Intro to Pneumatics Modified

Embed Size (px)

Citation preview

  • 7/31/2019 Intro to Pneumatics Modified

    1/95

    Introduction toPneumatics

  • 7/31/2019 Intro to Pneumatics Modified

    2/95

    2

    Air Production System Air Consumption System

  • 7/31/2019 Intro to Pneumatics Modified

    3/95

    3

    What can Pneumatics do? Operation of system valves for air, water or chemicals

    Operation of heavy or hot doors

    Unloading of hoppers in building, steel making, mining and chemical industries

    Ramming and tamping in concrete and asphalt laying Lifting and moving in slab molding machines

    Crop spraying and operation of other tractor equipment

    Spray painting

    Holding and moving in wood working and furniture making

    Holding in jigs and fixtures in assembly machinery and machine tools

    Holding for gluing, heat sealing or welding plastics

    Holding for brazing or welding

    Forming operations of bending, drawing and flattening

    Spot welding machines

    Riveting

    Operation of guillotine blades

    Bottling and filling machines

    Wood working machinery drives and feeds

    Test rigs

    Machine tool, work or tool feeding

    Component and material conveyor transfer

    Pneumatic robots

    Auto gauging

    Air separation and vacuum lifting of thin sheets

    Dental drills

    and so much more new applications are developed daily

  • 7/31/2019 Intro to Pneumatics Modified

    4/95

    4

    Properties of compressed air

    Availability

    Storage

    Simplicity of design and control

    Choice of movement

    Economy

  • 7/31/2019 Intro to Pneumatics Modified

    5/95

    5

    Properties of compressed air

    Reliability

    Resistance to Environment

    Environmentally clean.

    Safety

  • 7/31/2019 Intro to Pneumatics Modified

    6/95

    6

    What is Air?

    NitrogenOxygen

    Carbon Dioxide

    Argon

    Nitrous OxideWater Vapor

    In a typical cubic foot of air ---there are over 3,000,000

    particles of dust, dirt, pollen,and other contaminants.Industrial air may be 3 times (or more)more polluted.

    The weight of aone square inch

    column of air(from sea level

    to the outer atmosphere,@ 680 F, & 36% RH)

    is 14.69 pounds.

  • 7/31/2019 Intro to Pneumatics Modified

    7/95

    7

    Temperature C 0 5 10 15 20 25 30 35 40

    g/m3

    n *(Standard)4.98 6.99 9.86 13.76 18.99 25.94 35.12 47.19 63.03

    g/m3(Atmospheric) 4.98 6.86 9.51 13.04 17.69 23.76 31.64 41.83 54.11

    Temperature C 0 5 10 15 20 25 30 35 40

    g/m

    3

    n (Standard)

    4.98 3.36 2.28 1.52 1.00 0.64 0.4 0.25 0.15

    g/m3 (Atmospheric) 4.98 3.42 2.37 1.61 1.08 0.7 0.45 0.29 0.18

    Temperature F 32 40 60 80 100 120 140 160 180

    g/ft3

    *(Standard) .137 .188 .4 .78 1.48 2.65 4.53 7.44 11.81

    g/ft3(Atmospheric) .137 .185 .375 .71 1.29 2.22 3.67 5.82 8.94

    Temperature F 32 30 20 10 0 -10 -20 -30 40

    g/ft3

    (Standard) .137 .126 .083 .053 .033 .020 .012 .007 .004

    g/ft3 (Atmospheric) .137 .127 .085 .056 .036 .023 .014 .009 .005

    HUMIDITY & DEWPOINT

  • 7/31/2019 Intro to Pneumatics Modified

    8/95

    8

    Pressure and Flow

    Sonic Flow

    Qn (54.44 l / min)

    S = 1 mm 2

    0 20 40 80 100 12060

    10

    9

    8

    7

    6

    5

    4

    3

    2

    1

    (dm /min)3

    nQ

    p (bar)

    Example

    P1 = 6bar

    P = 1bar

    P2 = 5bar

    Q = 54 l/min

    (1 Bar = 14.5 psi)

    P1

    P2

  • 7/31/2019 Intro to Pneumatics Modified

    9/95

    9

    Air Treatment

  • 7/31/2019 Intro to Pneumatics Modified

    10/95

    10

    Compressing Air

    One cubic foot of air

    7.8 cubic feet of free air

    One cubic foot of

    100 psig

    compressed air(at Standard conditions)with 7.8 times the

    moisture and dirt

    compressor

    CFM vs SCFM

    psig + 1 atm

    1 atm

    Compression

    ratio=

    Compressed air is always related at Standard conditions.

