132
Introduction to Metallurgy An Interactive Video Teletraining Course Developed and Presented by Terry Khaled National Resource Specialist Metallurgy Federal Aviation Administration April 30, 1998

Intro to Metallurgy

  • Upload
    allogy

  • View
    476

  • Download
    26

Embed Size (px)

Citation preview

Page 1: Intro to Metallurgy

Introduction to Metallurgy

An Interactive Video Teletraining Course

Developed and Presented by

Terry Khaled National Resource Specialist

Metallurgy Federal Aviation Administration

April 30, 1998

Page 2: Intro to Metallurgy

Table of Contents

GETTING STARTED

How Do I Use This IVT Guide? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I. AIRFRAME ENGINEERING CURRICULUM

What Does the Curriculum Cover? . . . . . . . . . . ..*................*... Two-Week Job Function Course .,.,......*........*......... Overviews of Technical Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . Core Technical Subjects Courses ,.........................**

II. IVT COURSE ORIENTATION

About This IVT Course . . . . . . . ..*.............*..........................

What Is IVT? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Who Is the Target Audience? . . . . . . . . .._...........--..................

Who Is the Instructor? . . . . . . . . . . . . ..*...................................

What Will You Learn? .**.......*..............*..*......................

How Will This Course Help You On the Job? . . . . . . . . . . . . . .

What Topics Does the Course Cover? . . . . . . . . . . . . . . . . . . . . . . . . . . .

What Are Some Good References? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

III. SELF-ASSESSMENT & EXERCISES

Pre- & Post-Course Self-Assessment Questions . . . . . . . . . . . .

APPENDICES

A.

B.

C.

Metallurgy IVT Presentation Visuals

Aircraft Alloys B-l. Aluminum Alloys , B-2. Titanium Alloys B-3. Carbon, Low Alloy, and Alloy Steels B-4. Corrosion Resistant (CRES) Steels B-5. Superallbys

Self-Study Video Course Evaluation Form

1

6

6

7

7

8

8

8

10

11

Instructional Video Teletraining Course Federal Aviation Administration April, 1998

Introduction to Metallurgy i

Page 3: Intro to Metallurgy

Getting Started

How Do I Use This IVT guide provides you with the position of this course in This IVT the Airframe Engineering Curriculum, an orientation to the IVT Guide? course, support materials for use during the broadcast, self-

assessment and practice exercises, and the course evaluation.

Follow these steps to complete your study.

1. Read Section I, Airframe Engineering Curriculum, to familiarize yourself with the the overall scope and format of the curriculum.

2. Review Section II, IVT Course Orientation, before the broadcast, if possible, to get an overview of the purpose of the course, the target audience, the instructor, what you will learn, how this course will help you on the job, the topics covered in the course, and some good references on the topic.

3. Answer the pre-course self-assessment questions in Section III, Self-Assessment .

4. Turn to Appendix A, Metallurgy IVT Presentation Visuals, and refer to it during the broadcast. Appendix A contains the visual support material used by the instructor during the broadcast. You can use these visuals to take notes and follow along with the broadcast presentation.

5. Refer to Appendix B, Aircraft Alloys, for additional information, including designation systems and chemical composition listings.

6. Complete the post-course self-assessment in Section III, Self Assessment.

7. Complete the IVT Course Evaluation Form in Appendix C and send it to your Directorate/Division Training Manager (ATM).

Instructional Video Teletraining Course Federal Aviation Administration April, 1998

Introduction to Metallurgy I

Page 4: Intro to Metallurgy

Airframe Engineering Curriculum

I. Airframe Engineering Curriculum

What Does the ,The Airframe Engineering Curriculum fits into the broader AIR Curriculum Training Program that is summarized in the following figure. Cover?

An Overview

ASE Airframe

Job Function

o Z-week Course

I o Technical Topics-IVTNideo

/ 0 Follow-an Co”r~n I

/ ASI

: JabFunction

j ASE Systems :

Job Function )

ME /

1 Propulsion

I Job Function

Flight Test I

Job Funcdon

First Year with Aircraft Certi~c~n--~z- _---

*- -.--------

i DACT.OAT I 1

I Continuing Development

Within the context of the AIR Training Program, the Airframe Engineering Curriculum is designed to effectively meet the critical safety mission of the FAA by addressing the following Service goals:

Standardization

l Promote standardization throughout the organization in task accomplishment and application of airworthiness regulations in order to achieve uniform compliance.

Instructional Video Teletraining Course Federal Aviation Administration April, 1998

Introduction to Metallurgy 2

Page 5: Intro to Metallurgy

Airframe Engineering Curriculum

,Job Performance Proficienw

l Reduce significantly the time required for newly-hired engineers to attain full job performance proficiency.

Customer Service l

l Establish and maintain appropriate, effective, and responsive communication, collaboration, leadership, and teamwork with both internal and external customers.

In addition to the Service goals, the Airframe Engineering Curriculum is designed to provide ASEs with job function training in three domains:

l Tasks and procedures governing the work of engineers in design approval, technical project management, certificate management, and designee management.

l FAR airworthiness requirements that are the purview of airframe engineers. Generally they are subparts C and D of FAR Parts 23,25,27, and 29.

l Technical subjects essential for all new engineers to meet both introductory requirements and, later, minimum technical proficiency level requirements.

The resulting Airframe Engineering Curriculum structure consists of three main types of training opportunities -

1. Two-Week Job Function Course

2. Overviews of Technical Subjects

3. Follow-on Core Technical Subjects Courses

Two-Week Job The Two-Week Job Function Course uses an instructor-led, Function classroom-based format with lecture, discussion, and individual Course and group activities. Supporting materials used in the course

include print, overhead transparencies, videotapes, job aids, and documents and sample reports.

Lnstructional Video Teletraining Course Federal Aviation Administration April, 1998

Introduction to Metallurgy 3

Page 6: Intro to Metallurgy

Airframe Engineering Curriculum

The course is divided into the following two major sections:

Week I

l Certification Tasks - includes design approval, technical pr6ject management, certification management, and DER management.

Week 2

l FAR Requirements and Key FAR Sections - includes training in the subparts of the FAR that apply to airframe engineers (subparts C and D) at two levels: an overview of those subparts across FARs 23,25,27, and 29; and in-depth discussion of significant sections of the FAR that are important to the Service. The importance of these sections may stem from problems in interpretation and application of requirements, technical complexity of a design, “high visibility” projects, or safety considerations that are paramount.

Overviews of Technical Subjects

High-level overviews of ten technical subjects are presented by NRSs or other senior engineers. These overviews are available in two modes:

l An initial live three to four hour IVT satellite broadcast with accompanying course material is received at each Directorate and other downlink sites.

l A Video/Self-Study Training Package adapted from the initial IVT presentation and accompanying course material is available through the Directorate Training Manager.

Basic concepts and FAA-specific applications and examples are provided for each of the following ten technical subjects:

l Aircraft Loads

l Fatigue/Fracture Mechanics/Damage Tolerance

l Composite Materials (Design/Certification Considerations in Composite Aircraft Structure)

Instructional Video Teletraining Course Federal Aviation Administration April, 1998

Introduction to Metallurgy 4

Page 7: Intro to Metallurgy

Airframe Engineering Curriculum

l Crashworthiness/Occupant Protection

l Material Properties/Manufacturing Processes of Metal (Introduction to Metallurgy)

l Stress Analysis

l FluttexYAeroelastic Stability

l Structural Test Methods

l Design and Construction

l Repairs and Modifications

Each technical subject overview is designed to not only provide ASEs with the FAA perspective on the topic, but also serve as an indicator of what further training may be needed.

Core Technical As a follow-on to the Overviews of Technical Subjects, the Subjects curriculum will provide more in-depth training on the Courses following three subject areas:

l Basic Loads

l Stress Analysis and Structural Test Methods,

l Repairs and Modifications

These core technical subjects are essential to the technical work of the airframe engineer in a regulatory environment regardless of product or technology. Training in each of the core subjects will be designed to bring airframe engineers to a minimum level of technical proficiency and to help promote proficiency in the application of the technical knowledge in an office work environment.

Additional technical training for engineers beyond these core subjects will depend largely on AC0 organizational needs stemming from customer requirements, products certified, emerging technology, and the number of staff requiring more specialized training. In short, the more advanced the technical training required, the more individualized it becomes.

Instructional Video Teletraining Course Federal Aviation Administration April, 1998

Introduction to Metallurgy 5

Page 8: Intro to Metallurgy

IVT Course Orientation

II. IVT Course Orientation

About This IVT Course

Introduction to Metallurgy is one in a series of ten “Overviews of Technical Topics” in the Airframe Engineering Curriculum designed to prepare you to effectively meet the critical safety mission of the FAA. [For more information oy2 the Airframe Curriculum, rejer back to Section I of this guide. J

Through a five-hour Interactive Video Teletraining (IVT) format, Terry Khaled, the FAA’s National Resource Specialist for Metallurgy, will provide you with the basic concepts of metallurgy, including information on solidification and solidification structures and fabrication methods and their effects, and, woven throughout the course, key points to look for or be aware of in a certification project, including knowing when to call in a metal specialist.

What Is IVT? Interactive Video Teletraining, or IVT, is instruction delivered using some form of live, interactive television. For the overview courses, the instructor delivers the course from the television studio at the FAA Academy in Oklahoma City. Through the IVT broadcast facility instructors are able to use a variety of visuals, objects, and media formats to support the instruction.

Participants are located at various receive sites around the country and can see the instructor and his/her materials on television sets in their classrooms. The participants can communicate with the instructor either through a microphone and/or the simple-to-use Viewer Response System keypads. During the live presentation, when a participant has a question or the instructor asks for specific participant responses to questions, the participant(s) can signal to the instructor using their keypad. The collective participant responses or the name

Instructional Video Teletraining Course Federal Aviation Administration April, 1998

Introduction to Metallurgy 6

Page 9: Intro to Metallurgy

IVT Course Orientation

Who Is the Target Audience?

Who Is the Instructor?

Terry Khaled

of a specific participant signalling a question are immediately visible to the instructor on the console at the broadcast site. The instructor can then respond as needed. When the instructor calls on a specific participant to speak from a site, participants at each of the other sites can simultaneously hear the participant who is speaking.

This course is designed for:

l New and experienced FAA airframe engineers who are not proficient or expert in metallurgy but who require enough knowledge of the subject to be able to review data submitted by manufacturers.

l Inspectors who enforce inspection procedures resulting from the engineering evaluation required to satisfy FAR 25.571.

Dr. Tarek (Terry) Khaled, has more than 25 years of experience in metallurgical engineering, mechanical design, manufacturing, and project management. He has worked at five aircraft manufacturing companies, coming to the FAA from Rockwell International, Space Systems Division. His latest experience in airframe materials was gained through work on the space shuttle, the F- 18, and the F-l 11. Dr. Khaled also has experience with the heat resistant alloys that are used in turbine engines, which was gained by working on fighter engines and aircraft power systems. Terry enjoys reading about military history, hardware, tactics, and strategy. He also loves middle eastern foods.

Instructional Video Teletraining Course Federal Aviation Administration April, 1998

Introduction to Metallurgy 7

Page 10: Intro to Metallurgy

IVT Course Orientation

What Wili You After completing this course you will have a basic Learn? understanding of the concepts and principles of metallurgy,

including:

l The nature of metals.

l Solidification and ingot structures.

l Deformation and mechanical working.

l Strengthening mechanisms.

l Effects of fabrication and finishing operations on properties.

How Will This After completing this course, you should be able to: Course Help You On the Job?

l Describe how metals and alloys solidify and list the factors that control ingot structure.

l Understand how mill products are produced from ingots by hot and cold working, and be able to distinguish cold from hot working.

l Describe how metallic materials are hardened by heat treatment and by other means.

l Understand how fabrication and finishing operations affect the properties of metals and alloys.

l Recognize when, for certification purposes, a metallurgist needs to be part of the FAA team.

What Topics The following topic outline is intended to give you an overview Does the of the course content. In addition to this outline, Appendix A Course Cover? contains the visual presentation material and supporting text

for each figure used by the instructor during the broadcast.

I. Introduction

II. The nature of metals

1. Atomic and crystal structures

2. Polymorphism

Instructional Video Teletraining Course Federal Aviation Administration April, 1998

Introduction to Metallurgy 8

Page 11: Intro to Metallurgy

IVT Course Orientation

III. Solidification and solidification structures

1. Pure metals

2. Alloys

3. Phase diagrams

4. Cast/ingot microstructure control

IV. Fabrication methods - overview

1. Mill products and mechanical working

2. Deformation

a. Single crystal

b. Polycrystalline metals

C. Effects of temperature

d. Cold and hot working

e. Primary and secondary working

3. Strengthening in metals

a. Dispersion hardening

b. Strain hardening

C. Grain size

d. Solid solution strengthening

e. Second phase hardening

f. Hardening heat treatments

V. Effects of fabrication operations

VI. Effects of finishing operations

instructional Video Teletraining Course Federal Aviation Administration April, 1998

Introduction to Metallurgy 9

Page 12: Intro to Metallurgy

IVT Course Orientation

What Are Some Good References?

There are many references related to metallurgy, too numerous to mention here. However, the following references contain many other references on these subjects and will, help to guide you in the right direction.

Avner, Sydney, H. Introduction to Physical Metallurgy. McGraw-Hill, 1964.

Guy, A.G. Physical A4etallurgy for Engineers. Addison- Wesley Pub. Co., 1963.

Smith, M.C. Principles of Physical Metallurgy. Harper & Brothers Pub., 1956.

Burton, M. S. Applied Metallurgy for Engineers. McGraw- Hill, 1956.

Keyser, C.A. Materials Science and Engineering, 2nd Ed. Charles E. Merrill Pub. Co., 1974.

Flinn, R.A. & Trojan, PK. Engineering Materials and Their Applications. Houghton Mifflin Co., 1975.

Doyle, LE. Manufacturing Processes and Materials for Engineers. Prentice-Hall, Inc., 1985.

United States Steel. The Making, Shaping, and Treating of Steel, IOth Ed. 1985.

The Metals Handbook Series. American Society for Materials (20 volumes).

Instructional Video Teletraining Course Federal Aviation Administration April, 1998

Introduction to Metallurgy 10

Page 13: Intro to Metallurgy

Self-Assessment

IV. Self-Assessment

Pre- & Post- Course Self- Assessment Questions

The instructor will ask you at the begining and end of the presentation to respond to the following four questions about metallurgy as it impacts the certification process.

Rate your confidence level for each of the following statements before and after completing the course.

1. Rate your level of understanding about the facotrs that control ingot structure and properties.

Very Moderately Not Confident Confident Confident

BEFORE THE COURSE: 0 0 III

AFTER THE COURSE: cl cl cl

2. Rate your level of understanding of the effects of mechanical working on microstructure and properties.

Very Moderately Not Confident Confident Confident

BEFORE THE COURSE: Cl cl III

AFTER THE COURSE: q I7 cl

3, Rate your understanding of how hardening by heat treatment impacts microstructure and properties.

Very Moderately Not Confident Confident Confident

BEFORE THE COURSE: 0 cl El

AFTER THE COURSE: 0 q Cl

Instructional Video Teletraining Course Federal Aviation Administration April, I998

Introduction to Metallurgy 11

Page 14: Intro to Metallurgy

Self-Assessment

4. Rate your understanding of how fabrication and finishing operations can affect the microstructure and properties.

Very Moderately Not Confident Confident Confident

BEFORE THE COURSE: El 0 cl

AFTER THE COURSE: 0 cl cl

Instructional Video Teletraining Course Federal Aviation Administration April, 1998

introduction to Metallurgy I2

Page 15: Intro to Metallurgy

Appendix A

Appendix A

Introduction to Metallurgy

IVT Presentation Visuals

Instructional Video Teletraining Course Federal Aviation Administration April, 1998

Introduction to Metallurgy A

Page 16: Intro to Metallurgy

INTRODUCTION TO

METALLURGY

By: Terry Khaled, Ph.D., NRS-Metallurgy

l Certification efforts require knowledge of type design

l Type design + Form, fit, and function 4 Materials and processes

- Material type and condition/heat treatment

- Surface finishing (coatings, shot peening) - Inspection and test

I. Materials and processes integral to type design

2

IVT Course Federal Aviation Authority April, 1998

Introduction to Metallurgy A- I

Page 17: Intro to Metallurgy

cc After completing this course, you should be able to:

l Describe how metals and alloys solidify and list the factors that control ingot structure.

. Understand how mill products are produced from ingots by hot and cold working, and be able to distinguish cold from hot working.

. Describe how metallic materials are hardened by heat treatment and by other means.

. Understand how fabrication and finishing operations affect the properties of metals and alloys.

. Recognize when, for certification purposes, a metallurgist needs to be part of the FAA team.

3

Materials -

. Metals Organic (polymers/plastics, wood)

Non- -metals

I r Ceramic (Al,03, SiO,)

c Inorganic Non-ceramic (C, B, water, graphite, CaO)

r Metal-Ceramic Composite

+-I . Organic-Ceramic

LOther (Carbon-Carbon)

Note: Elemental semiconductors (Si, Ge) fall under metals. Compound semiconductors fall under inorganic materials. 4

IVT Course Federal Aviation Authority April, 1998

Introduction to Metallurgy A- 2

Page 18: Intro to Metallurgy

l Science,of,converting rocks into metals and alloys such as those used on aircraft, autos, & other prqducts.

i Branches

- Extractive

- Ingot

- Powder.

- Physical , ,

6

IVT Course

Federal Aviation Authority April, 1998

introduction to Metallurgy

A- 3

Page 19: Intro to Metallurgy

. Extraction of metals from ores

+ Mining

+ Ore dressing

- Crushing

- Grinding

- Concentration

l Extraction.

- Heat (Fe, Ni)

- Leaching (Ti, Co, Cu)

- Electrochemical (Al)

7

. Production of metal and alloy ingots

+ From extracted metals, scrap, or both

- Refining: Remove undesirable elements

- Alloying: Obtain desired alloys

8

IVT Course Federal Aviation Authority April, 1998

Introduction to Metallurgy A- 4

Page 20: Intro to Metallurgy

. Use of powder techniques to produce

+ Near-net shapes

+ Wrought powder metallurgy products (standard shapes for further processing)

9

l Production of finished parts from ingots or powder products

l Mechanical working: Rolling, extrudi forging, drawing

l Heat treatment

%I9

l Fabrication: Casting, welding, brazing, forming, coating, etc.

10

1VT Course Federal Aviation Authority April, 1998

introduction to Metallurgy A- 5

Page 21: Intro to Metallurgy

. Focus on three important pillars of metallurgy

+ Solidification and ingot structures

l Mechanical working

l Hardening by heat treatment and other methods

11

. The Nature of Metals

. Solidification & Solidification Structures

l Fabrication Methods

l Mill Products & Mechanical Working

. Strengthening in Metals

l Effects of Fabrication Operations

. Effects of Finishing Operations

12

IVT Course

Federal Aviation Authority April, 1998

Introduction to Metallurgy

A- 6

Page 22: Intro to Metallurgy

l Distinctive luster

l Malleable, ductile + Exceptions: Na brittle, Hg liquid, etc.

l Good thermal & electrical conductivity

+ Some non-metals also

l Form positive ions

0 Crystalline

l Inorganic materials also

13

Abmic B c~stan smctums

BCC FCC

@J$gg

l Atomic Structure-metallic bond + Positive “ions” surrounded by electron cloud

0 Crystal Structure + 14 basic types (metals or non-metals) + Most engineering metals

-Body centered cubic (KC) - Face centered cubic (FCC) -Close-packed hexagonal (CPH)

+ Other types include (tetragonal, orthorhombic) 14

IVT Course Federal Aviation Authority April, I998

Introduction to Metallurgy A- 7

Page 23: Intro to Metallurgy

. Metal has different crystal structures

l Depending on temperature

. Iron (Fe) + BCC at elevated temperatures

l FCC at intermediate temperatures

l BCC at the lower temperatures

l Titanium (Ti)

+ BCC at elevated temperatures

+ CPH at the lower temperatures 15

. Metals exist in three states

+ Vapor

+ Liquid

+ Solid

. Solidification: Liquid- solid + Also known as crystallization

- Liquid: No crystal structure

- Solid: Crystal structure

16

IVT Course Federal Aviation Authority April, 1998

Introduction to Metallurgy A- 8

Page 24: Intro to Metallurgy

. Most metal and alloy tonnage produced as ingots

l Ingot production involves melting and solidification

l Casting is a common near-net shape production method

+ Casting production involves melting and solidification

I. It is important to understand solidification processes for pure metals and alloys

17

Topics covered:

l Pure Metals

l Alloys

l Phase diagrams

. Cast/ingot microstructure control

18

IVT Course Introduction to Metallurgy

Federal Aviation Authority April, 1998 A- 9

Page 25: Intro to Metallurgy

. Slow uniform cooling l Crystallization at one

temperature

-Arrest line

. Crystallization by ,98,0F nucleation and growth + Solid crystals

resemble trees

-Called dendrites

. Dendrites eventually touch-no more liquid o

l Each dendrite called grain

l Fully solidified microstructure

+ Single phase

.- Only one pure metal

l Polycrystalline structure

- More than one grain

- Grains separated by grain boundaries

20

IVT Course

Federal Aviation Authority April, 1998

Introduction to Metallurgy

A- 10

Page 26: Intro to Metallurgy

. Alloys made

+ Unintentionally

- Undesirable impurities

+ Intentionally

-To obtain desirable properties

l An alloy consists of more than one component

l Component: Metal, non-metal, or stable compound

+ At least one component must be metal

21

. Alloy system

+ All compositions that can be made from components

l Alloy system can be + Binary (2 component) system

+ Ternary (3 component) system

+ Quaternary (4 component) system

+ Higher systems

- No specific names assigned

22

IVT Course Federal Aviation Authority April, 1998

Introduction to Metallurgy A- I I

Page 27: Intro to Metallurgy

. An alloy consists of one or more phases

l Phase: Uniform, homogeneous substance - can be separated mechanically

. At elevated temperatures

+ Liquid phase: Amorphous (no crystal structure)

l At lower temperatures

+ Solid phase(s): Crystalline

l Number and type of phases present depend on

+ Composition, number of components, temperature

23

l Solid solution l Interstitial

-Solute atoms (small) between solvent atoms

+ Substitutional -Solute atoms in

solvent sites

l Compound: chemical formula

l Metal/Non-metal (e.g., Fe&)

4 Metal/Metal (e.g., N&AI)

Interstitial

0 Solvent atoms

l o !zfP l 0 Solute

l l be atoms fin

?%a3 Substitutional

24

IVT Course

Federal Aviation Authority April, 1998

Introduction to Metallurgy

A- 12

Page 28: Intro to Metallurgy

. Summary sheets describing

+ Cdoling charakteristics

l Phases present

l Exist for

+ Binary and higher alloy systems - Binary systems

n Basis for higher systems

m Easier to work with

I 25 I

IVT Course

Federal Aviation Authority April, 1998

introduction to Metallurgy

A- 13

Page 29: Intro to Metallurgy

Binary Phase Diagmms constructkm . From cooling curves . Pure metal solidification

. One curve per composition l Constant temperature + Arrest line

l Alloy solidification l Temperature range

100 80 60 40 20 O+%A l No arrest line

ljf!\!!f\\J im ki;@&

i Time A Composition B

COOLING CURVES PHASE DIAGRAM 26

Binary Phase Diagmms cootiinat@s

l Abscissa: Composition (weight or atomic %)

. Ordinate: Temperature (OF or OC)

Liquid + Solid

A Composition B 27

IVT Course

Federal Aviation Authority April, 1998

Introduction to Metallurgy

A-14

Page 30: Intro to Metallurgy

l Determine composition of phases at any temperature (T): e.g., 80% A-20% B alloy 7’

l Construct tie line mo at T - m: Composition of solid - o: Composition of liquid

t

E! . Determine relative amounts i i a j i

of phases at T E ;* f ; + Construct tie line at T 8

+ Use lever rule (next slide)

A 100 9b I

l Predict microstructure 00 74 70 0 10 20 26 30 B

Composition 28

m n * 0

h 10 units A 6 unitsA

/I\ Fulcrum /I \ Wt of liquid Wt of solid

phase phase

Amount of liquid : Amount of a

m ni 90%A 10 ; 6

o Ii uid Liquid (%) = E x 100

a-------------------- 74%ii a("h)=~oxlOO

60%A Liquid (%) ,6 =Lox100=62.5%

a (%)=,i x 100 = 37.5%

29

IVT Course

Federal Aviation Authority April, 1998 Introduction to Metallurgy

A-15

Page 31: Intro to Metallurgy

systems + Unlimited solid

solubility

- All alloys exist as one solid phase

. Example: Cu-Ni system (next slide)

l Slow uniform cooling: 50% Cu, 50% Ni alloy

2800

2600

F d 2400 L

g 2200 b

I+ F

2000

1800 Rm

Temp.

ICUI % Nick&l Ni - Solidification by dendrite

nucleation & growth

Nuclei (67%Ni, 33% Cu) formed in liquid

(about 50% Ni, 50% Cu)

Dendrites (60% Ni, 40% Cu) growing to

liquid (43% Ni, 57Th Cu)

0' lime +

31

IVT Course

Federal Aviation Authority April, 1998

Introduction to Metallurgy

A-16

Page 32: Intro to Metallurgy

l Fully solidified microstructure in previous example + Single phase

- Cu-Ni solid solution

l Polycrystalline structure -More than one grain

-Grains separated by grain boundaries

+ Looks same as pu’re metal? . - Not really

32

IVT Course Federal Aviation Authority

Introduction to Metallurgy April, 1998 A-17

I

Page 33: Intro to Metallurgy

l Dendrites form over temperature range + Composition of

solid varies with temperature

- Richer in Cu at lower temperatures (Compare cq, a2 and as)

2700 -

loo0 232937 50 75 100% cu 77 71 63 50 25 0% Ni

33

l Dendrites are not chemically homogeneous + True for all alloy systems

+ Distinct look under microscope

l Inhomogeneity eliminated by + Homogenization anneal

or mechanical working Dark areas: Ni-rich

34

IVT Course Federal Aviation Authority April, 1998

Introduction to Metallurgy A-18

Page 34: Intro to Metallurgy

SdidSo~~ooa Ai%~ySystems CompMmon & Pmpem*es

l Properties vary with composition + True for all alloy systems

l Alloy properties differ from pure metals

l Property maxima or minima + Reached at different compositions

35

ectrical resisti

IVT Course Federal Aviation Authority April, 1998

Introduction to Metallurgy A-19

Page 35: Intro to Metallurgy

a Liquid phase -2 solid phases (L- a +p )

+ At constant temperature (t&

-Called eutectic temperature (lowest melting temp.)

-Arrest line on cooling curve

0 Metals A and B: Limited mutual solid solabilities

. Changes in slope of cooling curve

+ At beginning 2% end of transformations

37

90%A+ lo%19 60%A+4O%B

Time + 0 10 20 30 40 50 6070 8090100

% metal B -w

38

IVT Course Federal Aviation Authority April, 1998

Introduction to Metallurgy A-20

Page 36: Intro to Metallurgy

. Properties vary with composition + True for all alloy systems

-e.g., solid solution alloys

6 Alloy properties different from pure metals

% component B 39

Eutctic mixture

Microstructure vs Temperature for Alloys 1,2,3, and 4

[a or p formng before eutectic referred to as primary a or Bl 40

IVT Course Federal Aviation Authority April, I998

Introduction’to Metallurgy A-21

Page 37: Intro to Metallurgy

Microstructures Interfaces ,

l Grain boundaries l Separate grains of

same phase

l Phase boundaries + Separate different

phases

l Cell boundaries l Separate colonies

(cells) -e.g., cells of eutectic

mixture

Interfaces Atomic Structure ,

. Interfaces provide transition + From one orientation

I to other Grain - -Grains of same phas - Grain boundaries

+ From one crystal structure to another -Phase boundaries

+ Between colonies of different orientation

e

Grain

-Cell boundaries 42

IVT Course Federal Aviation Authority April, 1998

Introduction to Metallurgy A-22

Page 38: Intro to Metallurgy

--. -_ I

0 Potential sites for + Precipitation

+ Phase transformation

l Impurity segregation

+ Cracking

43

l Constructed from cooling curves

. Involves several phases + 6, a Ferrite (BCC) + 6: Austenitk (FCC) + Fe&: Cementite

- Orthorhombic (right angles, a#b#c)

. Covers steels & cast iron + Steels: C C 2%

l Cast Irons: C X2%

IVT Course Federal Aviation Authority April, 1998

Introduction to Metallurgy A-23

Page 39: Intro to Metallurgy

. Complexity of phase Diagram 2800 Aquid _____________

*Due to 3 Allotropic forms (phases) of Fe

t-7 2554 -

Gff?B,c&: ___.

Y Fe F.C.C. - 6, Y, a

. Cooling curve

+3 arrest lines

. Nucleation

+6 : from melt

l y : on 6 grain boundaries

nonmagnetic

_____-_-----.--.

i,

a Fe B.C.C.

*a : on y grain boundaries Time -

45

Eutectic at 2065OF 28OC + Liquid c-g +Fe,C &+ 2:;

Eutectic Mixture

+ Eutectic Mixture

- Should consist of 1666 alternate y and Fe& plates

- Usually: rounded y ” areas in Fe,C matrix g

+ Arrest line on t;i

cooling curve &I E

l Same solidification $ principles as before

h ?Eutectoid 925% F

I

1 f%; ii i i 1 I 0.8 z 3 4.3 5 li.87

#Steels& Cast irons ‘37

I 1 C% I 46

IVT Course Federal Aviation Authority April, 1998

Introduction to Metallurgy A-24

Page 40: Intro to Metallurgy

l Arrest line on a; Y @25% t

cooling curve

+ Basis for steel heat treatment I[ 1 f;e3; ii 1 : 0 0.8 2 3 4.3 5 i i

IVT Course Federal Aviation Authority April, 1998

Introduction to Metallurgy A-25

Page 41: Intro to Metallurgy

Representation of crystal growth from uniformly cooled melt. Crystals begin to form at random locations in melt and grow uniformly until restricted by neighbors or walls of container.

a. Crystals beginning to form.

b. Unrestricted spherical growth.

c. Metal completely solid, with shape of each grain determined by interference with other grains and walls of container.

48

l Nucleation l Multiple random sites

+ Equiaxed grains

. Faster (but uniform) cooling + More nucleation sites (thermodynamics)

+ Finer grain structure - Finer grain and cell sizes

l Seeding =b finer grain structures

l Finer grain structures better mechanical properties

49

IVT Course Federal Aviation Authority April, 1998

introduction to Metallurgy A-26

Page 42: Intro to Metallurgy

Progressive formation of columnar dendrites. Freezing begins at wall of the crucible. Restriction of sidewise growth and the temperature gradient from outside to center of the melt encourage formation of columnar grain shape. a. Freezing beginning at container walls.

b. Freezing continuing.

c. Freezing complete. Shrinkage cavity is formed at center of solid metal.

