTO-CATHODE

SHIELD: AWG26 (BLACK/WHITE)

GND/+HV: AWG22 (RED)

SIGNAL OUTPUT: COAX. RG-316/U

-HV/GND: AWG22 (BLACK)

SHIELD: AWG26 (BLK/WHT)

OUTPUT RG-316/UGND/+HV: AWG22 (RED)

-HV/GND: AWG22 (BLACK)

HA

CO

AT

ING

, µ-M

ET

AL

WR

AP

PIN

G

Page 16: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

16

R4607A-06

R4607A-28

R4607A-01

R4607A-27

Button stem

Assembly (S/S Case)

Button stem

Assembly (S/S Case)

E678-15C

1R=2 MΩ

E678-15C

1R=2 MΩ

Circular and

Linear Focused/101800—

F

G

F

G

0.02

0.01

0.02

0.01

1500

1500

5000 m/s2

(500 g)

0.5 ms

90

175

51 mm (2") Dia. Types

R5473-02 Assembly 1R=2 MΩ Venetian Blind/12 3000 H0.01 200010 000 m/s2

(1000 g)0.5 ms

YES175

Ceramic Stacked Types

Dimensional Outlines and Basing Diagrams (Unit: mm)

Voltage Distribution Ratios

R4607A-01/-06 R4607A-27/-28

Number ofStages

G

F

H

K

K

2

2

2

Dy1

G

1

1

1

Dy2

Dy1

1

1

1

Dy3

Dy2

1

1

1

Dy4

Dy3

1

1

1

Dy5

Dy4

1

1

1

Dy6

Dy5

1

1

1

Dy7

Dy6

1

1

1

Dy8

Dy7

1

(0.022)

1

1

Dy9

Dy8

1

(0.022)

1

1

Dy10

Dy9

1

(0.022)

1

1 1

(0.01)

1

(0.01)

1

(0.01)

P

Dy10 Dy11 Dy12 P

10

12

DistributionRatio Codes

Voltage Distribution RatioK: Cathode Dy: Dynode P: Anode

The parentheses indicate the value of capacitors in µF.

TPMHA0003ED TPMHA0453EC

MaximumTemp.

(°C)

Type No. Base Configration

Socketor

ResistorValue

Dynode Structure

Number of Stages

MWDAppl.

Anode toCathodeVoltage

AverageAnodeCurrent

Shock

Maximum Ratings

(mA)

Anode toCathodeVoltage

(V)(V)

q w e y u

r t

203

MIN

.11

0 ±

1

52.0 ± 1.0

0.7

± 0.

3

SHIELD: AWG26 (BLACK/WHITE)

GND/+HV: AWG22 (RED)

SIGNAL OUTPUT: COAX. RG-316/U

-HV/GND: AWG22 (BLACK)

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

P

K

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

R1R2 to R11C1 to C3

: 4 MΩ: 2 MΩ: 0.022 µF

DY10

58.0 ± 0.5

46 MIN.

SHIELD: AWG26 (BLACK/WHITE)

ANODE OUTPUT RG-316/UGND/+HV: AWG22 (RED)

-HV/GND: AWG22 (BLACK)

PHOTOCATHODE

HA

CO

AT

ING

, µ-M

ET

AL

WR

AP

PIN

G

STAINLESSSTEEL CASE

DY1

DY3

DY5

DY7

DY9

P

IC IC DY10

DY8

DY6

DY4

DY2

IC

K

12

3

4

56

7 8 910

11

12

1314

15

SHORT PIN

52 ± 1

46 MIN.FACEPLATE

PHOTOCATHODE

80 ±

213

MA

X.

15 PIN BASE

S/S: Stainless Steel

Page 17: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

17

R4607A-06

R4607A-28

R4607A-01

R4607A-27

20

20

30

40

3.0

4.0

4.5

6.0

5

5

10

20

3

3

50

50

50 (90 °C)

1500

3.3 × 105

5.0 × 105

200 m/s2

(20 g)

R5473-0220 40 4.0 6.0 5 20 0.5 10 4005.0 × 105500 m/s2

(50 g)

R5473-02 (See Note 2 on page 5)

TPMHA0349EC

DY12

DY11

DY10

DY9

DY8

DY7

DY6

DY4

DY5

DY3

DY1

DY2

ANODE OUTPUT: AWG 22 (RED)GND/+H.V: AWG22 (WHITE)

-HV/GND: AWG22 (BLACK)

P

K

G

R14

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

C3

C2

C1

: 8 MΩ: 4 MΩ: 0.01 µF

R1R2 to R14

C1 to C3

GLASS FIBERCASE

PHOTO-CATHODE

FACEPLATE

203

MIN

.92

.2 ±

0.4

-HV/GND: AWG22 (BLACK)

GND/+H.V: AWG22 (WHITE)

ANODE OUTPUT: AWG22 (RED)

26.0 ± 0.4

20 MIN.

0.5

± 0.

3

Type No.Sine

Vibration

Gainat 25 °C

Luminousat 25 °C

Cathode Sensitivity Anode Sensitivity and Characteristics

Blue SensitivityIndex (CS 5-58)

at 25 °C

(µA/lm)

Min.

(µA/lm)

Typ.

Luminousat 25 °C

Dark Current

at 25 °C at 175 °C

(A/lm)

Min.

(A/lm) (nA) (nA) (nA)

Typ. Typ. Max. Typ.Min. Typ. Typ.

oi

!0 !1

Page 18: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

18

Sockets

Dimensional Outlines (Unit: mm)

E678-13E E678-14-03

TACCA0013EB TACCA0184EA

5.5

11

12.4

3

710

.5

E678-12R E678-15C

TACCA0009EB TACCA0185EA

25.2

19.1

27.5

2

9.5

6.5

3.9

24.5

14

14

40

47

58

15

17

2- 3.2

34

50

60

40

4

45

26.