  • 7/31/2019 Intro to Pneumatics Modified

    11/95

    11

    Relative Humidity

    Compressor

    1 ft3 @100 psig

    1950 F

    100% RH

    57.1

    grams of

    H20

    1 ft3 @100 psig

    770 F

    100% RH

    .73

    grams of H20

    1 ft3 @100 psig

    -200 F

    100% RH

    .01

    grams of

    H20

    1 ft3 @100 psig

    770 F

    0.15% RH

    .01

    grams of

    H20

    56.37

    grams of

    H20

    .72

    grams of

    H20

    Adsorbtion DryerCompressor

    Exit

    Reservoir

    TankAirline

    Drop

  • 7/31/2019 Intro to Pneumatics Modified

    12/95

    12

    Air Mains

    Ring

    Main

    Dead-End

    Main

  • 7/31/2019 Intro to Pneumatics Modified

    13/95

    13

    Pressure

    It should be noted that the SI unit of pressure is the Pascal (Pa)

    1 Pa = 1 N/m2 (Newton per square meter)

    This unit is extremely small and so, to avoid huge numbers in

    practice, an agreement has been made to use the bar as a unitof 100,000 Pa.

    100,000 Pa = 100 kPa = 1 bar

    Atmospheric Pressure =14.696 psi =1.01325 bar =1.03323 kgf/cm2.

    h i h ( l )

  • 7/31/2019 Intro to Pneumatics Modified

    14/95

    14

    Isothermic change (Boyles Law)with constant temperature, the pressure of a given mass of gas is inversely

    proportional to its volume

    P1 x V1 = P2 x V2

    P2 = P1 x V1V2

    V2 = P1 x V1P2

    Example P2 = ?

    P1 = Pa (1.013bar)

    V1 = 1m V2 = .5m

    P2 = 1.013 x 1

    .5 = 2.026 bar

  • 7/31/2019 Intro to Pneumatics Modified

    15/95

    15

    Isobaric change (Charles Law)at constant pressure, a given mass of gas increases in volume by 1 of its

    volume for every degree C in temperature rise. 273

    V1 = T1 V2 T2

    V2 = V1 x T2T1

    T2 = T1 x V2V1

    Example V2 = ?

    V1 = 2m

    T1 = 273K (0C) T2 = 303K (30C)

    V2 = 2 x 303

    273 = 2.219m

    10

  • 7/31/2019 Intro to Pneumatics Modified

    16/95

    16

    Isochoric change Law of Gay Lussacat constant volume, the pressure is proportional to the temperature

    P1 x P2

    T1 x T2

    P2 = P1 x T2T1

    T2 = T1 x P2

    P1

    Example P2 = ?

    P1 = 4bar

    T1 = 273K (OC) T2 = 298K (25C)

    P2 = 4 x 298

    273 = 4.366bar

  • 7/31/2019 Intro to Pneumatics Modified

    17/95

    17

    P1 = ________bar

    T1 = _______C ______K

    T2 = _______C ______K

  • 7/31/2019 Intro to Pneumatics Modified

    18/95

    18

    400

    2000

    20000

    250

    500

    1000

    1500

    2500

    4000

    5000

    10000

    15000

    25000

    4000050000

    10000025 30

    32 40 50 63 80 100 125 140 160 200 250 300

    10 7 5(bar)p :

    (mm)

    F

    (N

    )

    1250

    12500

    5

    4

    2.5

    10

    15

    202530

    40

    50

    100

    500

    1000

    250

    2.5 4 6 8 10 12 2016 (mm)

    F(N)

    125

    150

    200

    400

    300

    12.5

  • 7/31/2019 Intro to Pneumatics Modified

    19/95

    19

    Force formula transposed

    D = 4 x FE

    x P

    Example FE = 1600N

    P = 6 bar.

    D = 4 x 1600

    3.14 x 600,000

    D = 6400

    1884000

    D = .0583m

    D = 58.3mm A 63mm bore cylinder would be selected.

  • 7/31/2019 Intro to Pneumatics Modified

    20/95

    20

    Load Ratio This ratio expresses the percentage of the

    required force needed from the maximum

    available theoretical force at a given

    pressure.

    L.R.= required force x 100%

    max. available theoretical force

    Maximum load ratios

    Horizontal.70%~ 1.5:1

    Vertical.50%~ 2.0:1

  • 7/31/2019 Intro to Pneumatics Modified

    21/95

    21

    Cyl.Dia Mass (kg) 60 45 30

    0.01

    0.2 0.01

    0.2 0.01

    0.2 0.01

    0.2

    25 100 4 80

    50 2.2 40

    25 (87.2) (96.7) 7 1.5 84.9 50.9 67.4 1 20

    12.5 51.8 43.6 48.3 35.7 342.5 25.4 33.7 0.5 10

    32 180 - - - - - 4.4 -90 - - - - 2.2 43.9

    45 - (95.6) - 78.4 (93.1) 55.8 73.9 1.1 22

    22.5 54.9 47.8 53 39.2 46.6 27.9 37 0.55 11

    40 250 3.9 78

    125 (99.2) 2 39

    65 72.4 (86) 51.6 68.3 1 20.3

    35 54.6 47.6 52.8 39 46.3 27.8 36.8 0.5 10.9

    50400 -- - - - 4 79.9

    200 - _ 2 40100 (87) (96.5) 71.3 84.8 50.8 67.3 1 20

    50 50 43.5 48.3 35.7 42.4 25.4 33.6 0.5 0

    63 650 4.1 81.8

    300 1.9 37.8

    150 (94.4) 82.3 (91.2) 67.4 80.1 48 63.6 0.9 18.9

    75 47.2 41.1 45.6 33.7 40.1 24 31.8 0.5 9.4

    80 1000

    3.9 78.1500 2 39

    250 (97.6) 85 (94.3) 69.7 82.8 49.6 65.7 1 19.5

    125 48.8 42.5 47.1 34.8 41.4 24.8 32.8 0.5 9.8

    100 1600 4 79.9

    800 2 40

    400 (87) (96.5) 71.4 84.4 50.8 67.3 1 20

    200 50 43.5 48.3 35.7 42.2 25.4 33.6 0.5 10

    Table 6.16 Load Ratios for 5 bar working pressure and friction coefficients of 0.01 and 0.2