50

,

l Nonuniform cooling temperature gradients l Mold walls cool faster

l Nucleation at mold walls

l Growth parallel to gradient -Columnar dendrites

l Basis for + Directional solidification (DS) : l Growing single crystals (SX)

.,.,.. . DS & SX used in jet engines Columnar Gralns in

a lead casting

51

IVT Course Federal Aviation Authority April, 1998

Introduction to Metallurgy A-27

Page 43: Intro to Metallurgy

Typical Ingot Structure Steel

. Three microstructural zones + Fine equiaxed grains (4) 3

-Fast uniform cooling at mold surfaces

+ Columnar grains (5) - Growth under temperature

gradient 4 Coarse equiaxed grains (6)

-Slow uniform cooling

l Casting defects l Pipe (I), cavities (Z), &

porosity (3)

Fabrication Methods

Topics covered:

0 Overview

l Mill products and mechanical working

. Importance of mechanical working

53

IVT Course Federal Aviation Authority April, 1998

Introduction to Metallurgy A-28

Page 44: Intro to Metallurgy

L

c

l Metallic components fabricated + By near net shape methods

-Casting

-Powder metallurgy

+ From mill products -Machining, forming, welding, brazing, forging,

adhesive bonding, etc.

l Mill products + Bars, rods, plate, sheet, tube, wire, billet,

and shapes 54

l Mill products produced + By mechanical working of’

- Ingots

- Wrought powder products

l Mechanical working + Deformation at ambient or elevated

temperatures - Rolling, extruding, forging, drawing

55

IVT Course Federal Aviation Authority April, 1998

Introduction to Metallurgy A-29

Page 45: Intro to Metallurgy

. Produces the useful shapes we use

. Breaks down coarse ingot dendritic structure

. Enhances chemical uniformity

. Closes porosity

. Improves mechanical properties

I 56

Topics covered:

l Deformation l Single crystals

l Polycrystalline metals

l Effects of temperature

+ Stress relief

+ Recrystallization

+ Hot vs cold working

. Primary and secondary working 57

IVT Course Federal Aviation Authority April, 1998

Introduction to Metallurgy A-30

Page 46: Intro to Metallurgy

l Study of deformation essential to understand + Production of mill products

+ Properties of mill products

l Study of deformation + Two steps

-Single crystals

- Polycrystalline metals

Debmation - Singk Crystak

l Deformation + Elastic

l Plastic (permanent) - By slip on slip systems

(4 (b) (4 (4

Elastic and Permanent Deformation of Metal Loaded in Shear. (a) Original crystal, unstressed; (6) elastic strain produced by load below elastic limit; (c) increased elastic strain plus permanent strain by slip, resulting from load above elastic limit; (o’) load removed; only permanent strain remains. 59

IVT Course Federal Aviation Authority April, 1998

Introduction to Metallurgy A-3 I

Page 47: Intro to Metallurgy

. Slip system l Close paced direction + close packed plane 4 Closest atomic spacings

:. Strongest l Easier to move along than through

FCC HCP

60

l Stress resolved along slip direction

l Shear component - slip

l Normal component - favors fracture

l F:applied force, A: cross sectional area, T: Resolved shear stress

l z - F’ =Area of slip plane= A/COS$~~* ’ = A L SinX CosX

+2 =OsinX Cos k I 61

IVT Course Federal Aviation Authority April, 1998

Introduction to Metallurgy A-32

Page 48: Intro to Metallurgy

l Slip starts + At most favorably oriented system

-X,h=45°

+ When Tc is reached

- 7,: critical resolved shear stress

l No slip when ‘c = 0 + Slip plane or direction I to tensile axis

(h=90,cosh=0) l Slip plane parallel to tensile axis

(2, = 0, sin x. = 0) 62

IVT Course

Federal Aviation Authority April, 1998

Introduction to Metallurgy

A-33

Page 49: Intro to Metallurgy

. Specimen ends forcibly restrained l Slip planes & directions rotate

-Align with principal strain axis

. Rotation =W preferred orientation

. All deformation processes l Involve restrain

.I Rotation & preferred orientation l Universal phenomena

I 63

(a) Initial condition of the crystal. The location of the active primary slip plane is shown.

Direc of sli

(b) Shear can be pictured as occurring in this manner on each of the

(c) Since the axis of loading actually remains vertical, the angle changes significantly.

IVT Course

Federal Aviation Authority April, I998

Introduction to Metallurgy

A- 34

Page 50: Intro to Metallurgy

Range of

plastic deformation

n: coef. of strain hardening

Extension 65

Yield strength . Releasing load in I: I:

plastic range ;;

.- I: z :i

l Some elastic recovery takes place

+ Some permanent set E

.‘/

____- --_*

-. . \ , . 1 : a : ti _ _ _ _ I : I :

2 i I I I I :

i ; ! I :

remains to i I i

. Generally, yield point * : I :

not well defined ! : I : I : I :

l Define 0.2% offset I :

yield strength v i Strain, in/in

0.2% offse I+ -Plastic* I L Elastic strain (Permanent)

strain 66

IVT Course

Federal Aviation Authority April, 1998

Introduction to Metallurgy

A- 35

Page 51: Intro to Metallurgy

. Each grain behaves as single crystal + Rotation & preferred

orientation Before After

+ Grains become elongated

l Brittle particles/ Brittle particle

compounds l Do not deform + Break & form

broken lines - Called stringers

67

l Mechanical working of say Fe specimen at room temperature + Same effects observed in

tensile test - Rotation & preferred

orientation - Elongated grains & stringers

l Each time section is reduced + Strength * , ductility* z + Grains: more elongated g

- More difficult to distinguish

l Stringers: finer and longer

75% prior reduction - of thickness

r 50%

No prior reduction

66

IVT Course Federal Aviation Authority April, 1998

Introduction to Metallurgy A-36

Page 52: Intro to Metallurgy

. Grain Boundaries

+ Obstacles to deformation -Slip changes direction from grain to grain

-Force must be resolved - gets smaller

+ Major source of strain hardening

69

Grain BoQandaties and Pmp@mes

. Finer grain sizes

+ Higher strength

+ lower ductility (usually)

l Example: Iron alloys (see graph)

7

III ! I ! ! ! ! ! ’

0 2 4 6, 8 10 w, mm

“I, 70

IVT Course

Federal Aviation Authority April, 1998

Introduction to Metallurgy

A-37

Page 53: Intro to Metallurgy

. Mechanical working of say Fe specimen at room temperature + Continued reductions* fracture

. To avoid fracture + Must eliminate effects of prior deformation

- By heat treatment

l Two heat treatments 0 Stress relief (low temperature)

+ Recrystallization anneal (higher temperature)

71

. Heating at fairly low temperatures l Slow process

+ Elimination of effects of prior deformation - Requires very long times

- Not practical

l Practical stress relief cycles , + Only eliminate some residual stresses

6 Ineffective in elimination of effects of prior deformation

72

IVT Course

Federal Aviation Authority April, I998

Introduction to Metallurgy

A-38

Page 54: Intro to Metallurgy

l Heating above recrystallization temperature + New, stress free grains.appear

-By nucleation and growth

+ Initial room temperature properties restored - Further mechanical working possible

. Used between reduction passes + Also called: Intermediate anneal

73

Stages of recrystallization.

(a) Stress-free nuclei appear; (4

(b) Nuclei grow into new crystals, and some additional nucleation; (4

(c) Original crystals disappear, and recrystallization is corn plete.

(4 74

IVT Course Federal Aviation Authority April, 1998

Introduction to Metallurgy A-39

Page 55: Intro to Metallurgy

l For P

l TYP tern

ure Metals tally: 0.3 - 0.5 of absolute melting Derature (see plot next slide)

. For alloys + Must be experimentally determined

75

K e g 1500

E

5 s 1000 .-

i .- z 500

P 8 u 0

OR

I- t

K = OC + 273 3000 OR=OF+460

JO00 540

1 1 L oI*Y~ I-460’

0 2000 4000 6000 OR

0 1000 2000 3000 OK

1227 2

h E

727 i

s ‘3 w

227 i

Fz iii

-273 u

Melting temperature 76

IVT Course

Federal Aviation Authority April, 1998

Introduction to Metallurgy

A-40

Page 56: Intro to Metallurgy

. Finer recrystallized grain sizes + Higher strength

+ Lower ductility (usually)

l Coarse recrystallized grain sizes favored by

l Less extensive mechanical working

+ Higher annealing temperatures

l Long annealing times

l Stringers remain (see next slide) 77

Microstructure Before (a) and After (b) recrystallization

78

IVT Course Federal Aviation Authority April, I998

Introduction to Metallurgy A-4 I

Page 57: Intro to Metallurgy

Cold & Hot WoMing

l Two conditions define hot working + Temperature 2 recrystallization temperature

+ Rate of recrystallization 2 deformation (strain hardening) rate

l Hot working microstructures l Recrystallized grains

+ Stringers remain

l Room temperature working + Can be hot working

-For low melting metals (e.g., Pb)

79

Undeformed

recrystallization

80

IVT Course Federal Aviation Administration April, 1998

Introduction to Metallurgy A- 42

Page 58: Intro to Metallurgy

l Lower energy inputs + Lower Strength at elevated temperatures

l Continuous recrystallization -Keeps strength low

l More reductions possible + Higher ductility at elevated temperatures

+ Continuous recrystallization -Keeps ductility high

81

l Better dimensional TEMPER ROLL DESIGNATIONS control Copper 8 Its Alloys

. Better surface quality Temper % Cold reduction 114 hard 10.9

l No elevated temperature 112 hard 20.9 oxidation 314 hard 29.4

l Suitable for hot, short full hard 37.1

materials extra hard 50.1 spring 60.5

+ e.g., high S steels extra spring 68.6

- FeS melts at grain special spring 75.1

boundaries super spring 80.3

- Grains pull apart, not deform

. Higher strength 4 Proportional to % cold work (see chart)

02

IVT Course

Federal Aviation Administration April, 1998

Introduction to Metallurgy

A- 43

Page 59: Intro to Metallurgy

. For production of standard mill products + Bar (round, hexagonal, square, flat)

+ Rod, wire

l Plate, sheet and foil

+ Shapes (l-beam, channel, angle)

+ Tube and pipe

+ Billets (reforging stock)

. By rolling, forging, drawing, and extruding-

l To convert standard mill products to + Near-net shape products

+ More desirable configurations

l By ring rolling, upset and closed die forging, sheet metal forming, ,many others

a4

IVT Course Federal Aviation Administration April, 1998

Introduction to Metallurgy A- 44

Page 60: Intro to Metallurgy

l Strengthening: Providing means to resist slip

l Resistance to slip* :

- strength and hardness t

- ductility #.(usually)

I

.

05

l Dispersion hardening

l Strain hardening

. Grain size

. Solid solution strengthening l Second phase hardening

l Heat treatment

66

IVT Course Federal Aviation Administration April, 1998

Introduction to Metallurgy A- 45

Page 61: Intro to Metallurgy

0 Dispersion hardening (powder metallurgy)

+ Hard particles blended with matrix, compacted and sintered -Hard particles resist slip

. Strain hardening

+ Cold work strengthens metals (discussed earlier)

-Performed by mill (e.g., H tempers in Al-alloys)

l Grain size

l Finer grain sizes strengthen (discussed earlier)

-Grain size control: during solidification or through working

. Solid solution strengthening

+ Foreign atoms in matrix resist slip - always -Interstitial or substitutional

l Second phase hardening 4 Alloying leads to formation

of hard second phase -Hard second phase resists

slip -Example: eutectic systems

% component B 88

IVT Course

Federal Aviation Administration April, 1998

Introduction to Metallurgy

A- 46

Page 62: Intro to Metallurgy

S&T? wag mat Tkwam?nt

l Application of heat to change or restore properties + One or more heating cycles

l Hardening heat treatments + Precipitation hardening

+ Quench hardening

. Non-hardening heat treatments I + Annealing (including recrystallization anneal)

+ Normalizing

4 Stress relief 89

l Three basic steps

+ High temperature heating - Solutibn heat treatment or austenitizing

+ Quenching - Prolonged delay: no hardening

+ Low temperature heating - Aging/precipitation treatment or tempering

. Performed by mill and/or user

0 Not all alloys hardenable by heat treatment

90

IVT Course Federal Aviation Administration April, 1998

Introduction to Metallurgy A- 47

Page 63: Intro to Metallurgy

. Age/precipitation hardening

l Solution heat treatment + quenching + age/precipitation treatment

+ Used for - Nonferrous alloys, (e.g., alloys of Ti, Al, Ni, Co, Cu) - Some steels, (e.g., precipitation hardening [PHI

and maraging steels)

l Martensitelquench hardening l Austenitizing treatment + quenching + tempering

+ Used for all carbon-hardened steels, (e.g., 4130, 300M, 4340, etc.)

91

IVT Course Federal Aviation Administration April, 1998

Introduction to Metallurgy A- 48

Page 64: Intro to Metallurgy

l Consider Al - 4% Cu alloy ingot + Ingot hot or cold worked + Heated at 520% (968OF) for a few hours

+ Slow cooled to room temperature

l Resulting microstructure (a + p) + p: coarse, mostly on grain boundaries

-Blocks only few slip planes (see next slide)

l To increase strength + Must block more slip planes

92

Single phase u

j3 phase particles form on cc grain boundaries

more /I formed; Al 2 4 6 8

previous /3 grown Copper, wt%

93

IVT Course Federal Aviation Administration April, 1998

Introduction to Metallurgy A-49

Page 65: Intro to Metallurgy

l Must have suitable alloy

+ Single phase at some temperature

’ 660.37O L

+ Favorable precipitation rates

. Example: AU%Cu [close to 20241

0 Solution treatment at 520°C (968OF) for about 4 hours

+ Water quenching

6 Aging in the ambient - 240°C (464OF) range

Al 2 4 6 8 Copper, wt% 94

. Purpose: to obtain single phase (a) + Must dissolve second phase (p) + Hardening proportional to amount

dissolved

l Temperature and time optimized by experimenting to + Affect adequate dissolution + Avoid undesirable grain growth

- Very high temperatures - Excessive times at temperature

95

IVT Course

Federal Aviation Administration April, 1998

Introduction to Metallurgy

A-50

Page 66: Intro to Metallurgy

+ Quench delays and/or slow cooling rates - Little or no hardening

l Alloy soft after quenching + Can cold work

- Straightening or forming

- Added strength (e.g., T8 temper in Al-alloys)

+ Softer than slow-cooled (annealed) material - No second phase particles to block slip planes

96

. At room temperature l Natural aging

- e.g., T, and T, tempers in Al-alloys

. At higher temperatures + Artificial aging

l Properties vary with + Aging temperature & time

. Time-temperature dependence + Varies from property to property

97

IVT Course

Federal Aviation Administration April, 1998

Introduction to Metallurgy

A-5 I

Page 67: Intro to Metallurgy

. Quenched microstructure: c1 l Unstable (super saturated)

- Equilibrium microstructure: a + p

. Aging super saturated a ==z+ fine p precipitates + Mostly within a grains

- Not just on grain boundaries

. Fine p precipitates within a grains l Block more slip planes, increase strength

. Sometimes transition phases form - not equilibrium precipitates

98

. AW%Cu: hardness (or strength)

l At given aging temperature-2 stages + Hardness increases 130

with aging time - To peak hardness

$ 120

g 110 l Hardness decreases with d ,oo

aging time (overaging) 2

. Maximum possible 6 90

hardness (H,) vs aging ii 80

temperature: I 7.

I 6 H, increases between I o.om 0.01 0.1 1 10 100 1000 10,000

300c-110% Time, days

l H, decreases between As-quenched

1 30°C-240°C hardness

99

IVT Course Federal Aviation Administration April, I998

Introduction to Metallurgy A-52

Page 68: Intro to Metallurgy

~~@~~~~C~~~~~~~~ff l-h%m?ent Micmstructwe Changes L f

I *All p phase particles formed *Many slip lanes blocked

P *Strength t hardness1 t l p phase particles forming 1 Gome slip planes blocked Gtrength t hardness t r

.:,$

..’ 5 .*; . . l . .* .;

,. -* . .

s *:’ * *

b

- . . P . . ‘..,I . . .

. -. ,

t ,, ,..

I :~~a~i~~e~r~.~s~~~~~~~~g)

E

E precipitate on larger particles

s *Less particles present aLess slip lanes blocked Gtrength hardness t P

*As quenched *Single phase a Note: Cooring to room temp. at any time *Slip planes free freezes micro-structure-no additional changes *Soft

100

~~C~~~~~~~~~ ~~~~~~~#~

cti@arf Cans~derations ,

. Ab4%Cu alloy . To obtain highest possible hardness

(about 123 Vickers) -AgeatllO-130°Cforov

. ‘Very long artificial aging times + Not practical + Expensive

(furnace time)

. Typically age at 190% for 24 hr

l Accept lower property values

As-quenched hardness 101

IVT Course Introduction to Metallurgy

Federal Aviation Administration April, 1998 A-53

Page 69: Intro to Metallurgy

AgeiPrecipitation Hardening Phase Oiagmms & A/lay Development

l Foundation for development of age hardenable alloys

l Shape of phase diagram -First clue to potential

+ Only certain compositions hardenable

l Examples l Al-alloys: AI-Cu (2000 series), Al-Zn (7000

series), AI-Mg & AI-Si (6000 series) + Ni-alloy: Ni-AI, Ni-Ti

+ Cu-alloys: Cu-Be 102

Steel Heat Tmtment Fabrication and Heat TWHment

. Steel ingots + Mechanical’work *mill (wrought) products

- mill product- parts

l Castings

. Heat treatment + Between and/or at conclusion of fabrication operations

l For cast and wrought alloys

l Can be hardening or non-hardening

- Hardening: To increase strength

- Non-hardening: To eliminate effects or improve qualities of fabrication, or improve hardening response

103

1VT Course

Federal Aviation Administration April, 1998

introduction to Metallurgy

A-54

Page 70: Intro to Metallurgy

l Carbon’ sthels

l Low, medium, &‘high carbon

l Hypoeutectoid, eutectoid, & hypereutectoid . Alloy steels

+ Low alloy (S 8 weight O/O alloy content)

l High alloy (> 8 weight % alloy content)

Eutectoid steel

wypoeutectoid steels 4-Hypereutectoid steel----. I . . . . . I I I I I I I

I .0?8 4.2 Or4 Or6 4.8 t.0 I,.2 54 % Caw . . . .

~ *Irons I+-+-+* . . . .

Low Medium High-carbon carbon carbon

Carbon Steels 104

Steel Heat Tmtment Steel Classitkatiotis

IVT Course

Federal Aviation Administration April, 1998

introduction 10 Metallurgy

A-55

Page 71: Intro to Metallurgy

Steel Heat Thatment Critical fempepipture Range

l Heat treatment principles l Apply to carbon and alloy steels

l Carbon steels easier to understand l Using Fe-C phase diagram (see next slide)

- Each steel has different upper critical temperature

- All steels have one lower critical temperature (1333OF)

105

Sfeel Heat Tmfmenf Critical TemperaWe Range, con&

800 - vo- , 008%C i

I

600 Y- , I 1 I 0.8 1

Steels e 4- Cast Irons

Carbon percent Logarithmic

106

IVT Course

Federal Aviation Administration April, 1998

Introduction to Metallurgy

A-56

Page 72: Intro to Metallurgy

Non-hardening Treatments Effects of Slow Cooling

Development of a normal .IXI.... .I :, ;: .,,. _.:, . . . -.. :I,

hypoeutectoid structure in a 0.40% C steel slow/y cooled from above upper critical

a. Original austenite grains

b. Ferrite appears at austenite grain boundaries

c. Ferrite grains grow

d. Eutectoid temperature is reached

e. All remaining austenite is transformed into pearlite

Note: At room temperature Ferrite + pearlite Ferrite called proeutectoid ferrit

Non-hardening Treatments Effect of Carbon Content I

l All hypoeutectoid steel (C c 0.8 transform in same manner as 0.4% C steel

of proeutectoid asC%*

l In eutectoid steel (C = 0.8%) only pearlite forms

l In hypereutectoid steel (C > 0.8% steel) + Cementite forms, then pearlite

Ferrite, a

108

L

IVT Course Federal Aviation Administration April, 1998

Introduction to Metallurgy A-57

Page 73: Intro to Metallurgy

i”‘: : , .,. :. : ..I’ ‘. 1.:; .&,,.1,. ’

Non-Hanlening Heat Tmatments Full Annealing and Normalizing

. Full annealing and normalizing + Heat above upper critical

l Slow-cool to ambient

~ - In furnace (annealing) - In air (normalizing)

l Normalizing 4 Finer structure & stronger

- Due to faster cooling rates

l Overheating =w coarser structures l Poor mechanical properties

109

IVT Course

Federal Aviation Administration April, I998

Introduction to Metallurgy

A-58

Page 74: Intro to Metallurgy

Full Anneal, Normalizing, and Overheating Graphkal Repmsentation .

A: Austinite, y F: Ferrite, a

P: Pearlite (a + Fe,C)

Overheated Steel ,,.

Full Anneal & Normalizing Effect of Carbon Content

.%Cff + More cementite to block slip

-Strength 8 hardness 8, ductility 4

p fg

280 z E;i

240 g -Jr 200 g

=C :si

160 k Z” 120 = gii 80 f :P

.8 t ii$ .8 m s - Normalized

% Carbon Composition

-..--.--. Annealed

111

IVT Course

Federal Aviation Administration April, 1998

Introduction to Metallurgy

A-59

Page 75: Intro to Metallurgy

Non-ham/e&g Heat Tmfmenfs The Subcritical Anneal Cementite, Fe& (Black)

Ferrite (White)

l Heating at 1000 - 13OOOF for several hours

l Cooling rate not critical

l Cementite platesespheroids l For cold-worked steels

+ Subcritical anneals at -1 300°F - Also rectystallize ferrite

l Spherodized structure + More ductile 8 softer

than pearlite

4k SDheroidized

Heat Treafmenf of Steel Isothetmal Transfomations

. Essential to understanding hardening

. Perform experiment on eutectoid (C=O.8%) steel (see slide 106) + Austenitize say 4 specimens

- By heating above 1333OF

+ Transfer to bath at say 13OOOF - Below 1333OF, :. subcritical

+ Hold for various periods of time - Specimen 1 shortest, 4 longest

+ Quench in water to stop reaction l Examine microstructures

Molten salt bath Molten salt bath 1425OF (774OC) Austenitizing

Cold water Cold water Quenching

Molten salt bath 1300°F (704%)

Isothermal heat treatment

113

IVT Course

Federal Aviation Administration April, 1998

Introduction to Metallurgy

A-60

Page 76: Intro to Metallurgy

isothermal Transformation , 0.8% c mm?oid) $a%!~. ,, ,. , . 4 .I . . . . . 37 ,/,

IVT Course Federal Aviation Administration April. 1998

Introduction to Metallurgy A-61

Page 77: Intro to Metallurgy

Isothemal Transformations T7T Diwmms

. Repeat previous experiment + At several transformation temperatures

down to 1000°F -Obtain isothermal reaction curves

+ Use data to construct TTT diagram - lTT: Time-Temperature-Transformation

l At lower temperatures + Transformation starts sooner + Transformation products finer

115

TTT Diagmn 0.8% ‘C (Eutectoid Steel)

A: Austenite 1700-

C: Cementite

B

800 0.1 Time, seconds (Log. scale)

116

IV? Course

Federal Aviation Administration April, 1998

Introduction to Metallurgy

A-62

Page 78: Intro to Metallurgy

TTT Diagnims Other Carbon Steels

l Similar TTT diagrams + For hypoeutectoid (C < 0.8%) steels

- Ferrite forms before. pearlite

+ For hypereutectoid (C > 0.8%) steels - Cementite forms before pearlite

l End result always l Austenite transforms to F + C

-Equilibrium phases on phase diagram

+ Finer & stronger products at lower temperatures

117

777 Diagrams Effect of Carbon

HYPOEUTECTOID EUTECTOID

W I) I) I) e Carbon Content

A+F+C

Time

HYPEREUTECTOID

118

IVT Course

Federal Aviation Administration April, I998

Introduction to Metallurgy

A-63

Page 79: Intro to Metallurgy

77T Diagrams Tmnsfomation Below OOWF

. Isothermal transformation down to say 400°F + Transformation starts sooner

- Down to 1000°F

+ Below 1000°F -Transformation times increase -Finer, stronger & more ductile products

0 Critical cooling rate + Rate to avoid all F+C transformations (see

next slide)

119

77T IXagrams Critical Cooliolg Rate

A: Austenite F: Ferrite C: Cementite

1 10 100 Time, seconds

777 Diagram for a 0.40% C Steel

IVT Course

Federal Aviation Administration April, 1998

Introduction to Metallurgy

A-64

Page 80: Intro to Metallurgy

that Ti-eafrnenf of Steels The Martensite Reaction

l 0.4% steel austenitized and cooled at rate >critical + Reach MS (martensite start) temperature

- Austenite transforms to’martensite l Reach M,(martensite finish) temperature

- Transformation ends

Complete 77T curve for a 0.40% C steel

4 z... \, .<x: Martensite

_ _ _ _ - - - -

M E

0 I 1 Time. seconds On’ ’ 10 100 ?!?O I?,

Marfensife tiardoless and Crystal Structure

l Martensite hard & brittle

l Hardness depends on C%

. Crysta,I structure: body-centered tetragonal

cj/[ /--- 0 0.2 0.4 0.6 0.8 1.0 1.2

% Carbon

122

NT Course Federal Aviation Administration April, 1998

Introduction to Metallurgy A-65

Page 81: Intro to Metallurgy

’ .I.+- I-

. * . . :

, , . . , t . .

Heat Tmatment of Steels Martensite & Retained Austenite

0 Martensite needles form instantaneously + No nucleation & growth T,

. Percent martensite depends only on temperature

. M, and’ M, depend on C%

. Steels with C > 0.7% l M, below ambient temp.

- Retained austenite

T2

- Between martensite needles

- Eliminate by “subzero” @C

treatment T, >T2 >T3 >T4

0 More retained austenite as C%* 123

The MartensHe Reaction Effect of C%. Time. & Temroeratunz

0 0.2 0.4 0.6 0.6 1.0 1.2

F 900 %

% Carbon.

$700 Austenite (unstable)

3 25% Martensite _--------------------- E 500 _------------

$330 _____________~~I"O~76%

; 200 q Martensite 100

O 0.1 1 10 100

lioo Martensite Formation

Time, seconds in a 0.40% C Steel 124

IVT Course

Federal Aviation Administration April, 1998

Introduction to Metallurgy

A-66

Page 82: Intro to Metallurgy

L

Heat Tmatmeht of Steel Eikt of AMoying Elements

. TTT diagram moves right (longer times) l With increasing carbon and/or alloy content

(except Al, Ti, Co, Nb, V)

. Longer times; i.e., lower critical cooling rates + Milder quenches required for hardening

- Less risk of quench cracking/distortion

l MS, M, pushed to lower temperatures + With increasing carbon and/or alloy content

(except Al, Co)

l More retained austenite at room temperature - Adverse effects on some properties

125

Heat Treatment of Steek HatienabiMy

. Cooling rate at center < at surface

. During quenching + Pearlite may form

in interior. - Section will have

low strength

l Hardenability: Ability to harden thick sections + Deep hardening steels: Logarithm of time

Low critical cooling rates

+ Shallow hardening steels: high critical cooling rates 126

IVT Course

Federal Aviation Administration April, 1998 Introduction to Metallurgy

A-67

Page 83: Intro to Metallurgy

Heat Tmtment of Steel Depth of Hardening

a Depth to which martensite forms

l Increases with

+ Higher hardenability -Alloy content

+ More severe quenches - Quenchant type, temperature

-Agitation

-Size of quench tank

l Smaller section sizes

127

Depth of Hadening EiBct of Allov Content

Steel Nominal Total Alloy Max. Hardenable Dia., in % (Oil Quench)

4130 __msw___-wwm-_- - 2.18 ~~~~~~~~~~-~~~~~----~~-~~ 0.50

4140 __~~~~__~~~~~~~ - 2.55 _____-______---___--___I________ 1.00

4340 ______-__ - ____ - 4.20 ______________________________ccc_ 2.50

3()0M -----I- 5.90 --~~~~----~----------I---- 5.00

128

IVT Course

Federal Aviation Administration April, 1998

Introduction to Metallurgy

A-68

Page 84: Intro to Metallurgy

Heat Thatmen? of Steel Considerations in Hardening

. Section size + Problem in carbon & low alloy steels

(see next slide)

l Severe quench l Increase depth of tiardening l Increase risk of cracking/distortion

l Use of higher alloy steels l Larger section hardenable with milder quenches

l Less risk of cracking/distortion

l More expensive

129

Depth of Hardening Effect of Section Size Effects of mass on typical properties of heat-treated 4130 steel

Bar size (J, CJ~ Elong. in Reduct. Surface In,

kai . . aI d. HB

1 151 128 18.0 55.0 307 2 107 83 20.0 58.0 223 3 103 78 22.0 60.0 217

Effects of mass on typical properties of heat-treated 4140 steel

Bar size CT, (Jo Elong. in Reduct. Surface in. kai kai 2 in. % in area % hard. HB

1 165 143 15. 50 335 2 133 109 18 55 202 3 125 95 19 55 293

130

IVT Course

Federal Aviation Administration April, I998

Introduction to Metallurgy

A-69

Page 85: Intro to Metallurgy

Heat Titedatment of Steel Tempering

. Steels must be tempered after quenching l To reduce brittleness

. In tempering + Steel heated to some temperature

- Below lower critical

+ Held for some time -Typically 2 - 4 hrs

+ Cooled at any desired rate to room temperature

131

Tempering E&c? on Prppeties

l Tempering accompanied by + Reduction in hardness & strength

+ Increase in ductility & toughness

+ Changes in other properties

l Tempering temperature %’ + Strength and hardness 4& (usually)

+ Ductility and toughness @(usually)

132

IVT Course

Federal Aviation Administration April, 1998

Introduction to hletallurgj

A-70

Page 86: Intro to Metallurgy

Tempering Microstructure Changes ,

l In tempering: Martensite =&tempered martensite + Tempered martensite: mixture of cementite & ferrite

+ Tempering temperatur - Size of cementite part with tempering temperature

- Strength and hardnes

- Ductility and toughnes

Black particles: Cementite White background: Ferrite

.:, .~;:.‘;;.:.:::,, ~ oj)

. . . . .: j . . ‘;’ .: t. c., . 1 ‘:.! :i .$y.. . ,. @

Tempering TEM

133

Heat Treatment of Steels ,Temperin_q Curves .

290,ooo 270.000

250,000

230,000

210,000

190,ooo

170,000

150,000

130,000

110,000

mm

70,000

50,ooo 400 5w 600 700 900 900 looo 1100 1200 1300

Tempering Temperature, OF Normalized at 15GIPF, reheated to 155oOF, quenched in agitated oil

134

I NT Course

Federal Aviation Administration April, 1998

Introduction to Metallurgy

A-71

Page 87: Intro to Metallurgy

hat Tmatment of St&s Case Hatdenim

. To develop hard surface layer while retaining tough core

l Methods + Chemical: surface enrichment with

hardening elements - Carburizing

- Nitriding

-Others (carbonitriding, boriding)

+ Non-chemical: heating surface layer only -Induction, flame. laser, light

135

Case Wdening of Steels Cartwizin~

l Heat to within austenite range + In contact with carburizing agent

-Solid (pack carburizing)

-Liquid (salt bath carburiting)

-Gas (gas carburizing) - most widely used

l Soak to achieve desired case depth

l Quench

l Temper

136

IVT Course

Federal Aviation Administration April, I998

Introduction to Metallurgy

A-72

Page 88: Intro to Metallurgy

Case Hardening of Sfeels Nitnwna

l Harden and temper as usual

l Heat to nitriding temperature (lower than tempering temperature)

l In contact with nitriding agent -Gas (gas nitriding)

-Liquid (salt bath nitriding)

l Soak to achieve desired case depth

l Cool to ambient temperature l Cooling rate not critical

137

Case Hardening of Steels Non-Chemical Methods

l Surface layer heated to austenite range + By induction, flame or other method

+ Case depth controlled by - Heating time

-Heating parameters (e.g., frequency in induction)

l Quench l Surface layer hardens

+ Unheated core: unchanged

l Temper

138

IVT Course

Federal Aviation Administration April, 1998

Introduction to Metallurgy

A-73

Page 89: Intro to Metallurgy

Fabrication Opwations

. Can affect microstructure and properties + Due to processing temperature

-Welding, brazing, adhesive bonding, abusive machining

+ Due to mechanical working -Forming, forging

+ Due to reactions with filler metal -Welding, brazing

l Must consider or remedy effects

I 139

l Include

+ Cleaning, coating, sealing and inspection

l Can affect final product

l Acid cleaning, plating: hydrogen embrittlement

+ Plating on aluminum or titanium: poor adhesion

+ Painting, thermal spray: exposure of base metal to processing temperature

+ Pre-penetrant etch: destruction of surface finish, hydrogen embrittlement

l Must avoid or remedy effects

140

IVT Course

Federal Aviation Administration April, 1998

Introduction to Metallurgy

A-74

Page 90: Intro to Metallurgy

Appendix B

Appendix B

Aircraft Alloys

In the following appendices, some of the alloys used in the aircraft industry are s presented. Designation system and chemical composition listings are included. The listings are by no means exclusive and, as such, they do not include all the alloys used in the industry.

CONTENTS:

Appendix B I-------------- Aluminum Alloys

Appendix B2-------------- Titanium Alloys

Appendix B3-------- ______ Carbon, Low Alloy, and Alloy Steels

Appendix B4-------------1 Corrosion Resistant (CRES) Steels

Appendix BS-------------- Superalloys

Instructional Video Teletraining Course Federal Aviation Administration April, 1998

Introduction to Metallurgy B

Page 91: Intro to Metallurgy

Appendix B

Appendix B-l

Aluminum Alloys

Instructional Video Teletraining Course Federal Aviation Administration April, 1998

Introduction to Metallurgy Bl

Page 92: Intro to Metallurgy

DESIGNATION SYSTEMS FOR ALUMINUM ALLOYS; OVERVIEW

GENERAL

Aluminum alloys are identified by alloy designations, to describe their chemistry. and by temper designations. to describe their processing details.

Alloy Desienations

A four digit system is used for wrought alloys whereas a three-digit one is used for cast alloys. In each category. the alloys are grouped by major alloying element(s). Prefix X signifies an experimental alloy.

