26
Biochemistry 461 Fall, 2015 Lecture 1 Introduc<ons & Review of some chemistry Reading & Problems: Please see the syllabus Helpful site for review: hHp://www.biology.arizona.edu/ biochemistry/

Intro to biochemistry

  • Upload
    shal

  • View
    223

  • Download
    1

Embed Size (px)

DESCRIPTION

First lecture into biochemistryBasics

Citation preview

Page 1: Intro to biochemistry

Biochemistry  461  Fall,  2015  Lecture  1  

Introduc<ons  &  Review  of  some  chemistry  

Reading  &  Problems:  Please  see  the  syllabus  

Helpful  site  for  review:  hHp://www.biology.arizona.edu/

biochemistry/  

Page 2: Intro to biochemistry

Hyponatremia  in  Athletes  

Page 3: Intro to biochemistry
Page 4: Intro to biochemistry

The  Goal  of  Biochemistry:  Understanding  biology  at  the  chemical  

level.  

Page 5: Intro to biochemistry

Biochemistry  in  the  Grand  Scheme  Anatomy  &  Physiology  

Cell  Biology  

Biochemistry  

Next  slide  

Organism  

Organ  

Cell  

Organelle  

Page 6: Intro to biochemistry

Biochemistry:  Structure  &  Func<on  of  Macromolecular  Complexes  and  

Macromolecules  

Transfer  RNA   Glucokinase   Lipid   Cellulose  

Nucleosome  Ribosome  

Chemistry  

Page 7: Intro to biochemistry

Chemistry  

Page 8: Intro to biochemistry

General  Structure   Specific  Example  

STRUCTURE  &  NONCOVALENT  BONDS  

Page 9: Intro to biochemistry

THERMODYNAMICS:What  is  possible?    

The  power  of  thermodynamics  lies  in  its  ability  to  provide  informa<on  about  

what  is  possible.  ΔG  provides  informa<on  about  

spontaneity  ΔG<0-­‐Favorable  Process,  exergonic  

ΔG>0-­‐Unfavorable  Process,  endergonic  

Page 10: Intro to biochemistry

Energy  Flow  in  Organisms  

Energy  

Enthalpy  

Entropy  

Page 11: Intro to biochemistry

Gibbs  free  energy  comes  in  two  forms  

•  ΔG=ΔH-­‐TΔS  

•  ΔH-­‐enthalpy:  heat  transferred  at  constant  pressure  

For  our  purposes  this  means  the  energy  of  bond  breakage  and  forma<on  

•  ΔS-­‐entropy:  a  measure  of  disorder  

•  Temperature  is  also  important  

Page 12: Intro to biochemistry

Example:Why  does  NaCl  readily  dissolve    in  Water?    

Page 13: Intro to biochemistry

Halobacteria:  Can  live  in  5M  salt  

hHp://www.brasdelport.com/wp-­‐content/gallery/halobac1/halobact1.jpg  

Likes  4M  salt!  

Page 14: Intro to biochemistry

Why  does  sodium  chloride  dissolve  so  readily  in  water?  

•  Salt  crystals  are  very  stable  with  strong  inter-­‐ionic  interac<ons:  

Page 15: Intro to biochemistry

Bond  Exchange  in  Dissolving  a  Salt  

For  NaCl  the  ΔHsoln=+3.87  kJoule/mol  in  water  at  25oC  

SO  WHY  DOES  NaCl  DISSOLVE  SO  EASILY  IN  WATER?  

Page 16: Intro to biochemistry

Entropy  Rules!  

The  sodium  and  chloride  ions  have  more  disorder  when  dissolved.  

Page 17: Intro to biochemistry

Spontaneity  is  determined  by  both  enthalpy  and  entropy  

ΔG=ΔH-­‐TΔS  

Mul<ple  possible  combina<ons  of  enthalpy  and  entropy  can  result  in  a  spontaneous  reac<on.    Measurements  of  the  enthalpy  and  entropy  can  provide  clues  about  the  structural  origins  of  the  favorable  free  energy.  

Page 18: Intro to biochemistry

Units  of  Energy  typically  used  in  Biochemical  Thermodynamics  

•  Energy  unit:  1  cal  =  4.184  J:  so  1  kcal/mol  =  4.184  kJoule/mole  

•  Enthalpy:  kcal/mol  or  kJ/mole  •  Entropy:  cal/mol-­‐K  or  J/mole-­‐K  

•  Cal:  calorie  •  J:Joule  (named  for  James  PrescoH  Joule)  •  K-­‐Temperature  in  Kelvin  

Page 19: Intro to biochemistry

Energy  and  Chemistry  Standard  Free  Energy  Changes  for  

Chemical  Reac<ons,  ΔGo,  at  equilibrium  

•  Gibbs:  ΔGo  =  -­‐RT  ln  Keq  •  Rewrite:  Keq  =  exp(-­‐ΔGo/RT)  

•   Keq  is  equilibrium  constant;  formula  depends  on  reac<on  type  

•  For  aA  +  bB  →  cC  +  dD,  Keq  =  ([C]c[D]d)/([A]a[B]b)  

•  For  Biochemical  reac<ons  the    standard  state    ΔG’o  and  K’eq  refer  to  pH7.0  and  [H2O]=55.5M,  25oC,  and  ini<al  concentra<ons  of  each  component  at  1M.  

Page 20: Intro to biochemistry

Example  

•  ATP  +  H2O            ADP    +    Pi            ΔG’o=-­‐7.3  kcal/mol              -­‐30.5  kJ/mol  

•  What  is  the  equilibrium  constant?  

Page 21: Intro to biochemistry

Role  of  Reactant  Concentra<ons  

ΔG = ΔG'o +RT ln [C]c[D]d

[A]a[B]b

How  does  the  reac<on  proceed  if  the  quo<ent  of  the  reactant  and  product  concentra<ons  are  far  from  equilibrium?  

What  happens  when  equilibrium  is  reached?  

Page 22: Intro to biochemistry

•  Dependence  of  ΔG  on  Concentra<ons  

ΔG = ΔG'o +RT ln [C ]c[D]d

[A]a[B]b

Q =[C ]c[D]d

[A]a[B]b

[Reactants]>>[Products],  ΔG<ΔG’o  

[Reactants]<<[Products],  ΔG>ΔG’o  

Think  about  how  in  the  cell  the  Gibbs  Free  Energy  for  a  reac<on  can  be    made  more  favorable.  

Page 23: Intro to biochemistry

Coupled  reac<ons  ;An  unfavorable  reac<on  can  be  driven  by  a  favorable  

reac<on.  

The  favorable  or  exergonic  movement  of  the  large  weight  pays  for  raising  the  smaller  weight.  

Page 24: Intro to biochemistry

Chemical  Example  

Page 25: Intro to biochemistry

A  Brief  Word  about  Kine<cs:  Thermodynamics  may  indicate  that  a  process  is  possible.  However,  it  mat  be  very  slow-­‐or  have  a  very  large  

barrier  associated  with  it.    

Page 26: Intro to biochemistry

Enzymes  Speed  up  Reac<ons  by  Lowering  the  Energe<c    Barrier  that  separates  reactant  Reactant  from  Product