  • 7/31/2019 Intro to Pneumatics Modified

    22/95

    22

    Speed control

    The speed of a cylinder is define by theextra force behind the piston, above the

    force opposed by the load

    The lower the load ratio, the better the

    speed control.

  • 7/31/2019 Intro to Pneumatics Modified

    23/95

    23

    Angle of Movement1. If we totally neglect friction, which cylinder diameter is needed to

    horizontally push a load with an 825 kg mass with a pressure of 6 bar;

    speed is not important.

    2. Which cylinder diameter is necessary to lift the same mass with the

    same pressure of 6 bar vertically if the load ratio can not exceed 50%.

    3. Same conditions as in #2 except from vertical to an angle of 30.

    Assume a friction coefficient of 0.2.

    4. What is the force required when the angle is increased to 45?

  • 7/31/2019 Intro to Pneumatics Modified

    24/95

    24

    b c d

    x

    A

    B

    h

    G

    y

    R a

    F=G F= G W =m/2 va2

    F=G (sin + cos )

    a db c

    Y axes, (vertical lifting force).. sin x M

    X axes, (horizontal lifting force).cos x x MTotal force = Y + X

    =friction coefficients

    E l

  • 7/31/2019 Intro to Pneumatics Modified

    25/95

    25

    Example

    40

    F = ________ (N)150kg

    = .01

    Force Y = sin x M = .642 x 150 = 96.3 N

    Force X = cos x x M = .766 x .01 x 150 = 1.149 N

    Total Force = Y + X = 96.3 N + 1.149 N = 97.449 N

  • 7/31/2019 Intro to Pneumatics Modified

    26/95

    26

    _____

    F = ________ (N)

    ______kg

    = __

    Force Y = sin x M =

    Force X = cos x x M =

    Total Force = Y + X =

  • 7/31/2019 Intro to Pneumatics Modified

    27/95

    27

    Temperature C 0 5 10 15 20 25 30 35 40

    g/m3

    n *(Standard)4.98 6.99 9.86 13.76 18.99 25.94 35.12 47.19 63.03

    g/m3(Atmospheric) 4.98 6.86 9.51 13.04 17.69 23.76 31.64 41.83 54.11

    Temperature C 0 5 10 15 20 25 30 35 40

    g/m3

    n (Standard)4.98 3.36 2.28 1.52 1.00 0.64 0.4 0.25 0.15

    g/m3 (Atmospheric) 4.98 3.42 2.37 1.61 1.08 0.7 0.45 0.29 0.18

    13

  • 7/31/2019 Intro to Pneumatics Modified

    28/95

    28

    Relative humidity (r.h.) = actual water content X100% saturated quantity (dew point)

    Example 1

    T = 25C r.h = 65%

    V = 1m

    From table 3.7 air at 25C contains

    23.76 g/m

    23.76 g/m x .65 r.h = 15.44 g/m

    13

  • 7/31/2019 Intro to Pneumatics Modified

    29/95

    29

    Relative HumidityExample 2

    V = 10m

    T1= 15C

    T2= 25C

    P1 = 1.013bar

    P2 = 6bar

    r.h = 65%

    ? H0will condense out

    From 3.17, 15C = 13.04 g/m

    13.04 g/m x 10m = 130.4 g

    130.4 g x .65 r.h = 84.9 g

    V2 = 1.013 x 10 = 1.44 m

    6 + 1.013

    From 3.17, 25C = 23.76 g/m

    23.76 g/m x 1.44 m = 34.2 g

    84.9 - 34.2 = 50.6 g

    50.6 g of water will condense out

    13

  • 7/31/2019 Intro to Pneumatics Modified

    30/95

    30

    V = __________m

    T1= __________CT2= __________C

    P1 =__________bar

    P2 =__________barr.h =__________%

    ? __________H0

    will condense out

    l

  • 7/31/2019 Intro to Pneumatics Modified

    31/95

    31

    Formulae, for when more exact values are required

    Sonic flow = P1 + 1.013 > 1.896 x (P2 + 1,013)

    Pneumatic systemscannot operate under sonic flow conditions

    Subsonic flow = P1 + 1.013 < 1.896 x (P2 + 1,013)

    The Volume flow Q for subsonic flow equals:

    Q (l/min) = 22.2 x S (P2 + 1.013) x P

    16

  • 7/31/2019 Intro to Pneumatics Modified

    32/95

    32

    Sonic / Subsonic flow

    Example

    P1 = 7bar

    P2 = 6.3bar

    S = 12mm

    l/min

    P1 + 1.013 ? 1.896 x (P2 + 1.013)

    7 + 1.013 ? 1.896 x (6.3 + 1.013)

    8.013 ? 1.896 x 7.313

    8.013 < 13.86 subsonic flow. Q = 22.2 x S x (P2 + 1.013) x P

    Q = 22.2 x 12 x (6.3 + 1.013) x .7

    Q = 22.2 x 12 x 7.313 x .7

    Q = 22.2 x 12 x 5.119

    Q = 22.2 x 12 x 2.26

    Q = 602 l/min

    16,17

  • 7/31/2019 Intro to Pneumatics Modified

    33/95

    33

    P1 = _________bar

    P2 = _________bar

    S = _________mm

    Q = ____?_____l/min

  • 7/31/2019 Intro to Pneumatics Modified

    34/95

    34

    Receiver sizing

    Example

    V = capacity of receiver

    Q = compressor output l/min

    Pa = atmospheric pressure

    P1 = compressor output

    pressure

    V = Q x Pa

    P1 + Pa

    If Q = 5000

    P1 = 9 bar

    Pa = 1.013

    V = 5000 x 1.013

    9 + 1.013

    V = 5065

    10.013

    V = 505.84 liters

    22

  • 7/31/2019 Intro to Pneumatics Modified

    35/95

    35 29

  • 7/31/2019 Intro to Pneumatics Modified

    36/95

    36 29

  • 7/31/2019 Intro to Pneumatics Modified

    37/95

    37 30

  • 7/31/2019 Intro to Pneumatics Modified

    38/95

    3100

    4"

  • 7/31/2019 Intro to Pneumatics Modified

    39/95

    39

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    Line

    Pressure(bar)

    3.0

    1.0

    2.0

    1.5

    0.5

    0.4

    0.3

    0.2

    0.15

    0.6

    0.7

    0.80.9

    0.25

    1.75

    2.5

    2.25

    pkPa / m

    = bar /100 mPipe Length

    2

    1

    0.5

    0.1

    1.5

    0.2

    0.3

    0.4

    0.01

    0.050.04

    0.03

    0.02

    0.015

    0.15

    0.025

    90

    80

    70

    60

    50

    40

    30

    20

    15

    25

    35

    Inner Pipe Dia. ,

    mm

    Reference

    Line

    X

    3"

    2.5"

    2"

    1.5"

    1.25"

    1"

    3/4"

    1/2"

    3/8"

    Q (m /s3n

    33

  • 7/31/2019 Intro to Pneumatics Modified

    40/95

    40

    Type of Fitting Nominal pipe size (mm)

    15 20 25 30 40 50 65 80 100 125

    Elbow 0.3 0.4 0.5 0.7 0.8 1.1 1.4 1.8 2.4 3.2

    90* Bend (long) 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1.2 1.5

    90* Elbow 1.0 1.2 1.6 1.8 2.2 2.6 3.0 3.9 5.4 7.1180* Bend 0.5 0.6 0.8 1.1 1.2 1.7 2.0 2.6 3.7 4.1

    Globe Valve 0.8 1.1 1.4 2.0 2.4 3.4 4.0 5.2 7.3 9.4

    Gate Valve 0.1 0.1 0.2 0.3 0.3 0.4 0.5 0.6 0.9 1.2

    Standard Tee 0.1 0.2 0.2 0.4 0.4 0.5 0.7 0.9 1.2 1.5

    Side Tee 0.5 0.7 0.9 1.4 1.6 2.1 2.7 3.7 4.1 6.4

    Table 4.20 Equivalent Pipe Lengths for the main fittings

    34

  • 7/31/2019 Intro to Pneumatics Modified

    41/95

    41

    Sizing compressor air mains

    Example 2

    Add fittings to example 1

    From table 4.20

    2 elbows @ 1.4m = 2.8m

    2 90 @ 0.8m = 1.6m

    6 Tees @ 0.7m = 4.2m

    2 valves @ 0.5m = 1.0m

    Total = 9.6m

    125m + 9.6 = 134.6m

    =135m

    30kPa = 0.22kPa/m

    135m

    Chart lines on Nomogram

    31

    3100

    4"

  • 7/31/2019 Intro to Pneumatics Modified

    42/95

    42

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    Line

    Pressure(bar)

    3.0

    1.0

    2.0

    1.5

    0.5

    0.4

    0.3

    0.2

    0.15

    0.6

    0.7

    0.80.9

    0.25

    1.75

    2.5

    2.25

    pkPa / m

    = bar /100 mPipe Length

    2

    1

    0.5

    0.1

    1.5

    0.2

    0.3

    0.4

    0.01

    0.050.04

    0.03

    0.02

    0.015

    0.15

    0.025

    90

    80

    70

    60

    50

    40

    30

    20

    15

    25

    35

    Inner Pipe Dia. ,

    mm

    Reference

    Line

    X

    3"

    2.5"

    2"

    1.5"