Wrought Alloys Cast Alloys

Aluminum, r99.m%. ............................. Ix.Lr Aluminum alloys pxpd by M rlkyial

ekmcnt(s): Copl=r .......................................... hlAn&u”. .................................. .:. 3ur

.......................................... Mmsium ..................................... Sux Msgncsium and silicon ......................... 6ur zinc ............................................. 7xXx Otbct elements ................................. &;u

Unused series ..................................... 9ur

Aluminum, z99.m. . . . . . . . . . . . . . . . . . . . . . . . . . Lua Aluminum alloys gouprd by majw dbyin(

ckmmltr): copper...: . . ..._..._...................,...,,.. 2r.r.l Silicon. with addal copper l ndla

nqnesium .................................. Irr~ Silicaa ......................................... 4r.n~ Magnesium .................................... JUJ zinc ................ ........................... 7rr.z Tin.. ........................................... krs Otbcr eknwnrs ................................ PUJ

Unused tir .................................... buJ

XxX.0: CASTtNCS xXx.1,.2: INGOTS

Temper Designations Temper is identified by a letter or a letter plus one or more numerals: e.g., 606 I-F, 606 I -T6. 5052-H3. The basic temper designations are: I - F: as-fabricated 2- 0: annealed 3- H: strain hardened by cold \rork ( for lr-rought products only ). Letter H followed by two or more numbers to indicate level

of strain hardening. 4- T: Solution treated and aged. The letter T is followed by a number from I-IO to indicate heat treat specifics.

Notes

Wrought 2xxx, 6xxx. 7xxx (except 7072). some Sxxx, and cast 2xx, 3x,, 7xx and 7xx alloys can be heat treated to high strength levels.

Page 93: Intro to Metallurgy

ALUMINUM ALLOYS WROUGHT

Composition of wrought undloyd aluminum and wrought aluminum alloys

-- u- 1

;=. - -

Lsom. - .u - uNsk.m Y . . C. Mn %4# cr RI L 83 v - n rma Td -

Ia3 . ..__.__... 0.35 0.6 &IO 0.M 0.M “. OJJ 0.M 0.03 0.m .. 9935 IO40 APlOY) ............. 0.Y) 03l 0.10 0.M 0.M . 0.10 ... 0.M ... 104s A91015 ............. 0.r)

z.9 0.10 0.M 0.M 0.03 ... 0.0 ...

IOSO API050 Alw.5.. ... .0.25 0.0 0.05 0.0 0.05 ” 0.M ” IwA A91060 AlW.6.. ... .0.x 035 0.M 0.03 0.03 . . 0.05 ... 0.05 ... lobs API@35 ............. 0.3 03 0.M 0.03 0.03 0.0 0.M lum A9lOXl Alw.7.. ... .o.xl 0.X 0.01 0.03 O.Ol 0.01 ” 0.M .’ lml A9lUa AlW.8.. .... 0.13 0.L’ 0.03 0.02 0.01 om 0.m 0x6 ... la35 A9l@S ............. 0.10 0.1: 0.03 0.m 0.02 0.m 0.03 0.05 ... Ian A9lWO ............. 0.07 O.lF 0.02 0.01 0.01 0.03 0.m 0.05 ... Km ............. 0.010 O.aM 0.005 . . . 0.015 ......... lla, A91 IO0 Alw.ocu . ... 0.95 (Si * Fe) 0.03-0.30 0.05 O.,Q ...... Ill0 .... ........ or) 0.8 0.04 0.01 023 0.01 ......... 0.02 ‘B”0.m

Ian A91m (v : li)

Alw.0 .;.... I.00 (Si + Fe1 0.05 0.05 . 0.10 .........

llrn ‘,. ... .._....,.. 0.10 O.rO o.m-0.35 0.01 0.m 0.01 0.0 0.03 ... 0.05 8.O.u.l

12x A91230 w + li)

Alw.3.. .... 0.70 1.5i + FCI 0.10 om 0.05 ...... o.,lJ ... 0.0 ... II35 A9llls ............. 0.60 ,Si l Fo o.w.9 0.04 om ...... o.,o ... 0.0 ... If35 A912ls ............. 0.65 ISi + Fen 0.0s 0.M 0.m ...... o.,o ... 0.M ... 1w A91345 ............. 0.15 03-030 0.02 0.05 0.0 .... ..o.,o ... OJJj ... 1145 A91145 ............. 035 (S + Fcr 0.M 0.05 0.0s ...... o.pI ... 0.1 ... I345 A91W ............. or) 0.40 0.10 0.05 0.0 ...... 0.m ... 0.m ... 144.5 ................ OJo(Si + Fcrbl o.oyb, ...... ............ ...... IIY) ................ 0.45 tSi + Fe1 o.owJ.al 0.05 0.m ...... 0.m ...... ... INO A91350 E-AI 99.5.. 0.10 O.AO 0.05 0.01 ... .. 0.01 ... 0.~ 0.03 ... 0.05 B. 0.02

lzdo A912&3c) ............. O.rO tSi * FCI P + m

0.M 0.01 0.m ...... 0.m ... 0.M In0

(I) A911m ............. 0.30 1Si + FCI 0.03 0.m 0 SW. 0.03 ... 0.04 ... 0.M ...

13-m ... E-AI 99.7 .... 0.10 0.X 0.02 0.01 0.a 0.01 ... 0.04 0.03 ... 0.02 B. 0.02

1175 A91175 (v + 5)

............. 0.15 lSi * Fe1 0.10 0.02 0.02 ...... 0.01 0.03 ...

127s ................ 0.08 0.1: 0.05-0.10 0.02 0.02 ...... 0.03 0.03 ;z ...

IIW A9llBl ............. 0.09 0.w 0.01 0.02 0.02 ...... 0.03 0.03 0.05 ... II85 A9lms ............. 0.15 iSi + Fe, 0.01 0.02 0.m ...... 0.03 om 0.05 ... l28( A9lm ............. O.‘%,d) O.Qdl 0.02 0.01 0.01 ...... 0.03 om om ...

II83 ................ 0.05 0.1: 0.02 0.01 0.m 0.01 ... 0x0 0.m ... 0.01

0.03 0.m .. 0.03 0.m ‘.. 0.03 0.m ... 0.m 0.m 0.03 0.03 ‘. 0.03 0.m 0.03 0.02 .‘. 0.02 0.01 0.01 0.01 ” o.ca3 o.an ” . 0.0s 0.u

. om ..

0.M 0.M 0.u

# . . 0.m 0.10

0.m 0.m ... 0.03 0.03 ... 0.06 0.m . . 0.03 0.m ... 0.03 0.03 ” 0.m 0.m ”

. ” 0.0 0.02 0.m “.

0.m 0.~0

994 W.U

rz W.U 99.m w.m * 99.85 Pp.90 Pp.98 Pp.00 Pp.10

99.00 99.33

W3O 99.35 99.X W35 w.45 W.45 W.U

isi

0.03 0.m ...

0.03 0.m ... . 0.02 0.10

1189 APlIi%Y ............. 0.M 0.M OS05 IIW .‘. ............. 0.05 O.U- 0.01

0.01 0.01 . ... om 0.01 0.01 0.01 ‘. . 0.w

0.03 0.02

0.05 (v + lxct

(a) 0.01

(v * mo 1193 APll%l(cl IIW APIIW x01 “.

gg .

g :::

... .......... 0.01

... .......... 0.0x

............. 0.1)

............. 03$Q

............. 030

............. 0.11)

... .......... 0.5

0.M 0.W 0.3l

.a 0.X 0.3 0.1) 0.‘

O.CQ5 O.CC6

W-5.0 15-23 4.PJ.O s-F63 3.3-5.0

0.01 0.0, . 0.m 0.03 O.COS .

0.M 0.005 .

0.032 0.006 '.. 0.m O.Is4Jo 0.1(Fo.45 0.10 0.m 0.10 E-o.8 O#l.O

0.02 010 ‘.. ‘.. 0.10

0.10 0.10 050 ... 0.10 1.0 O.al.0 0.10 0.10 OS0

0.M w .

0.1043 zmlh OJCU32Qul~

0.m Bi. I.CZO~F%

. ” ” . . . . . O.bl.3 o.- l.LLz.o Oh-l.0 03sI.1 0.m 0.x) . . . .

.‘. “. . .._ 0.8 0.8 3Y.6 O.S&l.O O.Ol.ll 0.10 040 0.8 . . . . . . Ii1 mJ8 . . . . . . . . . OYM.8 04 0.7-1.1 0.x oa.50 0.10 ml Arnll AKu6Bi Fb.. 0.40 0: s.u.0 . . . . ml4 AJ9all4 ruwsi.. 03LI.2 0.‘ 3.9-5.0 0.404.2 OdM.8 0.10 2214 A92214 AKwiM&.. 03&I.? 03 3.cs.o 0.4cLl.2 Om-o.8 0.10 2017 ml7 AICU4Mg.S. 0.3348 0.‘ IYJ 0.40-1.0 o.*M.a 0.10 2117 A92117 AKuuh4g Ozno.8 0.: 3-3 0.43-1.0 0.01.0 0.10 ..^ _.. _ _

Xl018 AK018 PI.4 Acml8 2618 A92618 2219 A97219 2319 AmI9 2419 A??,419 2319 A92519 1021 ml(c)

El . ..

0.x .’ 0.x .. 025 .. 0.x .’

223.0 0.20 0a.Y) 0.10 .‘. 0.x . . Ea.5 0.20 0.45-0.9 0.10 I.7-7-l 0.25 . 3-3 0.n 13-1.8 0.10 1.7~Ll 0.z . . I.%?.7 . l”L1.8 0.e1.2 0.10 . . S.8-6.8 o.m-o.40 0.02 ‘. . 0.10 . S&6.8 0.2IM.Y) 0.01 . . . 0.10 . S.ti6.8 0.XUl.Y) 0.02 ... ... 0.10 . . 5.3-U 0.I0-030 o.os-O.Y) ‘.. “. 0.10 .’ H-6.8 0.2(u).*) Om ... .” 0.10 -.

81-2 i

Page 94: Intro to Metallurgy

ALUMINUM ALLOYS WROUGHT

---

ml ... ................ O.ml.3 0.61.2 llCZ.9 OJO 0.611 ... 0.6-1.4 0.n ...... am ................... 0.10 0.12 424.a 0.613 IJ-I.9 0.0 ... o.a, ......

xl36 A9am ................ 0.x) 0.50 x-3.0 O.Iw.aono.s 0.10 ... 0.25 ......

2037 mm37 ................ 0.m 0.50 1.c2.2 O.IlLo.aI OxLod 0.10 ... 0.2s ... 0.M a338 A9aoyI ................ 03bl.3 0.6 Obld 0.l0-0.a O.uLl.0 om ... 0s 0.M 0.M aD18 A92w ................ 0.15 0.X tC1.B 0.20-0.6 !2ld ...... 0.~ ...... am A9xm ............... 0.10 0.12 lC3.0 0.M 035 0.M ... 0.10 ......

z

... ... ............................. i::

03 I .au 0.10 1.1-1.9 0.10 ... 0.25 ...... A93m 0.10 0.U 0.ao.n 0.QLo.m " 0.M " 0.M

3102 A93l(a ................ 0.Y) 0.7 0.10 o.LLu).y) ......... o?J ......

3(m A9XOJ AlMnlCa ....... 0.6 0.7 o.w.al I.&l3 ......... 0.10 ......

3lu3 ................... OJO 0.7 0.10 O.%IJ on 0.10 ... 0.a ...... ... ...

Ei Am03 AkinI .......................

it: 0.7 0.0 I.&,J ... ... ... o.,o ......

0.7 ... ...... 0-a ......

m A9Jm #uMnl.~I.. .... OYI 0.7

p.p" ,.&lJ

I.&I5 od-I3 ...... 0.25 ...... 3104 A93lC" ................ 0.6 0.0 0.0.25 O&l.4 O&l.3 ...... 0.25 0.0 0.0 ylll Am AlMnl.M@_C .... 0.6 0.7 310 A931(15 ruMd)St#U s. 0.6 0.7 iz

Id-I5 OdLQ.6 0.10 ... 0-y ......

0.zuo.a om4.a a.29 ... 0.40 ......

YLlb A93006 ................ OX 0.7 O.:WN 0-d OX-O.6 0.10 ... O.IuI.*) ...... XV7 A9YB7 ................ O.-W 0.7 O.M-030 03Wd 0.6 0.20 ... 0.y) ......

3107 A93107 ................ 0.6 0.7 O.owJ.IJ 0.43-a.9 ...... ... 0.20 ......

3xn ................... 030 0.45 0.10 O.yL4.8 0.10 ... ... 0.10 ......

UJ7 ................... 0.6 0.0 0.30 0#4J.9 ox ...... 025 ......

Ku7 ................... 0.40 0.7 0.10 1.2-18 0.01 0.0 0.M 0.m ......

aDp APYlOP ................ I.&I.8 0.7 0.10 1.2-1.8 0.10 0.05 0.M 0.0 ...... MI0 A9JOlO ................ 0.10 0.20 0.03 o.xu.9 ... 0.M4.a ... 0.0 ... 0.03 WI1 A93311 ................ 0.u) 0.7 0.cso.20 0812 ... 0.1w.a ... 0.10 ...... 3312 ...... ............. 0.6 0.7 O.iO 0Sl.l 0.10 0.m ... 0.10 ......

XII3 ................... 0.6 I.0 0-W 0.9-1.4 OX-O.6 ...... OYLI.0 ...... )Ol4 ................... 0.6 1.0 0-w 1.043 0.10 ... ... 0.504.0 ...... XII5 ................... 0.6 0.8 o-10 03lM.9 0.20-0.7 ...... 0.3 ......

ml6 ................. 0.6 0.6 03 oYu.9 0-d ...... 0.n ......

Uxy AWM ................ P.&IO.5 0.8 01' 0.10 I.&LO ...... 0.m ......

4lM AWIM ................ P.&l03 Od 0.2 0.10 I.&LO ...... 0.20 ...... yIlb ...... O.Cl.2 0Yu.B 0.E 0.03 0.01 0.20 ... 0.m .... .1 ............. m ...... ............. I.&i.' o.*l.o 0.11 0.bl.J 0.3 o.au3.2.5 o.w0.7 0.10 ...... 4033 A%03 ................ 6.L-_' 0.W 0.05 0.0 0m.u ...... 0.M ......

ux)p ................... 4.s5.5 0.n I.&13 0.10 0.4S-4.6 ...... 0.10 ...... y),o ...... ............. 6..C: 3 0.20 0.1) 0.10 0.Jw.u ... ... 0.10 ...... u)II ...... ............. b.f-7.5 0.20 01) 0.10 0.4.w.7 ...... 0.10 ...... 4013 ...... ............. J.Y5 o-15 0.m.n 0.m 0.a-o.B ...... 0.0 ......

4032 AWJ2 ............. ..ll.&lJ J 1.0 0-u-l-l ... od-IJ 0.10 050-I-1 0.2s ...... 4M3 A9404J Alsd.. .......... 43v.o 0.8 03 0.M 0.05 ... ... 0.10 ......

4343 A9433 ... ............. 6.U.: 0.6 0-Y 0.10 ... ... ... o.a, ......

4543 A94543 ................ m-7.0 050 0.10 0.M O.lwO.O 0.0 ... 0.10 ......

4443 A%4J ................ L-1.6 0.8 0.10 0.a 0.I04Jo ...... 0. ,o ... ...

an4 Awn4 ................ 7.b9.2 0.8 0.X 0.10 ... ...... 02 ......

4045 APO(S ................ 9.&ll.O 0.6 033 0.M E

... ... 0.10 ......

4145 API145 ................ 9.3-10.7 0.8 IS.7 0.u 0.15 ... om ......

yY7 A%!,‘7 ~12...........11.0 .O 0.6 0.15 :?I om

0.10 ... ... 0.10 ......

m A9SM ABQI .......... 0.r) 0.7 0.ssI.I 0.10 ... 0.a ...... xx8 ... ,uMgllB, ....... 0.15 0.7 0.aw3.10 0.10 0.61.0 0.10 ... 0.M ......

yxlb APYM ................ 0.40 0.8 0.10 o.a.od od-13 0.10 ... 0.n ......

SO10 A9WIO ................ 0.40 0.7 02 O.IM_X)OS-O.60.15 ... 0-Y) ......

sol3 ............... 0.23 03 0.a ox-050 3Jd.a 0.0) 0.a 0.10 ......

y)l4 ...... ... ............. 0.40 0.a 01) o.xLo.9 4.0-53 om 0.7-15 ......

WI6 AmI6 ................ 0.2 0.6 0.10 o.m.7 I.Cl.9 0.10 ... 0.15 ......

WI7 ................... 0.40 0.7 O,!-Q3 0,&o& I.SU ... ... .........

2440 A95O.J ................ 0.33 0.7 0.2 0%I.4 I.blJ 0.I0-0.r) ... 0.29 ......

5042 AW,t2 ................ 0.D 035 0.1 om-030 3.040 0.10 ... 0.25 ......

yY3 ApyY3 ................ 0.40 0.7 0.m-o-u 0.7-1.2 0.7-13 0.M ... 0.n 0.1 0.0

Yyv .................... 0.a 0.50 0.10 0.sl.l I.623 030 ... 0.m ......

w1y) A95W Alh4115inO AlhQIJ ...... 0.a 0.7 0.1) 0.10 1.1-16 0.10 ... 0.a ......

(curldad)

I

- br

- ?I

0.15 . . . 0.U

0.15 o.mBi.o.&lJ 0-m

pb 03

0.08-0.15 zr 0.15 0. Is

. 0.15 . . . 0.1s

0.10 o.oJ-o.IJ t(O) 0. Is O.Ol-O.l6Zrfo) 0.10

. O.OJ

. 0.10 . .

O.lOt+li ... (I) . . .

. . . .

0.10 . 0.10

0. IO . . 0. IO

0.M 0.1s 0.0 0.15 0.M 0.u 0.05 0.1s 0.0 0.15 0.M 0.10 0.M 0-u 0.0 0.15 0.03 0.1s

0.m 0.10 0.M 0.U 0.0 0.u 0.M 0.15 0.0 0.15 0.03 0.15 0.M 0.U 0.M 0.1s 0.M 0.15 0.M 0.U 0.M 0.15 0.0 0.1s 0.m 0.1s 0.M 0.1s 0.M 0.15 0.03 0.15

. . . 0.10

. . .

0.10 0.10424 ZI 0.10

O.IOzr 0.10 . 0.M

o.lwao 0.10 . 0.10 . . . . .

0.10 0. IO 0.10

O.oz-o.PEi ." . . . .

0.M 6 0.10

@I 0.ou3.l5

(4) (4) E

o.w.07 Be o:oLo.al

w 0.02 0.0 0.15 0.05 0.13 0.M 0.U 0.0 0.U 0.0 o.rJ 0.M 0.U 0.m 0.u 0.M 0.15 0.0 0.u 0.M 0.U 0.M 0.U 0.03 0.u 0.M 0.13 0.0 0.U 0.0 0.15 0.M 0.1s

0.M 0.15

0.0 0.u 0.0 0.u 0.05 0.15

0.M 0.U

0.M w 0.10 . . 0.3

0.0 0.w

0.10 . 0.10

0.10

61-3 I

Page 95: Intro to Metallurgy

ALUMINUM ALLOYS WROUGHT

r,------?I u-- 1

= H T

DDllr *L auIoPhL S n a bb rc 0 M h G v - n CZL -

:g ................... 0.m 0.10 0.10 0.03 1-FI.7 ...... 0.10 ......... 0.06 0.m 0.10 rem

A952s3 ................ 0.08 0.10 0.10 0.05-0.15 1.3-1.8 ... ... 0.M OSO 0.M ... ... 0.m 0.10 lml 5MI hpsml AIM@. ......... 0.40 0.7 0.25 0.m 1.7-22 0.10 ... 029 ......... 0.10 0.0 0.u em 5UI A95151 ................ 0.m

E 0.U 0.10 IS21 0.10 ... 0.u ......... 0.10 0.0 0.u mm

z ... AlM52.. ........ 04 0.U 0.10450 1.7-U 0.15 ... 0.u ...... ... 0.U 0.0 0.u Rm

A95351 ................ 0.08 0.10 0. IO 0.10 1.622 ...... 0.m ... 0.0 ...... o.Lu 0.10 ran

3451 A95154 AJq3J ........ 025 0.40 0. IO 0.10 l&U o.w.3!? 0.05 0.10 ......... 063 0.05 0.u rem 5052 A95M2 AIM&u ........ 025 0.40 0.10 0.10 2128 o.w.35 ... 0.10 ............ 0.05 0.u rem 5n2 bs57s2 ................ 0.a 0.10 0.10 0.10 o.pI ...

... 0.03 0.10 fun

5352 A55352 ................ 0.45 6 * Fe) 0.10 0.10 z20.,0 ......... 0.10 ... oa5 I:: ... 0.10 0.0 0.u mm 5.552 A92452 ................ 0.0) 0.Q 0.10 0.10 2.226 ... ... 0.0 ... 0.0 ...... om 0.10 m 5m2 A%652 ................ 0.0 (Si * Fe) 0.01 0.01 2.mA o.u.Q35 ... 0.10 ............ 0.05 0.u run

g Ais.24 Y?,:::::::: ono.u,si -"g 0.10 0.10 3.1-3.9 o.wJJ5 ... 0.m ...... 023 0.M al.5 fan QB 0.01 )*I-3.9 o.wJj ... 08 ...... !r? 0.0 0.M au mm

5454 A95454 NM#ua.. ..... 02 0.0 0.10 os1.0 zc3.0 0.w.m ... on ......... oa 0.0 0.u mm

5554 A95554 AlhQ%ldA) .... on 0.40 0.10 OS-I.0 2.4-3.0 0.05-0a ... on ...... W 0.05-am 0.05 0.u rem 5654 A956% ................ 0.45 (Si + Fe) 0.0 0.01 3.1-3.9 O.lso25 ... 02n ....... 0.m.u 0.M 0.u m

m A95m N&3 .......... 0.0 0.40 0.10 03 u-3.6 030 ... 0.m ...... 0.G3.6 03 0.05 0.u rem

%54 ... .. . %,'

............. 0.45 (S * Fe) 0.10 0.10430 3.1-3.9 aw ..u ... 0.m ......... 010 0.M 0.u m m m--w

AJM@2.. ......... ... ... on 0.4 0.10 0.054113 4S5.6 0.QW.D ... 0.10 0.0 0.u Inn 5356 A95356 Alhf&qA) ... ...... ..... on 0.0 0.10 0.w.m 4s5-5 0.w.m 0.10 (*I 0.06030 0.M 0.u m 5456 a5456 AJu#Mal...... 0.25 0.4 0.10 0304.0 4.7-55 0.a.o.m ... on ......... 0.m 0.0 0.u w 55% A.95554 ................ on 0.0 0.10 om-1.0 4.7-53 o.Owl.ID ... 0.a ...... f.) 0.w.m 0.m 0.u Km 139 A95uI ................ 0.12 0.17 O.aO 0.15445 O.&l.2 ...... 0.m ......... ... om 0.u (rm 5457 ~95457 ................ 0.m 0.10 0.m o.u-o.45 0.6-12 ...... 0.0 ... 0.M ... ... 0.m 0.10 - 559 A955n ................ 0.10 0.12 0.15 o,,M),y) 0,w.a ............ 0.0 ... ... 0.03 0.10 rem 569 A%69 ................ 0.05 0. IO 0.10 0.03 0.61.0 ...... 0.0 0.0 0.m ... ... 0.02 0.M m

z

...

: : : ... ,su ......

.......................... 035 6i - Fe) 0.10 o.m-0.7 u-43 0.054.zI Ml ... 0.M 0.u rem

A93ua 010 0.35 0.15 0.15 4.0-5.0 0.u ... on ......... 0.10 0.05 0.u Rm

51a A%l.s2 ................ 0.30 035 0.15 0.2%0.50 4.0-5.0 0.10 ... on ......... 0.10 0.0 0.u rem YIO A9mQ AlM@JMe.. ... 0.00.7 0.4 0.10 0.a4.10 4.w.9 o.w.zI ... 0.a ......... 0.u 0.0 0.u Iem 518 A951m AlM#JMa .... 0.40.7IA) 0.0 0.10 0334.0 4s52 0.04.~ ... on ...... (4) 0.U 0.M 0.u w m ................... oa 03 0.a OS-I.0 4s5.1 0.05 0.03 0.10 ...... 0m7.4 om 0.05 0.u run 5086 A9%% Aim@. ......... 0.40 0.10 0.204.7 IS-1 o.M-o.LI ... 0.B ......... 0.u 0.0 0.u rmY 6101 A96101 E.-i. ...... O-.7 LE 0.10 O-CO 0354.6 0,m ... o,,o ... ... odbe ... am 0.10 rem 6201 A%mI ................ oYM.9 030 0.10 O.lU 0.6-0.9 0.03 ... 0.10 ...... 0-e ... 0.03 0.10 rem

6301 Nmol ................ osO.9 0.7 0.10 0.15 o.MI.9 0.10 ... on ......... 0.u 0.05 0.u ran em2 ................... 0.649 0.23 O.IM.25O.Iw.m 0.4sO.7 0.05 ............ o.oM.14 28 0.08 0.M 0.u rem X03 A%%3 NM@Si ........ OS-I.0 0.6 0.10 0.6 iJ&,J 0,5 ... oa ......... 0.10 0.05 0.u rem 61133 .................. 0.35-1.0 0.6 0.m.Y) 0.6 Od-IJ 0.35 ... o,a, ...... ... 0.10 0.05 0.u rem day A96aY ............... OJM.6 0.10-0.30 0.10 0.200.6 O.ULO.7 ...... O,@ ............ 0.05 0.u rem MM Ag60D5 A&6Q ........ O.U.9 035 0.10 0.10 0.yLo.6 0.10 ... 0.10 ......... 0.10 0.0 0.u rem (I(15 A9610 ................ 0.61.0 035 0.10 0.10 0.4so.I 0.10 ... 0.10 ......... 0.10 0.0 0.15 rem 4m A9an ................ 0.6-0.9 0.7 0.10 0.0.15 0.G0.6 0.W.U ... 0.B ...... 0.o.u 2s 0.u 0.0 0.u rem KO6 .4WB3 ................ 0.W.6 035 0.1so.m O.Iu).lb 0.45-0.9 0.10 ... (,JJ ......... 0.10 0.05 0.u rem 61% ................... 020-0.6 025 025 0.M-o.m o.a-o.0 0.m ... 0.10 ............ 0.05 0.10 mm Ma36 ................... oJsO.7 025 0B-o.m 0.I3-0.30 0.4so.B 0.10 ... oa ......... 0.10 0.M 0.u Rm Ku7 A.wm7 ................ o.w.4 0.7 0.m 0.W.~ 0.60.9 o.w.2 ... on ...... 0.M-o.m 28 0.u 0.0 0.u rml Ko6 ................... OSMP 035 on 0.04.7 030

0.W.6 i&d 0.a d 0.10 ... 0.m ... 0.054.m ... 0.10 0.M 0.u r+m

61109 A96oa) ................ 0.619 033 ... 021 ......... 0.10 0.05 0.u fun ml0 A9mlO ................ O&12 OJO 0.W.6 O.aM.6 0.6-1.0 0.10 ... G.Z ......... 0.10 0.0 0.u rem 6110 A%110 ................ O.lclJ Od oiso.7 odM.7 0YM.l o.ouLz5 ... on ......... 0.u 0.0 0.U m a11 A%011 ................ 0.61.2 1.0 O.M.9 0.6 0.612 030 040 ,J ......... 0.10 0.0 0.u mm 6111 A96111 ................ 0.7-1.1 04 oJo.9 O.Iso.45 os1.0 0.10 ... 0.u ......... 0.10 0.0 0.u rem (on .................... 0.61.4 0-w 0.10 0.a1.0 0.612 oa ... 03 ...... 0.1 I% oa, 0.m 0.u w

0.020 m

Ml3 ................... 0.61.0 0-w 0.61.1 O.ao.6 OS12 0.10 ... 02 ......... 0.10 0.0 0.u Ipo dDl4 ................... O-.6 025 OLB 0.w.m o.a.ll om ... 0.10 ... 0-a ... 0. LO 0.0 0.u m mu .................. .o.ma.a 0.IWo-D 0.10-0.~ 0.10 od-1.1 0.10 ... 0.10 ......... 0.10 0.0 0.u m 6016 ................... . . C,, 0s 0.m 04~ O-.60.,,, ... OB ......... 0.u 0.0 0.u w 6017 -17 ................ OJ5-0.7 03-030 0.w.m 0.10 OS-O.6 0.10 ... 0.0 ......... 0.0 0.M 0.u rem 6UI A%Ul ................ 0.612

zl3 035 04w)# t)Ju)y

i:&., &J.& ...... M ...... ... 0.u 0.05 0.u m

Ml A%351 A&lMg-5Mrl.. 0.7-1.3 0.10 ... QB ......... oa 0.0 0.u rem ml A%951 ................ o.BOsl 0.6 o.w.40 0.10 O.ao.6 ...... 0.m ......... , 0.0 0.u w a.7 A9@53 ................ (,)

E 0.10 ... 1.1-1.4 0.l5a.s ... 0.10 ......... ... 0.m 0.u w

M A%253 ................ (r) 0.10 ... 1013 0.04-035 ... I.624 ......... ... 0.M 0.u rem

(aootpd)

I 814 ,

Page 96: Intro to Metallurgy

ALUMINUM ALLOYS WROUGHT

0. IO 0.10 0.25dl.6 0.0

0.&0.ul 0.u 0.8-1.2 o.wo.3s

o.Iao.roo.n-o.35 0.7-1.0 0.10 0.33 0.10 0.7-1.1 0.10 0.15-0.40 0.u 0.aI .2 0.M-o. I4 0.10 0.10 0.4549 0.10 0.P 0.05 0.4so.9 0.04-a I6 0.03 0.45-0.9 '. 0.m.m 0.05 o.soa.5 0.M 0.7-1.2 0.61.1 0.61.4 0.a 0.I5-0.40 O.QI.0 OS-l.2 0.10 0.10 O.lW.45 0.61.0 0.10

0.10 0.U 0.61.0 0.10 0.10 o.aL1.0 0.61.2 0.25 1.62.6 OB 263.4 0.IW.U 0.20 030 O-w-I.0 odo 0.M 0.2wl.7 LO-LO 0.05 0.10 o.m-o.7 I.&I.8 o.ctQ.Al 0.M 0.a 0.7-1.4 0.IM.Z

0. IO - 0.U

. 0.10

AIM& . . . . Om-o.6 O.lW. Ao+sal ..,... o.uLa.5 0.7 . ,............. o.a-a.7 0.40

.._,___...._.. 0.40.0.8 054 Nmglsim 0.40-0.8 0.7 Alupsi Om4.6 0.35 [email protected] O.m-o.6 0.15

0.21M.b 0.m .,............ 0.04.6 0.15

0.15 0.25 0.P

0.M 0.u 0.05 0.u 0.M 0.U 0.M 0.15 0.M 0.u 0.M 0.u 0.M 0.u 0.03 0.10 0.05 0.u 0.m 0.15 o.ra 0.u 0.0 0.15 OJn au 0.M 0.u 0.0 0.u 0.M 0.u 0.05 0.u

0.M 0.1s 0.M 0.10 0.M 0.u 0.115 0.u 0.M 0.111

0.05 0.15 0.05 0.15 0.0s 0.u 0.M 0.u 0.0 0.15

0.25 02 0.10 0.0 0.03 0.10 0.B 0.25 0.20 0.m 0a 6.W.O 5.0-63 u-4.6 4.0-5.0 rs53 4s53 5?-5.6 5.8-63

0.10

(9) 0.U . 0.10

0.03 cuaA%463 6763 A96762 &j .

6066A9686 mA9wm 6411 .”

. 0.10 O.aO

. 0.15 0.15

. 0.10

. 0.10

. 033

O.Sl.6 0.50 . . . . . . . . I.&l.7 OJO .

. . . . . . .

... .............. 0.7-1.1 050 [email protected].. ..... 0.aI.2 0.45 AsilM@in ...... ... ..............

O&l.’ zz 6181 *.'. dDgl .

7ml A9m)l m

my- . . . . . . . . . . . . . . . . . 030 035 ................. 0.z 033 ................. 035 0.40 ....... ......... 0.10 0.10 ................. 0.10 0. IO ................. 09 0.20 ................. 0.10 0.15

AlzatM@. .... 0.12 0.1s ................. 0.15 0.20 ................. 0.15 0.25 ................. 0.6 0.7 ................ 024 033

................. 0.20 0.30

................. 0.10 0.12

................. 0.15 0.30 ................ 0.35 0.45

................. 035 0.45

... ............. 0.35 0.45 AKd5hQI ..... 035 0.40 ................. 025 04 ................. 03 0.3

om4.25 24 0.m 0.I0-0.20 zf 0.m 0.aMl.m 24 0.01-0.06

‘. 0.1 0.0s am 0.7-1.4 0.611) 0.10 2.1-29 0.10-0.25 O.blJ 0.10 2.2-L7 O.W.CS

ILL2.0 0.10 2.l-L6 O.C8

0.05 0.IW.x) l.Pl.6 O.IIU.XI o.bi.2 o.m-o.15 l.au 0.04 0. IO 1.0-1.5 “’ ... o.loa.7 033-0.7 LL3.2

0.0&0.15 0.10 ILLI 0.15 0.45-1.0 0.03 0.bl.4 " 0.x11.1 0.M o.ai.4

0.20 0m-o.33 Lo-1.0 035

0.20 o.u-050 0.7-13 0.10 0.20 o.u-o.so 1~2.3 0.m 0.m o.Ma50 1.0-1.4 0.10-0.35 0.U 0.10 I.&1.8 0.0 om-I.0 O.IW.40 263.7 0.10-0.Y3

0.12-0.25 24 0.M

(0 0.20 0.iw.m t 0.10 . . .