5

12

40

5

Contact pins are gold plating.

Page 19: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

19

WARNING

HIGHVOLTAGE

A high voltage used in photomultiplier tube opera-tion may present a shock hazard. Photomultiplier tubes should be installed and handled only by qualified personnel that have been instructed in

handling of high voltages. Designs of equipment utilizing these devices should incorporate appropriate interlocks to protect the operator and service personnel.

PRECAUTIONS FOR USE

Handle tubes with extreme carePhotomultiplier tubes have evacuated glass envelopes. Al-lowing the glass to be scratched or to be subjected to shock can cause cracks.

Keep faceplate and base cleanDo not touch the faceplate and base with bare hands. Dirt and fingerprints on the faceplate cause loss of transmittance and dirt on the base may cause ohmic leakage. Should they become soiled, wipe it clean using alcohol.

Do not expose to strong lightDirect sunlight and other strong illumination may cause dam-age to the photocathode. They must not be allowed to strike the photocathode, even when the tube is not operated.

Handling of tubes with a glass baseA glass base (also called button stem) is less rugged than a plastic base, so care should be taken in handling this type of tube. For example, when fabricating the voltage-divider cir-

cuit, solder the divider resistors to socket lugs while the tube is inserted in the socket.

Low temperature storage or operationDo not leave the tube assembly having a voltage divider in the environment under -30 °C even in storage. A bare tube can withstand down to -80 °C.

DO NOT use supersonic cleaner.

Attached base and socket are only for lab inspection, and not guarantee for long time operation at high tem-perature.

Data and specifications listed in this catalog are subject to change due to product improvement and other factors. Before specifying any of the types in your production equipment, please consult our sales office.

WARRANTY

All Hamamatsu photomultiplier tubes and related products are warranted to the original purchaser for a period of 12 months following the date of shipment. The warranty is limit-ed to repair or replacement of any defective material due to defects in workmanship or materials used in manufacture.

A: Any claim for damage of shipment must be made directly to the delivering carrier within five days.

B: Customers must inspect and test all photomultiplier tubes within 30 days after shipment. Failure to accomplish said incoming inspection shall limit all claims to 75 % of value.

C: No credit will be issued for broken detectors unless in the opinion of Hamamatsu the damage is due to a bulb crack traceable to a manufacturing defect.

D: No credit will be issued for any photomultiplier tube which, in the judgement of Hamamatsu, has been damaged, abused, modified or whose serial number or type number has been obliterated or defaced.

E: No photomultiplier tube will be accepted for return unless permission has been obtained from Hamamatsu in writing, the shipment has been returned prepaid and insured, the photomultiplier tube is packed in its original box, is accom-panied by the original datasheet furnished to the customer with the tube and a full written explanation of the reason for each return.

F: When photomultiplier tubes are used at a condition which exceeds the specified maximum ratings or which could hardly be anticipated, Hamamatsu will not be the guaran-tor of photomultiplier tubes.

Take sufficient care to avoid an electric shock hazard

Page 20: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

20

10-1700400300200

102

100

101

WAVELENGTH (nm)

CA

TH

OD

E R

AD

IAN

T S

EN

SIT

IVIT

Y (

mA

/W)

QU

AN

TU

M E

FF

ICIE

NC

Y (

%)

600500

CATHODERADIANTSENSITIVITY

QUANTUMEFFICIENCY

(at 25 °C)TPMHB0061EA TPMHB0062EC

TPMHB0063EE TPMHB0064ED

25 50 100 150 175 200

AMBIENT TEMPERATURE (°C)

AN

OD

E D

AR

K C

UR

RE

NT

(A

)

10-10

10-9

10-8

10-7

10-6

10-5

90

200 °CType

175 °C Type

90 °C Type

SUPPLY VOLTAGE=1500 V

SUPPLY VOLTAGE (V)

GA

IN

1000 1500 2000 2500 3000

(at 25 °C)

102

103

104

105

106

107

108

R5473-02

SUPPLY VOLTAGE (V)

GA

IN

(at 25 °C)

101

102

103

104

105

106

107

500 600 700 800 1000 1500 1800

R4177, R3991A, R1288A, R1288AH, R6877A, R9722A, R4607A

Figure 1: Typical Spectral Response of 175 °C Version Photomultiplier Tubes

Figure 2: R1288A Typical Dark Current Characteristics as a Function of Temperature

Figure 3: Typical Gain Figure 4: Typical Gain

1. General Characteristics ofPhotomultiplier Tubes

1-1. General characteristics

Page 21: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

21

Figure 5: Typical Fatigue Characteristics with Continuous Operation (R1288A)

Figure 7: Typical Pulse Height as a Function of Temperature (R1288A, R1288AH, R3991A)

Figure 8: Typical Pulse Height Resolution as a Function of Temperature (R1288A, R1288AH, R3991A)

Figure 7 shows the variations of P.H. (pulse height) and Figure 8 shows P.H.R. (pulse height resolution) as a function of the ambient temperature.These degradations are due to performance changes in the photomultiplier tube and efficiency losses in the crystal at high temperature.Both parameters recover close to their initial values when tubes are returned to room temperature.P.H.R. (pulse height resolution) characteristic of a PMT may be changed by the emission efficiency of scintillator used.This data is taken with the scintillator 1"×2" NaI(TI) for R1288A, 0.75"×1.5" NaI(TI) for R3991A.