    1.25"

    1"

    3/4"

    1/2"

    3/8"

    Q (m /s3n

    33

  • 7/31/2019 Intro to Pneumatics Modified

    43/95

    43

    Q = 20,000 l/minP1 = 10 bar (_________kPa)

    P = .5 bar (_________kPa)

    L = 200 m pipe length

    P = kPa/m

    L

    l/min x .00001667 = m/s

    Using the ring main example on page 29 size for the

    following requirements:

  • 7/31/2019 Intro to Pneumatics Modified

    44/95

    44

    Auto

    Drain

    1

    2

    34

    5

    6

    7

    RefrigeratedAir Dryer

    Compressor

    Tank

    a

    a

    a

    a

    a

    b

    b

    b

    c

    d

    Micro Filter

    Sub-micro Filter

    Odor Removal Filter

    Adsorbtion Air

    Aftercooler

    d

    a

    b

    c

    Auto

    Drain

    39

  • 7/31/2019 Intro to Pneumatics Modified

    45/95

    45

    Example

    P = 7 bar (700,000 N/m) D = 63mm (.063m)

    d = 15mm (.015m)

    F = x (D -d) x P4

    F = 3.14 x (.063 - .015) x 700,0004

    F = 3.14 x (.003969 - .0.000225) x 700,0004

    F = .785 x .003744 x 700,000

    F = 2057.328 N

    54

  • 7/31/2019 Intro to Pneumatics Modified

    46/95

    46

    400

    2000

    20000

    250

    500

    1000

    1500

    2500

    4000

    5000

    10000

    15000

    25000

    40000

    50000

    10000025 30

    32 40 50 63 80 100 125 140 160 200 250 300

    10 7 5(bar)p :

    (mm)

    F

    (N

    )

    1250

    12500

    5

    4

    2.5

    10

    15

    202530

    40

    50

    100

    500

    1000

    250

    2.5 4 6 8 10 12 2016 (mm)

    F(N)

    125

    150

    200

    400

    300

    12.5

    E l

  • 7/31/2019 Intro to Pneumatics Modified

    47/95

    47

    Example

    M = 100kg

    P = 5bar

    = 32mm

    = 0.2

    F = /4 x Dx P = 401.9 N

    From chart 6.16

    90KG = 43.9% Lo.

    To find Lo for 100kg

    43.9 x 100 = 48.8 % Lo.

    90

    Calculate remaining force

    401.9 x 48.8 (.488) = 196N

    100

    assume a cylinder efficiency of 95%

    196 x 95 = 185.7 N

    100

    Newtons = kg m/s , therefor

    185.7 N = 185.7 kg m/s

    divide mass into remaining force

    m/s = 185.7 kg m/s

    100kg

    = 1.857 m/s

  • 7/31/2019 Intro to Pneumatics Modified

    48/95

    48

    M = _______kg

    P = _______bar

    = _______mm

    = 0.2

    F = /4 x Dx P = 401.9 N

    Air Flow and Consumption

  • 7/31/2019 Intro to Pneumatics Modified

    49/95

    49

    Air Flow and ConsumptionAir consumption of a cylinder is defined as:

    piston area x stroke length x number of single strokes per minute x absolute pressure in bar.

    Q = D (m) x x (P + Pa) x stroke(m) x # strokes/min x 10004

  • 7/31/2019 Intro to Pneumatics Modified

    50/95

    50

    Example.

    = 80

    stroke = 400mm

    s/min = 12 x 2

    P = 6bar.

    From table 6.19... 80 at 6 bar = 3.479 (3.5)l/100mm stroke

    Qt = Q x stroke(mm) x # of extend + retract strokes

    100

    Qt = 3.5 x 400 x 24

    100

    Qt = 3.5 x 4 x 24

    Qt = 336 l/min.

    Working Pressure in bar

    Piston dia. 3 4 5 6 7

    20 0.124 0.155 0.186 0.217 0.248

    25 0.194 0.243 0.291 0.340 0.388

    32 0.319 0.398 0.477 0.557 0.636

    40 0.498 0.622 0.746 0.870 0.99350 0.777 0.971 1.165 1.359 1.553

    63 1.235 1.542 1.850 2.158 2.465

    80 1.993 2.487 2.983 3.479 3.975

    100 3.111 3.886 4.661 5.436 6.211

    Table 6.19 Theoretical Air Consumption of double acting cylinders from 20 to 100 mm dia,in liters per 100 mm stroke

    Peak Flow

  • 7/31/2019 Intro to Pneumatics Modified

    51/95

    51

    Peak Flow

    For sizing the valve of an individual cylinder we need to

    calculate Peak flow. The peak flow depends on the

    cylinders highest possible speed. The peak flow of all

    simultaneously moving cylinders defines the flow to which

    the FRL has to be sized.

    To compensate for adiabatic change, the theoreticalvolume flow has to be multiplied by a factor of 1.4. This

    represents a fair average confirmed in a high number of

    practical tests.