0.03

0.10

0.10

. . .

(0 O.lW.16 ZI 0.06

. 0.03 O.IW.10 t o.m-o.ce

0.m ”

m + a) 0.iw.m i3 0.10

0.03 . 0.M

O.lW.25 zf 0.l5

5.76.7

4.&53 La65 I L?.o 5.2&l

4.651 4.~5.0 4.2-53

r&51

43-5-l JYJ r.LL5.0 J.&&O 43-U

4.0-6.0 3.fL5.0 3.040 4.652 32-45 43-53

4151 42-51 4.2-U la-5.9 3545 6.67.6 6.67.6 7.242 7.?&2 5.767 5.%.9 3.OAO 6.1-73

6.S6.0

mio ..

mli A~~II(C) 7012 .. . ml3 ~97013 ml4 ...

.

.

. .

0.0 0.u 0.03 0.10 0.M 0.15

0.0 0.u

mi5 ... 7016 ~9Fll6 7116 ... ml7 .'

OX-1.0 0.10-0.6 2.63.0 0.05&35 0.10 0.10-00.6 OS-I.0 0.05-0.35 0.10 0.1W.6 0.61.5 0.05-0.35 0.60.9 0.cso.m i.si.9 . 0.IW.Y) 0.lW.Y) 0.7-1.1 0.lW.r) O.M.6 lS2.3 0.20

o.m-o.9 0.03 l-w.0 “’ ox-O.9 0.10 I-F20 0.10 oN.cl.9 0.m l-FL0 “. 0.m-o.Y) 0.m LO-15 0.04 0.10 O.lW.yI us.3 O.lN3.B 0.m on I.Cl.6 Oa

. . . Lo-l.6

IL1.9 OaI Lo-29 O.IW.LL

l.Ll.9 od) La-29 O.lW.22 L&L6 0.10 1.9-26 O.o( I.923 0.10 2.PL7 0.04

0.15 O.IW.45 1.7-u o.oso.2s

1.b2.6 040 l%Zl O.lM.25

1.62.4 ... 1.9-29 0.Lwo.Y .

0.10 0.10 0.10 ..’

0.05 0.0 0.9-l-c “’

