60
Intrinsic properties of phase Intrinsic properties of phase - - pure Co pure Co - - and and Mn Mn - - doped doped ZnO ZnO epitaxial films epitaxial films S.A. Chambers Fundamental and Computational Sciences Directorate Pacific Northwest National Laboratory, Richland, WA Work funded by US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science & Engineering SPINTECH V – July 7-11, 2009 -- Krakow, Poland

Intrinsic properties of phase-pure Co- and Mn-doped ZnO ...info.ifpan.edu.pl/spintech5/presentations/chambers...Mn-doped ZnO/ -Al 2O 3: 1. Epitaxial growth (PLD) & properties 2. Indirect

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Intrinsic properties of phaseIntrinsic properties of phase--pure Copure Co-- and and MnMn--doped doped ZnOZnO epitaxial filmsepitaxial films

    S.A. ChambersFundamental and Computational Sciences DirectoratePacific Northwest National Laboratory, Richland, WA

    Work funded by US Department of Energy, Office of Basic Energy Sciences,Division of Materials Science & Engineering

    SPINTECH V – July 7-11, 2009 -- Krakow, Poland

  • CollaboratorsCollaboratorsCollaborators

    T.C. Kaspar, T. Droubay, C.M. Wang, V. Shutthanandan, P. Nachimuthu, M.

    Engelhard, Z. Zhu – PNNL

    C.A. Johnson, K.M. Whittaker, K.R. Kittilstved, D.R. Gamelin –

    U. Washington

    S.M. Heald, D.E Keavney – APS/ANL

    A. Ney, K. Ollefs, S. Ye, T. Kammermeier, V. Ney – U. Duisburg-Essen

    F. Wilhelm, A. Rogalev – ESRF

  • OutlineOutline

    Introduction – spin-spin and spin-lattice interactions in dilute magnetic oxides

    Co-doped ZnO/-Al2O3:1. Previous work -- theoretical predictions & experiments2. Epitaxial growth by PLD3. Structural, electronic and magnetic properties

    Mn-doped ZnO/-Al2O3:1. Epitaxial growth (PLD) & properties2. Indirect evidence for spinoidal decomposition3. Review of traditional assumptions on dopant distributions –a new model for nanomaterials

    Summary

  • M+n M+n

    carrier mediated exchange

    M+n M+(n-1)

    double exchange

    e-

    Dopant spin interactions in epitaxial oxide filmsDopantDopant spin interactions in epitaxial oxide filmsspin interactions in epitaxial oxide films

    mag. dopant

    host cation

    lattice defect

    defect mediated exchange

    super exchange

    oxygen host cation

    magnetic dopant (M)

    New physics -- Coey & Chambers, “Oxide Dilute Magnetic Semiconductors – Fact or Fiction?”, MRS Bulletin 33, 1053 (2008).

    typically AF

    “How do we control materials processes at the level of electrons?”

  • Why ZnO?Why Why ZnOZnO??

    Reasonable electron mobilities (in epitaxial films).

    Direct gap semiconductor – strong emission in the UV.

    Suitable for transparent high-T applications.

    Spin coherence up to (at least) 280K.

    Long spin lifetimes (~200 ps) at 280K.

    n-ZnO/-Al2O3(001)Ghosh et al., APL 96, 232507 (2005)

    H:ZnO/-Al2O3(001)Li et al., APL 92 ,152105 (2008)

    40

    35

    30

    25

    20

    15

    Mob

    ility

    (cm

    2 /V

    s)

    300250200150100500Temperature (K)

    PL

    inte

    nsity

    (arb

    . uni

    ts)

    385380375370365360wavelength (nm)

    T=4K

    H2

    O2

    bulk ZnO

    (a)

    H:ZnO/-Al2O3(001)Li et al., JAP 104 ,053711 (2008)

  • Theoretical predictions Theoretical predictions –– Mn:ZnOMn:ZnO

    Dietl, Ohno, Matsukura, Cibert, Ferrand, Science 287, 1019 (2000)

    300K

    Mn2+-doped (5%), p-type - 3.5x1020 cm-3)

    Sato, Katayama-Yoshida, Physica E10, 251 (2001)

    80 40 0 40 80Ene

    rgy

    diffe

    renc

    e (m

    Ry)

    0

    30

    15

    -15

    N concentration (%) Ga concentration (%)

    Ferro stable

    Para Stable

    Mn:ZnO

    CPA + KKR

    p-type n-type

  • Theoretical predictions Theoretical predictions Co:ZnOCo:ZnO

    LDA

    LDA-SIC

    Toyoda et al.Physica B (2006)

    half metallicity!

    e↓ t2↓

    e↑ t2↑

    Co(II) + e-CB ↔ Co(I)

    Sato et al.SST (2002)

    CPA + KKR

    10 5 0 -5binding energy relative to Fermi level (eV)

    x10

    ZnO(001)Co (x=0.05):ZnO(001)

    Co 3d derived

    10 5 0 -5binding energy relative to Fermi level (eV)

    x10

    ZnO(001)Co (x=0.05):ZnO(001)

    Co 3d derived

  • Spin coupling in CoSpin coupling in CoxxZnZn11--xxOO

    n P(x=0.10,n) 0 0.281 0.382 0.233 0.084 0.025 0.00

    Co2+

    t2

    e

    ?E = 10Dq

    Co2+

    t2

    e

    E = 10Dq

    Co2+

    t2

    e

    ?E = 10Dq

    Co2+

    t2

    e

    E = 0.6 eV

    Co(II) – 3.0 B(orbital moment

    quenched)

    Ms ≤ ~(1/3)*3= ~1 B/Co

    Co

    O

    m surroundingcation sites(Zn or Co)

    For a given x, what is the probability of finding n dopants in m sites? 1.0

    0.8

    0.6

    0.4

    0.2

    0.0P

    (x,n

    )0.300.200.100.00

    x

    P(x,n=0)P(x,n=1)P(x,n=2)P(x,n=3)P(x,n=4)P(x,n=5)

    m = 12

    ?