    Q = 1.4 x D (m) x x (P + Pa) x stroke(m) x # strokes/min x 10004

    Working Pressure in bar

  • 7/31/2019 Intro to Pneumatics Modified

    52/95

    52

    g

    Piston dia. 3 4 5 6 7

    20 0.174 0.217 0.260 0.304 0.347

    25 0.272 0.340 0.408 0.476 0.543

    32 0.446 0.557 0.668 0.779 0.890

    40 0.697 0.870 1.044 1.218 1.39150 1.088 1.360 1.631 1.903 2.174

    63 1.729 2.159 2.590 3.021 3.451

    80 2.790 3.482 4.176 4.870 5.565

    100 4.355 5.440 6.525 7.611 8.696

    Table 6.20 Air Consumption of double acting cylinders in litersper 100 mm stroke corrected for losses by adiabatic change

    Example.

    = 80

    stroke = 400mm

    s/min = 12 x 2 P = 6bar

    From table 6.20... 80 at 6 bar = 4.87 (4.9)l/100mm stroke

    Qt= Q x stroke(mm) x # of extend + retract strokes

    100

    Qt = 4.9 x 400 x 24

    100

    Qt = 4.9 x 4 x 24

    Qt = 470.4 l/min.

  • 7/31/2019 Intro to Pneumatics Modified

    53/95

    53

    Formulae comparison

    Q = 1.4 x D (m) x x (P + Pa) x stroke(m) x # strokes/min x 10004

    Q = 1.4 x .08 x .785 x ( 6 + 1.013) x .4 x 24 x 1000

    Q = 1.4 x .0064 x .785 x 7.013 x .4 x 24 x 1000

    Q = 473.54

    Q 1 4 D ( ) (P P ) t k ( ) # t k / i 1000

  • 7/31/2019 Intro to Pneumatics Modified

    54/95

    54

    Q = 1.4 x D (m) x x (P + Pa) x stroke(m) x # strokes/min x 10004

    = _______mm

    stroke = _______mm

    s/min = _______ x 2

    P =_______bar

    I ti

  • 7/31/2019 Intro to Pneumatics Modified

    55/95

    55

    Inertia

    Example 1

    m = 10kg

    a = 30mm

    j = ___?

    J= m (kg) x a (m)

    12

    J= 10 x .03

    12

    J= 10 x .000912

    J = .00075

    a

  • 7/31/2019 Intro to Pneumatics Modified

    56/95

    56

    Inertia

    Example 2

    m = 9 kg

    a = 10mm

    b = 20mm

    J = ___?

    J = ma x a + mb x b

    3 3

    J = 3 x .01 + 6 x .02

    3 3

    J = 3 x .0001 + 6 x .00043 3

    J = .0001 + .0008

    J = .0009

    a b

  • 7/31/2019 Intro to Pneumatics Modified

    57/95

    57

    a b

    m = ________ kg

    a = _________mm

    b = _________mm

    J = _________?

  • 7/31/2019 Intro to Pneumatics Modified

    58/95

    58

    Valve identification

    A(4) B(2)

    EA P EB(5) (1) (3)

  • 7/31/2019 Intro to Pneumatics Modified

    59/95

    59

    Valve Sizing

    The Cv factor of 1 is a flow capacity ofone US Gallon of water per minute, witha pressure drop of 1 psi.

    The kv factor of 1is a flow capacity ofone liter of water per minute with apressure drop of 1 bar.

    The equivalent Flow Section S of avalve is the flow section in mm2 of anorifice in a diaphragm, creating thesame relationship between pressure

    and flow.

  • 7/31/2019 Intro to Pneumatics Modified

    60/95

    60

    Q = 400 x Cv x (P2 + 1.013) x P x 273

    273 +

    Q = 27.94 x kv x (P2 + 1.013) x P x 273

    273 +

    Q = 22.2 x S x (P2 + 1.013) x P x 273

    273 +

    1 Cv = 1 kv = 1 S =

    The normal flow Qn for other various flow capacity units is: 981.5 68.85 54.44

    The Relationship between these units is as follows: 1 14.3 18

    0.07 1 1.26

    0.055 0.794 1

    Fl m l

  • 7/31/2019 Intro to Pneumatics Modified

    61/95

    61

    Flow example

    S = 35

    P1 = 6 bar

    P2 =5.5 bar

    = 25C

    Q = 22.2 x S x (P2 + 1.013) x P x 273

    273 +

    Q = 22.2 x 35 x (5.5+ 1.013) x .5 x 273

    273 + 25

    Q = 22.2 x 35 x 6.613 x .5 x 273298

    Q = 22.2 x 35 x 6.613 x .5 x 273

    298

    Q = 22.2 x 35 x 1.89 x .957

    Q = 1405.383

  • 7/31/2019 Intro to Pneumatics Modified

    62/95

    62

    Cv = ________between 1 -5

    P1 = ________bar

    P2 = ________5 bar

    = ________C

    Flow capacity formulae transposed

  • 7/31/2019 Intro to Pneumatics Modified

    63/95

    63

    p y p

    Cv = Q

    400 x (P2 + 1.013) x P

    Kv = Q

    27.94 x (P2 + 1.013) x P

    S = Q22.2 x (P2 + 1.013) x P

    Fl it l

  • 7/31/2019 Intro to Pneumatics Modified

    64/95

    64

    Flow capacity example

    Q = 750 l/min

    P1 = 9 bar

    P = 10%

    S = ?