TPMHB0823EA

TPMHB0749EB TPMHB0750EB

0

20

25 50 75 100 125

AMBIENT TEMPERATURE (°C)

RE

LAT

IVE

PU

LSE

HE

IGH

T

150 175 200

40

60

80

100

120

R1288A

R3991A

R1288AH

RADIATION SOURCE: 137CsSCINTILLATOR: 1"×2" NaI(TI): R1288A 0.75"×1.5" NaI(TI): R3991ASUPPLY VOLTAGE: 1500 V

6

8

25 50 75 100 125

AMBIENT TEMPERATURE (°C)

PU

LSE

HE

IGH

T R

ES

OLU

TIO

N (

%)

150 175 200

10

12

14

16

18

20

22

R3991AR1288A

R1288AH

RADIATION SOURCE: 137CsSCINTILLATOR: 1"×2" NaI(TI): R1288A 0.75"×1.5" NaI(TI): R3991ASUPPLY VOLTAGE: 1500 V

Figure 6: Typical Fatigue Characteristics with Continuous Operation (R1288AH)TPMHB0824EA

10 100 1000 10000

OPERATION TIME (hours)

RE

LATI

VE

PU

LSE

HE

IGH

T (%

)

0

100

150

50

1

LIGHT SOURCE: BLUE LED (SIMULATED NaI(Tl)+137Cs)COUNT RATE: 1 ks-1, SUPPLY VOLTAGE = 1500 V

90 °C

150 °C175 °C

10 100 1000 10000

OPERATION TIME (hours)

RE

LATI

VE

PU

LSE

HE

IGH

T (%

)

0

100

150

50

1

LIGHT SOURCE: BLUE LED (SIMULATED NaI(Tl)+137Cs)COUNT RATE: 1 ks-1, SUPPLY VOLTAGE = 1500 V

175 °C

200 °C

Page 22: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

22

Figure 9: Typical Plateau Characteristics (R1288A, R1288AH)

Figure 10: Typical Plateau Characteristics (R3991A)

TPMHB0751EA

TPMHB0067EE

Figure 11: Typical Plateau Characteristics (R5473-02)

TPMHB0068EC

200

SUPPLY VOLTAGE (kV)

CO

UN

T R

AT

E (

s-1 )

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

400

600

800

1000

1200

1400

1600

1800

25 °C

LOWER LEVEL DISCRIM.=1.5 pCRADIATION SOURCE: 137Cs (662 keV)SCINTILLATOR: Nal (Tl) ( 1" × 2") 175 °C

200 °C

150 °C

PLATEAU LENGTH at 175 °C ( ±5 % WINDOW): 200 VPLATEAU LENGTH at 200 °C ( ±5 % WINDOW): 50 V

200

SUPPLY VOLTAGE (kV)

CO

UN

T R

AT

E (

s-1 )

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

400

600

800

1000

1200

1400

1600

1800

175 °C 150 °C

PLATEAU LENGTH at 175 °C ( ±5 % WINDOW): 200 V

25 °C

LOWER LEVEL DISCRIM.=1.5 pCRADIATION SOURCE: 137Cs (662 keV)SCINTILLATOR: Nal (Tl) ( 0.75" × 1.5")

SUPPLY VOLTAGE (kV)

CO

UN

T R

AT

E (

s-1 )

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5200

400

600

800

1000

1200

1400

1600

1800LOWER LEVEL DISCRIM.=1.5 pCRADIATION SOURCE: 137Cs (662 keV)SCINTILLATOR: Nal (Tl) ( 1" × 2")

175 °C 150 °C

25 °C

PLATEAU LENGTH at 175 °C (± 5 % WINDOW): 200 V

Page 23: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

23

Figure 12: Plateau Test Block Diagram

1-2. LLD during plateau measurement

TPMHC0186EB

PMT

NaI(Tl)SCINTILLATOR137Cs

RADIOISOTOPE

TEMPERATURECONTROLLER

VOLTAGEDIVIDER

NETWORK

TEMPERATURECONTROLCHAMBER

HIGHVOLTAGEPOWERSUPPLY

LINEARAMP.

PREAMP.

SINGLECHANNELANALYZER

COUNTER

COMPUTER

This section describes the LLD (lower level discriminator) that should be set to make plateau measurements. First, let us calculate the charge amount per pulse that is output from the PMT.The number of photons emitted from a NaI(Tl) scintillator for high temperature and rugged environments is usually about 15 photons per 1 keV of gamma-ray energy.If using 137Cs (gamma-ray energy 662 keV), the number of emitted photons will be about 10,000. It is simply calculated by 662 × 15. If the PMT is used with a 137Cs radiation source, the charge amount per pulse of the PMT is obtained as follows:

As calculated above, the charge amount per pulse obtained using the 137Cs (662 keV) is about 100 pC.The estimated charge amount obtained under the conditions at 175 °C will therefore be about 50 pC which is approximately half the charge at room temperature (See Fig. 7 on page 21).

Based on these, the LLD should be adjusted to an optimal level, however, in view of the decrease in output during high temperature operation, it is preferable that the LLD be set so that a plateau region can be obtained at a voltage lower than the rated voltage.

For general characteristics when LLD = 1.5 pC, refer to Figures 9 to 11.

Since the PMT gain and the emission intensity of scintillators differ from product to product, we advise adjusting the LLD setting as needed to match the actual usage conditions so that the plateau region can be obtained below the rated voltage.When setting the LLD, we suggest using a capacitor with a known capacitance and a pulse generator in order to calibrate by using the pulse output from the capacitor.