    AF – Dietl et al.PRB 2007

    nmn xxnmn

    mnxP

    )1()!(!

    !),(

  • Abundant & widely divergent results for Co: Abundant & widely divergent results for Co: ZnOZnO!!More than 400 papers!!Room-temperature ferromagnetism with “giant” moments

    of ~3.36 B/Co polycrystalline n-AlxCo0.05Zn0.95O grown by sputtering -- Liu, J. Phys:Cond. Mat. (2007)

    Paramagnetism only in OPAMBE-grown n-CoxZn1-x /-Al2O3(001) (x = 0 0.15) -- Pacuski et al., PRB (2006)

    Intermediate ferromagnetism (≤ 0.2 – 0.4 B/Co) in OPAMBE-grown n-CoxZn1-x /-Al2O3(001) (x = 0 0.12) that didn’t scale with conductivity – Liu et al., APL (2007)

    Questions about material quality & adequacy of characterization

  • OffOff--axis PLD of Coaxis PLD of Co-- & & MnMn--doped doped ZnOZnO on on --AlAl22OO33(001) (001) & (012) from & (012) from nanoparticlenanoparticle & conventional targets& conventional targets

    Gamelin Group - UWSchwartz et al, JACS (2003)

    increasing OH-

    (1-x)Zn(OAc)2 + xCo(OAc)2 + 2NMe4OH Co2+:ZnO + H2O + 2NMe4OAc

  • Possible structures Possible structures -- CoCo0.10.1ZnZn0.90.9O (001)/O (001)/--AlAl22OO33(001) (001)

    lattice mismatch = -32%

    OZnOOAl2O3

    aZnO || asub aZnO || asubcos30

    OZnO

    OAl2O3

    Alignment of the O sublattices gives greater stability

    lattice mismatch = +18%

  • Structure Structure –– CoCo0.10.1ZnZn0.90.9O(001)/O(001)/--AlAl22OO33(001) (001)

    Al2O3 (202)Al2O3 (202)Al2O3 (202)Al2O3 (202)Al2O3 (202)Al2O3 (202)

    ZnO (101)ZnO (101)

    c-Al2O3

    c-Co:ZnO

    c-Al2O3

    c-Co:ZnO

    Inte

    nsity

    (arb

    . uni

    ts)

    191817161514 (degrees)

    ZnO(002)

    FWHM = 0.061°

    Inte

    nsity

    100806040202 (degrees)

    ZnO(002)

    ZnO(004)Al

    2O3

    Al2O 3

    Al2O

    3

    Inte

    nsity

    (arb

    . uni

    ts)

    191817161514 (degrees)

    ZnO(002)

    FWHM = 0.061°

    Inte

    nsity

    100806040202 (degrees)

    ZnO(002)

    ZnO(004)Al

    2O3

    Al2O 3

    Al2O

    3

    out of plane

    Inte

    nsity

    (arb

    . uni

    ts)

    6766656463 (degrees)

    ZnO(104)

    FWHM = 0.073°

    Inte

    nsity

    -100 0 100Phi (degrees)

    ZnO(104)

    6766656463 (degrees)

    ZnO(104)

    FWHM = 0.073°

    6766656463 (degrees)

    ZnO(104)

    FWHM = 0.073°

    Inte

    nsity

    -100 0 100Phi (degrees)

    ZnO(104)

    Inte

    nsity

    -100 0 100Phi (degrees)

    ZnO(104)

    in plane

  • (101) pole figure

    epitaxial relationship:(110)ZnO || (012)Al2O3 & [001]ZnO || [011]Al2O3 a-Co:ZnO on r-sapphire

    a/a = 1.53% along [001]ZnO= 18.3% along [110]ZnO

    Structure – Co0.1Zn0.9O/-Al2O3(012) Structure Structure –– CoCo0.10.1ZnZn0.90.9O/O/--AlAl22OO33(012) (012) In

    tens

    ity (

    arb

    . uni

    ts)

    313029282726 (degrees)

    ZnO(110)

    Al 2O

    3

    FWHM =0.088°

    Inte

    nsity

    706560555045402 (degrees)

    Al2O

    3 ZnO(110)

    Inte

    nsity

    (ar

    b. u

    nits

    )

    313029282726 (degrees)

    ZnO(110)

    Al 2O

    3

    FWHM =0.088°

    Inte

    nsity

    706560555045402 (degrees)

    Al2O

    3 ZnO(110)

    out of plane

    Inte

    nsity

    (ar

    b.un

    its)

    33.032.532.031.531.030.5 (degrees)

    ZnO(211)

    FWHM =0.127 °

    Inte

    nsity

    -100 0 100Phi (degrees)

    ZnO(211)

    Inte

    nsity

    (ar

    b.un

    its)

    33.032.532.031.531.030.5 (degrees)

    ZnO(211)

    FWHM =0.127

    Inte

    nsity

    -100 0 100Phi (degrees)

    ZnO(211)

    in plane

    r-Al2O3 a-Co:ZnO r-Al2O3

    a-Co:ZnO

    1 nm a-Co:ZnO1 nm a-Co:ZnO

  • Zeroing in on the dopant –x-ray absorption spectroscopy (XAS)

    Zeroing in on the Zeroing in on the dopantdopant ––xx--ray absorption spectroscopy (XAS)ray absorption spectroscopy (XAS)

    Co

    O

    Zn

    E

    K

    L2

    L3

    VB (full) CB (empty)

    binding energy

    dens

    ity o

    f sta

    tes K

    L2

    L3

    VB (full) CB (empty)

    binding energy

    dens

    ity o

    f sta

    tes

    Heald et al., Phys Rev. B 79, 075202 (2009) Chambers, Adv. Mat., in press (2009)Ney et al. submitted (2009)

  • XX--ray absorption nearray absorption near--edge spectroscopy (XANES) &edge spectroscopy (XANES) &extended xextended x--ray absorption fine structure (EXAFS)ray absorption fine structure (EXAFS)