    S = Q

    22.2 x (P2 + 1.013) x P

    S = 750

    22.2 x (8.1 + 1.013) x .9

    S = 75022.2 x 9.113 x .9

    S = 750

    22.2 x 2.86

    S = 750 S = 11.8163.49

  • 7/31/2019 Intro to Pneumatics Modified

    65/95

    65

    Q = _________ l/min

    P1 = _________ bar

    P = _________%

    Cv = _________ ?

    O ifi i i ti

  • 7/31/2019 Intro to Pneumatics Modified

    66/95

    66

    Orifices in a series connection S total = 1

    1 + 1 + 1S1 S2 S3

    Example

    S1 = 12mm

    S2 = 18mm S3 = 22mm

    S total = 11 + 1 + 1

    12 18 22

    S total = 11 + 1 + 1

    144 324 484

    Stotal

    = 1 = 1.00694 + .00309 + .00207 .0121

    S total = 9.09

  • 7/31/2019 Intro to Pneumatics Modified

    67/95

    67

    Cv = _________

    Cv = _________

    Cv = _________

    Cv total = ________

  • 7/31/2019 Intro to Pneumatics Modified

    68/95

    68

    Tube Length in

    0

    10

    20

    30

    40

    50

    60

    0.1 1 5 100.50.050.02 0.2 2

    2

    9

    7.5

    6

    4

    3

    S mm

  • 7/31/2019 Intro to Pneumatics Modified

    69/95

    69

    Tube Material Length Fittings Total

    Dia. 1 m 0.5 m Insert type One Touch 0.5 m tube +

    (mm) straight elbow straight elbow 2 strt. fittings4 x 2.5 N,U 1.86 3.87 1.6 1.6 1.48

    5.6 4.2 3.18

    6 x 4 N,U 6.12 7.78 6 6 3.72

    13.1 11.4 5.96

    8 x 5 U 10.65 13.41 11 (9.5) 11 6.73

    18 14.9 9.23

    8 x 6 N 16.64 20.28 17 (12) 16 10.0026.1 21.6 13.65

    10 x 6.5 U 20.19 24.50 35 (24) 30 12.70

    29.5 25 15.88

    10 x 7.5 N 28.64 33.38 30 (23) 26 19.97

    41.5 35.2 22.17

    12 x 8 U 33.18 39.16 35 (24) 30 20.92

    46.1 39.7 25.0512 x 9 N 43.79 51.00 45 (27) 35 29.45

    58.3 50.2 32.06

    Table 7.30 Equivalent Flow Section of current tube connections

  • 7/31/2019 Intro to Pneumatics Modified

    70/95

    70

    Average piston speed in mm/s

    dia. mm 50 100 150 200 250 300 400 500 750 10008,10 0.1 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1

    12,16 0.12 0.23 0.36 0.46 0.6 0.72 1 1.2 1.8 2.420 0.2 0.4 0.6 0.8 1 1.2 1.6 2 3 4

    25 0.35 0.67 1 1.3 1.7 2 2.7 3.4 5 6.732 0.55 1.1 1.7 2.2 2.8 3.7 4.4 5.5 8.5 11

    40 0.85 1.7 2.6 3.4 4.3 5 6.8 8.5 12.8 17

    50 1.4 2.7 4 5.4 6.8 8.1 10.8 13.5 20.3 27

    63 2.1 4.2 6.3 8.4 10.5 12.6 16.8 21 31.5 4280 3.4 6.8 10.2 13.6 17 20.4 27.2 34 51 68

    100 5.4 10.8 16.2 21.6 27 32.4 43.2 54 81 108

    125 8.4 16.8 25.2 33.6 42 50.4 67.2 84 126 168

    140 10.6 21.1 31.7 42.2 52.8 62 84.4 106 158 211

    160 13.8 27.6 41.4 55.2 69 82.8 110 138 207 276

    Equivalent Flow Section in mm2

    Table 7.31Equivalent Section S in mm2 for the valve and the tubing, for6 bar working pressure and a pressure drop of 1 bar (Qn Conditions)

