Intro to Simulation

Embed Size (px)

Citation preview

  • 8/13/2019 Intro to Simulation

    1/63

    Introduction to Simulation - Lecture 19

    Thanks to Deepak Ramaswamy, Michal Rewienski,and Karen Veroy, Jaime Peraire and Tony Patera

    Laplaces Equation FEM Methods

    Jacob White

  • 8/13/2019 Intro to Simulation

    2/63

    SMA-HPC 2003 MIT

    Outline for Poisson Equation Section

    Why Study Poissons equation

    Heat Flow, Potential Flow, Electrostatics Raises many issues common to solving PDEs.

    Basic Numerical Techniques basis functions (FEM) and finite-differences

    Integral equation methods

    Fast Methods for 3-D Preconditioners for FEM and Finite-differences

    Fast multipole techniques for integral equations

  • 8/13/2019 Intro to Simulation

    3/63

    SMA-HPC 2003 MIT

    Outline for Today

    Why Poisson Equation

    Reminder about heat conducting bar

    Finite-Difference And Basis function methods

    Key question of convergence

    Convergence of Finite-Element methods

    Key idea: solve Poisson by minimization

    Demonstrate optimality in a carefully chosen norm

  • 8/13/2019 Intro to Simulation

    4/63

    SMA-HPC 2003 MIT

    Drag Force Analysis

    of Aircraft

    Potential Flow Equations Poisson Partial Differential Equations.

  • 8/13/2019 Intro to Simulation

    5/63

    SMA-HPC 2003 MIT

    Engine Thermal

    Analysis

    Thermal Conduction Equations The Poisson Partial Differential Equation.

  • 8/13/2019 Intro to Simulation

    6/63SMA-HPC 2003 MIT

    Capacitance on a microprocessor Signal Line

    Electrostatic Analysis The Laplace Partial Differential Equation.

  • 8/13/2019 Intro to Simulation

    7/63

    Heat Flow 1 D Example

    ( )0T ( )1T

    Unit Length Rod

    Near EndTemperature

    Far End

    Temperature

    Question: What is the temperature distribution along the bar

    x

    T

    Incoming Heat

    ( )0T ( )1T

  • 8/13/2019 Intro to Simulation

    8/63

    Heat Flow 1 D Example

    Discrete Representation

    (0)T (1)T

    1) Cut the bar into short sections

    1T 2T N T 1 N T

    2) Assign each cut a temperature

  • 8/13/2019 Intro to Simulation

    9/63

    Heat Flow 1 D Example

    Constitutive Relation

    iT

    Heat Flow through one section

    1iT + x

    1,i ih +

    11, heat flow

    i ii i

    T T h

    x ++

    = =

    0

    ( )lim ( ) x

    T xh x x

    =

    Limit as the sections become vanishingly small

  • 8/13/2019 Intro to Simulation

    10/63

    Heat Flow 1 D Example

    Conservation Law

    1iT

    Two Adjacent Sections

    iT

    1iT +

    1,i ih +

    , 1i ih x

    control volume

    1, , 1i i i sih hh x+ = Heat Flows into Control Volume Sums to zero

    Incoming Heat ( ) sh

  • 8/13/2019 Intro to Simulation

    11/63

    Heat Flow 1 D Example

    Conservation Law

    1, , 1i i i sih hh x+ =

    Heat Flows into Control Volume Sums to zero

    1iT iT 1iT +1,i ih +, 1i ih x

    Incom ing H eat ( ) sh

    0 ( ) ( )lim ( ) x s h x T xh x x x x

    = =

    Limit as the sections become vanishingly small

    Heat infrom left

    Heat outfrom right

    Incomingheat perunit length

  • 8/13/2019 Intro to Simulation

    12/63SMA-HPC 2003 MIT

    Heat Flow 1 D Example

    Circuit Analogy

    +-

    +-

    1 R x

    =

    s si xh= (0) sv T = (1) sv T =

    Temperature analogous to VoltageHeat Flow analogous to Current

    1T N T

  • 8/13/2019 Intro to Simulation

    13/63

    1 D Example

    Normalized 1 D Equation

    Normalized Poisson Equation

    2

    2

    ( ) ( )( ) s

    T x u xh f x

    x x x

    = =

    Heat Flow

    ( ) ( ) xxu x f x =

  • 8/13/2019 Intro to Simulation

    14/63SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    15/63SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    16/63SMA-HPC 2003 MIT