    SrCo0.01Ti0.99O3

    x-ray energy (eV)

    norm

    aliz

    ed a

    bsor

    ptio

    n,

    Co K-edge EXAFS

    810080007900780077007600

    Co K-shell XAS

    CoTiO3CoOCo

    -20 -10 0 10 20 30 40 50E – Eo (eV)

    Eo = 7708.8 eVCoTiO3CoOCo

    -20 -10 0 10 20 30 40 50E – Eo (eV)

    Eo = 7708.8 eV

    Nor

    mal

    ized

    abs

    orpt

    ion,

    E

    o

    Co0.04Ti0.96O2

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0 2 4 6 8 10 12

    k (

    k)

    k (Å-1)

    s polarizationp polarization

    0 1 2 3 4 5 6

    F(R

    )

    R (Å)

    (k) = [(k) - o(k)]/o(k)= (fk/kR2)sin[2kR + o(k)]

    x exp(-R – 22k2)

    F(R) = ∫(k)exp(ikR)dkk1

    k2

  • XX--ray magnetic circular ray magnetic circular dichroismdichroism (XMCD)(XMCD)

    = IL3l – IL3r

    = IL2l – IL2r

    Circularly polarized x-rays & magnetic field.Angular momentum of x-ray is transferred (in part)

    to the spin of the bound electron via spin-orbit coupling.Right circular photons transfer opposite

    momentum as left circular photons.Spin states are opposite in 2p3/2 (L3) & 2p1/2 (L2)No spin flip during photoexcitation.2p↑ 3d↑ and 2p↓ 3d↓Circularly polarized excitation senses spin

    imbalance in the unoccupied d states.Dichroism = AL-R = measure of spin imbalance in

    empty statesAtom specific magnetometry

  • Co speciation Co speciation –– Co:ZnO/Co:ZnO/--AlAl22OO33(001)(001)X

    -ray

    abs

    orpt

    ion

    (arb

    . uni

    ts)

    50403020100-10X-ray energy, E-Eo (eV)

    10% Co:ZnO/Al2O3 conv

    Co metal

    CoTiO3CoO

    Co K-edge XANES - APS2% Co:ZnO/Al2O3 nano

    Co is Co(II), but not CoOStrong hybridization to O

    Co 1s 3ddipole forbiddenweakly allowed for

    Co 3d and O 2p mixing

    Kaspar et al., PRB 77, 201303(R) (2008)

  • Co local structure Co local structure –– Co:ZnO/Co:ZnO/--AlAl22OO33(001)(001)

    2.0

    1.5

    1.0

    0.5

    0.0

    (R

    ) (Å

    -3)

    6543210R (Å)

    10% Co:ZnO conv (Co K-edge)2% Co:ZnO nano (Co K-edge)

    pure ZnO (Zn K-edge)Co & Zn K-edge EXAFS - APS

    Co(II) substitutes for Zn

  • XX--ray linear ray linear dichroismdichroism (XLD) (XLD) ––Co:ZnO/Co:ZnO/--AlAl22OO33(001)(001)

    Ney et al., PRL 100, 157201 (2008)

    > 95% of Co at lattice sites

  • Co LCo L--edge XMCD edge XMCD –– Co:ZnO/Co:ZnO/--AlAl22OO33(001)(001)

    0.010

    0.005

    0.000

    -0.005

    -0.010

    XM

    CD

    (arb

    . uni

    ts)

    -4 -2 0 2 4H (T)

    T=50K0.010

    0.005

    0.000

    -0.005

    -0.010

    XM

    CD

    (arb

    . uni

    ts)

    -4 -2 0 2 4H (T)

    T=50K

    Co(II) is paramagnetic

    Photon Energy (eV)Photon Energy (eV)

    0.26

    0.24

    0.22

    0.20

    0.18

    0.16

    XA

    S (

    I R+

    I L)/2

    10

    5

    0

    XM

    CD

    (IR-IL )

    T=50K H=4T

    -5

    -10

    800795790785780775770-15 x 10-3

    0.26

    0.24

    0.22

    0.20

    0.18

    0.16

    XA

    S (

    I+

    I)/2

    10

    5

    0

    XM

    CD

    (I-I

    T=50K H=4T

    -5

    -10

    800795790785780775770-15 x 10-3

    40x10-3

    30

    20

    10

    XM

    CD

    (a.

    u.)

    30025020015010050Temperature (K)

    H=5T40x10-3

    30

    20

    10

    XM

    CD

    (a.

    u.)

    30025020015010050Temperature (K)

    H=5T

    40x10-3

    30

    20

    10

    0

    XMD

    C (I

    L–

    I R)

    782780778776774Photon Energy ( eV)

    0.8

    0.4

    0.0

    -0.4

    XMC

    D (a

    rb. u

    nits

    )

    782780778776774Photon Energy (eV)

    5.18.06 H=5T4.3K10K20K30K40K50K60K80K100K125K150K200K250K300K

    40x10-3

    30

    20

    10

    0

    XMD

    C (I

    L–

    I R)

    782780778776774Photon Energy ( eV)

    0.8

    0.4

    0.0

    -0.4

    XMC

    D (a

    rb. u

    nits

    )

    782780778776774Photon Energy (eV)

    5.18.06 H=5T4.3K10K20K30K40K50K60K80K100K125K150K200K250K300K

    40x10-3

    30

    20

    10

    0

    XMD

    C (I

    L–

    I R)

    782780778776774Photon Energy ( eV)

    40x10-3

    30

    20

    10

    0

    XMD

    C (I

    L–

    I R)

    782780778776774Photon Energy ( eV)

    0.8

    0.4

    0.0

    -0.4

    XMC

    D (a

    rb. u

    nits

    )

    782780778776774Photon Energy (eV)

    0.8

    0.4

    0.0

    -0.4

    XMC

    D (a

    rb. u

    nits

    )

    782780778776774Photon Energy (eV)

    5.18.06 H=5T4.3K10K20K30K40K50K60K80K100K125K150K200K250K300K

    e-h

    ITEY

    H

    MIFY e-h

    ITEY

    H

    MIFY

  • At At remanenceremanence –– Co:ZnO/Co:ZnO/--AlAl22OO33(001)(001)0.65

    0.60

    0.55

    0.50

    0.45

    0.40

    0.35

    XAS

    (arb

    . uni

    ts)