N : Number of photons emitted from scintillator per event : Photocathode quantum efficiency (assumed to be 15 % at room temperature) : PMT collection efficiency (assumed to be 80 %) : PMT gaine : Electron charge

= 10,000 × 0.15 × 0.8 × 5 × 105 × 1.6 × 10-19

= 100 pCN × × × × e

Page 24: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

24

Plateau measurement is usually performed by Hamamatsu with a combination of a 137Cs radiation source and an NaI(Tl) scintil-lator, which serves as the light source. However, pulsed light from a blue LED can also be used to evaluate plateau charac-teristics of the photomultiplier tube. Advantages of using a blue LED is that decreasing of the emission efficiency of NaI(Tl) scin-tillators over time can be eliminated. In addition, the LED is set outside the temperature-controlled chamber so it is not exposed to high temperatures during measurement. This means that in-herent characteristics of photomultiplier tubes can be measured.Furthermore, plateau measurement using scintillators often re-quires a large number of scintillators and also extra processes for measurement setups. This results in more work and in-creased cost in order to supply customers with plateau meas-urement data. Using blue LEDs allows simultaneous measure-ment of many photomultiplier tubes and supplying data with a minimum cost increase.Figures 13 and 14 show comparisons of plateau length data measured using scintillators and blue LEDs. As can be seen, this data shows a good correlation. The block diagram of the test using a blue LED is also shown in Figure 15.

Figure 14: Plateau characteristics of R3991A measured with scintillator and blue LED

Figure 13: Correlation of plateau length data measured with scintillator and blue LED

TPMHB0633EA

TPMHC0184EC

TPMHB0634EA

Figure 15: Temperature Test Block Diagram (Temperature Cycling Test and Plateau Measurement)

1-3. Plateau measurement using a blue LED

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4800 200018001600140012001000

APPLIED VOLTAGE ( V )

RE

LAT

IVE

O

UT

PU

T

CO

UN

T

1.4

1.3

1.2

1.1

1.0

0.9

800 200018001600140012001000

APPLIED VOLTAGE ( V )

RE

LAT

IVE

O

UT

PU

T

CO

UN

TS

0.8

0.7

LIGHT SOURCE: BLUE LEDLLD : 1.5 pCTEMP. : 175 °C

PLATEAU LENGTH: 629 V

LIGHT SOURCE: 137Cs+ NaI(TI)LLD : 1.5 pCTEMP. : 175 °C

PLATEAU LENGTH: 176 V

400100

120

140

160

180

650600550500450

PLATEAU LENGTH MEASURED WITH BLUE LED (V)

PLA

TE

AU

LE

NG

TH

M

EA

SU

RE

D W

ITH

NaI

(Tl)

SC

INT

ILLA

TO

R (

V)

PULSEGENERATOR

BLUELED TEMP.

CONTROLLER

PMTVOLTAGEDIVIDER

NETWORK

TEMPERATURECONTROL CHAMBER

LIGHTGUIDE

TEMPERATURESTABILIZED

LIGHT SOURCE BOX

HIGHVOLTAGEPOWERSUPPLY

MULTICHANNELANALYZER

PRE AMP.

LINEARAMP.

SINGLECHANNELANALYZER

COUNTER COMPUTER

Page 25: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

25

Figure 16: Screening Test Block Diagram for R1288A-31, R3991A-31

Figure 17: An Example Test Data (Recorder chart of the screening test)

TUBE AXIS

TPMHC0106EB

TPMHB0220EA

TACCC0043EB

<Screening Condition>Vibration : Sine wave 200 m/s2 (20 g's), 50 Hz to 2000 Hz,

1 oct. per minute, 1 sweep per axis (3 axes)Sweep time : 10 minutes per axisSupply voltage : -1500 VAnode output current : Approx. 2 µA (DC)

<Judgement>Anode output variation during the screening test: less than ±5 %

50 2000 50

FREQUENCY (Hz)

X-axis

VA

RIA

TIO

N O

FA

NO

DE

OU

TP

UT

(2

%/d

iv.)

10 %

5 min.

50 2000 50

FREQUENCY (Hz)

Y-axis

VA

RIA

TIO

N O

FA

NO

DE

OU

TP

UT

(2

%/d

iv.)

10 %

5 min.

50 2000 50

FREQUENCY (Hz)

Z-axis

VA

RIA

TIO

N O

FA

NO

DE

OU

TP

UT

(2

%/d

iv.)

10 %

5 min.

DY1

DY2

Y-axis

Z-axis

X-axis

DC POWERSUPPLY

HIGH VOLTAGEPOWER SUPPLY

LED PMT

SHAKER

VIBRATIONCONTROL

UNITRECORDER

MAGNETIC SHIELD WRAPPING

Page 26: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

26

Figure 1: R1288AH Relative Pulse Height vs. Operating Time (Temperature: 200 °C)

TPMHB0825EA

2. Technical Information ofPhotomultiplier Tubes

Figure 2: R1288AH Relative Pulse Height vs. Operating Time (Temperature: 175 °C)

TPMHB0826EA

10 100 1000

OPERATION TIME (hours)

RE

LATI

VE

PU

LSE

HE

IGH

T (%

)

0

100

150

50

1

LIGHT SOURCE: BLUE LED (SIMULATED NaI(Tl)+137Cs)COUNT RATE: 1 ks-1, SUPPLY VOLTAGE = 1500 V

R1288A

R1288AH

10 100 100001000

OPERATION TIME (hours)

RE

LATI

VE

PU

LSE

HE

IGH

T (%

)

0

100

150

50

1

R1288AH

LIGHT SOURCE: BLUE LED (SIMULATED NaI(Tl)+137Cs)COUNT RATE: 1 ks-1, SUPPLY VOLTAGE = 1500 V

R1288A

Compared to the R1288A, the R1288AH offers less degradation in output and higher stability even during continuous operation at 200 °C.

Stability is drastically improved even during continuous operation at 175 °C.