1.L2.0 oxl 2.1-29 0.1.9&9

I L-2.0 0. IO 2.1-29 0.I8-0.28 l.LI.9 0.06 1.9-L6 O.lboz5 OYJ-I.0 ON-O.8 I.2-LO . ..

~~~~)

0.M 0.M 0.03

0.lo.G~ 24 0.15 0.IW.B zt 0.u

7018 .. ml9 ..

.m .

m2l A9mZI m .

yp.J

aJ24 ..’ a

g

.

. m

m29 Am 7129 A97129 mp . . . m .

mY3rsmr, m46A9m6 7146 A97146 m9 Amn9 71Y) A91149 m5Q.A9-m0

7150 A971y)

0.10 0.10

. .

.

0.M 0.u 0.M 0.1s 0.M 0.u 0.05 0.15 0.0 0.u

. . . . . .

(v) . . . O.fnQ.18 ZI 0.10

l-l?,, . 0.10

. 0.10 0.10

o.wa. I4 24 0.M

0.05 0.15 0.0 0.15 0.03 0-u 0.03 0.10 0.0 0.1s 0.0 0.15

................ 050

................. 0.33

... .............. 0.40

................. ii

................. 0.3 i:: " ............. 0.35 0.Y)

................. 0.10 0.12

................. 0.15 0.30

................. 0.06 O.oB

................. 0.n 030

................. 030 0.40

... .............. om 04

................. 0.20 0.40

................. 0.3 0-U

ii7aaM@ ................. 0.15 0.m 0.12 0.U

................. 0.12 0.15 ................. 035 0.45 ................. 0.15 0.70

0.12 0.15

&!a~. ........... 0.7W * Fcl

................. 0.23 0.6 md5higcu ... 0.a 030

................. 0.15 0.10

NZd5lh4&u,AI 0.10 0.12 ................. 0.a 0.6

. 0.os-o.30 zl 0.10

o.aul.zl 0.m (ZJ l li)

0.05 . .

0 .M

0.M 0.05 0.m

0.03 0.10

0.m 0.15 0.m 0.10 0.M 0.u 0.M 0.U 0.M 0.U 0.0 0.1s 0.M 0.u 0.05 0-u 0.m 0.u 0.M. 0.u 0.m 0.u 0.0 0.15

. .

.

. .

. . .

. .

I . .

.

0.a

0.03 .

‘. 0.a

0.03 I 0.03 . . 0.10

O.lu.18 I 0.a 0.IW.M 24 om

0.10 . 0.10

0.m.o.u 24 0.m

0.oao.u I 0.05 0.U

0.00) Pb 0.10

(-4 0.1w.Yla ‘.-.

. .

. . .

0.05 0.15

0.m 0.u 0.M 0.15

0.M 0.15 on5 0.15 0.M 0.u 0.0 0.U

xm64 ‘..

w -RYE A9Ff72

HR AV74Tl m75m 7175 A97175 7475 A97475

. .

Wl 0.m 0.10 0.06

.” 04)

81-5

Page 97: Intro to Metallurgy

.! ,F ;.T;.& .I” i.

ALUMINUM AiIiYS WROUGHT

LZ)h ImshDD s h ca

#7m ‘. 0.50 0.7 0.8-1.7 &f7,76 . . . 0.a I.&L4

... .., . 0.u Eli I.622 Amm . . . 0.30 0.Y) 0.ULO.B

= a

lzzI 7176

Et 7179

%r - . Ma Y IQ L 0

O.Iao.35 O.lWZl 0.17425

a ”

. . . . . .

. . .

OB OB . . . . . . . .., ,..

3.7-43 6L7.3 667.4

. 1.7-u 030 u-3.1 0.m 2s3.2 0.10-03l 29-3.7 0.10430 29-3.7

. . 2.W.O

om au 0.0 au om a10 om au om au 0.05 au

3.8-4d 3d4d 7-7

A.9713 A91opo

. ..__..... 0.u oa [email protected] . . . . . . . . . . 0.12 0.15 0.613 1.0-1.9 co ma

ml .49mI ........... .o.u 0.U 1.1-1.8 , LO-LO ...

mm1 A!aml ............ 0.17 0.45-0.7 0.u ... ... ...

(a . . J&7.1 ‘.’ I” Oa3-odca .‘. omau w

0.9-13 0.0

. . . 0.03

.’ 0.0 0.10

. 0.616 . 0.10

0.40 . 0.10 . 0.10

1.0 . . . 0.10

0.0

0.005 0.0

. 0. IO

. .,. . . .

. . . . . . .

. . . . . . . . . . .

. . . . . . . . .

(2) (U)

,.. . . . . . . . .

. . . o.o( B. 0.033 Ii

om tml . . . O.ilk4 . 0.m aio w B

. . . . . . 0.m 0.10 w

E ::: .o.u

....................... 0.4 OB 0.m 0.0 ...

0=3 O.oOd 0.m ... 0.0 ... eIm .&waw3 ............ 0.a 12-20 01) oJw.0 0.10 ... Bm Am07 ............ 0.x) l&Z0 0.10 03M.o 0.10 ... m ............... 0.6 O.W.6 0.70 03-1.0 ...... ml0 ............... 0.0 01547 0.10-030 0.1&m 0.IcLo-w) 0.m ml1 A98011 ............ 030-0.9 0.61.0 0.10 020 0.0 0.0 8111 A93111 ............ o.m-I.1 o.a-I.0 0.10 0.10 0.05 003 11112 a9112 ............ 1.0 1.0 0.40 0.6 0.7 Ode Ql4 AmI4 ............ .04 l.Ll.6 0.B 0.D-0.6 0.10 ... ml7 -17 ............ 0.10 035-0.11 O.IM.aD ... 0.OlJ.M

mal A9Kuo ........... .O.lO 0.10 0.m 0.a ......

60x A.mxl ........... .O.lO 0.X3-0.8 O.lM.30 ... 0.0 ...

. . . 0.m . . . . O.IM.mD ... OM 0.u ,j%m 0.M . . . O.o)B .” 0.03 alo w 0.10 0.m . . 0.0 0.u m

0.M 0.03

0.M ” 0x4 .” 0.10 ..’

o.m-o.7 0.05 . ” 0.05 . ‘.

OB

Iv + WC) 0.0 B WI

0.01 B

5s7.0 so 18.~tL0

.

. . 0.10

0.10

om 0.10

0.m 0.10 0.m 0.10 0.05 0.u om 0.u 0.0 0.u

w

w ran nm rem nm

6lxl A5uIrn ............ 0.15 ,a, o.uLl.qo) o.oy).u ......... 8x3 A5um ............ I.0 (Si * Fe) O.a, 0.0 ......

aDl6 A9W76 ............ 0.10 0.60.9 0.01 ... O.Luo~ ... 8176 APB176 ............ 0.03-O.U O.&l.0 ............

8n6 ............... 03 03-0.0 0.05 0.0, O.Cn 0.01

.......... 0.10 0.1M.Y) 0.05 ... 0.lM.Y) ... ......... .O.lO O.LFo.43 0.04 ... 0.oLo.12 ... ......... .0.05-0.m 0.7-12 0.a ...... ...

.......... I.&LO 0.7 0.7-U 0.10 ... ...

.......... 0.7 0.7 0.7-l-l 0.10 ......

.......... 0.m on 1.0-1.6 0.10 0.613 0.10

.......... 0.30 OS I.622 0.10 Ox-l.2 0.10

.......... 0.10 0.15 03so.6 0.05 0.e1.4 o.Ql

.......... 0.10 0.15 o.m.7 0.0 0.9-1.4 0111

so O.oc4.16 2.~ 0.10 0.m 0.u

Cd oa Om.16 2~ 0.10 0.m 0.u w

. o.,o . . . . 0.29: zr 0.u 0.05 0.u w xwn .’

x9192 “.

016 I

Page 98: Intro to Metallurgy

ALUMINUM ALLOYS CAST

Composition of unalloyed and alkyd aluminum castings (rrr.0) and ingots (MN.I or rxr.2)

c=*-1 I capmm. r(s

F 1

I

I!4 I AOI~I ...................... IW In cn 0. IO ICI i4l IJO I AOIJOI A199 J ............... In#n O.OJ 160. I AOldOl AIp9.8 .............. ln@M

170. I AOIrnl AM.7 ................ In@x OF&&J o&, .’

ICJ ... ICI Id “’ ICI

(hl ... ICI ... id 201 .o A02010 ...................... S 0.10 O.lJ 4.6S.2 0.20430 O.IM.JJ ... m1.2 A02012 ...................... ln#ol 0.10 0. IO 4.CJ.2 O.ZO-O.JO 0.2W.JJ ... ml.0 A12010 ..................... s O.OJ 0.10 4.&J-O 0.2lLWO O.IUl.3J ...

O.OJ . O.OJ

O.OJ O.OJ

ICI o.oxc~ 0.10 w.JQ (Cl O.OXCJ 0.10 W.Y

Id 0.0~~~ 0.10 w m O.IyL.lJ O.OYi) 0.10 rem

O.IY).lJ O.OXi) 0.10 nm O.IMkJS 0.03W 0.10 rrrn O.IH.3J 0.030) 0.10 rctn 0. lM.lJ O.OJ@ O.lJ rem 0.1so.2~4t) 0.0~1) 0.m pem O.IJ-O.lJW O.OXIJ 0.20 rem

. A201.1 Alrnll “. . ._. lnpc O.OJ 0.07 45J.0 0.2&0.40 0.2Q4.3J 8201.0 h2mto ._..............._. s O.OJ O.OJ 4.LJ.0 0.2O-O.m O.tM,)J D31.0 AOZOIO . . . . S 0.30 0.m 4.~J.J 0.20-030 0.10 l.Ll.7 0.10 201.2 A01032 ,....,.._..__.____. IryoC OX O.lJ 4.bJ.2 0.20-0.30 0.10 “’ 1.3-1.7 0.10 2W.O A02040 lJ22 hlCu4MnTi

O.OJ O.OJ

O.OJ 0.01 O.OJ O.OJ

.

. .

. .

. ,

. .

.

RI64 AK&Ti RZl47 AlCu4MgTi .... S. P

ma.2 ho2042 ...................... Irisa

2W.O AOZW ... ._ ................. 5. P 206.2 A02052 .................... InpC AT&. .O AI2E4 ...................... S. P

Al032 Al2062 .................... lnnn m.0 AO?OBD .................. S-P m.1 AO?CO I ................... Inpc x8.2 AOZPZ .................. InLDl 211.0 AOZl3O ............ ..... 5. P 213.1 A02131 ................... lnloc ‘22.0 AO22M ........ ......... 5. P 222. I AO222, ..................... lnpl 224.0 A02240 ...................... S. P 224.2 A02242 .................. Innot 240.0 A02400 .................. S 240. I A024DI .................. lnpr

242.0 A02420 IJZ? AICU(Ni?.Ug2

RI64 hKUCurSi?Mr: 5. P :42. I A02421 ................... In&n

242.2 A02422 .................. lnpn

A242.0 A12CO ..................... 5

A242.1 Al2421 ................... ln~m

A242.2 AI2422 .................... In601 24J.&a, AO24)O ...................... S

243. I A02411 .................... IrUa

0.X

0.1) 0.10 0.10 O.OJ

O.OJ 2.L3.J 2.M.J

0.1J 0. I0-0.m

O.IJ 0. IO 0. IO

0.01

::9 0.8

I.2 0.9

4.2J.0 4.24.9 4.2-J.0

4.:-J.0

0. IO O.l~.JJ O.OJ O.OJ O.ZW.JJ 0.01

0.20-030 O.IJ-o.lJ O.OJ o.20-oo.Jo 0.2w.3J 0.01 O.ZO-O.JO O.lMl.3J O.OJ 0 m-o.Jo 0.2w.lJ 0.01

O.JO 0.10 0.11 030 0.10 0.3J 0.30 0.03 0.6 0.10 0. 3J 0.6 0. IO O.JJ 0.m O.lJ-o.3~ O.JO 0.m 0.~0.3J OY)

0.2o-o.Jo ‘.’ o.zw.Jo ” 0.30X1.7 U4.J o.Jb6.7

0.3047 ~h-66.J 0.3bo.7

0.10

O.OJ 0.10 O.OJ 0. IO 0.05

I.0 I.0

O.Rl 2.J 2.J 0.8 0.8

0. IO

0.10

0.3J 1.2-1.8 0.2J 1.7-2.3 0.31 OJJ 1.3-1.8 0.u 1.1-2.3 O.lJ 0.10 1.3-1.8 ” 1.7-2.1 0.10 0.10 1.2-1.7 O.lJa2J 1.8-2.3 0.10

0.1~.30 0.05 O.lJ tern O.lM.2J 0.05 O.lJ nm

O.IW.30, o.oJ O.lJ nm O.IJ-o.2J 0.M O.IJ rem O.Iu).30 O.OJ O.lJ rtm O.IJazJ 0.05 0.1s RKI

03 ” OS0 rem

2.W J

I.bJ.0 I .bJ .o

1.0 1.5 2.0 2 0.M A:,0 0.02 O.o( 0.x) 034 OS0 0.40

4.2-J.O 4.LJ.0 M4.J

3.Y.J 1.Y.J

6.0d.0 6.W.O 9.2-10.7 9.2-10.7 4.J-J.J 4%J.J 7.0-9.0 7.M.O

0.7 1.0 1.J4.S 0.: 0.1 J.J+J 0.6 0.6 l.J-4.J 0.6 0.8 3.7A.J

0.6 06 1.7A.J o.3J 0.6 3.74.) O.JJ 0.40 1.M.J O.JJ 0.30 3.Y.J

0.73 “. 024 rrm 0.20 “’ 030 rem 0.2) ” 030 Rln 03 .’ 030 rem 0.25 0.3J rem 0.29 0.1s rem 0.31 O.OXrn) 0.10 rem O.lJ O.OXmJ 0.10 rem 0.20 O.OJ O.IJ rem 0.20 0.03 O.IJ R~I

0.21 0.05 0.13 rem 0.Y O.OJ O.IJ FC~ 0.20 0.05 O.lJ rtm

0.074.20 O.OJ 0.1) ran 0.07-O.Dl O.OJ O.lJ feat 0.o7-o.m 0.0~ O.IJ nm 0.06o.m 0.0%(n) O.IJ Fcol 0.ow.m 0.0~3 0.1~ rrm

0.2J O.OJ 0.11 Rln 02 O.OJ O.lJ rem 0.20 O.OJ O.IJ rem 0.2J . O.lJ ran

02 . O.lJ i-cm 0.20 0.0) O.IJ nm 0.u O.OJ O.lJ rem 0.20 O.OJ O.IJ rem 0.20 O.OJ O.lJ ICEI 0.20 b.oJ O.lJ mn

t:: 0.0s 0.11 rem

‘. 030 mm

03 ” 0.m Rm 0.m ‘. 0.54 rem

0.10 1.3-1.7 O.IJd.2J 1.62.3 0. IO l.Ll.7 O.l%o.2J la-Z.3

O.Imo.lJ 1.8-2.3 0.20-0.40 1.9-2.1 O.IJ-O.lJ l.!L2.3 0.20-0.44 1.9-2.3

0.3J 0.3J 0.30 0.3J O.JJ

0.30 0.X O.OJ 0.10 0.10 O.OJ

024 030 0.30

0. IO 0.10 0.M O.OJ

0.01 0.01 0.01 O.OJ O.OJ O.JJ

0.10 0.u

0.10 “’ 0.10 ..,

0.10 .” 0.10 .” 0.10 . ”

0.3J O.fJ 0.30

0.3J 0.50 O.JJ 024

0.M

O.lJ 0.01 0.10

. 0. IO 0.01

“. 1.0 I.0

030

31.0 A02950 ................ 3 0.7-l .s I.0 4.0-J.0 295.1 A029Jl ................ ln:ol 0.7-I.J 0.8 4.0-J.0 9J.2 AO?9J? .......... Ingot 0.7-l .: 0.8 4.CJ.0 -36.0 A02960 ........... .: P 2.0-1.0 I.2 4.bJ.0

296.1 A02%l ............... ln@l 2.e1.0 0.9 4.bJ.O

-36.2 A02962 ................. It,@, 2.04.0 0.8 4.0-J.0 IO5 0 AOMJ4 ................... S/P 4.sJ.J 0.6 ISI-l.J YIJ.? AO,OJZ .................. Inp~ 4.J-J.J O.IW.LI I&I.J AIOJ 0 AIM0 ................... 5. P 4%J.J 0.20 1.M.J A30J.I AI3OJI ................. In#aI 4.LJ.J 0.15 1.CI.J h30J.Z AI3OJ2 ................... 1~ 4%J.J 0.1) I&1.J

X&O AOWI(LD ................... S. P J.&&O I.0 4.CJ.0

3w.l AONI ................... lnpc J.U.0 0.1 4.bJ.0

3aI.2 AOX ...................... Inp J&6 0 0.8 4.0-J.0

119.0 A01190 3J22 h.lSiJCu) JJ2l AlSiSCulMa

0.1) 1.0 0.3J I.0 0.10 0.10

O.JJ 3.0

3122 ALSiiu4 1J22 AJSaCu(Mn RI64 ~JSIJCUJ Rl6( ALWCuJFc RI64 hJsifLu4

A01191

A01192 . Al3190 lJ22 h1SiJCu.l

JJ22 AlSKdMn IJ22 hlSKti 3J22 AISi(Lu4Mn RIU AlsiJCUl RW .dSiJCdFe RI64 hlsibCu4

5. P ll?pX

lw=

s. P

02 ‘. . 0.50 lcm 0.23 ‘.’ 030 IEm 0.m .. 0.m em

J.ti6.J 1.0 I.040 O.JO

J.J-6.J 0.8 ID-40 0.54

J.M.J 0.6 l.M.0 0. IO 119.1

119.2 h3I9.0

Icontinued)

81-7

Page 99: Intro to Metallurgy

ALUMINUM ALLOYS CAST

w-7 I w. r(* L;-u 4

IL - U -AL -a bmm. Kolbl -cl s h C. Mm % 0 Y t $9 n w Td -a

m9. I Al3191 In@4 !.U.S 0.1 l.U.0 0.50 0.10 " 0.15 1.0 0.25 ". 0.50 nxm

BlI9.0 A2llal "'............ S.P !.U.J l&4.0 0.8 0.I0-0.Jo . 0.50 1.0 0.2J 0.54 rem

8319.1 A23191 lqol .c.h5.J if lo-r.0 0.8 0.IJ-O.Jo 030 1.0

ID.0 A032m " .._ s. P S.Od.0 I.2 2.040 0.8 0.0%0.6 0.15 1.0

120.1 A03201 "'............... ..ln#ol S.04.0 0.9 2.W.O 0.8 0.10-0.6 O.lS 1.0

0.2.J ” 030 mn

hr.0 J24.I 124.2

11.0 31.1 112.0 Jl2.1 312.2 133.0 113.1 AJll.0 A33J.I 136.0 11.1 316.2 JB.0 339.1 l41.0 Y1.I 154.0 J)c.l III.0

. P lnrol

AOIZY) A01241 A03242 AO1m AOlrnl A01120 A03321 A01322 AoIlY) AWJII

AIlIlo Al3331

7.W.0 I.2 0.4Ul.6 0.50 0.40-0.7 7.&&o 0.9 0.4&0.6 030 o.rJ-O.7 . 7.0-6.0 0.6 0.4o-o.6 0.10 0.4-4.7 .

I.bZ.0 O.eW.6 O.XU.6 0.35 l&22.0 0.20-0.6 OX-O.6 0.1s

030 I.0 O.JO I.0 0.10 0.10

O.lJ 0.54 mm 0.23 ". 0.m It*

0.20 O.lJ 0.m RI

0.20 O.lJ 0.20 rrm

0.20 0.05 O.lJ l-cm .................. lngol .................. S

................ ..lnp I

... ............. __ P ... .................. Jm ..................... I- ..................... P ... .................. la9c ... .................. ... .................. 12 ................ .,., P ... .................. Insol ..................... In@ ... .................. P

............. ., lnpc

................. D

.................. lnpol

.................. P

03 I.5 0.23 I.5 030 I.0 030 I.0 0.10 0.10 024 1.0

o.zJ ” 0.50 Iem

025 .” 0.50 l-cm

0.23 ” o.so lem 0.2s ” 03l rem 0.20 ” 0.30 IeEl

03 ” 0.m Iem o.zl ” 030 Iem 0.u ” 0.50 rem

030 rem :: f: 0.1 . rem

. . 0.73 0.05 . rem

. # 0.20 0.0s 0.1s rem 0.2s ..' 030 rem 02 03 mm

0.30 '.' 0.10 O.JJ rem

0.30 " 0.10 O.lJ rem 0.m 0.05 O.IJ rem

0.20 0.03 0.15 rem

02 0.03 O.lJ rem 0.2.l O.OJ O.lJ mm 0.20 O.OJ 0.15 rem

o.lM4.m 0.05 0.15 m o.w-o.20 0.03 0.10 mm

0.20 0.m 0.1s rem

0.20 0.0s O.IJ i-cm

0.m 0.0s 0.15 mm

02 0.M O.lJ mm

0.U 0.M 0.15 mm 0.m 0.05 0.1) mm b.m 0.0s 0.15 ICP 0.m 0.0s 0.15 l-tm 0.20 0.0s O.lJ rem

0.044.m 0.05 O.lJ rem 0.o4-o.m 0.01 0.10 rem 0.wo.m 0.W O.lJ rem

8.SI0.J 2.0-4.0 030 0.Ll.J 1sIO.5 ::: 2.u.o 0.50 0.6l.J 4.s10.0 0.6 2.o-4.0 0.10 0.eI.1 m-IO.0 1.0 x0-4.0 020 0.ow.m . 1.040.0 0.8 l.U.0 0.50 0.I0-0.JO a.ewo I.0 l.M.0 0.50 0.054.Jo . . a.o-IO.0 0.1 l.U.0 030 O.IO-o.Jo . .

Il.&If.0 I.2 0.Jbl.J 0.3J 0.7-1.3 . II.&11.0 0.9 O.JO-1.J O.lJ O.&l.1 . . ll&l1.0 0.9 OX-I.J 0.10 o.er.1 . . II&13.0 I.2 Id-l.0 0.M 0.JW.J ll.&l3.0 0.9 l.J-3.0 0.M 0.6l.J ...

6.7-7.7 I.2 o.w.9 0.54 0.10 0.10

6.7-7.7 0.9 o.s0.9 030 0.10 0.10

8.6-9.4 0.m 1.6-2.0 0.10 O.W.6

8.6-94 O.lJ 1.62.0 0.10 0.4so.6

0.50 1.0

8:; 1.0 1.0 2.0-3.0 0.35 2.lLl.O O.lJ

AOIW A03361 AOJW 2.Cl.O 0.10

0.sl.J 1.0 O.B-I .J I.0

. . . 1.2-2.0 . 1.2-1.9

AO31m .

AOl4JO A03411 Mlno

AO3J4l MIJJO

AO~JJI AOIJJZ AIIJJO AI3JJZ AJIIB h)llJl ti3lJ2 A03JW

AO3J6l

4.LJ.J O.t40) I.&I.J O.JOlol 0.44d3.6 0.2J 4SJ.J O.BXOl l.O-1.J O.JUol 0.4Ql.6 0.25 4.J-J.J O.lcO.23 l&l.J O.OJ 0.1(M.6 4.LJ.J 0.09 I.&I.J O.OJ 0.4IFo.6 .

4.S-J.J 0.06 1.0..I.J 0.03 0.ti.i .

4.sJ.J 0.20 1.0-1.5 0.10 0.4fU.6 .

4.!-J.J O.lJ I&I.5 0.10 0.4-0.6

0.10 0.10 . . . . . . . . . . . . . . . . . . lnpl

J522AtSKuIM9 Rl6( AlSiJcUl. s. P O.lJ

. O.JJ JJJ.1 IJJ.? A15J.0 AlJJ.2 ClJS.0

C3JJ.I CIJJ.? I%.0

.......... .... InpI ....... InpI

................. s. P

................. Into1

................. S.P

0.0) O.OJ 0.03 0.10 0.10

. 0.0s

0.U 0.311 0.0)

. 0.10

. . . . . . IfUOl . “.. .- lnpc

JJZ? AlSi7M: El47 AlSi7M6 ._.... S. P

4.sJ.J 0.11 1.lLl.J 0.0) 030-0.6 .

6.J-7.J 0.640) 0.:) O.l%o) 0.2W.rS . 6.J-7.J Osao) 0.2) O.lUoJ 0.23-0.4J 6.s7.J O.lbO.2J 0.10 0.0s 0.30-0.4J . 6.L7.J 0.20 0.20 0.10 O.L5&4J 6.J-'.J O.tJ 0.20 0.10 O.N.O.4J 6.G7-7.J 0.12 0. IO 0.05 O.xw).IJ h..C7.J 0.09 O.OJ 0.0s 0.2J-O.4J 6.L7.J 0.06 0.01 0.01 O.lbO.4J b..c).J 0.07 0.0s 0.0s 0.2W.4J .

6 L7.J 0.04 0.0) O.OJ O.W.4J 6..c7.J 0.20 0.20 0.10 0.17d.2J 657.J 0.12 0.10 0.05 O.IW.2J .

6.J--'.J O.tJ 0.0) 0.01 0.4-9.6 6.J-7.1 0.12 0.01 0.01 0.45-0.6 6.J-7.1 0.m 0.20 0.10 o.ao.7 I . .

657.J 0.12 0.10 O.OJ 0.4-0.7 657.J 0.09 0.05 O.OJ O.W.6 6.J-7.J O.Qb 0.01 0.01 0.4-4.6 .

6.S7.J 0.09 O.OJ O.OJ 0.4SO.7 . 6.W.J 0.W 0.01 0.01 o.m-o.7 6.W.J 0.20 0.10 O.Jh3.6 7.ti.6 0.24 0.20 0.m o.ao.6 0.20 7 a.6 0.10 a.10 0.10 0.4Jd.6 O.OJ tl..cp.J 0.20 0.20 0.10 o.Jo-o.7 6.J-9.J 0.12 0.10 0.10 O.JU.7

S%.l .................. lnpl ............ ..... lnpl .............. 5. P .................. lfl6Ol .................. IlIp ............... s. P .... ............. Ingot ............ ... 5. P

-- ln;or .................. S.P

....... b-1

...... s. P ................. ln@w

........... .... s. P

.............. lrrpc

.................. s. P

.................. lnla

.................. s. P

.................. Inlou

..................

................. SSP .

.................. IW@ ....... s. P

516.2 AOlJ62 AluY.0 All%l dJ6.I All%1 A.M.2 rclJ.52 BJ16.0 Ax&l

0.10 O.OJ

O.OJ 0.01 O.OJ

BJ#.? CJ116.0 CJY.2 FJY.0

A2lJt.2 A3Jw) A3lJ62 AblJm A63J62 A01570 A03J71

0.01 . 0. IO

0.04-o.m 0.01 0.10 mm 0.w-o.m 0.0s O.lJ rem

. 0.ou1.20 0.0.4 O.lJ rem

. 0.m 0.M 0.15 rem

. 0.10 0.M O.IJ w

n16.2 JJ7.0 lJ7.1 AJs7.0 A317.2 8157.0 BJJ7.2

. O.OJ O.OJ

. O.OJ AlIS AI3J72

h?.Mn

0.10 0.05

0.cu.m o.QJ(pJ O.tJ rem 0.o44.m o.o~(p~ 0.10 - 0.04-o.m 0.M O.lJ mm 0.m-o.m 0.01 0.10 mm O.ou).ZO O.OYpl O.JJ rem 0.044.m 0.03w 0.10 T~(D

o.two.m O.ospl O.lJ mm 0.io.o.m 0.~~0) 0.1s - 0.I2-o.rn O.oYrl O.IJ rem

0.m O&S O.tJ rem 0.m 0.M O.lJ rem

. O.OJ 0.01

. 0.0s . 0.01

..- .

0.m 0.10 0.10 0.10

. . cls7.o Cm.2 DJJ7.0

AOhao I%.0 JY.2 JJ9.0 JJ9.2 Jmas)

AOJWl Ao3m A03J92

AOMXw

9 e-10.0 2.0 0.6 x0.2

R'l47AlSilOMI(O... D O.JS 0.4b3.6 . . 0.m OS0 O.IJ "' "' O.Yrcm AOlfO2 90-10.0 0.7-1.1 0.10

Am.W Al!.6W .., . . . . . . 1~ 0.10 0.459.6 0.10 0.10 0.10 ". -.. o.?omm

. . . . . . . . D 9 610.0 1.1 0.6 AJ60.1W AIWIW _._.............._ I*

O.JS 0.4CW.6 . E

OS0 O.IJ ...... 0.u mm 9.cLIO.O 1.0 0.6

c60.2 O.JJ 0.4-0.6 0.40 O.IJ ...... O.ZJ rem

AlW'2W IN.0

. " . . . In- 9.0-10.0 0.6 0.10 0.05 0.4U.6 0.05 O.lJ w A03610 ._................ D 9.s10.1 I.1 03 02 0.W.6 O.&w)O.Zit&O ::ii it0 0.m O.QJ 0.1) mm

Page 100: Intro to Metallurgy

ALUMINUM ALLOYS CAST

L--- Cd-s-h-, I -..kll-

F I

fizb -4l ma, VW.*. 0011) -eI Y ?I G Mm w cs M L L n w 1d *4,

%I.1 AO#ll 1q.n 9.LlO.S 0.8 0.m 0.23 0.4Ql.b 0.,m-o300.20&% 0.4 0.10 0.05 0.13 rem k.6J.o A03630 . s. P 4.M.O I.1 2.s1.5 111 0.I3-O.4O (1) 0.23 J.o-4.1 o.LI i:: WJ 0.m nm Y3.I A0363 I ..,..... Inpt 4.540 0.8 2.5-3.5 (II 0.2044 (0 0.u 3.ec.J 0.25 0.20 (UJ 0.30 rem 364.0 ~0364 . . ,.. . . . D 7s9.3 I.5 0.20 0.10 0.20-0.40.2w.m 0.15 0.15 0.13 '.' O.OXVJ 0.13 fern 3b4.2 A03642 . ,._...... . Inpt 7.5-9.5 0.7-1.1 0.20 0. IO o.2sOLo.ul 0.W.d 0. I3 0.15 0.15 O.OYVJ 0.15 rem 369.0 AO~M ., _. D II&12.0 I.3 024 0.3J O.W.45 0.3O-O.O 0.0) 1.0 0.10 0.03 0.111 tern 3b9.1 AOWN __.........,,..... In&H 11.0-12.0 I.0 024 0.13 0.3oa.45 0.m4.40 0.m 0.9 0.10 0.05 0.13 rem %O.o(sJ AOlWUsJ . . . . . . D 7.5-9.3 2.0 m4.0 0.50 0.10 ... 0% 3.0 0.35 '.' 0.m mm MO.2 A03802 _, ,_. ._. .__. I&o, 7.s9.3 0.7-1.1 ~.o-b.O 0.10 0.10 '.. 0. IO 0.10 0.10 ." .' 0.20 mm AUO.OhJ ~Ilao 352 .USi&XFr

A360.11S) RlMNSi&X3Fe.... D

A13OOllsJ _..,.__..._....... tc,‘n,, Al)802 . . . . . . . . . . . . . . . . . . I- A2J.300 _. ,.. _. __, ____. D A28wI . . . . . . . . . . . . Ianw

7.L9.J 1.3 7.5-9.5 1.0 7.s9.J 0.6 7.5-9.1 I.1 7.3-9.3 I.0 9.L1I.J I.3 9LII.J 1.0 9.s11.s 0.61.0

10.5-12.0 1.3 10.~12.0 1.0 10.s12.0 0.61.0

10.s12.0 1.3 10.s12.0 I.0 [email protected] 2.0 lJ.&l3.0 I.1 I6.Cl1.0 1.3 Ib.O-18.0 0.61.0 IbO-Ill.0 0.50 lb.%M.O 0.40

16.0-18.0 I.3 lb.&18.0 I .o l&O-2O.O 1.J II O-m.0 1.1 21.&23.0 I.3 2l.G!l.O 1.0 21.&23.0 0.8

8.5-9.5 0.61.3 9.s10.0 Oh-l.1

IO.Cl2.0 0.61.3

3.040 0.m 0.10 1.040 0.50 0.10 l.M.0 0.10 0.10 m-4.0 030 0.10 3.040 0.m 0.10 2.&1.0 0.) 0.10 2.O-3.0 0.50 0. IO 2.s3.0 0.10 0. IO 3.045 030 0. IO m-b.5 0.m 0. IO

. 0.50 0.35

. 0.30 ::9” 0.35 0.10 0.10

::i ::i 0.15 . . 0.35 .

0.30 1.0 0.15 '.' 0.m 2.9 0.13 '..

. 0.10 0.10 0.10 . 0.50 3.0 03 0.m 2.9 0.33 . 0.10 0.10 0.10 0.50 1.0 0.111 . 0.50 0.9 0.15 . 0.m 1.0 03 '.. 0.m 2.9 0.m ".

. 0.10 ." 0.29 . . . 0.10 ." 0.20

0.10 ." 0.20 . 0.10 ." 0.20

0.10 1,s ." 0.20 0.10 I.4 .., 0.23 0.m 0.50 0.30 0.20

. 0.m 0.4 0.30 03 2.e2.3 0.10 0.io-o.m 2.C2.3 0.10 . O.lO-O.2O 2.e2.3 0.10 . 0.1Mo.20

. o,,o . . . 0.10 . . 0.10 . .

AJm.2 BJBO.0 a380 I 3R1.0

393.1 yL3.2 Mb.0 s84.1 N.2 MRb.0

A384.I

AOl830 . . . . . . . . IfI A03831 ..................... I0@l A0132 ..................... ln@ A03R4 ........... .:. ....... D A03841 ..................... lasa A03842 . .................. IfG Al3W .................. AIWI .................. ‘2

MS.0 A0150 ...... D sm.1 AO3RSl ................. Inpc 390.0 AOX .................. D 590.2 A03W2 .................. Inw Al90.0 Al1900 .................. s. P AM. I Al35Ul .................... Inpl 8190.0 A23900 .................. D

8390. I rlllpol .................... III&M 392.0 A0397il ................... D 392. I A03921 ..................... lryol 393.0 A0393O ..................... S.P.D 393. I A03931 ..................... lnpl 193.2 A03932 .................... lnpl 408 2IrJ AC"CSZlx1 .................... l,,#~l uR.2lX) A04092tr~ .................... Lnpl 4Il.?lXJ AlMll21~J .............. In@ 413.asJ AWl3alJ 3% AISilXuFasJ

!!2 AISil? FCIII RIM AlSiJ2lsl RIM NSil!Culrl RI64 AlSil2CuFn11

03 Iem 03 rem 0.20 rem 0.m mm 024 rem

. 054 rem 0.30 mn 0.30 rem

. 024 ltm ‘.. 03 rem

0.10 0.20 mm 0.10 0.b Rnl 0.10 0.b rem 0.10 0.M rem

0.10 0.20 rem 0.10 0.2O Rm

0.15 o.xl rem 0.15 0% rem

O.WrJ 0.13 nm O.O%wJ O.IJ rem O.ORwJ 0.13 nm

0.10 0.20 #-cm 0.10 0.20 Rnl 0.10 0.20 rrm

1.Lu.s 0.10 0. IO 1.04.J 0.m 0.10 3.b4.5 0.m 0.10 2.O-4.0 0.50 0.30 2.040 0.50 4.PS.O 0.10 o.rOGu 4.bS.O 0.10 0.so-o.b.l 4Lu.o 0.10 o.rQ3.61 4.040 0.10 o.JOabJ

4.6S.O 0.m 0.43-0.65 4.er.0 0.m o.m-o.6(

0.40-0.8 O.W.6 0.6-1.2 0.4040 0.2W.6 0%I.2

0.7-1.1 0.10 0.7-I.1 0.7-1.1 0.10 O.bl.1 0.7-1.1 0.10 0.6-1.3

0.10 0.10 '.' 0. IO 0.10 "' 0.20 0.10 "'

RI61 AlSilZFetsl Cl47 AJEI~IsI....,. D ll.&l3.0

II&13.0 11.413.0 ll.&l3.0 ll.&l3.0 11.613.0 Il.cLlJ.0

3.L3.9 4.U.O 4.M.0 4.5-6.0 4.54.0 4.Sb6.0

4.54.0 4.340 4.%.0 4.540 4.W.0 6.S7.3 b.W.5 657.5 6.S7.5 6.L7.5

2.0 0.7-1.1

I.0 0.10

1.0 1.0 0. IO 0. IO 0. IO 0.O.l 0.b 0.6 0.10 0.30 03

0.19 0.10 0. IJ 0.15 0.03 0.35 0.33 O.OS 030

i: 024 030

0.15 0.33 0.15 0.35 0.6 0.1)

0.6 0.35 0.10 0. IO 0.23 0.35 0.10 0.03 0.10 0.10 0.10 0. IO 0.05 O.Q(

0.10 0.07 0. IO 0. IO 0.05 0.05 O.O¶ 0.0s 0.0s O.OS 0.0s

0.25 0.25

0.25 02

.

0.m 0. IO 030 0.M 0.05 O.O¶

0.m 0. IJ

0. IO O.lJ 0.15

0.25 Rln 0.20 rem 0.23 mm

0.23 nm . . 0.10 ll!m 0.05 0.20 mm 0.05 0.m rem 0.05 020 mm

OJS trm

'. 0.35 l-em 0.03 0.15 lu0

0.31 tern OJ5 tern

0.05 O.lS- mm 0.05 0.15 Rnl

03 rcm .. 03 rem

0.05 0.13 Rm 0.0s 0.15 rc0l

4lJ.2lSl

AllhXrl A4II.llrJ A4I3.2 8413.0 B413.l 435.21~)

441.0

0.10 0.m 0.4 0.05 0.10 0.10 0.10

. . . . InLa D

..,......,........ Iapc _.......... .

. . . it . . ln#ln

AI4IYXsI AI413IlsI Al4132llJ A24130 824131 AO4352lyJ AbuY)

I.3 1.0

::!a 0.03 . . .

0.2J 0.23

02 0.2J 0.m 02 0.23

0.25 0.23

02 0.x) 0.x) 0.10 0.20

0.4 0.4 0.)

0.03 . . . . . . . . . . . . . . . . . . . . . . IfI@

.................... S.P 0.m 0.53 0.10

.

. . 443. I AO443I

443.2 AO4432 AU3.0 A IWO A443.I Al4431 BU3.0 A24430

0.6 0.6

i::

0.8 0.6

.................. .................. ..................... s .................. 3522 Alsii RI@ MSii.. ......... 5. P

._ ................ lnpc RIM AISiJFe ....... D

................. ..................

... ........... ...... ‘SE ................. ln#Ol .................. P ................. lnpl

.................. ‘ruol

0.m 0.m

.

03 0.35 0.m 0.4

0.10 0.15 0.03

0. IO 0.10 0.0s

BA43.l AMI1 Au430 AU431 AM432 AOurO AM442 Al4UO Al4441 AI4442

. . 0.50 03

. . 0.13 0.13

CUI.0 CUJ. I c443.2

4U.O bu.?

A4440

2.0 I.1

0.7-1.1 . . . . 0.05 0.15 rrm

0.05 0.15 rem 0.03 0.15 r4m

scurr.4: WJ.4.J

Bl-9 /

Page 101: Intro to Metallurgy

, ” , , ‘-‘I: , , ,f.% .F

s 4

ALUMINUM ALLOYS CAST

gL#., lm-

- LyIbb -0 s ?* Cm Ma MI ci xl Ir h l-l cmb Td 24,

bS7.5 0.61.3 0.10 o,,o 0.10 0.10 0.X mm

511.0 AOJllO . . . . . . . . . . . . . . . . . . o.Jo-o.7 0.54 0.1) 0.3J 1.M.J ... ... 0.1s '.. 0.25 O.OJ O.lJ awn

Jll.l AQ(,,I ~___.....__.__._. Inpl o.Joa.7 0.40 0.1) OJJ 1.W.J . . O.lJ '.' 03 0.011 0.15 rem

Jll.2 AOJ,IZ ~__............__ In&M o.Jo-o.7 0.30 0.10 0.10 1.64.J . -. -. o.to " 0.20 0.0) 0.1s mm

J12.0 A@120 . . . . . . . . . s 1.4-2.2 0.6 0.3J 0.8 3.Y.J 0.25 '.. O.JJ ... 0.25 O.OJ 0.1s em .._ 112.2 AQ(lz2 ~................ lu@l l.CL.2 0.30 0. IO 0.10 l.b-4.J ;;;:; ml& . . . . . . . . . . . . . . . . . P 0.30 0.40 0.10 0.30 3.Y.J

. . . . ln#oI 0.30 0.30 0. IO 0. IO 1.ti.J

Jl4.0 AOJlYl JWAlM&l RI64 AlMI.3:

J14.1 J14.2 JIJ.0 JIJ.2

Jl60 J16.1 Jlt.0 JIB.1 111.2 J20.0

520.2 JlJ.0 JJJ.2 1u3J.O Mu3J.I BS3J.O

A05142 An5150 ~O5lJ2 AaJI60 A05161 AOJIrn AOJIOI Ao5ls2 Am200

AOJ202 AoJm AOJJJ2 AIJJJO AIJJJI A2J3m

. . . . . . . . . . . . . . . . . . . . ..___.... I- 3J22 AlM#IO RI64 AIMlo: 111147)rlGgb s

. . . . . . Ml . ~................ . . ~................

. . . . + . . ..__._ IIuo~ . s

OJJ 0.w) O.JJ 0.40 0.30 030

ox-I.0 1.1 0.504.0 0.61.0

0.3el.J ox-I.0 0.3Sl.J 0.JJ-0.7

0.3J I.8 O.)J I.1 0.23 0.7

0.25 0.30 0.25

O.IJ 0.20 0.20

O.lJ O.lJ O.OJ

0. IO 0.10 O.OJ 0.20 0.20 0.10 0.20 O.lJ 0.10 0.15 0.15 0.10

O.lJ 0.15 0.10 0.m 0.10 0.30 0.Y) 0.U 0.U 0. IO

0.3J OJJ 0. IO

O.W.6 O.W.6 0.IJ-o.Q 0.1M.44

O.JJ O.JJ 0.10

0.15 0.10

O.lo-o.rr

0.10-0.2J 0. %0.Y 0.IW.U

0.05

1.W.J 3.64.J 1.64.J 2.w.o 2.74.0 i.W.J 2.M.5 7.J.d.J 7.66.J 7.&&J

9.5-10.6 9.610.6

6.2-7.J 6.67.J 6.S7.J 6.Ct.J 6%7.J

. 0.10 " 0.20 0.05 0.1) mm . ,.. 1.4-2.2 " 0.20 O.OJ 0.15 rem . . . . LC2.2 '. 0.m 0.05 0.15 mm

. . . O.lJ '.. 0.U 0.05 O.lJ rem O.iJ ... 0.25 0.05 0.15 ten!

. 0.10 ..' 0.20 O.OJ 0.15 tnn . . . o,,o 0.05 0.15 feEI

. 0.2&0 iti 0.;; 0.1 O.IJ rem

0.1&O.i3 O.OJw mm . 0.w.a 0.20 0.10

0.15 0.15 O.,J 0.10420 O.OJ(ZJ -; E,"

O.lJ O.lJ O.lJ . 0.25 rem . O.OJ ..' 0.05 '.. -.. 0.10 rem

. O.lJ ... 0.2J 0.05 0.15 ltm

0.10 ” 0.20 0.05 0.15 rem

O.IM.25 0.05lUl 0.15 nan . . O.I(M.23 O.OJ(bbJ O.lJ rem . . 0.23 O.OJ 0.15 rem . ,.. 0.25 O.OJ O.IJ rem

. I 0.I0-0.25 0.05 0.15 Rml B515.2 dlJ2 '....,.........,. 1~ 705.0 A07054 . ‘........__..___ s. P

705.1 Arm51 . ~............_._. lnpr 7070 A07070 . . . . . . .._...____. S. P

ml.1 AOrml . . . . . . lnpl 710.0 A07100 ~..__...__..,..., S 710.1 AO7lOl . . . . . . . . . . . ..__.. ltuot

0.10 0.12 0.05 0.05 6.67.5 0.1Wo.25 0.05 0.15 rem 0.20 0.1 0.n 0.404.6 1.4-1.8 0.2tw.40 2.7-u 0.U 0.05 0.15 mm 0.20 0.6 0.20 ON-O.6 l.Sl.1 0.2SO.u) 2.7-u 03 0.05 0.15 rrm 0.20 0.8 0.20 0.4b3.6 1.6-2.4 0.204.Y) r.u.5 0.U 0.05 0.15 rem

0.20 0.6 0.20 0.404.6 1.9-2.4 0.2SO.Y) . 4.0-4.5 0.2J 0.05 O.lJ nxn 0.15 0.w) O.JSOo.bJ 0.0s 0.6-0.1 .'. " b&7.0 02 0.05 0.15 rem 0.15 04 0.1Ml.61 0.011 O.bsM J . b&7.0 0.25 O.OJ 0.15 mm

711.0 A071 IO

711.1 AmIll 112.0 AO713l II?.? A07122 w.0 A07130 7lJ.I A07131 n1.0 AURIO RI.2 A07712 RZ.0 AOTfX 77i.i A07722 1so.o ArnJm