    800795790785780775770Photon Energy (eV)

    10x10-3

    8

    6

    4

    2

    0

    XMC

    D (arb. units)

    T=50K H=0, TEYXAS -ve saturationXAS +ve saturation

    XMCD diff

    50x10-3

    40

    30

    20

    10

    XA

    S (a

    rb. u

    nits

    )

    800795790785780775770Photon Energy (eV)

    10x10-3

    8

    6

    4

    2

    0

    XM

    CD

    (arb. units)

    T=50K H=0, TFYXAS -ve saturationXAS +ve saturationXMCD diff

    No hint of ferromagnetism associated with Co(II), even at 50K, in as-grown films

    (insulating)

    e-h

    ITEY

    H

    MIFY

  • Can we make Can we make nn--Co:ZnOCo:ZnO without reducing without reducing structural structural Co(IICo(II)?)?

    norm

    aliz

    ed a

    bsor

    ptio

    n

    773077207710x-ray energy (eV)

    0.025Co + 0.975Co:ZnO0.050Co + 0.950Co:ZnO0.075Co + 0.925Co:ZnO0.100Co + 0.900Co:ZnO

    norm

    aliz

    ed a

    bsor

    ptio

    n

    773077207710x-ray energy (eV)

    0.025Co + 0.975Co:ZnO0.050Co + 0.950Co:ZnO0.075Co + 0.925Co:ZnO0.100Co + 0.900Co:ZnO0.150Co + 0.850Co:ZnO

    Co K-edge XANES

    norm

    aliz

    ed a

    bsor

    ptio

    n

    77807760774077207700x-ray energy (eV)

    n-Co:ZnO (=1 m-cm)semi-insulating Co:ZnO

    77167710

    0.05 B/Co ~3% of Co is Co(0)

    norm

    aliz

    ed a

    bsor

    ptio

    n

    776077407720x-ray energy (eV)

    semi-insulating Co:ZnOCo metal

    Our n-Co:ZnO has no detectable Co(0)

  • Does making the films n-type activate room temperature ferromagnetism?

    Does making the films Does making the films nn--type activate room type activate room temperature ferromagnetism?temperature ferromagnetism?

    Resistivity (-cm)Convntl. target Nanopart. targetProcessing condition

    O2pressure

    Substrate temp

    Additional dopant

    c-Al2O3 r-Al2O3 c-Al2O3 r-Al2O3

    Deposition 10 mTorr 550°C --- 70000 95000 15000 1000

    Anneal Vacuum 700°C --- 0.13 0.11 2.4 0.52

    Deposition 10 mTorr 550°C 1% Al 0.4 0.18

    Anneal Vacuum 700°C 1% Al 0.004

    Deposition 2x10-5 Torr

    (plasma) 550°C --- 0.15 0.54

    Deposition Vacuum 400°C --- 7.9 0.025 0.053 0.011

    Deposition Vacuum 400°C 1% Al 0.0014 0.0007

    Kaspar et al., New J. Phys 10, 055010 (2008)

  • Structurally excellent n-type Co:ZnO is not made ferromagnetic at RT by adding carriers

    Structurally excellent Structurally excellent nn--type type Co:ZnOCo:ZnO is is notnot made made ferromagnetic at RT by adding carriersferromagnetic at RT by adding carriers

    -0.06

    -0.04

    -0.02

    0.00

    0.02

    0.04

    0.06

    Mom

    ent (

    µ B/C

    o)

    -10000 -5000 0 5000 10000Field (Gauss)

    as-grownCo0.1Zn0.9O

    pure ZnO

    n-type (Al)Co0.1Zn0.9Oas grown

    annealn-type

    Co0.1Zn0.9O

    anneal again

    anneal again!anneal again!!

    (-cm)

    >10,000

    >10,000

    0.4

    0.1

    0.02

    0.01

    0.004

    H in planeT = 300K

  • Dependence of magnetization on conductivityDependence of magnetization on conductivity

    0.06

    0.05

    0.04

    0.03

    0.02

    0.01

    0.00

    Sat

    urat

    ion

    mom

    ent (

    µ B/C

    o)

    10-3 10 -1 101 103 105

    Resistivity ( -cm)

    c - Co:ZnO

    a - Co:ZnO

    beforeanneal

    afteranneal

    ]

    ]

  • Is Is nn--Co:ZnOCo:ZnO a a lowlow--TTcc DMS?DMS?

    60

    40

    20

    0

    -20

    -40

    -60

    Mom

    ent ( e

    mu)

    -40 -20 0 20 40Magnetic Field (kOe)

    5K300K

    n-Co0.06Zn0.94O( = 1 m-cm)

    -2

    -1

    0

    1

    2

    Mom

    ent ( e

    mu)

    -1000 -500 0 500 1000Magnetic Field (Oe)

  • n-Co0.06Zn0.94O( = 1 m-cm)2.5x10

    -6

    2.0

    1.5

    1.0

    0.5

    Mom

    ent ( e

    mu)

    30025020015010050Temperature (K)

    field cooled(in 4 T @ 10 mT)zero field cooled(in 0 T @ 4 mT)

    nn--Co:ZnOCo:ZnO is paramagnetic at all temperaturesis paramagnetic at all temperatures

  • So much for Co....So much for Co....

    Cobalt: Kobald (German), goblin or evil spirit, from cobalos (Greek)

    Manganese: Magnes (Latin), magnet

    what about what about MnMn??