    Residual EquationUsing BasisFunctions

    2

    2

    u f x

    =

    Partial Differential Equation form

    (0) 0 (1) 0u u= =Basis Function Representation

    Plug Basis Function Representation into the Equation

    ( ) ( ) ( )2

    21

    n

    iii

    d x R x f xdx

    == +

    ( ) ( ) ( ){1 Basis Functions

    n

    h i ii

    u x u x x =

    =

  • 8/13/2019 Intro to Simulation

    17/63SMA-HPC 2003 MIT

    Using BasisFunctions

    ( ) is a weighted sum of basis func o s nu tih xThe basis functions define a space

    1

    2

    3 5

    4 6 Hat basis functions Piecewise linear Space

    Example1

    | for some 'sn

    h h i i ii

    X v X v =

    = =

    ( ) ( ) ( ){1 Basis Functions

    Introduce basis representationn

    h i ii

    u x u x x =

    =

    Example Basis functions

  • 8/13/2019 Intro to Simulation

    18/63SMA-HPC 2003 MIT

    Basis WeightsUsing Basisfunctions

    Galerkin Scheme

    Generates n equations in n unknowns

    ( ) ( ) ( )21

    210

    0n

    il i

    i

    d x x f x dxdx

    = + =

    Force the residual to be orthogonal to the basis functions

    { }1,...,l n

    ( ) ( )1

    0

    0l x R x dt =

  • 8/13/2019 Intro to Simulation

    19/63SMA-HPC 2003 MIT

    Basis WeightsUsing BasisFunctions Galerkin with integration by

    parts

    Only first derivatives of basis functions

    ( ) ( ) ( ) ( )11 1

    0 0

    0

    n

    i iil

    i xd d x dx x f x dx

    dx dx

    = =

    { }1,...,l n

  • 8/13/2019 Intro to Simulation

    20/63SMA-HPC 2003 MIT

    ConvergenceAnalysis

    huuThe question is

    How does decrease with refinement?h

    error

    u u123

    This time Finite-element methods Next time Finite-difference methods

  • 8/13/2019 Intro to Simulation

    21/63SMA-HPC 2003 MIT

    Convergence AnalysisHeat Equation

    Overview of FEM

    2

    2

    u f x

    =

    Partial Differential Equation form

    (0) 0 (1) 0u u= =Nearly Equivalent weak form

    Introduced an abstract notation for the equation u must satisfy

    for all

    ( , ) ( )

    u vdx f v dx v

    x x

    a u v l v

    =

    142 43 14243

    ( , ) ( )a u v l v= for all v

  • 8/13/2019 Intro to Simulation

    22/63SMA-HPC 2003 MIT

    Convergence AnalysisHeat Equation

    Overview of FEM

    ( ) is a weighted sum of basis func o s nu tih xThe basis functions define a space

    1

    2

    3 5

    4 6 Hat basis functions Piecewise linear Space

    Example1

    | for some 'sn

    h h i i ii

    X v X v =

    = =

    ( ) ( ) ( ){1 Basis Functions

    Introduce basis representationn

    h i ii

    u x u x x =

    =

  • 8/13/2019 Intro to Simulation

    23/63

    SMA-HPC 2003 MIT

    Convergence AnalysisHeat Equation

    Overview of FEM

    Using the norm properties, it is possible to show

    Key Idea

    ( , ) ( )h i ia u l If =

    min

    Pr h hh w X h

    u u u w

    ojectionSolution Error E

    Then

    rror

    =

    14243 14243

    U is restricted to be 0 at 0 and1!!

    { }1 2, ,..for all .,i n

    defines a nor ( , ) ( , )ma u u a u u u

  • 8/13/2019 Intro to Simulation

    24/63

    SMA-HPC 2003 MIT

    Convergence AnalysisHeat Equation

    Overview of FEM

    huu

    The question is only

    How well can you fit u with a member of X hBut you must measure the error in the ||| ||| norm

    1herror

    u u O n = 142 43For piecewise linear:

  • 8/13/2019 Intro to Simulation

    25/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    26/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    27/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    28/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    29/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    30/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    31/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    32/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    33/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    34/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    35/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    36/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    37/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    38/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    39/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    40/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    41/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    42/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    43/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    44/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    45/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    46/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    47/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    48/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    49/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    50/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    51/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    52/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    53/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    54/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    55/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    56/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    57/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    58/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    59/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    60/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    61/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    62/63

    SMA-HPC 2003 MIT

  • 8/13/2019 Intro to Simulation

    63/63

    Summary

    Why Poisson Equation

    Reminder about heat conducting bar

    Finite-Difference And Basis function methods

    Key question of convergence

    Convergence of Finite-Element methods

    Key idea: solve Poisson by minimization

    Demonstrate optimality in a carefully chosen norm