2-1. Long life characteristic of R1288AH

Page 27: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

27

Figure 3: Pulse Height Distribution of R1288A Measured with NaI(Tl) + 137Cs / Natural Gamma

TPMHB0827EA

Figure 4: Plateau Characteristics of R1288A Measured with NaI(Tl) + 137Cs / Natural Gamma

Figure 5: Correlation of Plateau Length Data Measured with NaI(Tl) + 137Cs / Natural Gamma

TPMHB0828EA

TPMHB0829EA

1 1.2 1.4 1.6 1.80.9 1.1 1.3 1.5 1.7

SUPPLY VOLTAGE (kV)

RE

LAT

IVE

CO

UN

T R

AT

E (

%)

40

120

140

160

60

80

100

0.8

137Cs (COUNT RATE 1 ks-1)

PMT: R1288ALOWER LEVEL DISCRIM.=1.5 pCSCINTILATOR: NaI(Tl) ( 1" × 2")

PLATEAU LENGTH at 175 °C (±5 % WINDOW)NATURAL GAMMA: 200 V137Cs: 250 V

NATURAL GAMMA (COUNT RATE 30 s-1)

200 300 400 500150 250 350 450

PLATEAU LENGTH MEASUREDWITH NaI(Tl) + NATURAL GAMMA (V)

PLA

TE

AU

LE

NG

TH

ME

AS

UR

ED

WIT

H N

aI(T

l) +

137

Cs

(V)

100

600

500

400

300

200

100

100 200 300 400 500 600 700 800

ENERGY (keV)

OU

TP

UT

CO

UN

T

0.1

1000

10000

100000

1

10

100

0

137Cs (COUNT RATE 1 ks-1)

PMT: R1288ASCINTILATOR: NaI(Tl) ( 1" × 2")MEASUREMENT TIME: 300 s

NATURAL GAMMA (COUNT RATE 30 s-1)

This section describes plateau characteristics measured with and without a special radiation source (natural radiation only).At Hamamatsu Photonics, 137Cs radiation sources are used as the standard. Using a radiation source has the following advan-tages:1. Count rate can be adjusted as needed, so the measurement

time can be reduced by setting an appropriate count rate. (Hamamatsu standard count rate: 1 ks-1 in plateau region)

2. Absolute value of noise edge can be found, such as in units of keV.

3. PHR (Pulse Height Resolution) can be measured.

The figure below shows the PHD measured with and without a 137Cs radiation source (without = natural radiation only). The same PMT and scintillator were used.As seen from the PHD in the figure, the count rate measured under natural radiation is extremely low and about 1/30th the count rate measured under our standard conditions. This means the measurement time is more than 30 times longer than that required when using a 137Cs radiation source. Identify-ing the noise edge is difficult as the natural radiation dosen't have clear energy peak.

Data for plateau characteristics measured under these condi-tions are shown in the following figure. The initial rise in the pla-teau region tends to be shifted higher due to low energy natural radiation pulses. Moreover, due to a low count rate, the plateau characteristics become more susceptible to the PMT noise, and the final rise in the plateau region tends to be early due to this noise, causing the plateau region to narrow.

The figure below shows the correlation in plateau width when using 137Cs versus when using only natural radiation. Sample data measured with the R1288A under the above conditions shows the plateau region for natural radiation tends to be about 50 V smaller.

2-2. Plateau width natural radiation

Page 28: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

28

400

300

350

200

100

250

150

50

00 1 2 3

LLD (pC)

PLA

TE

AU

LE

NG

TH

(V

)

R1288A

150 °C

175 °C

250

200

150

100

50

00 1 2 3

LLD (pC)

R3991A

PLA

TE

AU

LE

NG

TH

(V

)

150 °C

175 °C

2-3. Plateau change with the LLDGraphs in Figures 6(a) to (c) show the plateau center voltage, plateau start voltage and plateau length characteristics for the R1288A and R3991A photomultiplier tubes. Each graph was plotted while changing the LLD (low level discrimination) from 0.8 pC to 1.5 pC and to 2.8 pC with a sampling window of ±5 % specified during plateau measurements using a 137Cs radiation source and an NaI(Tl) scintillator. As (a) and (b) of these figures show, the plateau voltage lowers as the LLD is set to smaller points, because signal pulses with low pulse height are also counted so that the signals appear at low supply voltages.In contrast, when the LLD is set to higher points, the plateau voltage shifts to the higher voltage side. If the LLD is set too high, the plateau voltage may exceed the maximum rating. So it is important that the LLD be adjusted to obtain a plateau volt-age within the rated voltage.

Figure 6(a): Plateau center voltage vs. LLD for R1288A and R3991A

Figure 6(c): Plateau length vs. LLD for R1288A and R3991A

Figure 6(b): Plateau start voltage vs. LLD for R1288A and R3991A

TPMHB0632EB

1700

1600

1500

1400

1300

12000 1 2 3

R1288A

PLA

TE

AU

CE

NT

ER

VO

LTA

GE

(V

)

LLD (pC)

150 °C

175 °C

1700

1600

1500

1400

1300

12000 1 2 3

LLD (pC)

R3991A

PLA

TE

AU

CE

NT

ER

VO

LTA

GE

(V

)

150 °C

175 °C

1500

1400

1450

1300

1200

1350

1250

0 1 2 3

PLA

TE

AU

ST

AR

T V

OLT

AG

E (

V)

R1288A

LLD (pC)

150 °C

175 °C

1550

1500

1450

1400

1350

1300

12500 1 2 3

LLD (pC)

R3991A

PLA

TE

AU

ST

AR

T V

OLT

AG

E (

V)

150 °C

175 °C

Page 29: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

29

2-4. Count rate characteristicsPower consumption is limited in oil well logging equipment.The voltage divider circuit for operating the photomultiplier tube must have low power consumption. A common method to lower power consumption is to use a high resistance to limit the volt-age divider current. However, such a design causes deviation in photomultiplier tube gain when operated at a high count rate. An active divider circuit is effective in solving this problem. Fig-ure 8 shows count rate characteristics of a R1288A photomulti-plier tube measured with active divider circuits of different base resisters (1R=100 kΩ, 1R=2 MΩ and 1R=1 MΩ). Active divider circuits are clearly effective in eliminating gain fluctuations while still limiting the voltage divider current.If the active divider circuit is required for your application, please contact our sales office nearest you.