  • Inte

    nsity

    (arb

    . uni

    ts)

    191817161514 (degrees)

    ZnO(002)

    FWHM = 0.061°

    -Al2O3(001)

    Mn:ZnO(001)

    Mn:ZnO(001)

    Structure Structure –– MnMnxxZnZn11--xxO(001)/O(001)/--AlAl22OO33(001) (001)

    Droubay et al., PRB 79, 155203 (2009)

  • Mn K-edge XANES

    norm

    aliz

    ed a

    bsor

    ptio

    n

    658065706560655065406530

    Photon Energy (eV)

    MnMn charge state in Mn:ZnO/charge state in Mn:ZnO/--AlAl22OO33(001)(001)XX--ray absorption nearray absorption near--edge spectroscopy edge spectroscopy

    (XANES)(XANES)

    Mn metal

    Mn(II)

    Mn:ZnO film

    nanoparticles

    Mn3O4

    Mn(IV)

    Mn(III)

    Mn(II)Mn(III)

    Mn+???

    1s Mn 3d (t2) + Mn 4p (t2) + O 2p

    tetrahedral coordination

    Pre-edge feature

    e↑

    Mn 3d + 4p + N 2pmajority spin 10Dq

    t2↑

    e↓

    t2↓Mn 3d + 4p + N 2pminority spin 10Dq

    Eexc

    Mn 1s

  • First-principles XANES calculationsTitov et al. PRB 72, 115209 (2005)

    XANES theoryXANES theory–– Mn(III)Mn(III)xxGa(III)Ga(III)11--xxNN

    Two-peak pre-edge Mn(III)One-peak pre-edge Mn(II)

  • Mn K-edge XANES

    norm

    aliz

    ed a

    bsor

    ptio

    n

    658065706560655065406530

    Photon Energy (eV)

    MnMn charge state charge state in Mn:ZnO/in Mn:ZnO/--AlAl22OO33(001)(001)XX--ray absorption nearray absorption near--edge spectroscopy edge spectroscopy

    (XANES)(XANES)

    Titov et al. PRB 72, 115209 (2005)

    Mn metal

    Mn(II)

    Mn:ZnO film

    nanoparticles

    Mn3O4

    Mn(IV)

    Mn(III)

    GaMnN (Mn3+)expt

    ZnMnTe(Mn2+)calc

    ZnMnTe(Mn2+) expt

    1s Mn 3d (t2) + Mn 4p (t2) + O 2p

    tetrahedral coordination

    Mn(II) e↑

    Mn 3d + 4p + N 2p10Dq

    t2↑

    e↓

    t2↓Mn 3d + 4p + N 2p10Dq

    Eexc

  • MnMn local structural environment local structural environment in Mn:ZnO/in Mn:ZnO/--AlAl22OO33(001)(001)Extended xExtended x--ray absorption fine structure (EXAFS)ray absorption fine structure (EXAFS)

    Mn and Zn K-shell EXAFS

    2.0

    1.5

    1.0

    0.5

    0.0

    |(R

    )|(Å-

    3 )

    86420

    R (Å)

    Mn:ZnO nano (Mn K)ZnO powder (Zn K)

    Mn(II) substitutes for Zn

    Mn:ZnO film (Mn K)

  • DopantDopant magnetic properties magnetic properties –– MnMn0.050.05ZnZn0.950.95OOXX--ray magnetic circular ray magnetic circular dichroismdichroism (XMCD)(XMCD)

    e-h

    ITEY

    H

    MIFY55x10-3

    50

    45

    40

    Flou

    resc

    ence

    Yie

    ld (a

    rb. u

    nits

    )

    640638636634632

    Incident Photon Energy (eV)

    8x10-3

    6

    4

    2

    0

    -2

    Mn

    Dichroism

    Mn L3 XASMn L3 XMCD

    5K, 5T

  • MnMn LL33 XMCD XMCD -- MnMn0.050.05ZnZn0.950.95OO

    35

    e-h

    ITEY

    H

    MIFY30x10-3

    20

    10

    0Flou

    resc

    ence

    Yie

    ld (a

    rb. u

    nits

    )

    640638636634632

    Incident Photon Energy (eV)

    XAS(FY)

    XMCD(FY)

    B

    T = 5K

    Mn(II) is paramagnetic in as-grown films (highly resistive)

  • Field dependence of Field dependence of MnMn dichroismdichroism for for different different dopantdopant concentrationsconcentrations

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Nor

    mal

    ized

    Mn

    XM

    CD

    /XA

    S (a

    rb. u

    nits

    )

    543210

    Magnetic Field (Tesla)

    Mn0.002Zn0.998OMn0.025Zn0.975OMn0.05Zn0.95O

    MC simulations

    Lower rate of growth of dichroism with field reveals nonrandom dopant distribution (correlated substitution or spinoidal decomposition)

    Presumed caused – lowering of total energy by closer proximity

    MC simulations -- Droubay et al., PRB 79, 075324 (2009)

  • Does Does pp--type doping of type doping of Mn:ZnOMn:ZnO activate highactivate high--TTcc ferromagnetism?ferromagnetism?

    Concentration calibration is tentativeAll films are highly resistive and paramagnetic

    Secondary ion mass spectrometry (SIMS) depth profiles

    Growth in N2

    0 100 200 300 400 500 60010-1100101102103104105106107

    10181019102010211022102310241025NO

    - ZnO-

    Cal

    ibra

    ted

    NO

    -in

    tens

    ity (a

    .u.)

    Depth (nm)N

    concentration (atoms/cm

    3)

    Growth in N2O

    0 200 400 600 800 1000 120010-1100101102103104105106107

    10181019102010211022102310241025NO

    - ZnO-

    Cal

    ibra

    ted

    NO

    -in

    tens

    ity (a

    .u.)