    Flow Amplification

  • 7/31/2019 Intro to Pneumatics Modified

    71/95

    71

    p

    Signal Inversion

  • 7/31/2019 Intro to Pneumatics Modified

    72/95

    72

    g

    Selection

  • 7/31/2019 Intro to Pneumatics Modified

    73/95

    73

    greenred

    Memory Function

  • 7/31/2019 Intro to Pneumatics Modified

    74/95

    74

    greenred

    Memory Function

  • 7/31/2019 Intro to Pneumatics Modified

    75/95

    D l d it hi ff

  • 7/31/2019 Intro to Pneumatics Modified

    76/95

    76

    Delayed switching off

    Pulse on switching on

  • 7/31/2019 Intro to Pneumatics Modified

    77/95

    77

    Pulse on switching on

    P l l i l

  • 7/31/2019 Intro to Pneumatics Modified

    78/95

    78

    Pulse on releasing a valve

  • 7/31/2019 Intro to Pneumatics Modified

    79/95

    79

    Direct Operation and Speed Control

    Control from two points: OR Function

  • 7/31/2019 Intro to Pneumatics Modified

    80/95

    80

    Shuttle Valve

    Safety interlock: AND Function

  • 7/31/2019 Intro to Pneumatics Modified

    81/95

    81

    Safety interlock: AND Function

  • 7/31/2019 Intro to Pneumatics Modified

    82/95

    82

    1

    3

    2

  • 7/31/2019 Intro to Pneumatics Modified

    83/95

    83

    Inverse Operation: NOT Function

  • 7/31/2019 Intro to Pneumatics Modified

    84/95

    84

    P

    AB

    Direct Control

  • 7/31/2019 Intro to Pneumatics Modified

    85/95

    85

    P

    ABHolding the end positions

  • 7/31/2019 Intro to Pneumatics Modified

    86/95

    86

    Cam valve

    Semi Automatic return of a cylinder

  • 7/31/2019 Intro to Pneumatics Modified

    87/95

    87

    Repeating Strokes

    2 4

  • 7/31/2019 Intro to Pneumatics Modified

    88/95

    88

    3

    1 2

    4

    Sequence Control

  • 7/31/2019 Intro to Pneumatics Modified

    89/95

    89Commands

    Signals Start

    A+ B+ A- B-

    b0b1 a0a1

    b1

    A+ B+

    b0 a1

    A- B-

    aostart

    ISO SYMBOLS for AIR TREATMENT EQUIPMENT

    Air Cleaning and Drying

  • 7/31/2019 Intro to Pneumatics Modified

    90/95

    90

    PressureRegulator

    Regulatorwith relief

    WaterSeparator

    Filter

    Auto Drain Air Dryer

    Filter /Separator

    Filter /Separator

    w. Auto Drain

    Multi stageMicro Filter

    Lubricator

    Air

    Heater

    Heat

    Exchanger

    AirCooler

    BasicSymbol

    DifferentialPressure

    Regulator

    PressureGauge

    FRL Unit, detailed

    FRL Unit,

    simplified

    Refrigerated

    Air Dryer

    AdjustableSetting

    Spring

    Pressure Regulation

    Units

  • 7/31/2019 Intro to Pneumatics Modified

    91/95

    91

    Single Acting Cylinder,Spring retract Single Acting Cylinder,Spring extend

    Double Acting Cylinder Double Acting Cylinder withadjustable air cushioning

    Double Acting Cylinder,with double end rod

    Rotary Actuator,double Acting

  • 7/31/2019 Intro to Pneumatics Modified

    92/95

    92

    Return Spring (in fact not an

    operator, but a built-in element)Mechanical (plunger):

    Roller Lever: one-way Roller Lever:

    Manual operators: general: Lever:

    Push Button: Push-Pull Button:

    Detent for mechanical and manual operators (makes a monostable valve bistable):

    Air Operation is shown by drawing the (dashed) signal pressure line to the side of

    the square; the direction of the signal flow can be indicated by a triangle:

    Air Operation for piloted operation is shown by a rectangle with a triangle. This

    symbol is usually combined with another operator.

    Direct solenoid operation solenoid piloted operation

    ManualOperation

    ClosedInput

    Inputconnected to

    OutputReturnSpring

    ManualOperation

    ClosedInput

    Inputconnected to

    OutputReturnSpring

  • 7/31/2019 Intro to Pneumatics Modified

    93/95

    93

    Air SupplyExhaust

    Manually Operated,

    Normally Open 3/2 valve(normally passing)

    with Spring

    OR

    MechanicalOperation

    Inputconnected to

    Output

    Input closed,Output

    exhaustedReturnSpring

    Air Supply Exhaust

    Mechanicallynormally closed 3/2

    (non-passing)

    Valve with Spring Return

    OR

    MechanicalOperation

    Inputconnected to

    Output

    Input closed,Output

    exhaustedReturnSpring

    Manually operated Valvesdetent, must correspond with valve position

    no pressure pressureno pressure pressure

  • 7/31/2019 Intro to Pneumatics Modified

    94/95

    94

    3/2, normally closed/normally openbistable valves: both positions possible

    3/2, normally closed 3/2, normally openmonostable valves never operated

    Solenoids are never operated in rest

    Air operated valves may be operated in rest

    Electrically and pneumatically operated Valves

    pressureno pressure

    pressure

    Mechanically operated Valves

    No valve with index "1" is operated.no pressure

    an1an1

    All valves with index "0" are operated.

    an 0

    pressure

    an 0

    no pressure

    First stroke of the cycleA B

    Last stroke of the cycleC

  • 7/31/2019 Intro to Pneumatics Modified

    95/95

    POWER Level

    LOGIC Level

    SIGNAL INPUT Level

    Start

    Memories,AND's, OR's,

    Timings etc.

    A+ A- B+ B- C

    Codes: a , a , b , b , c and c .1010 10