Figure 7: Count rate characteristics

TPMHB0752EA

ACTIVE DIVIDER CIRCUIT

Dy1

R

Dy2

R

Dy3

R

Dy4

R

Dy5

R

Dy6

R

Dy7

R

Dy8

R

Dy9

R

P OUTPUT

GND/+HV

-HV/GND

Dy10

ACTIVE DIVIDERCIRCUIT

3R

K

0 10 200

5

10

15

20

30

COUNT RATE (k s-1)

DE

VIA

TIO

N (

%)

40 50 60

0 10 200

5

10

15

20

30

COUNT RATE (k s-1)

DE

VIA

TIO

N (

%)

40 50 60

0 10 200

5

10

15

20

30

COUNT RATE (k s-1)

DE

VIA

TIO

N (

%)

40 50 60

1R=2 MΩ

DIVIDER CURRENT1500 V: 58 µA1200 V: 46 µA

RADIATION SOURCE: 137CsSCINTILLATOR: NaI(Tl) 1" × 2"LLD: 60 keV

+1500 V

1R=100 kΩ

DIVIDER CURRENT1500 V: 1150 µA1200 V: 920 µA

RADIATION SOURCE: 137CsSCINTILLATOR: NaI(Tl) 1" × 2"LLD: 60 keV

+1200 V

+1500 V

1R=2 MΩ ACTIVE DIVIDER

DIVIDER CURRENT1500 V: 58 µA1200 V: 46 µA

RADIATION SOURCE: 137CsSCINTILLATOR: NaI(Tl) 1" × 2"LLD: 60 keV

+1200 V

+1500 V

+1200 V

Page 30: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

30

3-1. Handling the cablesPhotomultiplier tube (PMT) assemblies use PTFE(*) cables be-cause of their excellent electrical insulation and good chemical resistance. However, handle these cables correctly to ensure good cable performance characteristics.

(*) PTFE= Poly Tetra Fluoro Ethylene

Do not knot the cables. Doing so may apply unnecessary stress to the internal conductors and may break them. When adjusting the cable length, cut to the desired length. Also clamp the ca-bles to protect them from vibration.Although PTFE cables have excellent electrical insulation, they can be damaged by mechanical stress. So do not directly clamp the cable outer jackets when installing these cables. We recommend using heat-resistant tube or tape such as silicone, PTFE or polyimide films to protect the cables.

3-2. Relation between the PMT/scintillator case and the surrounding electrical potential

If a strong electrical potential difference exists between the PMT and the surrounding areas, scintillation may occur in the glass bulb. This scintillation may lead to problems such as high dark current and noise. For example, if a PMT is operated with the cathode at negative high voltage (-HV operation) and the PMT is contacting or close to a grounded enclosure (case that con-tains the PMT), then the difference in electrical potential will cause an unwanted increase in PMT noise.In addition, a large electrical potential difference between the PMT face plate and scintillator could cause degradation of cath-ode sensitivity, because leakage current flows through the face plate glass and such a current may degrade the photocathode.So also be aware of the difference in electrical potential be-tween the PMT and the scintillator case.The scintillator case should ideally be at the same potential as the PMT photocathode. Here, -HV operation requires adequate insulation around the scintillator case. If the scintillator and PMT case structures make it difficult to insulate the PMT photoca-thode and scintillator case from the surrounding enclosure and maintain them at the same potential, then we recommend oper-ating the PMT with the anode at a positive high voltage (+HV operation) so the photocathode can be kept at ground potential.

3-3. How to clamp the PMT assemblyThe PMT uses a glass bulb, and so cannot be mechanically se-cured in place by screws or clamps.To couple the PMT to a scintillator, a uniform load should be ap-plied to the PMT to make the PMT faceplate come in tight con-tact with the scintillator. However, applying an excessive non-uniform load to the PMT might cause the glass bulb to crack or break, so be very careful when coupling the PMT to the scintilla-tor.Hamamatsu PMT assemblies are "potted" with silicone epoxy to protect the internal voltage divider circuit from loads and shocks. The assembly structure is also designed to hold the PMT in place. These features guarantee that up to a 20 kgf load can be applied to the rear side of the PMT assembly during coupling or installation work.

3. Technical Information ofPhotomultiplier Tube Assemblies

Do not knot or directly clamp the cables since this causes internal cable stress.

When clamping the cables, protect the cable outer jacket as shown.

Page 31: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

31

* ETP = Electrolytic tough pitch copper

3-4. Soldering the cableHamamatsu PMT assemblies listed in this catalog use cable wires made from the following materials (except for coaxial wires).

When coupling the PMT with a scintillator, a silicone pad with good optical transmission is often used with low viscosity silicon oil to ensure good optical coupling.

The photos at right and below show voids in the silicone oil used as a coupling material between the scintillator's glass sur-face and the PMT faceplate.Even if the initial coupling condition seems good, air bubbles contained in the silicone oil, even in tiny amounts, may expand with temperature increase. Air bubbles may also appear if the coupling position is shifted by vibration or shock.Since a certain load is usually applied to couple the PMT to the scintillator, air bubbles contained in the coupling area may be reduced invisible in steady state condition.However, such bubbles may be expanded when shock or vibra-tion is applied and may increase the scattering to cause light loss. This could result in the change of the pulse height or loss of energy resolution.Since light transmission through the air bubbles differs from that through the tight contact area, output of the PMT may vary ac-cording to the temperature and vibration.