..... P 0.m 0.1-I .4 0.J54.65 ................ IW 0.30 0.7-1.1 O.lUl.65 ............... s Ou) O.-Y) 0.25 ..... .......... 1wc-l 0.15 0.40 0.25 ................ s. P 0.25 I.1 0.4rLI.O ................ lnpl 0.2J 0.8 0.40-1.0 ........ ....... 5 O.lJ 0.15 0. IO ................ Iv- 0.10 0. IO 0.10 ...... ......... S 0.15 0.15 0.10 ................ lnpr 0. IO 0.10 0.10 ................ s. P 0.7 0.7 0.7-1.5

0.05 O.OJ 0.10 0. IO 0.6 0.6 0.10 0.10 0. IO 0. IO 0.10

0.2wlr5 6.0-7.0 0.20 0.05 0.15 Rln o.lo-a.45 6.0-7.0 0.20 0.05 0.15 Rln 0.5ca.6J 0.40-0.6 5.0-6.5 O.ISO.25 0.05 0.3 rem 0.5&0.65 0.40-0.6 s&&s '.' O.IsK5 0.05 0.20 rrm 0xLo.m 0.35 0.15 7oa.o "' 0.25 0.10 0.25 rem 0.23-4lm 0.35 0.1.' 7.oao '.' 0.25 0.10 03 bptl 0.8-1.0 0.06-0.20 b.J-7.J 0.IQ-O.20 0.05 0 I5 rrm

0.8~1.0 o.wto.2Q . 6%7.J 0. I0-0.20 0.0s O.lJ Iem 0.6-0.8 0.06-4.20 '. 6.&7.0 O.IO-o.2a 0.05 0.15 rem

0.bu.t 0.064.20 " 6.S7.0 O.lO-o.20 0.05 0.1s rem 0.10 "' 0.7-1.1 5.L7.0 0.m I' 0.m Rln

u0.I ArnJoI . . . . . . . . . . ..__...__ Inpc 0.7 024 0.7-1.1 0.10 0.10 " 0.7-1.1 5.s7.0 . 0.x) Rln 151.0 -JlO ... . . . . . . . . . . . . . . . . S.? 2.61.0 0.7 0.7-I.J 0.10 0.10 '.. 0.3m.7 5.w.o 0.30 rem 8sI.I AmJII ~_._._.,.__.,,,,, lm 2.0-1.0 0.30 0.7-1.3 0. IO 0.10 ..' 0.340.7 '.. JS7.0 0.20 .'. 0.30 m m 852.0 A!20520 ... . . .._.._.._..... S.,' 0.40 0.7 1.7-2.1 0.10 o.&oo.9 0.9-1.5 . J.5-7.0 0.m 0.30 mm 152.1 A06521 . . . ._.___...__..,. m 0.40 0.50 1.7-L.) 0.10 0.7-0.9 0.9-1.5 5.5-7.0 0.m fern 8Jl.O Am@550 . . . . . . . . 5. P 5.5-a 0.7 ),U.O 09 . . . . . 5.s7.0 ;:i 0.30 rcm U1.2 -512 . - .._.._____._._._ 1~ 5.x5 0.50 I.040 o.,o . . . . 5.5-7.0 0.20 .,. 030 m m

I

El-10

Page 102: Intro to Metallurgy

ALUMINUM ALLOYS TEMPER DESIGNATIONS

Temper Designation System for Aluminum and Aluminum Alloys

The ~entprr Jesignatmn system used in the Cmted hater for aluminum and alumt- num alloys is used for all product forms tboth wrought and cast). with the exception of ingot. Tk sy~ctn IS based on the Y- quences of mechanical or thermal treat. ments. or b&h. used to produce the various tempers. The temper dcsignatlon follows the alloy dcsignaiion and is separated from it by a hyphen. Barx temper designations consist of irntividual capital Ic~tcn. Major subdivisions of basic tempers. where rc- quircd. arc ittdicated by one or more digits following tk letter. These digtcs designate rpccific sequcoccs of treatments that pre duct spcctfa combmations of charactcris- tics in the duct Variattons in trtalment conditions within major subdivisions arc idcntilied by additional digrts. The condi- tions during heat treatment Isuch as time. temperature. and quenching t-ate) used IO produce a given temper in one alloy may diflcr from those employed lo produce the ~amc tcmpu in another alloy.

Basic Temper Designations Designations for the common tempers.

and descnptiis of the sequences of opcta. ttons used to produce these tempers. arc given in the following paragraphs.

F. &-t&k&ted. This h spplitd to pm& uctsshapcdbyoddwork&botwork+~ =WP- ittwhkhoos@alamaol t3xx thertualomditioruor stmin turdckug is emplqd. For ~IGU&I produa. tkrc are no-p?qxltylitlths.

0, Awdcd 0 applies to wrought pmd- uaa lhat UC annealed to obtain Iwst- strength temper and’10 U products that arc anncakd IO improve ductility and di- nunsiond stability. llte 0 may be loUwed by a dir atut than zeta

n, slnb- wwght Pducb Otdy). This indicates products that tuvc been srrcn&eatd by strain hardening. witi or urithout supplementary thermal treat- m m to ptotlucc some rcductimt in strength. Tk H is always folkvcd by two or tnore di&s, as discussed ia the suztion

“System dm Strain-Hardened Ptuluc~” ia this attick

W, Sdutpn Htd-lrcatd This is an un- slablc tcrnpcr applicable only to alloys whose strcagth naturally lspontancousty) changes at room temperature over a dura- tion Of months or even years after solution heat trcattmtt. The dcsignaton is spe&ic only when the period of natural l gmg is indicated @T example. W ti h). See &o the diacussktt of the L-51. Tk5?. and M tcmpws in tbc section “System for Hcrt- Treatable Alkrys” in thir article.

1. b(Utio0 Heat-Treated. This applies to alloys whose strength ix stable within a few weeks Of sdution heat treatment. The T is always follaed by one or more dipu. s discussed in the Mction “Sptcm lot Hcrt- Trca~able AlLays” in this ankle.

Temper dcsigttatiot~ for wrought prod. UN that are sttcttgthcacd by straio hrrdcn- ing EonCat of att H follwd by two or more digiu. The 6nt di&il following the H indi- c&r the specific &quc~cc of-basic opcta- tioas.

Hl, stirc- Only. This applies to ptoduc~ thaw arc strain hardened to obtain the desired suet@ without rupplcmcntrty tltcrtd matmeat. The digit following the Hl indicates tbe degree of strain hardening.

n2, sltaln-- andPUtMy& mJed. This pwuina to ptoduas IhI arc rLtti-budcacd more than the duitcd fld amout and tbcn reduced in strcngrh IO rbe duired level by partial annealing. The digit lothAng the H2 indicate4 use degree of

rrnin hardening rcntaining after the product hu ken panidly annealed.

HI, Strain-Hardmd ad Slahilized. This @es IO products that an! StJain-hardened vd W~OSZ t~~~hanical ptopettiu arc slabi- hd by a lowmtempcraturc lhcrma laxalmcnl a as a tudt ol heat intraluced during f&i- cab. St&&at&t uwally imptover ductil- sy. T?tis dcsigmtbn applies only to those rlbys Ihal. unku slabdid. duauY rgc adlen at tmm tentpctaturc. The digit Mow-

ing the H3 indkatcs the dem of sttain hardening rmnaini~ alter subilizdi~n.

MdiIiotul 1-r D+utiau. For II- lays that age soften at room tempctature. each Ht temper has [he same tnittimum ultima~t tensile strength as the H3x temper with the same second digit. For other al- loys. each Hk temper has the same mini- mum uhimalc tensile sircngth a~ the HIx with the same second digit. and slightly higher elongation.

The digit following the designations H 1. Ii!. and H3. which indicates the degree of strain hardening. is a nut~~t3l from 1 through 9. Nurr~tal 8 indicates 1cmpet-s with ultimate tensile strength equtvaknt to that ackved by aboul 75% cold reduction ivmpctatum during reduction not to exceed 50 T . or I20 ‘R lollowinn full annealing. Tcmprn between 0 (anrtc&d) and 8 a& designated by numerals I thtuugh 7. Mate- d having an ultimate tcnsilc strength ap

proxtmatcly midway between that of the 0 tempct and the 8 temper is designated by the numeral 4. midway between the 0 and 4 tempers by the numeral 2. and midway between the 4 and 8 tempers by the numeral 6 Numeral 9 dcvgnatcs tempers whose’ minimum ultimate tcnslle strength exceeds that ol the g temper by IO MPa (2 ksi) ot more. For twwdigit H tempers whose sec- und digits ate odd. the standard lirmts for clrcngth are the anthmctic mean of the rtandard limits for the adjacent two-d@! H tempers whose second digits arc even.

For alloy5 that cannof be sufklcntly cold-reduced to establtsh an ultimate tensile qtrcngth applxable to the 8 temper (75% cold reduction after full annealing). the 4. lcmpcr tcnsilc rlrcnglh may k established by cold reduction of approximately S58 following full annealing. or the 4.tcmpcr rens~le strength may tx crtabhrhcd by cold reduction of approximately 35% after full annealing.

When it is desirable IO identify a vartatton of a twodi@I H temper. a third digit (from I lo 9) may be assigned. fhc third digit is used when the degree of control of temper or the mechanical properties are different from but close lo those for the twedigit H temper designation IO which if .is added. or when some other chatacrcnsttc is signifKantly affected. The mintmum ultimate tensile strength of a thrcedigtt H temper is at least as close IO that of the corresponding twc+ dlgit H temper as it IS IO ctthcr of the adjacent two-digit H tempers. Products in H tempers whose mechanical propcnics ate below those of HA tempers are assigned variations of HAI. Some threedigit H rem- per designations have already been assigned for wrought products in all alloys:

Hz/f applies to products that incur sufC cient sttain hardening tier fitta~ artrtcaiing to fail to qualify as 0 temper. but not so much or so consistent an &mount of stain hardenmg to qualify as Hxl temper. HI/2 petins to products that may ac-

quirc some strain hardening during working at elevated tcmprrature and for which thcrt are mechanical propcny limits.

Bl-11

Page 103: Intro to Metallurgy

ALUMINUM ALLOYS TEMPER DESIGNATIONS

System for lieal-Treatable Alloys

The temper Jcsignauon skrtcm for wrought and casl product\ IhaI arc Jtrength- cncd by heal IrcaImenI employs the W and T dcsignalions described In Ihc section “Basic Temper DcJignaIIons” In [his ar11. cle. The W dcsignalion denotes an unslable

Icmpcr. whereas the T designation denote, D Jcable remper ocher Ihan F. 0. or H. The T Is followed by a numhcr from I IO IO. eact numkr indicaring a Jpccfic ~qucnce u1 basic IrcaIments.

11. Coded From UI Elevaled-tcmpralun sJuPin8 Process and NaIuralh Aged IO a sU~*hlly Stable Cmditim. lhs desIgna IIon applies lo products rhar arc no, cold worked afler an elcvrtcd~rempcr;lIure rhrp- ing process such as casung or exwu~~~n and for which mechanical propcnies have been stabilized by room-tempcnturr aging. II also applies lo products arc flattcncd or nnightcncd afIcr cooling from rhc shaping omccss. for which the effecIs d Lhe cold wart Imparted by flattening or straightening are not accoumed for in Jpccihcd D~ODCRV . . _ limits.

12. Coded from an Ekvalcd-TemperaIure Shaping Process, Cold Worked. awl Namral- ly Apl to J Subrtrnlially Stable Condilhm. This varialion refers IO producIJ IhrI arc cold worked Jpecilically IO Improve scrcngth aficr cooling from a hoI+orkmg process such as rolling or cx~ruJIon and for which mechanical propcr11cJ have ken JIa- billzcd by room-Icmprature agmg. II also applies IO products in which Ihe cff~~~ of cold woti. impaned by flancmng or sIr-aIghIening. arc accoumcd for In specified properly limirs.

13. blulion Heal Treated. Cold Worked. and NMurally Aged lo a Subrtantiallv Stable Condillon. T3 applies IO producIs IhaI are cold worked spccilically IO improw sIrcngth afwr solution heat Ircatmcm and for which mechanical prop&es have been stabilized by room-IempcraIure aging. II also applies IO products In which Ihc cffectr of cold work. imparted by llartenmg or slnaighterung. are accounred for in JpccIfied property limirs.

14, sdutial HCal lrclled ud wI8rally Aged ICI a Subrtantlally Slabk Corulll. This Jignilies products that are no1 cold worked lltcr solution heal Ireatmem and for which mechanical propenies have been SO- bilized by room-temperature aging. If Ihc producls are llallencd or siratghicned. ilie cffccrs of the cold work Impaned by flancn- ing or sIraIghIcning are no1 accounted for in JpcGd propcny limirr.

15, Coded From an Ekvatd-TcmpraIurc Shaping Process and AIMXally Agd. TJ includes producrs 1haI arc no, cold uorked after an elevated-IcmpcraIurc Jbaping pro- cess such as casting or extrusion and for which mechanical propcnIes have been JubJlanIially improved by preeipilalton heat lrealmcnt. If the producer are flal- Iened or straighlcncd afIcr cooling from the shaping process. the effecIs of 1hc cold work impaned by llatlening or straighwn- ing art not accounied for in JpccIIicd prop crty limils.

16, Sdulion Heat lnrled and ArliIicWIy A& This group cncompasxs prcducts

Ihal are no, cold worked aflcr solulion heat treatment and for uhIch mechanIcal propxr-

‘[ICI or dimensional JIrbiliry. or boIh. have b~cn subsmnlially Improved by prccipita- uon heat Ircalment. If Ihc producls arc flaIIeocd or stta&tencd. the clTec~J of the cold work ImpatIcd by llatlcnmg or JIraighI. cmng arc not accounted for in JpeciIied propny limits.

77, - nut Trea1ed and omagmi or Slaixd. l7 appltes to wrought pral- 1~1s th1 have been precipitation heat Ireat- cd beyond the pomt of maximum Jtrcngch lo ptwde some rpccml chancteri,tic. such as tntunccd rcsiswuc IO JtrcJJ-coIroJion cracking or cxfotia11on corrosion. II applies lo a.51 product.5 char arc arIifmially aged lRcr solution heat treacmcnt to provide dinwtsiorml and SI~CII&I JtabiliIy.

18. Sohim Heat Treat4 Cold Worked, ad Artiliciily A& This designation ap- plies to prcducrs lhat UC cold worked spc ciF&ally IO Improve strcngIh after solution her1 rreaunent and for which mccbanlcal properties or dimensional Jtabili~y. or both, hyc been JubJunItally improved by pre- ckitumll kal Lrcalmcnt. The cffec0 of cold work. including any cold work imprrr- cd by flattening 01 s~rening. are ac- %uIled for in Jpccilicd propcny limilr.

19, Sdution Hut Treated. Mificially Aged, ud Cold Worked. This grouping is comprised of products 1ha1 arc cold worked J~ecilically IO improve slrcngth after they hove been Precipitation heat treated.

110. Co&d From an EkvaIed-Tempera- hut shapiv PmeJJ. cdd WorLcd, 4nd Mifwially Agd. TIO tdcntifies producrs that arc cold worked specitically IO rmprovc s:rcngIh allcr cooling from a hot-worling pmcor such as rolling or cxltusion and for which mechanmal propcnies have been substantially improved by prccipttauon heat wcauncrn. The effcc~s ofcdd work. includ- irg my cold work imparted by flattening or Juaigl~lcning. arc accounted for in Jpccifted projx?~ limits.

Ad&hod 1 Temper Vaiatiau. When i1 is desirable IO Identify a wiation of one of he Ien nujor T Iempen described above. additional d&J. the firs1 of which cannot k LCI~. ntay bc ad&d IO Ihc dcJignaImn.

Specific KCS of additional di(pIs have been assigned lo Jlrcss-relieved wrough1 pmduc,,:

Sttcn Rtlirvrd by. Strrrching. Comprrrr- kg. or Combination of Strrtrhing and Comprrrring. Thus designation applies to Ihe following products when stretched to Ihe IndIcaIed an~oun~s aflcr solution hut treatment or atkr waling from an elevated- lcmpmafurc shapmg process

4 TISI apphec specIfIcally :o @ale. lo rolled or cold-Iinished rcmj and bar. IO die or ring forgmgs. and to rolled rings. These producrs rece1w no funher Jwal~lenlng her stretching

l T1510 apphcs IO cx~rudcd rod. bar. shapes and Iubmg. and IO dnwn tubing. producrs In this temper rccmvc no fuunhcr slraIghlcning aflcr svcIchq

l TIS I I refers IO products Ih! may receive minor Jtnighwning afw urcIching IO comply ;viIh srandard ~olcnt~cs

This variation involves stress relief by compressing.

l Tr52 applies IO products thl arc SIICJJ relieved by compressing after solulion heat lrca1mcnl or after coding from a hot-workmg process to produce a perma- nent se1 of I to 5%

The nex1 desIgnaIIon is used for produas tha1 are SWCSJ rclwvcd by combining stretching ud compressing.

l TIJJ applies to die forgings that are stress relieved by restriking cold in ik fmish die. l’lhese same digi,- 51. 112. and M-may k added IO Use designation W

IO Indicate unstable soluwn-heat-Ircated and sIrerr-relieved Iemprrl

Tcmpcr designalions have been assigned 10 wrounht aroduc1J heal treated from the 0 ~I r

or Ihc F Icmpcr IO dcmonrwatc rcrponsc IO heal Ircatmcnl:

0 TX means solulion heat uuIcd from Ihc 0 or the p Iempcr IO ckmonswa~e rc- Jponsc to heat IrcaImeaI and plurally aged IO a JubsIamia.lly s&k condiIion

l T6? means sdution hca1 ~ratcd from the 0 or rhc F temper IO de- CtY5pXlStfO heal imatmcnt anti anit%aDy aged

Temper designations TX and TQ also may be applied IO wmught products heat Ircarcd from any Icmpcr by the user when such hca1 treatmen msult~ in the mechani- cal properties applicable IO lhesc Icmpers.

System for Annealed Pm&c&

A digit folkwit!g [he “0” &icams a pral- ucr in annealcd condition habq spcial char- ac~crisrics. For eurnplc. la heat-~u~ablc alloys. 01 indiCaleS a protlducr thal has been heal ~rctwd a1 approxinwcly the sarr~ lime and Iemprruurc required fa solu~nm kat Ircalmenf and Ihen au cooled to room tern- prature: [his designaumn appirs IO prcducls 01a1 arc to be machmcd pm to solulico hear trmmcm by tk user .Merhanical property limits are nc4 applicable.

Designation of Unregirltrrd Tmpers

Tk IcIIcr P has ken asrtgratd ~oderu~e H. T . and 0 temper vatiatons tk+t M ncgckt- cd ktwecn manufacturrr and pwchaw. The lcrter P follows the temper de5igwion that rrms1 rmrl) pcnams. Tk use of lhI5 1ypc of deJignaIion includes situaouts where:

0 The use of the temper is vlffIcienlly Itm. iIcd IO prccludc its rcgisrntion

0 The ICSI conditions arc dilTcrcn1 from [hose rcquwed for rcg~stntmn vuh 1hc Aluminum Associalion

l The mcchamcal propn) limils art noI established on Ihe same basis as required for rcgwraoon wrh ihe Atuminum Asso clarion

El-12

Page 104: Intro to Metallurgy

Appendix B

Appendix B-2

Titanium Alloys

instructional Video Teletraining Course Federal Aviation Administration April, 1998

Introduction to Metallurgy B2

Page 105: Intro to Metallurgy

DESIGNATION SYSTEMS FOR TITANIUM ALLOYS

DESIGNATION SYSTEM There is no standard designation system for titanium alloys. Alloys are designated by: 1. Alloy content: e.g., Ti-6Al-4V, . . .

2. Trade names: e.g., Beta C, Transage, . . . 3. Specification: ASTM, AMS, , . ,

The same designation is used whether the alloy is wrought or cast.

CLASSIFICATION Titanium and its alloys are classified into four groups: 1. Commercially Pure (CP) Titanium 2. Alpha/Near Alpha Alloys

a) Major alloying elements: Al, Sn, Zr b) Minor alloying elements: V, MO, Nb, Ta, Fe c) Many alloys can b heat treated to high strength levels: Ti-8AI-I V- I MO,

Ti-6A1-2Sn-4Zr-2Mo

3. Alpha-Beta Alloys a) Major alloying elements: Al, V, Zr, Cr, Mn, MO

b) Minor alloying elements: Sn, Fe, Cu c) Many alloys can b heat treated to high strength levels: Ti-6Al-4V,

Ti-6AL2Sn-2Zr 4. Beta/Near Beta Alloys:

a) Major alloying elements: V, Cr, MO, Nb b) Minor alloying elements: Al, Sn, Zr, Fe c) Many alloys can b heat treated to high strength levels: Ti-1 SV-3Cr, Beta C,

Ti- 1 OV-2Fe-3A1

82-l

Page 106: Intro to Metallurgy

WROUGHT TITANIUM ALLOYS C.P. TITANIUM

Comparison of various specifications for commercially pure titanium mill products

,- leek Fe+dkml -1

cwdd~lkm.~au u-- mh ‘c n 0 3 h 0th Tad OtblJ Mh u

rym-@1 - MR u .*

0.15 0.03 0.20 t75A-410 40-w 16Sfb) 2Ub) 27 JIS Class I.. ASTM ~mdc I IUNS

R500250, _............ 0.10

O.Ol.(

IC) 0.013 O.OW 0.0125 0.015

IC)

0.013

0.010 0.0125 0.01s

ICI

ICI 0.013

ICI

ICI

0 01:

0.18 0.03 0.20 0.10 0.05 0.20 0. IO 0.0, 0.20

... ... 240

... ... 295-410

... 0.10 max 295

... ... 285410

... ... 343-S IO

... ...

... ... ;:

... 0.30 mu 190-MO 382-530 480-617

170-310 175

195 2IUbJ

2-5 25.5 DIN 3.7023 ........... 0.08

COST BTlX$ .......... 0.05 ES l%27Uin.-. ............ 28

31(b)

,.. 0.20 0.20 0.05 0.25 JIS Class 2..

ASTM endc : ICNS 0.3 0.03 0.30 0.20 0.06 0.25 0.20 0.04 0.30

0.20 0.30 0.0: 0.30

27-10 245

4040 35.5

41 U)(b)

55-75

RJo46ol .......... 0.10 DIN 1.7035 ........... 0.08 COST ET14 ........ 0.07

285 3431b3

BS 23.35th’ JIS Class 3.. ASTM Me 3 ILNS

RI3001 __........... 0.10 ASTM @ride 4 tUNS

R507001 0. IO

55-77 70-90

0.35 0.0.’ 0.30 440 64

... ... SW a0

... ... u&m 67-85

30 275410 4040 20

35 170-310 24.5-45 24

70 380 53 I:

3n-sm

040 0.05 0.50 0.3 0.06 0.30

a4 70 323 47 DIN 3.7055 0.10

ASTM -de 7 IUNS R524fm ..__.__. . ..O.lO 0.3 O.O! 0.30

0 I8 0.03 0.20

0.3 0.03 0.30

0.12-0.25 Pd

0.I24.23 Pd

0.2-0.4 MO. O.&O.9 Hi

” 343

240

480

ASTM grade I I ICNS R5??.W1 0.10

ASTM grade I: tC.SS RS34001 .._....... 0.10

82-2

Page 107: Intro to Metallurgy

WROUGHT TITANIUM ALLOYS ALPHA/NEAR ALPHA ALLOYS

Compositions of various alpha and near-alpha titanium alloys

I- Impurlly Uaia -15 w -iiizzY m

PIdan rprcilblim * C II Fe 0 mm.orb ,*I *ooriw yai .ICIN

MO Ckk’

Bars IAECMA slandards prEN?J?I and XII ._ ._... .___, 0.05 0.08 001 0.2 0.2 0.4 total others

Sheet w strip 1prEN2128) and forgings 1prEN2522 and 2531.. .O.O! 0 08 0.01: 0.2 0.2 0.4 total olhers

fl-SAI-L.SSSa IUHS daiglurkil Rw2ol

DIN17851 lalloy WL3.7llS) . ..O.OJ 0.08 0.02 0.5 0.2 AM 4910 ,platc. sheet. strip, .O.O.( 0.08 0.0: 0.5 0.2 O.OOSYIb) AMS 4926 lbars. rings) and AMS

4966 lforgmgs, Impurity limits same as AMS 4910 ASTM B 265 lp+. shcc,. slripl .O.O! 0. IO 0.02 0.4 0.2 (bl ASTM B 348 ,brr. bdlct, and

ASTM B 381 ,forgingr). .O.OJ 0.10 0.013 0.4 0.2 lb) 3420-TA7 IChincscJ.. .O.OJ 0.10 0.015 0.3 0.2 0. I5Si

Tl.JAI-2.SSn.ELI tUNS da@rutioa R54521,

AM.5 4909 fplak. sheet. srnp, .O.Ol! 0.05 0.0125 0.2s 0.12 0 + Fe = 0.32. O.o05Y, 0.05 each. 0.3 ronl

AMS 4924 [bars. fcqmgsl .O.O?.( 0.03 0.0125 0.25 0.12 0 + Fe = 0.32. otherrIb,

VTJI ,U.S.S.R., ..O.O’ 0. IO 0.015 0.30 0.02 0. I5Si

TI-gAl-IV.l.Wo IL’NS RMlOl,cl

2.0-J au

:.w.au

4.G6.0 4.5&5.7S

4.OCt.w 4.00-6.00

4.cG6.00 4 w-6.w

2.0-3.0 2.ocr1.00

0. I?a.TPd

4.So-5.75 ?.aJ-3.00

:.wml

2.00-3.00

Impurity limlls not available 8 IV

,wrc,. 4972 (bars. lo&&. 4973 lforgingsl ................... .o.o.c 0.08 0.01s 0.30 0.1: O.lWJY. lb1

ML-R-81588 lnng. wire1 ......... .0.01 O.OI.( O.OOJ 0.20 0. I? 0.1 lotal 0.75-1.25 0.7Sl.25

O.?Cl.LcV 0.7>1.1’V

O-O? ul:!

0.0s uutc

0.2 0 I ! Id). 0.15. O.ooSY

0.2.’ 0.15 0.13s~. 0.1 mar orhcrr

J J0-6.50

S.SO4.JO

I&?.!

l.lC.2

3.M.4 - - I .b’.’

3.644 I .bX

0.03 0.012 0.1: 0. IO . . 6 0.8 0.0s 0 0125 03 0. IO 0.4 lOllI H-&s 0%I.00

?Nb. ITa ,.cXOKb.

O..GI..cTI

0.W 0.003 0.12 0.17 0.04 0.013 0.12 0.1s lb). O.OOJY

0.012J 0.10

001: 0.20 “’

O.?SL ncm 0. I w.17Si

2.025

XL2.3

II 1o.w I.5

10.5-l I.3

10.>11.5

5 I 4.0-60 0.8-1.2

4.u.o 0%I.2

4.0-6.0 O.bl.?

0.1-0.s.% 78.M li m m

&me as TA.:’

. 0.05 00125

O.CbSi 6 5 6 6

5.5 5s

3.5 4.5

4 3

3

I.5 I ! 0.S 3 0.25 4 OS

03Si 0.3JBi. O.lSI 02SSi INb. O.ISl 0.7hb. 0.4%

6 4 0.4 O.&C

0.43Si

AECMA. Ti.PM _. AMS 4915. 4916. 4911 lnnllsl. 4955

TI-6242 ,UNS RS462OHcr

.AYS 4919. 4975. 4976 0.0:

L S govcmmenr lmdlnryl 0.04

TI-6AI-2.Yb.ITa-0.8 MO (CSS R562101

Typlcai.. .O 0: C.S. govcmmcnr lmilinryl ._. ..O.O!

Tl-679 IUNS Rs790)

Typlcal. .0.04 AMS 4974 Ibars. lorgingsl .O.CU Brmsh TA.18. TA.19. TA 2:. and

TA.26

British TA.20. TA.27 _.

Tid?4ZS,cNel.. .._. ._. Ti-5Al.5%?Zr-?Mdfl .O O ! TibAl-2%.l..‘Zr.IMo.. IMI 685 lMl829 _.. ._..._.._........... IMI BY

B2-3

Page 108: Intro to Metallurgy

WROUGHT TITANiik ALLOYS ALPHA-BETA ALLOYS

TyplCal 0.05

41loy Ti-P6J m AECMA jnndard prEN25M for bars. 0.0.’

,411oy Ti-PM m .AECMA ,nndard prEN25 17 for sheer. wlp. plate 0.05

DIN 17851 Catby WL3.71651,. 0.05 ,4MS 4905 lplarel 0.03 .AMS 4906 fshccr. wip, 0.05 .4MS 491 I fplalc. sheet. smp8. 0.05 4MS 4920.4928. 4934. and J967

lneg5. forgmgs. wires) 0.05 ,4MS 4954 Iwlrel 0.03 ASTM B 265 iplate. sheer,. 0.05

4STM F 467 IIWISI and F 468 IbollSl 0.05

lv6.G4V-ELI IL% Rs64a1,

.aMS J907 and 4930.. 0.0.’ ,4MS 4996 fbdlell O.&I .4STM F I35 fbar, _. 0.01 .4STY F 467 tnu~rl and F 468

Iboll5l. 0.05

Ti-6Al-6V-2% IUNS US66201

Trpical O.O4 4MS J918. 4936. 4971.4978 I.. o.cu

.4YS A979 ibars. forgings, 0.M

(Mn a-f3 alloy5

L’NS iAOl?Otin AYS J908l 0.0.’ css 5670 I,” AM.5 J9701.. O.O! T&a6 I tiNS R562bOl 0 01 T1.17 lscc also Table 5~1.. 0 (u TI~AI-~S~.?Z~.:C~-~~O.. 0 03

I.vl-551.. Tt.JAI.Z..(V tin A.MS 49431 0.0: IHI 550... ,. ” IW 679.. .................. IMI ml.. ,: ................ Tld.4l.lMo-IVIe .......... 0.05

0. IO tbt 0.3 0.2

~I.08 0.0, 0.3 0.2

0.08 0.01: 0.3 0.2 0.08 0.01 0.3 0.2 0.05 0.01’ 0.25 0.12 0.08 o.o,y 0.10 0.20 0.08 0015 0.30 0.20

0. IO 0.01:.’ 0.30 0.20 0.05 0.015 0.30 0.18 0.10 0.01.’ 0.40 0.20

$1 IO oo,:.’ 0.40 0.20

008 0.01:5 0.25 0.11 0.10 0013 0.10 O.IM.I9 0.08 0.01:.’ 0.25 0.13

o.10 o.ol:! 04 0.20

1U.O 0 01 0.35-1.0 0.20 ?).O’ 001: 0.35-1.0 0.20

0.0. 0.01 0.3.%l.O 0.20

‘l.utl O.Ol! 0.50 0.20 0 :o o.n13 0.30 0.20 UIU 0.011! 0.15 0.15 n.o 0.012! 0.10 0.11 u.u.( OOI’.’ 0.25 0.14

0u.c 0.01: 0. IO 0.12

UM O.OlC 0.30 0.12 0 0: O.Ol1!lr, 0.25 0.1:

0.4 local

0.4 lOlaI

ICI. O.caJY 0.4 mral kt. o.m5y

ICI. O.u)5Y ICI. 0.005Y IC)

ICI

ICI. O.W5Y (dl

tc,. O.c !mY

ICI

0.3 total

6

5.5-6.75

5.5-6.75 5.56.75 5.6-6.3 5.5d.75 5.5-5.75

5.5-fl.75 5.%x75 5.5-6.75

5.5-6.75

5.5-6.75 5.56.75 5.5-5.75

5.5-5.75

5&o

5 o-6.0

7 6

5.2&s

4 2.5-1.5

J 2 6 a

M-6.5 6

0.1 max

2 1.5-2.5

1.5-2.5

-3 1

1.7i2.25

4

2 II

I II-t.2 2

0.1 max.

4

I .7:2.25

. ..’ 4 5

3.ti.r .

0.1 max

4 6 4

1.75-2.25

4

4 I . I

IX-?.? 7

4

J.5-4.5V

3.54.5V 3.Y.5V 3.lw.4v I.Mu.5V l.ti.JV

3.Y.5V 3.u.5v 3.J-J.JV.

O.I:-O.?JPd

3..u.5v

J.Iu.JV 3.Y.5V J.Y.JV

3.J-r.JV

0.7Ku. ev 0.35-I .sccu.

5.0-6.OV Same a5 aboe

8.OMn

r.ocr O.,W.?‘ISi.

1.7~2.25cr O.JSi

?.&J.OV

0.25Si ICu. O.?Si

IV

OcmSI

Page 109: Intro to Metallurgy

WROUGHT TITANIUM ALLOYS BETA ALLOYS

Compositions of various beta titanium alloys

Ti-I3V-I ICr-3AI tUNS 580101 AMS 4917 0.05 0.05 0.02s 0.35 0.17 (bl 2.L-3.5 12.s14.sv. 10.&12.Kr

AMS 4959 Iwirel 0.05 0.05 0.030 0.35 0.17 (bl. 0.005Y 2.5-3.5 I2.5-l4.W. IO&l2.W MIL.T-9006. 0.05 0.05 0.025 O.ls-o.3~ 0.17 0.4 IOUI 2,>),) I2.~14.SV. IO.&l2.CCr

MIL.R-815.98 MIL.T-9047: 0.05 0.05 0.023 0.35 0.17 2.343 12%I4.W. IO.&l?.Kr

MIL-F-83142 High-loughntrr grade 0.01s 0.01 0.008 0.lItma.a). IC) 2,M.J . 12.~14.W. [email protected]

O.OBtnom) Ti-BMc-8V-2Fc.3AI

(UNS R588201.. MIL.T-9U46. 0.0s 0.05 0.015 1.6-2.4 0.16 0.4 tocal 2.6-3.4 7.sa.J 7.J-B.JV MIL-T-9017. and MIL-F-83142

Beta C (UNS R58MOl. Same as above 0.05 0.05 0.01s 0.30 0.12 0.4 roral 3.M.0 3.545 3.Y.5 7.5-&5V Beta Ill.. _. AMS 4977. 4980 0.0s 0.10 0.020 0.35 0.18 0.4 IOUI 3.7M.23 4.w.s lO.&l3.0

ASTM: B 348. B 26). B 337. and B 338