    Depth (nm)

    N concentration (atom

    s/cm3)

  • DopantDopant distributionsdistributionsAre bulk models correct for Are bulk models correct for nanoscalenanoscale materials?materials?

    singles (n=1) dimers (n=2) open trimers (n=3) closed trimers (n=3)n-mers – a lattice cluster containing n dopants (n = 1, 2, 3,...)

    cited 173 times

  • Monte Carlo simulations Monte Carlo simulations –– MMxxZnZn11--xxOO(M = generalized metal (M = generalized metal dopantdopant))

    Wurtzite crystal size & dopant mole fraction (x) defined Dopants randomly placed at cation sites (consistent with x) Dopant “connectivity” through intervening oxygens examined and cataloged

    throughout crystal Simulation done 1000 times for each crystal size and x value Statistics collected and analyzed

    5 nm radius MxZn1-xO nanocrystal(~20,550 cation sites)

  • Dependence on S/V ratio for MDependence on S/V ratio for M0.090.09ZnZn0.910.91OO

    0.318

    singles

    0.197

    dimers

    Higher fraction of singles and dimers as S/V ratio increases because of reduction in dopantcoordination number at the surface

  • Effect on magnetic properties of MEffect on magnetic properties of M0.100.10ZnZn0.900.90O O grown on grown on --AlAl22OO33(001)(001)

    0.2 m

    Mn:ZnO

    Mn:ZnO

    100 nm5 mMn:ZnO

    -Al2O3(001)

    0.2 m

    Mn:ZnO

    Mn:ZnO

    100 nm5 mMn:ZnO

    -Al2O3(001)

    0.324Behringer’s eqns.

    100 nm

    7.5 nm

    S/V = 5.4 x 10-2 Å-1

    aZnO || asubcos30

    OZnO

    OAl2O3

    a/a = +18%

    aZnO || asubcos30

    OZnO

    OAl2O3

    aZnO || asubcos30

    OZnO

    OAl2O3

    a/a = +18%

    assume

    for even n-mers

    assume

    for even n-mers

    0.367Monte Carlo

    For isolated Mn(II), moment = 5.9 B (Kittel)MC 2.2 B & Behringer 1.9 B (~15% difference)

  • General result...General result...

    xeff = 1 – [(1 – x)12 + 0.39(S/V)]1/12

    For spherical nanoparticles, thin nanodisks, nanorods, and granular epitaxial films with S/V ≥~5 x 10-4 Å-1 and ~0.05 ≤ x ≤ ~0.15,

    where xeff can be used in place of the actual x in bulk probabilistic formulae (bionomial thm or Behringer’s eqns).

    Droubay et al., PRB 79, 075324 (2009)

  • SummarySummarySummary Must perfect the growth and do the right characterization to make defensible conclusions. Structurally excellent Co:ZnO & Mn:ZnO are highly resistive and paramagnetic as grown. Same is true for structurally excellent Co: and Cr:TiO2 with dispersed dopants. Paramagnetic Co spins + abundant itinerant electrons from AlZn and Ov ≠ ferromagnetism. Can’t grow p-Mn:ZnO by co-doping with N to see if hole-mediate exchange interaction is strong. Outlook for magnetically doped oxides?

    Not high-Tc DMS as originally envisioned and predicted.Defect-mediated ferromagnetism can occur in poorly ordered materials (crummy films &nanoparticle assemblies).Is spinoidal decomposition the key to high-Tc DMS? Maybe – example Co:TiO2.

    1 m

    0.2 m

    AFM MFM

    1 m

    0.2 m

    1 m

    0.2 m

    1 m

    0.2 m

    AFM MFM

    1 m

    0.2 m

    1 m

    0.2 m

    1 m

    0.2 m

    AFM MFM

    1 m

    0.2 m

    1 m

    0.2 m

    1 m

    0.2 m

    1 m

    0.2 m

    AFM MFM

    36% remanence

    H || film plane --room temperature

    H (Oe)

    Mag

    netiz

    atio

    n (x

    10-6

    emu)

    1.2B per Co

    36% remanence

    H || film plane --room temperature

    -40

    -20

    0

    20

    40

    400020000-2000-4000H (Oe)

    Mag

    netiz

    atio

    n (x

    10-6

    emu)

    1.2B per Co

    36% remanence

    H || film plane --room temperature

    H (Oe)

    Mag

    netiz

    atio

    n (x

    10-6

    emu)

    1.2B per Co

    36% remanence

    H || film plane --room temperature

    -40

    -20

    0

    20

    40

    400020000-2000-4000H (Oe)

    Mag

    netiz

    atio

    n (x

    10-6

    emu)

    1.2B per Co

  • EXTRAS

  • 1 m

    0.2 m

    AFM MFM

    1 m

    0.2 m

    1 m

    0.2 m

    1 m

    0.2 m

    AFM MFM36% remanence

    H || film plane --room temperature

    H (Oe)

    Mag

    netiz

    atio

    n (x

    10- 6

    emu )

    1.2B per Co

    36% remanence

    H || film plane --room temperature

    -40

    -20

    0

    20

    40

    400020000-2000-4000H (Oe)

    Mag

    netiz

    atio

    n (x

    10- 6

    emu )

    1.2B per Co

    photon energy (eV)810800790780770760

    Co L-edgeXMCDALS B = -0.5T

    B = +0.5T

    Inte

    nsity

    (arb

    . unt

    is)

    (I +-I

    -)/(I +

    + I -)

    (0.1

    %)

    Magnetic Field (KOe)

    300K350K380K

    Magnetic Field (KOe)

    1.0

    0.5

    0.0

    -0.5

    80400-40-80

    300K350K380K

    300K300K350K380K

    H(B

    ) – H

    (0) (

    m

    -cm

    )

    Spinoidal decomposition in Co:TiO2/LAO(001)SpinoidalSpinoidal decomposition in Co:TiOdecomposition in Co:TiO22/LAO(001)/LAO(001)

  • Magnetic properties with & without surface CoxTi1-xO2 clusters

    Magnetic properties with & without Magnetic properties with & without surface Cosurface CoxxTiTi11--xxOO22 clustersclusters

    172Å Co0.04Ti0.96O1.96/LaAlO3(001)( = 0.35 -cm – Co-enriched CoxTi1-xO2-x clusters present)

    222Å Co0.06Ti0.94O1.94/LaAlO3(001)( > 4 K-cm – flat film & distributed Co)

    1.2 B/Co1.1 B/Co

    Magnetic Field (Gauss)

    Mag

    netiz

    atio

    n (

    Bpe

    r Co)

    -4000 0 4000

    B || surface

    Magnetic Field (Gauss)

    Mag

    netiz

    atio

    n (

    emu)