When using low-viscosity coupling material, it is suggested that checking in advance whether or not air bubbles are generated under high temperature environments. If using solid coupling material, it is also suggested that checking in advance that ex-pansion and contraction due to temperature changes will not af-fect the light transmission efficiency from the scintillator to the PMT. In either case, careful handling is required to ensure tight coupling. When making connections using lead-free solder, we recom-

mend using Sn-Ag-Cu based solder in order to prevent silver and copper elements in the wire from diffusing into the tin in the solder (Ag, Cu leaching).

Silicone oil coupling on glass surface – This usually provides sufficient optical transparency.

Voids generated by distortion in the coupling interface due to high tem-perature shock

Voids will become smaller over time as the load and temperature ap-plied to the coupling interface become lower.

Conductortype

ETP*

ETP*R1288AH

only

MIL-QQ-W-343bASTM:B298-64MIL-QQ-W-343bASTM:B355-65T

Silver

Nickelplating

Coatingtype

Temperaturerating

200 °C

260 °C

Applicablespecifications Note

ExampleSn-0.3AG-2CuSn-3Ag-0.5Cu

Solidus Line217 °C217 °C

Liquidus Line270 °C220 °C

Page 32: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

32

3-5. Selecting components for +HV operationIn +HV operation with the cathode grounded, the anode is at the same electrical potential as the supply voltage.This means a coupling capacitor (Cc) is usually needed to ob-tain the anode signals by isolating them from the high voltage section.The capacitor used across such a large difference in voltage potential must have low leakage current and high resistance to voltage breakdown even during high temperature operation. So carefully select a coupling capacitor that has satisfactory char-acteristics. This +HV operation also requires a circuit properly connected to a capacitor able to obtain signals from the anode. The figures below show typical external circuit connections for +HV and -HV operation.

The electrons multiplied in the PMT flow through the closed loop circuit shown by arrows. This flow generates a signal volt-age across the load resistance in the measuring device.

In +HV operation, if the PMT is used in combination with a NaI scintillator, the capacitance should preferably be 1000 pF or more. To configure a signal current loop with the shortest possi-ble distance, a bypass capacitor (Cb) with the same capaci-tance as Cc should be connected across the +HV power supply and GND, along with an input resistance Rin (about 10 kΩ) for lowering the inrush current that flows when the power is turned on.The coupling capacitor Cc is not required in -HV operation. The circuit operates without using a bypass capacitor Cb or input re-sistor Rin, but in some cases adding a Cb and Rin is advisable to suppress unwanted noise such as power supply ripples from propagating to the PMT.

As seen from these output waveforms, the amplitude of the transmitted signal drops to a small value when the Cc is inade-quate, and the response time is affected (fall time becomes lon-ger) when the Cb that shortens the signal current loop is not connected.

Typical external component connection in +HV operation

TPMHC0238EA

Figure 8: Typical external component connection

P Cc

R load

R in

Cb

+HV

GNDSIGNAL CURRENT

+HVPOWERSUPPLY

Dy nDy n-1

R

(TO CATHODE)

ANODE

VOLTAGEDIVIDER

CATHODE

SIGNALVOLTAGE

Cc 1000 pF, Cb 1000 pF, R in 10 kΩ, R load = 10 kΩ to 2 MΩ.= .

P

R load

Cb

GND

SIGNAL CURRENT

+HVPOWERSUPPLY

Dy nDy n-1

R in

(TO CATHODE)

ANODE

VOLTAGEDIVIDER

CATHODE

SIGNALVOLTAGE

-HV

Typical external component connection in -HV operation

Page 33: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

33

TPMHB0831EA

Figure 9: Typical Output Waveforms When Cc is reduced to 220 pF, the signal peak decreases by approximately 10 %.

If the Cc value is inadequate and Cb is not connected, then these two factors affect the output waveform.

Even though the Cc value is adequate, the waveform height drops and the fall time tail extends unless a bypass capacitor Cb is connected.

Cc=1000 pFCb=1000 pF20 mV/div.200 nsec/div.

Cc=220 pFCb=1000 pF20 mV/div.200 nsec/div.

Cc=1000 pFCb=NONE20 mV/div.200 nsec/div.

Cc=220 pFCb=NONE20 mV/div.200 nsec/div.

Page 34: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

34

Figure 10: Relative capacitance of C0G and X7R capacitors with temperature or voltage charges

If using Cc and Cb that are ceramic capacitors, their tempera-ture characteristics and DC bias must be taken into account. Capacitors with C0G temperature characteristics are very stable over wide variations in temperature, but the size is a little bit large. Capacitors with X7R temperature characteristics are rela-tively small yet provide large capacitance. Note that their capac-itance usually drops as the temperature rises and the voltage increases.The graph below shows how capacitors with C0G and X7R tem-perature characteristics vary with changes in temperature and voltage. In X7R capacitors with a rated voltage of 2 kV, the capacitance during operation at 150 °C and 1500 V drops below 70 % of that at room temperature.Their capacitance eventually drops to less than one-half that at room temperature.In +HV operation in particular where using a coupling capacitor, the signal state may vary compared to that at room temperature depending on the selected components and operating condi-tions. Figures 10 shows examples of these state changes that were measured with different coupling capacitor Cc (in the above figure) values, and with or without a bypass capacitor Cb.