Ti-IOV.?Fe-3AI.. Forgmg alloy 0.05 0.0: 0.015 1.C2.J 0.13 IC) 2.>),) 9.2%10.75V Tel53 ..,........ Shecl alloy 003 0.03 0.015 0.30 0.13 ICI 2.5-33 2.s3.5 IL16V. 2.5-3.5Cr Ti-17ldl.. Engme com~rcrv~r 0.05 0.0: 0.0125 0.25 0.084 I3 IC) 4.M.5 1.62.4 1.62.4 3.543 3.5433

4#OY Tnntage 175 Hiph-clrenglh. 0.03 oa!l 0.015 0.20 0.1.’ IbYe) :.2-l.: 6.5.7.5 1.5-2.5 I?&l4.OV

clcbaled- lcmpnl”re

Tnnsage 134,. High-strcngrh allo) O.O? 008 0.01) 0.20 0.15 tbre) xL3.0 1s2.5 ss6.5 .” I I.&l3.OV Ttansqc I29 .:.. 2 II “. II.W

82-5

Page 110: Intro to Metallurgy

CAST TITANIUM ALLOYS

Comparison of cast titanium alloys

bladd mhdWI I Nadd umpdkm. nr 1

*lbl d& 0 ?( C II AI ,I v cr sr Ma WL 28 Y w poprtlr(nn)

TidAIdV . . . . 8596 0. I8 0.015 0.04 O.W6 6 o,,, , . . Ccned p”rposc TidAIdV ELI(b). 1% 0.11 0.010 0.03 O.W6 6 0.10 4 . . . . . . . . . . . . ..3 . Crywcnictarghmss

Commercially pure Iitanium 6% 0.25 0.015 0.03 0.006 ” 0.1) 3 Comsiofi =rismC

Igrade 2). . TibAl-2Sndt.2Mo 7% 0.10 0.010 0.03 O.W6 6 0.15 .”

TibAl-ZSndZr4Mo ............. Cl% 0. IO 0.010 0.03 0.006 6 0.1s ...

Ti-MI-L.SSn C I% 0.16 0.015 0.03 0.006 5 0.2 ... .................... Ti-3AI&‘&rdZrdMo t&U-C) C 1% 0.10 0.015 0.03 o.ax 3.5 0.2 a.5 Ti-ISV-JAI-3Cr-3Sn (Ti-13-3). ..... Cl% 0.12 0.015 0.03 0.006 3 0.2 15 Ti-II00 ......................... Cl% 0.07 0.015 0.04 O.OW 6.0 0.02 ...

M-834 ........................ Cl% 0.10 0.01: 0.06 0.006 s.a 0.02 ...

T&l ........................... IOOQ

. . 2 2 , Elcvawd-rcmpmurc C=P

” 2 6 . , Elevated-rcmperuure rIren8Ih

2.5 ‘. ” . Cryogenic toughness 6 4 . . 4 . RT strength 3 3 . . . . . . . Rfr~n#h

2.75 0.4 4.0 0.45 Elevated-tcmpcruurc propenies

4.0 0.J 0.7 3.3 0.35 Elevated-kmpcmrurc properties

826

Page 111: Intro to Metallurgy

Appendix B

Appendix B-3

Carbon, Low Alloy, and Alloy Steels

Instructional Video Teletraining Course Federal Aviation Administration April, I998

Introduction to Metallurgy B3

Page 112: Intro to Metallurgy

Steels

Classification

Steels can be classified in more than one \\;ay:

l- By composition:

Three classes are identified

a) Carbon Steels- No intentional alloying elements added.

b) Low Alloy Steels- Total alloying element content I 8%

c) Alloy Steels- Total alloying element content > 8%; stainless steels excluded, see appendix D

2- By end product

Spring Steels, Tool Steels, Bearing Steels. Gun Steels,...

3- By properties

High Strength Low Alloy Steels (HSLA). Ultrahigh Strength Steels, Electrical Steels,..

4- By processing

Carburizing Steels, Nitriding Steels

Designation Systems

Classification by composition is the most widely used system for steels. The corresponding designation systems are as follows.

Carbon and Low Allov Steels

The AISVSAE designation system is used for carbon and low alloy steels. The same designation is used whether the steel is

cast or wrought.

N-AA fypaOf#&dd NumerAla ‘PypcOf~lAd NuQltrAh dwu 8ofAiMl Auoy eontent

TypOOflrerlAd

A& dldta nomhl AUO~ content end didtr nomid rlloy woteot

CarlmE Steeb NlckelCbrodum-Molybienum Sted~ Chromium SteelA lOXX(a) . Plain carbon (Mn 1.00% mad 11xX.. * .ReAulhuircd 12XX . . . .Fk.Jiui” and rephoaphw

433xX . .N;.&82; Cr 0.50 and 0.80; MO

UBVXX .Ni 1.82; Cr 0.30: .Ho 0.12 and 0.25; V 0.03 min

WXXX .Cr 0.50 SlXXX .Cr 1.02 c 1.00 mill 52XxX .Cr 1.45

15xx . . .PlAin carbon (max Mn range- 47XX . . .Ni 1.05; Cr 0.45; MO 0.20 and Chromium-Vanndium Steela 1.00 to 1.659) 0.35

81XX . . . Ni 0.30; Cr 0.400; MO 0.12 61Xx .Cr 0.60,0.80 and 0.95; V 0.10 Mangaacme Steel, 86xX . . . . Hi 0.55; Cr 0.50; MO 0.20

And 0.15 min

13xX.. .hIn 1.75 87Xx . . .Ni 0.55; Cr 0.50; Ho 0.25 Tungsten-Chromium Steel

Nickel St&a

23xX . . . .Ni 3.50 25Xx . .Ni 5.00

88Xx . .Ni 0.55; Cr 0.50; MO 0.35 93xX. .Ni 3.25; Cr 1.20; MO 0.12 94Xx . .Ni 0.45; Cr 0.40: MO 0.12 971xX . . Ni 0.55; Cr 0.20; MO 0.20

Nickel-Chromium Steela 98Xx . .h’i 1.00; Cr 0.80: Ho 0.25

31XX . . . .Ni 1.25: Cr 0.65 and 0.80 Nickel4folybdcnum Steela 32XX .Ni 1.75; Cr 1.07

34Xx . . 33xx . .

. ..?Ji 3.00; Cr 0.77

Molybdenum SteeL

. .Ni 3.50: Cr 1.50 and 1.57

40XX .Mo 0.20 and 0.25 44xX . . ..MoO.40 and 0.52

t%WUhEl*MO~ybdCllUlll SkdA

41xX . .Cr 0.50.0.80 and 0.95; MO 0.12. 0.20. 0.25 and 0.30

48xX . .

16XX....N;&85and1.82;Mo0.2Oand

. .Ni 3.50; MO 0.25

Chromium .%dA

50xX.. .Cr 0.27.0.40.0.50 and 0.65 51xX . . .cr3fp7. 0.92. 0.95. 1.00

72XX . . .W 1.75; Cr 0.75

Silicon-Mangfmere Steele

92XX . .Si 1.40 and 2.00; Mn 0.55.0.82 and 0.85; Cr 0.00 and 0.65

High-Strength Low-Alloy Steelr

9xX .VAriOuA sti @AdAA

hmtl !h?dA

XXBXX B denotea bomn fuel

Lmeded Sccclr

XXLXX .L denotee leaded steel

Occasionally, a steel will have no AISUSXE designation . In such cases, the steel is identified by the trade name assigned by

industry; e.g., D6-a, HY 80 and 3OOM.

Alloy Steels

Alloy steels are strictly identified by trade names assigned by industry; e.g., HP-9-4-30 and Marage 300.

83-l

Page 113: Intro to Metallurgy

CARBON STEELS composltioa roqos and limits (or AlSl4A.M motuboa+ quality rwois

Ml008 ,O.lO max 0.25-0.60 0.04 0.05

Ml010 .O.Oi-0.14 0.25-0.60 0.04 0.05 Ml012 .0.09-0.16 0.25-0.60 0.04 0.05 Ml015 0.05 .0.12-0.19 0.25-0.60 0.04 Ml017 0.05 .0.14-0.21 0.25-0.60 0.04

Ml020 .O.l?-0.24 0.25-0.60 0.04 0.05

Ml023 .0.19-0.27 0 25.0.60 0.04 0.05 Ml025 -0.20.0.30 0.25-0.60 0.04 0.05

Ml031 0.05 .0.26-0.36 0.25~0.60 0.04

Ml044 0.05 .0.40-0.50 0.25-0.60 0.04

c-poswoa mogos and ilmlts for AISI. SA1 standard msulharlxod carbon st00h

AISI-SAE UNS dcrilnatioa dtQnation

Hc~ceo~~~o&ionrange.u,d umit.,~., C Mn S

1110 GlllOO 0.08-O. 13 1117 . . . . . . Cl1170

0.30-0.60 0.08-O. 13 0.14-0.20

Ill.9 Cl1180 1.00-1.30 0.08-0.13

0.14-0.20 1137 . . . . . . . . . Cl1370

1.30-1.60 o.oe-0.13 0.32-0.39

1139 . . Cl1390 1.35-1.65 0.08-0.13

0.35-0.43 1.35-l .65 0.13-0.20

1140 . . . . . . . . . . Cl1400 0.37-0.44 1141 . . . . . . . . . . Cl1410

0.70-1.00 0.08-0.13 0.37.0.45

1144 . . . . . . . . . . Cl1440 1.35-1.65 0.08-0.13

0.40.0.48 1146 . . . . . . . . . . Cl1460

1.35-1.65 0.24-0.33 0.42-0.49

1151 . . . . . . . . . Cl1510 0.70.1.00 0.08-0.13

0.48-0.55 0.70.1.00 0.08-0.13 'aJLimitonpho~phonueonrent1~~~eninTable1~chccrpiulvaluci~O.D(W maximum phwphoma. BcuuroTtheadvcrsee~~tol~ilieo~on machinability ~teel~liadinthti ~bl~~~gcnerallyno~dco~idi~cdilh rilicon.Steelli~vdin thirub<;canbcpmdu&u !+d ~~ll.t~ic~llycon~lning0.15 toO.JS'i lerdand identified byinwningrheletvr

L in the designation-llL17.

hmposhiom ran~ea and iimlk fee AISI.SAI standard earboa Hooh with a maximum manganow CODHO* l xsoodiag l.lo%-aoatlfinisbad proawes for forging‘ hot roliod aad cold flaisbod bmrr, win rod and seamlosr rubimg

HeatzgF;;uqw F0mr AISI.SAE UNS Am-SAE dcalgnacioa dwignarlon C Ma Pmu smu dcrl#tuUon

1513 . 4 Cl5130 0.10-0.16 1.10-1.40 0.040 0.050 1518(b) G15180 0.15-0.21 1.10-1.40 0.040 0.050 . . . 1522 Cl5220 0.18-0.24 1.10-1.40 0.040 0.050

1524 . . . . . . Cl5240 0.19-0.25 1.35-1.65 0.040 0.050 1024 1525(b) Cl5250 0.23-0.29 0.80-1.10 0.040 0.050

1526 . 1527 . 1536(b) 1541 1547(b) 1548 1551 1552 1561

Cl5256 0.22-0.29 1.10-1.40 0.040 0.050 . . G15270 0.22-0.29 1.20-1.50 0.040 0.050 1027 Cl5360 0.30-0.37 1.20-1.50 0.040 0.050 1036 Cl5410 0.36-0.44 1.35-1.65 0.040 0.050 1041 G15470 0.43-0.51 1.35-1.65 0.040 0.050 1047 Cl5480 0.44-0.52 1.10-1.40 0.040 0.050 1048 G15510 0.45-0.56 0.85-1.15 0.040 0.050 1051 G15520 0.47-0.55 1.20-1.50 0.040 0.050 1052 Cl5610 0.55-0.65 0.75-1.05 0.040 0.050 1061

1566 Cl5660 0.60-0.71 0.85-1.15 0.040 0.050 1066 1572(b) Cl5720 0.65-0.76 1.00-1.30 0.040 0.050 1072

CorrporHion mm ad limha for AiSl.SAl stmndad rosalhwisod and ropbosph&xod tarboa stools

AISI-SAE UNS Hc~mpolition-er~ndUml~~*I

designation dcrignatioa c m.* MI3 P S

1211 c12110 0:13 0 60-0.90 0.07-0.12 0.10.0.15

121? ,:: Cl2120 0.13 O.iO-1.00 0.07-0.12 0.16-0.23

1213 Cl2130 0.13 0.70-1.00 O.Oi-0.12 0.24.0.33

12Ll+b, Cl2144 0.15 0.65-1.15 0.04-0.09 0.26-0.35

1215 Cl2150 0.09 0 75-1.05 0.04-0.09 0.26-O 35

'11 &cauuoFthc ad\cru ck~ofc~l~conon machinsb~lity.srcelsltr~ed in thlrtablc are generally not deondxred wrh rilicon ~b'Cont~ns0 15 10 0 35’i lead. other steels ItsId III th,, able can be produced wth the same lead content.

83-2

Page 114: Intro to Metallurgy

CARBON STEELS

Hrrt comporidon Hea1 compowi(Ion Hem mmpo~ition rrrqcs nngt. “asrr

AISI.SAE CM and limu. %.l AISI.SAE UN9 wbd IimiU. WnI AlSI.SAE LX9 and limiu. ?I*) drmrion drumanon C .Wn dr~i#nntionderi~tion C Mm de,i#wtion dc,l~tba C Mn

1005 C1OOsO 006mar OJ5max 1035 G10350 0.32-O 36 0 6o.0.90 10741bl Cl0740 0.7O-OSO 0.5O.O.Bo loo6 c1w6o 0 08 mar 0 25.0 40 103; IO@.. CIWW 010m.a 030.050

Cl0370 032.038 0.7O-1.00 10751bl Cl0750 0.70030 0.40-0.70 1036.. I. G10380 0.35042 0.60490 1076.. Cl0760 0.72.o.S5 0.30-0.60

1010 GlOloo 00.9-0.13 030.0.w 1039 GlWso 0.37.o.44 0.i0.1.00 IOllfb, GlOllO 0.08-0.13 360.09o

1080 Gla6Qo 0.750.88 0.6o.O.90 1040 Glo4oo 0374.44 0.6o.o.90 lo64.. Glow 0.8o4.93 0.6o.o.w

1012 Cl0120 0 10.0.15 o 3o.o.M) lo42.. Cl0120 0.4o-0.47 0.604.90 1013’bl G10130 0.11.0.16 0.50-0.80

108Ybl.. Cl0850 0.6O-093 0.70.1.00 1043.. Glo430 o.UM.47 0.7o-1.00

1015 Cl0150 0 13-0.16 o 50.0.6o Lo66.. Cl0860 0.800.93 0.30-050

1016 1044 Cl0440 g30.5o 0.30-0.6o low., Cl0900 0.850.96 0.60.0.90

1017. :. Cl0160 0.13-0.16 0 60.0 90 lo45,. G~om o.43-0.50 0.60-0.90 Cl0170 0 15-0.20 0 30.0.60

1095.. G10950 O.wl.l.o3 0.30-0.30 lo46,. Clo46o 0.434.5a 0.7o.1.m

1OlS GlOleO 0.15-0.20 060.0.90 lo49.. Cl0490 0.46-0.53 0.6&0.&l 1019 Cl0190 0.15-0.20 0.70-1.00 LOW GlOSOO o.cBo.55 0.600.90 1020 GlO2oO 0.18-0.23 0.300 60

4.1 Lmiu on phe l d & mntenY al?

1021 : Cl0210 0.18-0.23 0.60-0.90 1053 Cl0530 0.4M.55 0.70.1.60 rwain%M* I;wPA~~J~~O~-. 1055 Clan O.~.&lJ I)~~.~ mum PhVPhO~ ad o.wQ -mum ‘“‘fur

IO-22 Gl0-220 0.16-0.23 0 TO-1.00 1059lCl GlOS9o 0.55.0.65 0.50-0.80 when allcan rrngc3 01 IiilU m m mlumd. h

1023 Cl0230 0.200.25 03o.o.60

values in Table I qp. St+ lised In tha Ubl* ddiuonr d kad or bmn

1060 G lo6@) 0 550.65 O.@J~.~ un k pdd -I Lradrd MII onially mnum O.lS u) OJs-* leti

1025 GlO25o 0.22.0.28 0.30-0.60 1026 c1026o 0 22.o28 o.6o.o.w

106(, _. elm o.60-0.70 o.~~.~ •~~+ntifidbfl-ryIhkur L lnths dargNuon-IlLI : berm meeLcul be expecwd

1065. . C106.50 O.W.70 060-0.90 ro~nu~n0.0005rO.OMbprmudrrsIdrnu- 1029 Cl0290 0.2.5-0.31 0.60.0.9o 1030 .:: 1 G10300 0 26-034 0.6~0.90

106Stb~ G1p6w 045-0.75 o.404.70 Id by tnrnm the IeturT mtkdew Ition- 15B41. abl S~.#sad.,d+dy ICI &I sun.

1070 GlO7oo 0x5-075 0.6o-o.w dwd #Tw&only.

loo6 1008 1009 1010 1012 1015 1016 101; 1016 1019 1020 1021 1022 1023 1025 1026 lo30 lo33 lo35 lo37

Glow3 0.08 msx 0.25-0.45 C10080 0 10 max 0.250.50 GlW9O O.lSmax 06Omu GlOlOO 0.0.9-0.13 0 30-0.60 c10120 +10.0.15 0.30-0.60 GlOl50 0 12-0.16 0.30-O&o GlOI6o o 12.0.11 0.60-0.90 Cl0170 0 14-0.20 0.30.0.60 GlOl6o ~1.14.0 20 0.60.0 90 Cl0190 0 14.0.2U 0 TO-1.00 Cl0200 0 lY.O.23 0.30-0.60 Cl0210 o 17-O 23 0 60-0.90 Gl0220 O.li-0.23 0.70-1.00 Cl0230 0 19-O 25 0 3O-0.60 Cl0250 0 22-0.29 0.30.0.60 G 10260 0 22.0.2.5 0.60-0.90 G103W 0 27-0.34 0.60-0.90 G 10330 0.29-0.36 0.X. 1.00 G10350 o 31-0.38 O&O-0.W Cl0370 o 31-0.X O.:O-1.00

G1036o Cl0390 ClOIoo G1042o G10430 GlO450 G IO460 G104U) GlO5OO GlO550 GlO6W GlO640 GlW c1o:M) ClOTI cIo:&l Cl080 Glo640 Cl0650 GlO.wl

0.34.oo.42 0.60490 0.360.44 0.7o-1.00 0.36-0.44 0.60-0.90 0.39-0.4: 0.64-0.90 0.39-0.4: o.io-1.00 0.42.0.50 0.60&90 0.420.5O 0.7O-1.00 0.45.0.53 0.6o-a9a 0.47-0.55 0.6a-o.90 0.52-0.60 0.60-0.90 0.550.66 0 6O-C.90 0 594.70 o.5o-mo 0.59-O 70 0.6a.490 0X54.76 0.60-0.90 0.69-0.80 0.5O-C.60 0.72.0.66 0 3O-MO 0.140.88 060-0.90 0.80-0.94 0.6a-a.90 0.80.0.94 0.7Ol.W 0.80-O 94 0.3w.w

1090 Cl0900 o&-c.98 0.60.0.90 lo95.. Cl0950 [email protected] 0.30-0.50 15241bl Cl5240 O.lbo.25 1.30-l 65 15271 bl Cl5270 0.22.0.29 No-1 55 15361 bl G15360 0.30.0.38 1 m-1 55 1541(b) Gl%lO O.W45 1.30-l 65 15481 b, G15W 0.~3452 1.051.40 15521 b, Cl5510 0.46x.55 120-1.55

compoMa~adulck~A9uIEIu mm&?derkr~ H.sl~,PO&&~ Haleompaiboa rams”

ALSLSAE UNS AISI.SAE UN9 dumiwWLI

C Mm 91 de-don dedirioa C Lb Si detioo wrroo

lO36H. H1038O 0.34x.43 0.5o-1.00 0.15-0.34 lSB21Hlbl H15211 u.17.0.24 o.‘Io-1.10 0.15430

1OISH.. HIM50 0.42.o.51 o.s-1.00 0.15-O 30 lSB35Hlbh H1535L 0.31.0.3s 0.70.1.20 0.150.30

1522H H15220 0 17-O 25 1.00-1.50 0 15-0.30 lSB37Hlbn H15371 030.0 39 l.w.1.50 0.15-0.30

1524H H15240 0.18-(3.26 1.25.1.75 0.15.0.3(’ 1584lH’b.cJ HI5411 0.35-0.45 1x.1.75 0.15.0.30

1526H HlJ26O 0.21-O 30 l.oo.1.50 0.15.0.30 15646Hlb.c, Hl5481 0.43-0.53 1.Wl.M 0.15-0.30

154lH : Hl5410 0.35-O 45 1.25.1.7s 0.15-o.30 15Es62H~br Hi5621 0.54.0.6; l.o&I.50 0.4o-o.60

,, , h,,,,,, On pkoqhorus .,,d ,ulhr aonunl w P

We” I” tab* I: tm,u~ hnw WV o MW muimum pbwhoma l nd 0 m W.=II=U= ~fw. ‘b, Can bc rq..ad ID corirun 0 ooO5 *a O.OK 4 mm”. ‘c’ A SI de only

83-3

_--.

Page 115: Intro to Metallurgy

LOW ALLOY STEELS

1330 .......... Cl3300 1335 Cl3350 1340 ..:. .: ::: Cl3400 1345 .......... Cl3450 4012 .......... G40120

4023 ......... G40230 4024 .......... G40240 4027 ......... G40270 4028 .......... G40280 4032 .......... GUI320

4037 .......... c40370 4042(c) ........ G40420 4047 .......... G40470 4118 .......... G41180 4130 , ......... c41300

4135tc1 ........ G41350 4137 .......... G41370 4140 .......... G41400 4142 .......... G41420 4145 ......... G41450

4147 ......... G41470 4150 ........ G41500 4161 ......... G41610 4320 .......... G43200 4340 .......... G43400

E4340tdJ ....... G43406 441%~) ....... G44190 4422(c) ........ G44220 4427lct ....... G44270 4615 ....... G46150 4617(c) G46170 4620 .......... G46200 46211~1

.. .:I.::: G46210

4626 G46260 47181~) ........ G47180

4720 ......... G-47200 4815 ......... G48150 481i ......... G48170 4820 .......... G48200 50151e1 ........ G50150

50B40(c.e1 ... .. G50401 50B44ie) ... G50441 50461~1 ....... G5wjo 50B46e1 ....... G50461 5OBSOjet .__._., G50501

5060~1 ....... G506~ SOB60er ......... 5115tc1 ........ G51150 Sllirfl ........ G51170 5120 ......... GSl200

0.28-0.33 1.60-1.90 0.33-0.38 1.60-1.90 0.38-0.43 1.60-1.90 0.43-0.48 1.60-1.90 0.09-0.14 0.75-1.00

0.20-0.2s 0.70-0.90 0.20-0.25 0.70-0.90 0.25-0.30 0.70-0.90 0.25.0.30 0.70-0.90 0.30.0.35 0.70-0.90

0.35-0.40 0.70-0.90 0.40-0.4s 0.70-0.90 0.45-0.50 0.70-0.90 0.150.23 0.70-0.90 0.28-0.33 0.40-0.60

0.33-0.38 0.70-0.90 0.35-0.40 0.70-0.90 0.38-0.43 0.75-1.00 0.40-0.45 0.75-1.00 0.43-0.48 0.75-1.00

0.45-0.50 0.75-1.00 0.48-0.53 0.75-1.00 0.56-0.64 0.75-1.00 0.17-0.22 0.45-0.65 0.38-0.43 0.60-0.80

0.38.0.43 0.65-0.85 0.18-0.23 0.45-0.65 0.20-0.2s 0.70-0.90 0.24-0.29 0.70-0.90 0.13-0.1s 0.45-0.65 0.15-0.20 0.45.0.65 0.17-0.22 0.45-0.65 0.18-0.23 0.70-0.90 0.24-0.29 0.45-0.65 0.16-0.21 0.70-0.90

0.17-0.22 0.50-0.70 0.13-0.18 0.40-0.60 0.15-0.20 0.40-0.60 0.18-0.23 0.50-0.70 0.12-0.17 0.30-0.50

0.38-0.43 0.75-1.00 0.43-0.48 0.75-1.00 0.43.0.48 0.75100 0.44-0.49 0.75-1.00 0.48-0.53 0.75-1.00

0.56-0.64 0.75-1.00 0.56-0.64 0.75-1.00 0.13-0.18 0.70-0.90 0.15-0.20 0.70-0.90 0.17-0.22 0.70-0.90

0.035 0.035 0.035 0.035 0.035

0.035 0.035 0.035 0.035 0.035

0.035 0.035 0.035 0.035 0.035

0.035 0.035 0.035 0.035 0.035

0.035 0.035 0.035 0.035 0.035

0.025 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035

0.035 0.035 0.035 0.035 0.035

0.035 0.035 0.035 0.035 0.035

0.035 0.035 0.035 0.035 0.035 kontinued)

0.040 0.040 0.040 0.040 0.040

0.040 0.035.O.O50db,

0.040 0.035.O.O50(b,

0.040

0.040 0.040 0.040 0.040 0.040

0.040 0.040 0.040 0.040 0.040

0.040 0.040 0.040 0.040 0.040

0.025 0.040 0.040 0.040 0.040 0.040 0.040 0.040 034

0.040 0.040 0.040 0.040 0.040

0.040 .O.MO 0.040 0.040 0.040

0.040 0.040 0.040 0.040 0.040

0.15-0.30 0.15-0.30 0.15-0.30 0.150.30 0.15-0.30

0.15-0.30 0.150.30 0.15-0.30 0.15-0.30 0.15-0.30

0.15-0.30 0.15-0.30 0.15-0.30 0.150.30 0.40-0.60 0.15-0.30 0.80-1.10

0.15-0.30 0.30-1.10 0.15-0.30 0.80-1.10 0.15-0.30 0.80-1.10 0.X1-0.30 0.80.1.10 0.15-0.30 0.80-1.10

0.15-0.30 0.80-1.10 0.15-0.30 0.80-1.10 0.15-0.30 0.70-0.90 0.15-0.30 0.40-0.60 0.15-0.30 0.70-0.90

0. s-O.30 0.70-0.90 0.15-0.30 0.15-0.30 . 0.15-0.30 . . 0.15-0.30 0.15-0.30 0.15-0.30 0.15-0.30 0.150.30

0.35-0.5s

0.15-0.30 0.35-0.55 0.15-0.30 0.150.30 0.15-0.30 0.160.30 0.30-0.50

0.150.30 0.40-0.60 0.15-0.30 0 404.60 0.15-0.30 0.20.0.35 0.15.0.30 0.2OKk35 0.15-0.30 0.40-0.60

0.150.30 0.40-0.60 0.15-0.30 0.40-0.60 0.15-0.30 0.70-0.90 0.15-0.30 0.70-0.90 0.15-0.30 0.70-0.90

.

.

.

.

. 1.65-2.00 1X5-2.00

1.65200 .

.

1.65-2.00 1.65-2.00 1.652.00 1.65-2.00 0.70- 1.00 0.90-1.20

0.90-1.20 3.25-3.75 3.25-3.75 3253.75

0.15-0.25

0.20-0.30 0.20-0.30 0.20-0.30 0.20-0.30 0.20430

0.20-0.30 0.20-0.30 0.2CbO.30 0.08-0.15 0.15-0.25

0.15*0.25 0.15-0.25 0.15-0.25 0.15-0.25 0. n-0.25

0.15-0.25 0.15-0.2s 0.25-0.35 0.20-0.30 0.20-0.30

0.20-0.30 0.45-0.60 0.35-0.45 0.35-0.45 0.20X1.30 0.20-0.30 0.20-0.30 0.20-0.30 0.15-0.25 0.30-0.40

0.15-0.25 0.20-0.30 0.20-0.30 0.20-0.30

Page 116: Intro to Metallurgy

LOW ALLOY STEELS . -. . -mdYIIkADSO-SAJB “-4*1-l d8T ewb--’ buboo.

03341 om-090 0035 03M).u 010.090 0035 043445 070.090 o-335

046.05, 070.095 0.035 01M).sJ 0104m oal5 05,455 om4Ym 003, 056obl 0.15.l.a) 0035 o.sl-ob4 O.l5.,ca 0035

099.1.10 0150,5 om.5 096110 0w.u 0025 09bl.10 owu oom 0 154.1, 0.50410 0055 0.4b.o.s3 oma.9o owl5

o.,ao,5 070490 oaY5 ou.md 0.7CIoo 0035 Olaol8 om.090 o&a5 0 L5.020 0 7m.90 0.0% O.lMI.zl 07oom 0035

02oa28 0100.90 0035 ozY4.m 070490 0033 OWJO 0104.90 0035 omou o.m.am 0035 0lso.a 0.75*.m 0.m

oabou 0.151.00 oca5 ow.45 075100 OatI 0.~045 076lm om.5 ou9.a 0.7s.I 00 0.035 044.053 01.5.1.00 om5

0514.59 076,ca oLu5 ow.064 016100 00s 019.023 070090 0035 0.3M).u 0 70.,.m 0.035 omY.5 0.76,rn 0035 051.059 0.6&050 0035 05,059 0.70495 0.055 owe4 0.15.,00 oal5

OoM).IJ 040.a65 0025 0 13-O 15 0 16,.00 0.035 0,542o 0.751.m 0035 o.2bou 015100 ool5

Page 117: Intro to Metallurgy

LOW ALLOY STEELS

AlSl.SAE css

denignacion deaprution

1330H HI3300

Heat compoairion ran#cn and limiu. % 1.1

C Mll Si Cr Si Yo

0.27.0.33 1.45.2.05 0.15.0.30 1335H HI3350 0.32-0.36 1.45-2.05 1340H H134W 0.37-0.44 1.45-2.05 1345H HI3450 0 42-0.49 1.45-2.05 4027H H40270 0.24-0.30 0.60-1.00

0.15-0.30 0.15-0.30 0.15-0.30 0.15-0.30

0.15.0.30 0.15-0.30 0.15.0 30 0.15-0.30 0.15-0.30

0.15-0.30 0.15-0.30 0.15-0.30 0.15-0.30 0.15-0.30

0.15-0.30 0.15.0.30 0.15-0.30 0.15-0.30 0.15.0.30

0.15-0.30 0.15-0.30 0.15-0.30 0.15-0.30 0.15-0.30

0.15-0.30 0.15-0.30 0.15-0.30 0.15-0.30 0.15-0.30

0.15-0.30 0.15-0.30 0.15-0.30 0.15-0.30 0.15-0.30

0.15-0.30 0.15-0.30 0.15-0.30 0.15-0.30 0.15-0.30

0.15-0.30 0.15-0.30 0.15-0.30 0.15-0.30 0.15-0.30

0.15-0.30 0.15-0.30 0.15-0.30 0.15-0.30 0.15-0.30

0.15-0.30 0.15-0.30

4028Hlbl H40280 0 24-0.30 0.60.1.00 4032H H40320 0.29-0.35 0.60-1.00 4037H H40370 0.34-0.41 0.60-1.00 4042H H40120 0.39-0.46 0.60.1.00 4047H H404fO 0.44-0:51 0.60-1.00

4118H 4130H 4135H 4137H 4140H

H41180 H413W H41350 H41370 H414W

0.17-0.23 0.60.1.00 0.27.0.33 0.30-0.70 0.32-0.38 0.60.1.00 0.34-0.41 0.60.1.00 0.37-0.44 0.65-1.10

4142H H41420 0.39-0.46 0.65-1.10 4145H H41450 0.42-0.49 0X5-1.10 4147H H41470 0.44-0.51 0.65-1.10 4150H H415W 0.47-0.54 0.65-1.10 416lH H41610 0.55-0.65 0.65-1.10

4320H 4340H E4340HI bl 4419Hlcl 4620H

H43200

H434W H43406 H44190 H46200

O.li-0.23 0.3i-0.44 0 37-0.44 0.17-0.23 0 li-0.23

0.40-0.70 0.55-0.90 0.60-0.95 0.35-0.75 0.35-0.75

462lHlcl 4626Hldl 4718H1cl 4720H 4815H

H46210 0.17-0.23 0x0-1.00 H46260 0.23-0.29 0.40-0.70 H47180 0.15-0.21 0.60-0.95 H4:2W 0.17-0.23 0.45-0.75 H48150 0.12-0.18 0.30-0.70

4617H 4820H 50B4OHtel 50B44Htel 5046H

H48170 H462W H50401 H5044l H50460

3.14-0.20 0.30-0.70 0 17-0.23 0.40-0.80 0.33-0.44 0.65-1.10 0.42-0.49 0.65-1.10 0.43-0.50 0.65-1.10

50B46H1e1 H50461 0.43-0.50 0.65-1.10 50B5OHtet H50501 0.47.0.54 0.65-1.10 50B6OHle1 H50601 0.55-0.65 0.65-1.10 5120H H51200 0.17-0.23 0.60.1.00 5130H H513W 0.27-0.33 0.60-1.10

5132H . H51320 0.29-0.35 0.50-0.90 5135H H5 1350 0.32.0.38 0.50-0.90 5140H H514W 0.37.0.44 0.60-1.00 5145Hlc1 H51450 0 42-0.49 O&O-1.00 5147H,c* H514;O 0.45.0.52 0.60-1.05

5150H 5155H 516OH

H515W H51550 H51600

O.li-0.54 0.50.0.60 0 55-0.65 0.55-0.65 0.15-0.21

0.60.1.00 0.60-1.00 0.65-1.10 0.65.1.10 0.40-0.80

0.65-1.10 0.70-1.15 0.60-1.00 0.60-1.00 0.80-1.25

0.60-1.00 0.60.1.00 0.60-1.00 0.60-1.00 0.40-0.80

0.75-1.20 0.30-0.60 0.15-0.45 0.06-0.15

5186OHtej H51601 6118HIF H61180

6150Htgr H61500 0.47-0.54 0.60-1.00 8lB45Hael Ha1451 0.42-0.49 0.70-1.05

kmntinued) II) Typical limna on phosphonu and sulfur contenu M 0.035% mu~mum phwphowand 0.040% maximum sulfur. lb) Electric furnace steel. lel SAE standard grade only. (d) AISI nandmd grade only. lee Can h expected 10 contain O.CW5 to 0.003% boron. It7 Cantainr 0.10 0 0.158 vanadium. tgl Conrslru 0.15% mmimum vanadtum

0.30-0.70 0.75.1.20 0.75-1.20 0.75-1.20 0.75-1.20

0.75.1.20 0.75-1.x) 0.75-1.20 0.75-1.20 0.65-0.95

0.35-0.65 0.65495 0.65-0.95

0.30.0.60 0.30-0.60

0.30-0.70 0.30-0.70 0.13-0.43

0.13-0.43 0.30-0.70 0.30-0.70 0.60.1.00 0.75-1.20

1.55-2.00 1.55-2.00 1.55-2.00

1.55-2.00

1.55-2.00 0.65-1.05 0.85.1.25 0 85-1.25 3 20-3.80

3.20-3 80 3.20.3.80

0.20-0.30

0.20-0.30 0.20-0.30 0.20.0.30 0 20-0.30 0 20-0.30

0.08-0.15 0.15-0.25 0.15-0.25 0 15-0.25 0.1 j-0.25

0.15-0.25 0.15-0.25 0.15-0.25 0.15-0.25 0.25-0.35

0.20-0.30 0.20-0.30 0.20-0.30 0.45-0.60 0.20-0.30

0.20-0.30 0.15-0.25 0.30-0.40 0.15-0.25 0.20-0.30

0.20.0.30 0.20-0.30

83-6

Page 118: Intro to Metallurgy

LOW ALLOY STEELS

AISI.SAE CSS Heat compwition range@ and limits. 9 101

designation dcsignwion C Yn Si Cr Ni

861iH : : :

H861iO 0.14-0.20 0.60-0.95 0.15-0.30 0.35-0.65 0.X-0.75 8620H Hd6200 0.17-0.23 0.60-0.95 0.15-0.30 0.35-0.65 0.35-0.x 8622H Ha6220 0.19-0.25 0.60.0.95’ 0. IS-O.30 0.35-0.65 0.35-0.75 R625H Ha6250 0.22-0.28 0.60-0.95 0.15.0.30 0.35-0.65 0.35-0.75 ____.. 8627H 8630H 86B30Hte’ 663iH

Hd6270 0.24-0.30 0.60-0.95 0.15-0.30 0.35-0.65 0.35-0.7s H86300 0.27-0.33 0.60-0.95 0.15-0.30 0.35-0.65 0.35-0.75 H66301 0.27.0.33 0.60-0.95 0.15-0.30 0.35-0.65 0.3so.75 Ha6370 0.34-0.41 0.70-1.05 0.15.0.30 0.35-0.65 0.35-0.75

8640H H86400 0.37-0.44 0.70-1.05 0.15-0.30 8642H Ha6420 0.39.0.46 0.70-1.05 0.15-0.30 8645H H86-450 0.42449 0.70-1.05 0.15-0.30 86845Hlem HB6451 0.42-0.49 0.70-1.05 0.15-0.30 8650H HE6500 0.47-0.54 0.70-1.05 0.15-0.30

M55H H86550 0.50.0.60 0.70-1.05 0.15-0.30 866OH H86600 0.55-0.65 0.70-1.05 0.15-0.30 8720H HE7200 O.li-0.23 0.60-0.95 0.15-0.30 .974OH H.Si400 0:37-0.44 0.70-1.05 0.15-0.30 8822H HE8220 0.19-0.25 0.70-1.05 0.15-0.30

9260H H92600 0.55-0.65 0.65.1.10 1.70-2.20 9310Hlbl H93100 0.07-0.13 0.40.0.70 0.15.0.30 94BlSHlet H94151 0.12-0.18 0.70-1.05 0.15-0.30 94B17Hlea H94171 0.14-0.20 0.70-1.05 0.15.0.30 94B30Hle. H94301 0.27-0.33 0.70-1.05 0.15.0.30

0.35-0.65 0.35-0.7s 0.35-0.65 0.35-0.7s 0.35-0.65 0.35-0.75 0.35.0.65 0.35-0.75 0.35-0.65 0.35-0.70

0.35-0.65 ’ 0.35-0.75 0.35-0.65 0.35-0.75 0.35-0.65 0.35-0.75 0.35-0.65 0.35-0.75 0.35-0.65 0.35-0.75

1.00.1.45 2.95-3.55 0.25-0.55 0.25-0.65 0.25-0.5s 0.25-0.65 0.25.0.55 0.25-0.65

wo

0.15-0.25 0.15-0.25 0.15.0.25 0.15-0.25 0.15-0.25 0.15-0.25 0.15-0.25 0.15.0.25

0.15-0.25 0.15-0.25 0.15-0.25 0.15.0.25 0.15-0.2s

0.15-0.25 0.15-0.25 0.20-0.30 0.20-0.30 0.30-0.40

0.08-0.15 0.08-0.15 O.O&O.i5 0.08-0.15

la) Typical limirs on phosphow and sultur contenu M 0.035% maximum phosphorus ud 0.040% maximum wlfur. (bl Electric fvrna~ Noel. ICI Sti, srandud grade only. cd8 MS1 WNMJ& mdc only IC) Can be expcvd u) contain 0.0005 u) 0.0039 bomn. IO Containa 0.10 v) 0.15% vuud~~m. W Contam 0.15s minimum vanadium

Heat comporltion SAE lhnk 9(a) design&on(b) cmax Mnmu PMX

942x . 0.21 1.35 0.04 945A 0.15 1.00 0.04 945c 0.23 1.40 0.04 945x . . , 0.22 1.35 0.04 950A 0.15 1.30 0.04 950B 0.22 1.30 0.04 950C 0.25 1.60 0.04

SAE deriunation(b) C mm

950D

950x

955x

960X

965x

970x

980X

. .

. .

.

0.15

0.23

0.25

0.26

0.26

0.26

0.26

HelMCOiCO~(~~

Mamax PIMX

1.00 0.15 1.35 0.04 1.35 0.04 1.45 0.04 1.45 0.04 1.65 0.04 1.65 0.04

CaJ Maximum conrcnuofrulhrrandsillcon forall grader: 0.050% S.O.9oQ Si:tb)Secondand thirddi deoqnation lndxate minimum

‘Uof

r ‘eld strength in ksi. Suffix “X‘indicatee that the steel contains nio E hum.

vanadium. nitrogen or other al oymg elemenrs. A second rtix “K‘ indicates that the steel is produced fully killed using fine grain practice; otherwise. the steel is produced scmikilled.

+ High Strength Low Alky

Page 119: Intro to Metallurgy

I

MISCELLANEOUS iiL&Y STEELS

ULTRA HIGH STRENGTH STEELS

Compsilion. rtlmb

rmigMlkm or trade - ’ c \la Si Cr Xi MO V co ’

Medlumcsrbon low-alby rle&

Jl30 ........ .......... o.xul.33 4140 ........ .......... 0.X-0.43 4340 ........ 0.3wJ.43 AMS 6434 ... 0.314.38 3OOM ....... .......... O.J&O.J6 D-6a ........ .......... 0.424.48 6150........ .......... 0.48-0.53 8640 .......... 0.38-0.43

Medium-alloy air-hardening steels

O.JO4.60 o.x-O.3s 0.8&1.10 ._ 0. I~cg.25 0.7-1.00 0.1Oa3.35 0.80-1.10 0. Is-o.25 0.6bO.80 0.:0-0.3s 0.7&O.w I .65-2.00 0.x-O.30 0.6&0.80 0.20-0.35 0.65-0.90 I .6.5-2.00 0.30-0.40 0.17423 0.6.4).90 l.J5-1.80 0.7Oa.95 I .65-2.00 0.3Oa.45 0.05 min O.W.90 0.l.co.30 0.9cLl.20 0.40470 0.~1.10 0.05-o. IO 0.7&0.90 0.1u.35 0.8&1.10 0.I5-0.25 O.i.~l.oo 0.1&0.35 0.40-0.60 0.40-0.70 O.lSO.25

HI 1 mod.. . 0.37-0.43 HI3 . . . . . . . . . . . . . . . . . . 0.32-0.45

High fncture toughness SIC&

AFl4lOtbl. _. _. 0.13-0.17 HP ‘)-I-MC). 0.2W.34

0.x4.JO 0.80-I.00 4.75-5.25 1.?&1.40 0.40-0.60 0.3&0.50 0.80-1.20 4.75-5.50 1.10-1.75 0.8&-1.20