    -60

    -40

    -20

    0

    20

    40

    60

    -4000 0 4000

    B || surface

  • Co K-edge x-ray absorption – Advanced Photon Source

    Co speciation in CoCo speciation in CoxxTiTi11--xxOO22/LAO(001)/LAO(001)

    Co(II) environment morelike CoTiO3 than CoO

    No evidence for Co metal

    No evidence for CoO

    Co:TiO2 (no particles)Co:TiO2 (small particles)Co:TiO2 (small particles)CoTiO3 (powder)CoO (powder)Co (metal foil)

    -20 -10 0 10 20 30 40 50E – Eo (eV)

    Eo = 7708.8 eV

    Nor

    mal

    ized

    abs

    orpt

    ion

    (arb

    . Uni

    ts)

  • Co(IICo(II) local coordination ) local coordination ---- CoCoxxTiTi11--xxOO22/LAO(001)/LAO(001)

    N = 5.82 (5.00) for randomly distributed (exactly correlated) O vacancies

    Co(II) in slightly undercoordinatedoctahedral environmentCo(II) substitutes for Ti(IV)

    RCo-O = 2.04 +/- 0.01 (2.01 +/- 0.01) Å in the ab plane (c direction) (1.94 & 1.97Å in pure anatase)

    O vacancy forcesCo to be Co2+ CoxTi1-xO2-x

    These oxygen vacancies are not electrically active

    N = 5.4 +/- 0.3. N < 6 O vacancy (strain?)

    Co K-shell EXAFS (APS)

    s polarization

    p polarization-1.5

    1.5

    1.0

    0.5

    0.0

    -0.5

    -1.0

    12108642

    k2*

    (k)

    k (Å-1)

    s polarization

    p polarization-1.5

    1.5

    1.0

    0.5

    0.0

    -0.5

    -1.0

    12108642

    )

    -1)

    -1.5

    1.5

    1.0

    0.5

    0.0

    -0.5

    -1.0

    12108642

    )

    -

  • Semiconductor spintronicsSemiconductor Semiconductor spintronicsspintronics

    carrier mediated exchange

    diluted magnetic semiconductor (DMS)

    sub. mag. dopant(Co, Fe, Ni, Cr, Mn)

    ferromagneticn-semiconductor

    quantum well structure

    basesemiconductor

    metal contact

    metal contacte↑ h↑ + h↓

    spin LED

    “Is it possible to create magnetic semiconductors that work at room temperature?”Editorial Staff, Science 309, 82 (2005)

    Tc ~ xNo( or )S(S + 1)(Ef)x = magnetic dopant mole fractionNo = cation density = s-d exchange parameter = p-d exchange parameterS = total valence spin on dopant(Ef) = density of free carriers at Ef

    s

    p

    d

    d

    crystal momentumen

    ergy

  • Previous work on Zn diffused Previous work on Zn diffused aa--CoCo0.090.09ZnZn0.910.91O/ O/ --AlAl22OO33(012) that we grew(012) that we grew……

    Kittilstved et al., PRL 97, 037203 (2006)

    Interstitial Zn (Zni) – a shallowdonor in ZnO

    = 107 ~0.3 -cm[n] = ~2 x 1019 cm-3[Co(II)] = ~1021 cm-3

    as growninsulating

    x=0.09T = 300K

    -0.10

    -0.05

    0.00

    0.05

    0.10

    Sat

    urat

    ion

    Mom

    ent p

    er C

    o -

    B

    -2000 -1000 0 1000 2000Field [Oe]

    +Zni

    Zn diffused

  • Reversible chemical activation of FM & conductivityReversible chemical activation of FM & conductivity

    Co:ZnOCo:ZnO + ZniCo:ZnO + Zni + O2

    Abso

    rban

    ce LF

    Co:ZnO

    Zn vapor

    Co:ZnO + Zni

    O2

    Co:ZnO + ZnO

    , t

    full recovery of Co(II)tet LFpeak manifold upon reoxidation

  • Highly correlated kineticsHighly correlated kineticsHighly correlated kinetics

    power lawhopping conductivitypercolation theory

    log() ~ n-1/3

    Present problem – can’t reproduce the Zn diffusion process by Kittilstved:Similar magnetic behavior, but...Magnetization not “turned off” by heating in O2

    Zn diffusion….. = 107 ~0.3 -cm[n] = ~2 x 1019 cm-3[Co(II)] = ~1021 cm-3

    Zn diffusion….. = 107 ~0.3 -cm[n] = ~2 x 1019 cm-3[Co(II)] = ~1021 cm-3

  • Effect of Zn diffusion* on magnetizationEffect of Zn diffusion* on magnetization

    -0.06

    -0.04

    -0.02

    0.00

    0.02

    0.04

    0.06

    Mom

    ent (

    µB/C

    o)

    -10000 -5000 0 5000 10000Field (Gauss)

    as-grown(insulating)

    3100 Å a-Co0.1Zn0.9O / r -sapphire

    Zn-diffused600°C, 5 hrs(0.03 ·cm)

    *Following process by Kittilstved et al., Adv. Mater. 16, 2115 (2004)

    Zn

    insulatingCoxZn1-xO on

    Al2O3(012)@ 600oC

    sealed quartz tube

  • Discovery of trace amounts of Co(0) after Zn diffusionDiscovery of trace amounts of Co(0) after Zn diffusionDiscovery of trace amounts of Co(0) after Zn diffusion

    0.05 B/Co ~3% of Co is Co(0)no

    rmal

    ized

    abs

    orpt

    ion

    773077207710x-ray energy (eV)

    0.025Co + 0.975Co:ZnO0.050Co + 0.950Co:ZnO0.075Co + 0.925Co:ZnO0.100Co + 0.900Co:ZnO

    norm

    aliz

    ed a

    bsor

    ptio

    n

    773077207710x-ray energy (eV)

    0.025Co + 0.975Co:ZnO0.050Co + 0.950Co:ZnO0.075Co + 0.925Co:ZnO0.100Co + 0.900Co:ZnO