050

TEMPERATURE (°C)BIAS VOLTAGE

RE

LAT

IVE

CA

PA

CIT

AN

CE

(%

)

200 2000

1751501251250

(°C)(V)

50

100

X7R VOLTAGE COEFFICIENT

X7R TEMPERATURE COEFFICIENT

C0G TEMPERATURE COEFFICIENT

C0G VOLTAGE COEFFICIENT

TPMHB0830EA

Page 35: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

35

Memo

Page 36: Introduction - thoughtek.com.t · 0.02 0.02 0.01 0.02 0.02 0.01 1500 1500 5000 m/s2 (500 g) 0.5 ms 90 175 Base Configration Socket or Resistor Value Dynode Structure Number of Stages

TPMH0004E02JUL. 2011 IP(1000)

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Electron Tube Division314-5, Shimokanzo, Iwata City, Shizuoka Pref., 438-0193, JapanTelephone: (81)539/62-5248, Fax: (81)539/62-2205

Main ProductsElectron TubesPhotomultiplier TubesPhotomultiplier Tube ModulesMicrochannel PlatesImage IntensifiersXenon Lamps / Mercury Xenon LampsDeuterium LampsLight Source Applied ProductsLaser Applied ProductsMicrofocus X-ray SourcesX-ray Imaging Devices

Opto-semiconductorsSi photodiodesAPDPhoto ICImage sensorsPSDInfrared detectorsLEDOptical communication devicesAutomotive devicesX-ray flat panel sensorsMini-spectrometersOpto-semiconductor modules

Imaging and Processing SystemsCameras / Image Processing Measuring SystemsX-ray ProductsLife Science SystemsMedical SystemsSemiconductor Failure Analysis SystemsFPD / LED Characteristic Evaluation SystemsSpectroscopic and Optical Measurement Systems

Sales OfficesAsia:HAMAMATSU PHOTONICS K.K.325-6, Sunayama-cho, Naka-ku,Hamamatsu City, 430-8587, JapanTelephone: (81)53-452-2141, Fax: (81)53-456-7889E-mail: [email protected]

U.S.A.:HAMAMATSU CORPORATIONMain Office360 Foothill Road, P.O. BOX 6910,Bridgewater, N.J. 08807-0910, U.S.A.Telephone: (1)908-231-0960, Fax: (1)908-231-1218E-mail: [email protected]

Western U.S.A. Office:Suite 200, 2875 Moorpark AvenueSan Jose, CA 95128, U.S.A.Telephone: (1)408-261-2022, Fax: (1)408-261-2522E-mail: [email protected]

United Kingdom:HAMAMATSU PHOTONICS UK LIMITEDMain Office2 Howard Court, 10 Tewin Road, Welwyn Garden City,Hertfordshire AL7 1BW, United KingdomTelephone: 44-(0)1707-294888, Fax: 44-(0)1707-325777E-mail: [email protected]

South Africa Office:PO Box 1112, Buccleuch 2066, Johannesburg, Repubic of South AfricaTelephone/Fax: (27)11-802-5505

France, Portugal, Belgium, Switzerland, Spain:HAMAMATSU PHOTONICS FRANCE S.A.R.L.Main Office19, Rue du Saule Trapu Parc du Moulin de Massy 91882 Massy CEDEX, FranceTelephone: (33)1 69 53 71 00 Fax: (33)1 69 53 71 10E-mail: [email protected]

Swiss Office:Dornacherplatz 74500 Solothurn, SwitzerlandTelephone: (41)32/625 60 60, Fax: (41)32/625 60 61E-mail: [email protected]

Belgian Office:Scientic Park, 7, Rue du BosquetB-1348 Louvain-La-Neuve, BelgiumTelephone: (32)10 45 63 34Fax: (32)10 45 63 67E-mail: [email protected]

Spanish Office:C. Argenters, 4 edif 2Parque Tecnológico del VallésE-08290 Cerdanyola, (Barcelona) SpainPhone: +34 93 582 44 30Fax: +34 93 582 44 31E-mail: [email protected]

Germany, Denmark, The Netherlands, Poland:HAMAMATSU PHOTONICS DEUTSCHLAND GmbHMain OfficeArzbergerstr. 10,D-82211 Herrsching am Ammersee, GermanyTelephone: (49)8152-375-0, Fax: (49)8152-2658E-mail: [email protected]

Danish Office:Please contact Hamamatsu Photonics Deutschland GmbH.

The Netherlands Office:PO Box 50.075, NL-1305 AB Almere NetherlandsTelephone: (31)36-5382-123, Fax: (31)36-5382-124E-mail: [email protected]

Poland Office:ul. sw. A. Boboli 8,02-525 Warszawa, PolandTelephone: (48)22-646-00-16, Fax: (48)22-646-00-18E-mail: [email protected]

North Europe and CIS:HAMAMATSU PHOTONICS NORDEN ABMain OfficeSmidesvägen 12,SE-171 41 Solna, SwedenTelephone: (46)8-509-031-00, Fax: (46)8-509-031-01E-mail: [email protected]

Russian Office:Vyatskaya St. 27, bld. 15RU-127015, Moscow, RussiaPhone: +7-(495)-258-85-18, Fax: +7-(495)-258-85-19E-mail: [email protected]

Italy:HAMAMATSU PHOTONICS ITALIA S.R.L.Main OfficeStrada della Moia, 1/E20020 Arese (Milano), ItalyTelephone: (39)02-93 58 1733, Fax: (39)02-93 58 1741E-mail: [email protected]

Rome Office:Viale Cesare Pavese, 435, 00144 Roma, ItalyTelephone: (39)06-50513454, Fax: (39)06-50513460E-mail: [email protected]

Information in this catalog isbelieved to be reliable. However,no responsibility is assumed forpossible inaccuracies or omission.Specifications are subject tochange without notice. No patentrights are granted to any of thecircuits described herein.© 2011 Hamamatsu Photonics K.K.

Quality, technology, and service are part of every product.

REVISED JUL. 2011