0. IO max 0.10 man I .8&2.?0 9.50-10.50 0.90-I. IO IS%-II..%3 0.10-0.35 0.20 max 0.90-1.10 7.0-8.0 0.90-I. IO o.w-0. I? 4.2.u.:5

MARAGING STEELS

lSNit200) . __ __ _. _. _. _. . 18 3.3 8.J 0.2 0. I ISNi(250) . . _. .__ _. _. . . 18 5.0 8.5 0.4 0. I lSNi(300) . . _. ._. __. . 18 5.0 9.0 0.7 0. I .

lSNi(350) . . . . . . ._. __ _. . . I8 4.?(b) I2.J I.6 0. I ISNiEast). . _. . . . . _. . I7 4.6 10.0 0.3 0.1 12-S-3( 18OMc). . . . I? 3 . 0.2 0.3

Cobah.free sod brsobah bearing gmda

Cobalt-free lSNitC0j.. . _. _. 18.5 3.0 . . . 0.7 0. I Cobalt-free ISNIIYO). . 18.5 3.0 I.4 0. I Lowtobalt lSh’i(Z50). . . . IS.5 2.6 2.0 I.2 0. I 0.1 Cobalt-free lSNio(X)). . . . 18.5 4.0 . I .85 0. I .

Ia) All pdcr comain no more than 0.03% C. (b) Same produccn ux a comb&lion 014.8% Mu and 1.4% Ti. nominal. (cl Comams S% Cr

83-8

Page 120: Intro to Metallurgy

Appendix B

Appendix B-4

Corrosion Resistant (CRIB) Steels

Instructional Video Teletraining Course

Federal Aviation Administration April, 1998

Introduction to Metallurgy

EM

Page 121: Intro to Metallurgy

CORROSION RESISTANT (CRES) /STAINLESS STEELS

TYPES

There are five types of Wrought of stainless steels; viz., austenitic, ferritic, martensitic, duplex (ferrite-austenitic) and

precipitation hardening(PH). The same types exist for cast alloys; some cast alloys can not be classified as steels. The

martensitic and PH steels/alloys can be heat treated to high strength levels. Most of the steels/alloys described here can be used

for applications involving elevated temperatures and/or those requiring ambient temperature corrosion resistance. Some

compositions, however, were specifically designed for best performance in only one type of application.

WROUGHT ALLOYS

Wrought alloys are classified into two groups, standard and nonstandard grades

Standard Grades Standard stainless steel grades are of the austenitic, ferritic, martensitic and PH types; there are no standard duplex grades. The

standard grades have been assigned the following designations:

I- 2xx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cr-Ni-Mn; Austenitic

2- 3xx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cr-Ni; Austenitic

3- 4xx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cr; Martensitic

4- PH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Precipitation Hardening*

l Only four standard grades exist; viz., PH 13-S MO, 15-5 PH, 17-4 PH and 17-7 PH. The first two digits indicate the C&J and

the third digit the Ni%.

Nonstandard Grades Nonstandard grades cover all types of stainless steels; austenitic, ferritic, martensitic, duplex and PH. There is no standard

designation system for these grades. Instead, the grades are identified in one of three ways:

a- By trade names assigned by industry; e.g., Custom 455 and E-Brite.

b- By composition; e.g., 2 I-6-9 and PH 15-7 MO.

c- By parent standard grade designation followed by the particular modification; e.g., 3 16 Cb meaning the standard 3 16 plus

Cb additions.

CAST ALLOYS

Designation System A special designation system has been assigned by the Alloy Casting Institute (ACI). The designation consists of two letters

followed by one or two numerals and one or more letters, as follows:

First Letter

Either C or H

C: Steels for liquid corrosion service; include Cr, Cr-Ni and Ni-Cr steels.

H: Heat resistant alloys; include Fe-Cr, Fe-Cr-Ni and Fe-Ni-Cr alloys. Note that many of these alloys should not be classified

as steels but are listed as such for convenience only.

Second Letter

A letter, A through Y, to indicate nominal Cr and Ni contents per the graph shown. U) I 1 The Numeral(s)

d 1 I ; .?a -o.Ei--,-\

I !

(

To indicate the maximum carbon% x I00 z The Last Letter(s) 8

E 2o = ,r 1 N ; p”!

To indicate the presence of alloying elements other than Ni and Cr. .? 0 1 E A i

1 IT- wxy

?lO- : ’

Example : I I , CF-8M 0

0 10 20 lo 40 50 60 10 C: Steel for liquid corrosion service; F: 19% Cr-9% Ni; 8: 0.08% carbon; M: MO Nulckel COntent. %

Page 122: Intro to Metallurgy

STANDARD WROUGHT CRES STEELS

ml ........ s:nlm 10: sm2m ms ........ : .. : smsm JO1 ...... sJolm lo? ........... : s302m

302B .......... sJn?l!

303 .......... s303m 301sc ....... SJOJ23 JM .......... SJoa-ll JMH ......... SJWJ9 JfuL ........... SJn4aJ JMLN ......... SJN!J mzcu .......... s3tun JMN ....... SJt-ht!I 305 ............ sJnxa 3x ........... SJRJm lw ............ SJWno 309s ........... SOWS 310 .......... SJlca

)Io.s .......... SJlKc3

II4 ........... SJIM 316 ............ s316m JlbF ........... SJ1620 316H ........... SJl@B J&L ........... SJl603 Jl6LN ......... SJl6!J Jl6N.. ........ SJIL.cl

317 .......... s317m 317L .......... SJIIOJ 321 ............ s32lm J?IH ........... SJZIW 330 .......... NOW330 347 ........... sJ47m 347H ......... 534709 Mn ........... SYSM J48H .......... SJuIW

Ia ............ SJLYM

Fewilk l~p

40s ............ y0.m u9 ........... Ys409ca 429 ... Yxm 430 ..... :.::. YJam

4JOF ........... Y.u).x 4JOFSc ....... SIJO:! 434 ..... Sam rltd .......... s.mm

419 ......... YJO! 44: ...... SAC00 444.. ..... .:s4.u00

at... ......... s&ulm

Dupk~ tkritk-ticakl vp

329 ............ SJ?Qu

Mu¶auilk t,pa

403 ........... s40,m 410 ............ YlcccJ 414 ............ s4lJm 416 ............ sl16OO 4lb.k ....... S416:J 42o ............ YxoI 42OF .......... YXVO 422 ............ w-m 431 ....... wim 4lo.4 ........... sum: 4400 ........... yuu? UK ........... suca

Prdpllalka~iIq type

PH IJ-EYo .... S138m 15-J PH ........ SIJ.XXI I74 PH ........ S17401

17.7 PH ....... Sl77m

n.tq n I!

n 12n.z.c 0.1: 0 I! &I! 0.15 O.l! 0.08

0 ou). IO 0.01 n.03 0.W 0.m 0.12 0.08 0.X OOR 0.2.’ 0.08 0.25 0.08 009

o.wo IO 0.03 0 03 0.08 O(*I 0.03 0.W

0.M-n IO 04% 0.08

0ola10 0.W

0.0. IO 0.W

5.5-T ! 7.ClO.11

I4.n-I! I :m 2.00 2m 2.00 2.00 2.00 2.m

2.m 200 2.00 :.m 2.00 :.a, 2.m 2.m 2.m 2.00 2.m 2.00 2.m 2.00 2.m 2.m 2.m 2.00 2.m :.m :.m 200 :.a, 2.00 2.m ‘00 i.00

1.m IO.&18.0 I.!-J.5 0.0 0.03 i.m 17.n-I9 0 u4.0 OWJ 0.03 1.m 16.~l8.0 I o-l.75 0.06 0.03 1.m I6.C18.0 6.04.0 0.045 0.03 im 17.kl9.0 R.&IO.0 O.MJ 0.03

Z.&IO l7.o-19.0 8.0-10.0 0.0111 0.01 i.m I7.o-I9 0 8.o..IO.0 0.20 0.15 In,” 1.00 17.0-19.0 8.o-IO.0 0.20 0.M 1.00 l.S.O-20.0 8.O-I0.J O.MJ 0.03 lm 18.0-m.0 8.&lO.J O.MJ 0.03 I.00 18.&20.0 8.a-12.0 0.04s 0.03 I.00 i8.h20.0 .9.&12.0 O.MJ 0.03 i.m 17.w19.0 8.0-10.0 OSUJ 0.03 i.m 1.9.&?0.0 11.kIO.5 0.015 0.03 I.00 17.e19.0 IO.%-13.0 O.MJ 0.01 l.m 19.0-2 I .o lO.o-12.0 O.MJ 0.03 I.00 22.0-24.0 I2.&IJ.O 0.015 0.03 too 22.lW4.0 I:&15.0 0.045 0.03 IX 24.0-26.0 19.w2.0 O.MJ 0.03 I JO 24.C26.0 19.&22.0 0.045 0.03

I.LJ.O 23.0-26.0 19.~22.0 O.MJ 0.03 i.m 16.0-18.0 lO.&l4.0 0.045 0.03 1.00 16.0-18.0 IO&14.0 0.20 0. IO min i.m lb.&l&O 10.0-14.0 0.01s 0.03 i.m 16.Gl8.0 lO.&l4.0 O.MJ 0.03 i.m l6.0-18.0 10.0-14.0 0.015 0.03 I.00 16.&18.0 lO.&l4.0 0.045 0.03 I.00 18.wo.O ll.LIJ.0 0.045 0.01 l.m I&o-20.0 Il.o-IJU O.MJ 0.03 i.m 17.&19.0 9 &I?.0 0.045 0.03 1.m 17.0-19.0 P.bl2.0 O.MJ 0.03

0.7.&I .c i7.cm.o 34.617.0 0.M 0.03 i.m 17.&19.0 9.&lJ.O 0.015 0.03 i.m 17.&19.0 9.0-I) 0 O.MJ 0.03 i.m 17.o-19.0 9&lJ.O 0.015 0.01 I.00 17.0-19 0 9.0-Il.0 O.MJ 0.03 l.m 15.0-17.0 17.0-19.0 O&J 0.03

OL’N 02 N

0.X4 40 N

0.6 Mdb) O.l! mm se

0 10-0 lb N 3.040 cu

O.lm I6 N

?.&I.0 MO 1.7K.J MO 2.0-3.0 MO 2.e3.0 MO

2.GJ.O Ho:O.IW.l6 N X-3.0 MO: 0.1~).16 N

J.U.0 MO 3 (Y.0 MO

J I W min Ti 5 x SC min Ti

IO I SC mm Nb IIr%Cmm-l.OmuNb

0.2 Co: IO * Lit min Nb: 0.10 Ta 0.2Co:8~%Cmm-l1.0muNb:O.IOTa

003 0.08 0.1: 0.1: 0.12 n.1: 0 I: 0.12

0.0’ 0 :o

0 0:s

i.m l.m Il.>l4.5 l.m 1.m 10.5-I 1.75 1.m l.m I4 O-16.0 1.m I .m l6.o-18.0 I.25 l.m 16.0-l&0 I.25 1.00 16.kl8.0 lo) 1.00 16.0-18.0 tm 1.00 16.0-18.0

0. IW.30 Al 6 I SC mm - 0.75 mu Ti

0.6 Udbl 0.1: min Se

o.:%I.Y MO 0.7LI.25 Mo: 5 x X-C min - 0.70 mu

Nb i.m 100 im

I.00 i.m 1.m

Il.&l9 0 l8.&23.0 17.Sl9.5

O.IJ Al: II * %C min - l.iOTi

o.:o l.5O 1.m :3.0-27.0

0.01 0.03 0.50 0.045 O.MJ

0.M 0.03

0.01 0.03 0.06 0.1s min O& 0.0 OM 0.03 0.01 0.03

0 JO 0.M 0.01 0.01 0 03

1.00 0.01 0.03

0.M 0.03

1.7>2.% MO: 0.03 N: 0.2 * 4 l%C 4 RN1 min - 0.S m lli l Nb)

0.3 N

020 I.00 0.7s 2J.CL28.0 :.5cu.m 0.040 0.030 I .ur2.m MO

0.1 1.00 0. .Yl 11%13.0 0 I’ I.00 i.m 11%Il.5 0 is l.m 1-m II.S-13.5 0.1.’ I.23 I.00 l2.crl4.0 0.15 I.2 l.m I2&I4.0

0.1 rn,” 1.00 l.OO I2.LI4.0 n 15 ml” 1.25 l.m lx-14.0

0.m-o :5 I.00 0.75 II LIJ.5 0.x i.m im I5 o-17.0

0.W.’ I.00 l.m l6.o-18.0 0 TW.95 i.m 1.m 16.0-18.0 0.9.Li .:n l.m i.m lb&l8.0

0.04 0.03 0.01 0.03

l.?J-2.50 0.M 0.03 0.06 0.15 min 0.06 0.0 0.M 0.01 0.M 0.15 min

0 h-1.0 0.M 0.01 I zs-2% 001 0.0)

0.04 0.01 001 0.03 OM 0.01

0.6 Hdbl 0.13 mm se

06 Udbl O.:Ll.2sMo:O.-~I.U w:0.15-0.3v

o.:s MO 0,:s MO 0,:s sio

0.05 020 0.10 12.:~13.:! 7.1uI.J 0.01 O.OC0 2.C.J MO: 0.~l.33 Al: 0.01 N 0.07 I.00 100 I4.&lJ.5 3.SJ.J 0.M 0.03 2.Y.5 Ca: O.l~.4J Nb 0.07 i.m i.m IJ.L17.J J.&!.O 0.M 0.03 Y.&J.OCu:O.lti.45 Nb 0.w I.00 1-m 16.618.0 6.5-7 75 0.M 0.M 0.75-1.5 Al

84-2

Page 123: Intro to Metallurgy

NON STANDARD WROUGHT CRES.STEELS

I., - -. _- ..- .._ - __ ,-,,,,, -.I - 8 I . I’, . I . ‘ID

B4-3

Page 124: Intro to Metallurgy

CAST CRES STEELS Compositions and tvical microstructure of ACI corrosion-resistant cast steel5

CA.15. ., CA.lJM. ..:

1,”

CA40 KU CA&IF CB.30 ..: A,,. u:

II j-l40 1.0 0 JOMtndl Il.!-IJU I I, 0. I c I .coM.J I I J-14 II 1.0 0.5MuldI I, !-I40 I” IR.OZ.0 ‘0 26 O-30.0 Lo

10.5-l:.! 6.040 ll.L14.0 13U.J 0.cl.OM.3 Il.&l:.5 0.5&l.O0 0.~l.25Mo: O.‘tl.?JW:

O.&o.~V 15.5-17.7 5.6-4.6 Z.LJ.?Cu. O.mM.55Nb:

0.05N ma I4.0-15.5 4.5-5.5 ?.Sl.?Cu: 0 .B-O.lJ Nb:

0 05N INI 25.G26.5 4.7Jd.0 ,.75-2.25Mo:

2.7M.LICu 26.&lO.O Lt.&I 1.0 17.cIl.0 .4.0-12.0 17.&21.0 W-12.0 ?.&J.OMo l7.cGl.O 9.Wl3.0 2.C-J.OMo: 0.104.2ON

18.CGl.O s&l 1.0 II.CL2I.O 9.0-12.0 Nbcfl l&o-21.0 9.0-12.0 ?.&-J.OMo 18.0-21.0 8.0-I 1.0

?A~NM _. CA.l.aMWV

I.00

l.Ul CE7CW2

CWMCu 0.04 I.00 I.M

0.10 I.50 2.m 0.03 I.50 2.00 0.01 I.50 2.00 0.0) I.50 I.54 0.08 I.50 2.00 0.03 I .JO 2.00 0.03 I.50 2.m

o.ouJ IO I.SO 2.00 0.044 IO I.50 I.50

0. IO I.50 I.50

CE.JO ............. JI: CF.&cl ............ JO4L CF.JM,cl. ......... IIbL CF.lMN ............ CFUel.. .......... JO4 CFdC ............ 347 CFdM .......... 116 CF.10 .............. CF.IOM.. ............ CF.IOhlC. ........ CF.IOSMnN .........

11.~21 .o 9.&12.0 2 &3.OMo IJ.O-18.0 I3.C16.0 I.75--:.?.cMo 16.&1.9.0 8.&9 0 O.llS4.18N I8.C?l.O 9.CI2.0 ?.O-3.OMO

9.e12.0

7.Ork9 al I.50

3.5043l :.a) CF-1%. ....... 116

CF.16F.. .......... 303 0.16

o.:o 0.06

I.50

I 50 rawal

:.al

Zoo I.W

18.0-21.0 I.U)MO max: 0.2o-o.JJSc

Ix-3.ooMo. 0. IO&Y)Nb: 0. IO-IOV: O.X-4ON

3.04.OMO

CF.20.. ?02 CCdMMN ._...

I8.C!l.O 20.~II.5

B.O-II.0 I I.5-II.5

CGdM ..I.. !I7 CG-I2 . .

0.03 1.50 I.50 l8.&21.0 9.0-Il.0 0.1: I.50 2.m Lot-3.0 IO&11.0 0.08 I50 1.x) 22.W6.0 12.e15.0

0.04-0.I0 I.50 2.m X.&26.0 12.615 0 0.20 I.50 2.00 22.W6.0 I?&I5 0 0.0:s I.20 I.03 I9 5-20.5 17..Cl9.5

CHd .............. CH-IO ............... CH-20. .......... CK.JMCuN “1 ....... 6.&7.OV: 0 I.3-0.24N:

0.50-l.cuu . . CK.20.. J,O 0.20 z.00 2.00 :3.e:7.0 19.0-3.0

CN-JM.. _. _. CN-7M .._.... ,. ... CN-7MS Cr.I5c . . .

0.01 2.m 1.m zO.O-22.0 23.0-27.0 4.5-5.5Mo 0.07 I..% l.M 19.~22.:.0 27.~2QS ?.o-l.OM.3: l.~.Ku 0.07 I.33 J.mw IS.O-20.0 22.0-25.0 2.5-J.OMo: I.>:.oCu

O.OW.15 0.15-133 0.5&1.1x) IP.&:I 0 Jl.O-34.0 O.S,.JV

Compositions of ACI heat-resislanl casting alloys

I,= m .,.I .cI- - ASTM grHolbl.b ’ c Cr a St-;

HA .................... A 217 0.20 mu &IO ... i.m HC. ................ 192605 A.W.A608 0.50 rm . 2&Y) 4max 2.m

HD., ............... JPJCO5 A297.Aea 0.50 mu X-Y) c7 :.a,

HE .............. JPJ403 A291.Ata 0.20-0.x! 26M S-II 2.00

HF ............... I92603 A.P.AbOB 0 ma.40 I%23 %I2 2.m

HH .............. JPl.WJ A137..4608.AU 7 0.20-O ..W x-28 II-14 2.00

HI ................ J94003 A297.A!-47.A- 0.~ ..m s30 ICI8 2.M

/410,::: ::: :::.:: :: Jplzf4 2 g. A 3Sl. A 547. A 608 ;-s,$’ ?C28 IS-‘2 21 e27.0

19crE,o ;:$’

HK40 .................. A 151 0.15-o0.45 23.0-27.0 l9.k2.0 I .75

HL ................ JW A 297. A 6011 O.ZWMO s-1: lb22 2.m

HS.. ............... I94213 A 297. A ml 0.:&O ..W 1%II 23-Z? 200

HP ................... A297 0x-0.7! :c:a !J-J7 2.m HP..Y)wZlc,. ........... 0.4.W.~ 5 :A-28 II-37 2.50

H- ................. J‘MWS A -37. A 151. A 567. A613 0.Js0.7 l&17 JJ-?7 2.50

HTIO ................ A 351 0.2Y).Y I? c-l7.U 53.0-57.0 1.50

HL ” .............. A 297. A boo O.J.5-0.‘ 17-:I 3741 2 ..m

HW ................. A 297. A ta O.JU-o.75 l&14 554: :.JO

HX.. ...... ........ A-37. A6cd 0.JU.75 ISI9 64-69 2.50

I.8 ,sTII &ml ,Cl,uHC.I.!- ,~“D.ml.?lorlkolh”1110,1. SE”

m, am Ik UlRI n MI JNl”llc.n,. ,b, Rlrn Fe I” *I <unautm,. Y.w*Y cumcn,: 0.1% 10 UbY-5 lu HA.

%T? I rti WLflu cmtmt~‘oOlCi IM.lIV Jl0.A “P.WYZ. Y”l,bk”“rl

I, ,.DntdI, ak4vnl r 1” HA. .blch h, O.pDl” I. U” mLl,mYm ror other .O”,I I, Y, .I a)51 uo HH aI* LUII.,“, 0 -3 N #ma,, ICI USOOCDOUIN 8 ,“tta Iv. 0 I to 1.m zr. l ndO.ON% s lma.8 .%I Slmrll

Page 125: Intro to Metallurgy

Appendix B

Appendix B-5

Superalloys

Instructional Video Teletraining Course

Federal Aviation Administration April. I998

Introduction to Metallurgy

B5

Page 126: Intro to Metallurgy

GENERAL

Superalloys is a collective trade name assigned to a group of Fe, Ni, and Co-based alloys that are characterized by excellent thermal performance up to 80-85% of their melting points, making them suitable for jet engine components and other high temperature applications. Many superalloys are heat treatable to high strength levels. In the alloy listings, presented in the following pages, some of these heat-treatable superalloys will be identified by asterisks.

DESIGNATION SYSTEM

There is no standard designation system for superalloys. Alloys are identified by trade names, usually assigned by the original inventor. These trade names have become sort of an industry norm that is recognized internationally.

FORMS

Superalloys are available as wrought, cast, and powder metallurgy products.

Wrought Alloys

Three types of alloys are available: 1. Fe-base (e.g., A-286, Incoloy 903, and Pyromet CTX) 2. N&base (e.g., Inconel 7 18, Nimonic 80, Udimet 700, and Pyromet 600) 3. Co-base (e.g., Stellite 6B, Elgiloy, Haynes 188, and MP 35N)

Cast Alloys

There are three major categories of cast alloys: 1. Polycrystalline Cast Alloys. These are Ni or Co-base alloys.

a) Ni-base: Some of these have the same compositions as, and bear similar trade names to, their wrought counterparts (e.g., IN 718, IN 625, Rene 41, and Nimocast). Others are strictly cast compositions (e.g., MAR-M 246 and Inconel 713).

b) Co-base: Strictly cast compositions (e.g., HS 21, MAR-M 302, and WI 52). 2. Directionally Solidified’@S) Alloys. Ni-base alloys specially developed for directional

solidification (e.g., MAR-M 247 and Rene 80H). These alloys are mainly used for vane and blade applications.

3. Single Crystal (SC) Alloys. Ni-base alloys with adjusted compositions to suite single crystal growth (e.g., PWA 1480 and Rene N-4). These alloys are mainly used for vane and blade applications.

Powder Metallurgy (PM) Alloys.

Some compositions, intended originally as cast alloys, were selected for PM applications. The main use of this technology is for the production of components made of Stellites, a group of wear-resistant alloys. Another application that is gaining commercial acceptance involves the production of dispersion-hardened alloys. Superalloy PM involves the production of ingots by conventional ingot metallurgy, followed by powder production, from the ingot, by techniques such as atomizing.

El-1

Page 127: Intro to Metallurgy

WROUGHT SUPERALLOYS Nominal compitionr of urouphf nickel-Iwe rllovr

“0, Y

“!” O!V 2.0 C” O.O! L.l

002 IA

0.0: 44‘

I s Ta

“aw ‘I*

I4 I) 0.0s :.! 0003 :o ”

:*.0 IJ ?O “.’

0.0, OI 0 OJ 0 “7 00s 001 004 OW “.I! 11.10 0.00 0 0’ ” II “.lJ 0.m 0 0) O.OJ ““! 0.0’ O.“J “up “.I!

0.012 0 OJ

0 3

u: 0.2 0.: 0.q I, s O.? I, J “1 0.1

0.: “.J 0.: 1.1 “.Y :.s :h

t:..c 90 PO

I.0

10.” OCOJ ?” “I

:.a :s I . ! 1.: :.I ! . I 2.3 1.: : 0 ! ” 1 , :.s : r ! . Y I ”

I . ! (0 J.U :.I IO

0.00, 0.003 O.rnJ 0.160 Ou)I 0.010 0.03 00x 0.010 0.010 0.001 0010 OK@ Omb OCOJ

0.m

~.~ 0.04 0.02

so

SP “1 0.3 0.J” 0.30 01 01 “0’

!7 0.: 3s “.?o il ” ” I “.? I,. I

Ub ” I, “’

0:

! ! 0 ! 4.0

1" b" 10

Oob OOU “.OJ O.OJ 003 0 07 0 01 ow “a3

DJ 100 17.0 IS.0 14.1 10.0 Il.?

o.oY) 0.020 0031 O.OlJ 0.036

0 01 0.10

Nominal composilionr of wrought iron-base alloy5 .

*h ‘u c-. .

C, t. Y Y u .I n h *. Y I

c . (*k

S4.0 . !A I, .!L.O .u ” ,h 44s &a

O.“,J n.mJ 001

: !

I . . ! , cu. 0 01 s

1.0 13

“l.‘N

10 0.1 OS07 0 IJ

” so 2s :.J

I.0 cu 1,s cu

” 1 1.0

l Heat treatable alloy

Page 128: Intro to Metallurgy

CAST SUPERiLL&

Nominal compositiom and densities of sekled cast nickel-base superalloys

--CcSpd(b. *Br Tc C, co MO w 1. Hb A’ n HI- 72 8 3, 0th ’ rJ-M.d-=’

IN-718 .._..........., Y.. 0.04 I8.J JO s.1 US 0.9 b, Ill3 Fe Rcrd MO ............... .r ... 0.03 19.0 12.0 I.2 INIT5 ...................... 0.06 2I.S ... 8.S IN-713C ... .................... 0.12 12,s 4.2 IN-713LC ................... 0.05 12.0 ... 4.3 IN-713 HI (MM Ooo ... ......... OOS 12.0 4.s IN-100 ...................... 0.18 10.0 IS.0 1.0 IN-736C ................... 0.17 16.0 8.5 I 7S IN-7ILC .................. 0.11 16.0 8.S 1.7s IN.792 .................... 0.21 12.7 9.0 2.0 IN-939.: .................... 0.1s 22.4 IY.0 .. B-19W.. .................... 0.10 8.0 10.0 6.0 B-1900 HI IMM 037, ......... 0. IO 8.0 10.0 6.0 B-1910 ...................... 0.10 10.0 10.0 1.0 MMllUZ .................... 0.1s 9.0 10.0 .. MAR-M 200 ITIS 9.0 10.0 .. ................ MAR.M 200 HI (MM 009, 10.0 ... .... 0.14 9.0 MAR-M 246.. ............... 0.111 9.0 10.0 2.S MAR-M 246 Hf (MM 0061 .... 0.1s 10.0 2.S MAR-M 247 (MM 0011) ...... 0.16 :.; 10.0 U.6S CM 247LC ................. 0.07 8.1 9.3 0,s RcnC41.. ............. p ... 0.08 19.0 I0.S 9.s Rcn4 77.. ................... 0.08 IS.0 l.3.S S.? Rcn.680.. ................... 0.17 14.0 9,s 4.0 RcnC8OHf.. ............... 0.111 14.0 9,s 4.0 RcnC 100 .................... 0 IS 9.S IS.0 3.0 Rent l2J HI IMM 00s) ...... U.10 YU I0.U 1.0 Nimocasl 7s.. ............. 0.12 20.0 ..... Nimocasl 60 .......... Nimocasl 90.

4. 0.0s )P ..c .....

Nimocat 9S .............

...... ..+. ;.; .....

I;:; I;:;

Nimocasl lo0 ..............

0.20 II 0 10.0 ! u Ldlmel m ............ : n.lM 1u.s Ih ..’ 3.’ l!dimel 700 .......... 0.08 14.1 14.’ d.3 Udinw 710 ...... ..... c I30 31

0.13 IUU I ! U 10 ..................

t.: :1.s .. 1ll.U

C 242. ............... X.0 IO.0 IO.1 C 263 ................... 0.06 :o.u -33 0 S.9 c 1023 ............. Has~clby X .......... : : :

0 IS IS ! 10.0 U.0 0.08 !I.U I ..’ 9.0

Haalloy S ............... 0.01 lb.0 15.0

I.1 S.I 0,s I.0 “’ ,.. 4.0 0.2 0.2 .”

2.0 6.1 0.8 2.0 ! . Y 06 2.0 S.V 0.h I.3

s.s 4.7 2.6 I .7s 0.Y I.4 I.4 ..” 2.6 1.7s 0.9 3.4 3.4 3.9 3.9 3.2 1.2 2.0 1.4 1.0 1.9 3.7

4.3 6.0 1.0 ” 4.3 h.0 1.0 1.S 7.0 h.0 1.0 “’ 23 S.S 1.S 1.S

I2.S I.8 s.0 2.0 I2.S 1.0 s.0 2.0 2.0 10.0 I.S ‘.’ s.s 1,s “’ 10.0 1,s “’ S.S 1.S I.4 10.0 3.0 “’ S.6 1.0 1.4 9,s 3.0 S.6 0.7 I.4

1.7 3.2 4.2) 3,s “’

4.0 3.0 s.0 “. 1.0 3.0 4.7 0.8

5s 4.2

I.0 v

u 0.10 0.012 bal 0.10 0.01 t.al 0.10 0.01 bal O.Oh 0.014 bal 0.10 0.01 bal O.&i 0.01 w 0. IO 0.02 bal 0. IO o.ocw bal 0.08 0.01s bal 0.08 0.01s b-al 0. IO 0.0111 bal 0.0s 0.01s bal 0.0s 0.01s tral

0.01s bal 0.0s 0.01s bal 0.0s o.Ql.y-1 w 0.04 0.01s. _ bal 0.01 0.01s b-al

S Fe

0.01 0.m bal 0.01s M

0.03 0.01s bal 0.01 0.015 bal 0.06 0.01s hl IOV

7.0 3.8 alI 2.6 I.6 0,s “’

0.0s 0.01s bal b)

I 1.S Fe I 5 Fe bal

U.02 O.UlS bal u.03 0.015 bd

0.006 brl

8.22

8.2s 8.00

7.7s 8.11

8.2s 8.2

Es

8.S)

8.44

8.S3

7.91 8. I6

7.7s

8.U 8.17 Y.IR

waspdoy ....... ..... 0.06 IY.0 I2.J 3.8 NX IBB

+ .................... OW .. i8.n

SEL ..................... O.On l.c.0 26.0 4.S CMSX.?lal ......... ...... 8.0 4h 0 b GMR-23: .............. U I ! I ! 0 4n CLISX-Jlal ........... s.0 4h II.6 cwsx-&I. ...... hl Vh 06 CMSX-hul. ............ ... Y.9 !.I) 30 CMRZJS .... ......

.... . 0 IS I!.0 4.8

SEL.1.r.. .......... 0.07 I I.0 IJ.5 h.S UDM Y ............... 0.02 Ih.0 !.ll I.5 M-22 .................. Ill! (- .... ‘0 IN-731.. .................. 0.18 vs IOU I:.( MAR-M 421.. ............. U I4 1s.n 0.: 2.0 MAR-M 432 .. .............. U.lS I ! ! 20.0 MC.102.. 0.W 20.0 .. ................. 6.0 Nimocart 242. ....... ..... 0.14 :o .( 1Il.U IUS tiimocxst 263 ............... 0.W 20.0 20.0 !8

1.1 Sin* cfyul

.,. SU I..( .” JO ?.I, .” &!I 3,s

I.5 2,s s.0 ‘.’ 0.8 ’ 6 0. I 0.2 U.IS ?.I! “’ 4.2 3.6

0.6 0.40 “’

I.2 3.0 x.0 a.4 :.r

81) h.0 .‘.b 1.0 ” 3.8 20 ‘.

8.0 h.0 .‘h IO 0.10 h.J h .’ !h IU 0. IO

1.0 alI 4.7 0.0.’ ?.S 2.5

I.5 “’ 0.5 54 2.5 6.0 4s 2.0

I I.0 ?.O 6.3 S.! 4.6

3.8 4.3 I.8 ” JO ‘0 ‘0 2.8 4.3 2.s ib ;:o

0.: 0.3 ‘. 0.5 1 ’ _._

0.02 O.OlS bal o.on .‘. bal

bal bal

0.0’ 0.001 hl ocn6 bal

brl 0.009 bat

0.0 I 000s bal bal

0.01s bat i-Q1

0.0’ bal bal bal brl

u.os b,l 0.01 bal

U.U? 0.070 bal u.6u ” bal U.uh 0.Ol.c bal 0.05 0.015 bill 0.0s O.OlC bal

bill 0.2s Si. 0.30 Mn

0:iL-i b&l I 0 Fe. 0.3 Mn. 0.3 SI

U.01 bal 0.S Fe. 0.S Mn

l8.S Fe. O. ! Mn. 0.3 Si ? 0 Fe. 0.02 b. 0.6s si. o.ss Mn n.45 ,un

0.3 .wn. 0.4 si. Il.0 Fe

3 0 Rc

U.02

ll.08

8.h R.0 8.h 8.‘ ‘.98 8.04 8.1 8.2 P.63 7.?S 8.08 8.16

8.40 8.36

Nominal compositions oi selected cast cobalt-base superalloys

~‘mlpBu*l*.. ‘, -- ckmu,. _ iC (.I -.- .i u Ia .b uo ri II LI F. co olbn ’ D&-m’

Hs-?I IMOD Vlrallium~ II 2i I- 11 ? II ! 0 1.1) brl HS-31 1X-u)). U ! I , :.’ u 1U.U 9 .< II I- I..( brl u.4 St HS-2S 1L.60Sr Il. IO 1U.!l I,, U 1.0 bal ML.1700 ._..__ .._ 0: :.‘.u I!.0 Il.4 bal WI.S? I, 42 LI u IIlllIa\ II.0 .. .‘.I, ,. U brl 8.88 MAR.M 30:. .._ U.J< MAR-M 322 .._... .’ I U

21.’ 1U.U Y.0 U.1 IJ.uu.’ I . ! m,x bl 9.21 21.5 ‘.’ Y.0 4.: II.?! -i _.-. 0.3 bal 8.91

MAR.t.4 So) .___. U60 24.U 10.0 7.0 7.S 0.2 1.0 bal 8.8s AiRcsirl I3 U.4S 2I.U “’ 11.0 2.1) _. 2,s ma1 bal 3.4 Al. 0.1 Y 8.43 AiRcrisl ?IS ._. __. U.3S IY.0 0.S 4.5 7.5 O.I? ‘., brl 4.3 Al. 0.1 Y 8.47 F 7S U.:S 28.0 1.0 ma, .’ 5 bl FSX4I4.. ._ 0.2s 29,s I0.S 7.0 0.011 2.0 In-ax bal 8.3 x4 0.3 2s.s IO.5 7.0 O.OlU 2.0 maI bal

* Heat treatable alloy

Page 129: Intro to Metallurgy

CAST SUPERALLOYS

First-generation single-crystal superalloys

Mb! ‘tr

PWA IJXO IO RcnC N-4 _. _. 9 SRR99 ,...__..._.......... 8 RR ~XIO ,_........_........ IO AMI .,.................... ? CMSX-? _. _. R CMSX-3 _. u CMSX-6. _. _. _. In

CO 410 w T1 V- Yb Al Ti llr Yi’ m’

5 4 I? 5.0 I.5 bal 8.70 I 9 6

; .,. 0.5 1.7 4.2 bal 8.56

5 IO 5.5 bal 8.36 I.’ 3 I 5.5 j:; bal 7.87 R . 5 8 I 5.0 I.8 bal 8.59 5 ib a 6 5.b I.0 bal 8..cb ‘ 0.6 8 h 5.6 I.0 0. I bal 8.56 ! 3 4.8 4.7 0. I bal 7.98

First-generation DS superalloys with extensive turbine engine airfoil applications

,Xominal compceilion. -1% Alby ‘c Cr CO Ho W Nb Ta Al

MAR-M 200 Hf.. _. _. O.I? 8 V I2 I 5.0 RenC8OH ._...__......___... 0.16 I4 9 4 4 3.0 MAR-M 002 0.13 8 Ill ‘.’ IO “’ ?.b 5.5 MAR-M 247.. _. 0.1.’ 8 IO 0.6 IO “. 3.0 5.5

Ti

I.9 4.7 1.5 I .o

B

0.Ol.c 0.015 0.015 0.015

Zr

0.03 0.01 0.03 0.03

Hf

b.8 I.5 1.5

3.i’

bal bd bal bd

Second-generation DS and SX superalloys

AlbJ

DS alloy

‘C Somind comporilion. -1%

Cr CO .uo Denw1r. w Tn Rc .\I Ti B zr lir .Yi’ I.‘cm!

CM 37 LC.. n.n;

sx alloys

PWA 148.4 tRcf 8). _. _. _. CMSXJ tRcf IO).

.I 9 0.5 IO 3.2 5.6 0.7 0.015 0.010 I .1 bid a.54

5 IO - 6.6

6 9 3 3.6 0. I bal 8.95 h 9 6 7 3 5.6 1.” 0. I bal 8.70

85-4

Page 130: Intro to Metallurgy

Appendix C

IVT Course Evaluation Form

Instructional Video Teletraining Course

Federal Aviation Administration April, I998

Introduction to Metallurgy

C

Page 131: Intro to Metallurgy

Appendix C

IVT COURSE EVALUATION AIR - Introduction to Metallurgy

4/30/98

Please give us your candid opinions concerning the training you’ve just completed. Your evaluation of the IVT course is important to us, and will help us provide the best possible products and services to you.

Use your Viewer Response Keypad to answer the following questions.

Very Very Good Good Average Poor Poor

1. Length of course

2. Depth of information

3. Pace of training

4. Clarity of objectives

5. Sequence of content

6. Quality of course materials

7.

8.

Quality of graphics/visual aids

Readability of text on monitor

A

A

A

A

A

A

A

A

C

C

C

C

C

C

C

C

D

D

D

D

D

D

D .

D

Press the “Flag” key to indicate when you are ready to go to the next page.

IVT Course

Federal Aviation Administration April, 1998

Introduction to Metallurgy

C-l

Page 132: Intro to Metallurgy

Appendix C

Very .Good

Very Good Average Poor Poor

9.

IO.

11.

12.

13.

14.

15. On the key pad, enter your number of years of FAA experience.

Effectiveness of instructor(s) A

Communication between student and instructor A

Applicability of material to your job. A

Overall quality of the course A

Overall effectiveness of the IVT format A

Would you like to take other IVT courses? A. YES

B C D E

B C D E

B C D E

B C D E

B C D E

B. NO C. UNDECIDED

(numeric answer)

When finished, press the “Next Quest” key on your keypad and answer YES, then Enter.

Additional Comments may be fixred to the IVT Studio:

405-954-0317 / 9507

IVT Course

Federal Aviation Administration April, I998 Introduction to Metallurgy

c-2