    Zn diffused Co:ZnO0.150Co + 0.850Co:ZnO

    Cobalt: Kobald (German), goblin or evil spirit, from cobalos (Greek)

    -- poly ZnO*-- Co metal

    glancing incidence XRD

    Nor

    mal

    ized

    inte

    nsity

    7760775077407730772077107700Energy (eV)

    Co metal

    310 nm a-Co:ZnO+ Zn diffusion

    310 nm a-Co:ZnO

  • X-ray photoemission depth profilingXX--ray photoemission depth profilingray photoemission depth profiling

    500 eV Ar+e-

    770780790800810Binding Energy (eV)

    Cycles 1-2

    4

    6

    810

    1214

    Co0Co2+

    interface

    770780790800810Binding Energy (eV)

    Cycles 1-2

    4

    6

    810

    1214

    Co0Co2+

    interface

    0 5 10 15 200

    10

    20

    30

    40

    50

    60

    70

    80

    Sputter Depth (nm)

    Ato

    mic

    Con

    cent

    ratio

    n (%

    )

    Co 2p

    Zn 2p3/2

    O 1s

    C 1 s

    Al 2p

    0 5 10 15 200

    10

    20

    30

    40

    50

    60

    70

    80

    Sputter Depth (nm)

    Ato

    mic

    Con

    cent

    ratio

    n (%

    )

    Co 2p

    Zn 2p3/2

    O 1s

    C 1 s

    Al 2p

    45Å Co:ZnO/Al2O3(001) – as grown

  • Zn Zn indiffusionindiffusion –– does it reduce structural does it reduce structural Co(IICo(II)?)?

    70Å Co:ZnO/Al2O3(001) -- Zn diffused

    45Å Co:ZnO/Al2O3(001) – as grown

    770780790800810Binding Energy (eV)

    Cycles 1-2

    4

    6

    810

    1214

    Co0Co2+

    interface

    770780790800810Binding Energy (eV)

    Cycles 1-2

    4

    6

    810

    1214

    Co0Co2+

    interface

    0 5 10 15 200

    10

    20

    30

    40

    50

    60

    70

    80

    Sputter Depth (nm)

    Ato

    mic

    Con

    cent

    ratio

    n (%

    )

    Co 2p

    Zn 2p3/2

    O 1s

    C 1 s

    Al 2p

    0 5 10 15 200

    10

    20

    30

    40

    50

    60

    70

    80

    Sputter Depth (nm)

    Ato

    mic

    Con

    cent

    ratio

    n (%

    )

    Co 2p

    Zn 2p3/2

    O 1s

    C 1 s

    Al 2p

    0 5 10 15 200

    10

    20

    30

    40

    50

    60

    70

    80

    Sputter Depth (nm)

    Ato

    mic

    Con

    cent

    ratio

    n (%

    )

    Co 2p

    Zn 2p3/2

    O 1s

    C 1 s

    Al 2p

    0 5 10 15 200

    10

    20

    30

    40

    50

    60

    70

    80

    Sputter Depth (nm)

    Ato

    mic

    Con

    cent

    ratio

    n (%

    )

    Co 2p

    Zn 2p3/2

    O 1s

    C 1 s

    Al 2p

    Co2+ Co0

    770780790800810Binding Energy (eV)

    Cycles 1-2

    14

    46

    8

    10

    12

    16

    interface

    Co2+ Co0

    770780790800810Binding Energy (eV)

    Cycles 1-2

    14

    46

    8

    10

    12

    16

    Co2+ Co0

    770780790800810Binding Energy (eV)

    Cycles 1-2

    14

    46

    8

    10

    12

    16

    770780790800810Binding Energy (eV)

    Cycles 1-2

    14

    46

    8

    10

    12

    16

    interface

    775785795805815Binding Energy (eV)

    Result from peak fitting: 36% Co(0)/64% Co(II)

    775785795805815Binding Energy (eV)

    Result from peak fitting: 36% Co(0)/64% Co(II)

  • Zn indiffusion – does it reduce structural Co(II)?Zn Zn indiffusionindiffusion –– does it reduce structural does it reduce structural Co(IICo(II)?)?

    770780790800810Binding Energy (eV)

    Co0Co2+

    4

    68

    10

    12

    14-18}interface

    770780790800810Binding Energy (eV)

    Co0Co2+

    4

    68

    10

    12

    14-18}interface

    0 10 20 30 40 50 600

    10

    20

    30

    40

    50

    60

    70

    80

    Sputter Depth (nm)

    Ato

    mic

    Con

    cent

    ratio

    n (%

    )

    Co 2p

    Zn 2p3/2

    O 1s

    C 1 s

    Al 2p

    O 1s

    0 10 20 30 40 50 600

    10

    20

    30

    40

    50

    60

    70

    80

    Sputter Depth (nm)

    Ato

    mic

    Con

    cent

    ratio

    n (%

    )

    Co 2p

    Zn 2p3/2

    O 1s

    C 1 s

    Al 2p

    O 1s

    500Å Co:ZnO/Al2O3(001) – Zn diffused

    Kaspar et al., PRB 77, 201303(R) (2008)

  • XANES and EXAFS, revisitedXANES and EXAFS, revisited

    Co0.5Zn0.5 intermetallic-Mn structure Co-Zn long bonds are longer than for hcp Co metal (2.6Å in CoZn vs. 2.5Å in Co)

    Co orders preferentially on c sites (x8)1/6 of Co also on d sites (x12)Co anisotropy possible if CoZn crystallites are oriented

    Ferromagnetic at room temp0.8 – 1.2 B/CoTC ~ 400 – 450 K

    Co - Mn?

    310 nm a-Co0.1Zn0.9O

    x nm a-Zni:Co0.1Zn0.9Ox = 310, 32, 7 nm

    10

    8

    6

    4

    2

    0

    |(R

    )| (Å

    -3)

    43210R (Å)

    parallelpolarization

    Co:ZnO Co:ZnO

    CoZn

    perpendicularpolarization

    model – Co:ZnO+ CoZn(111)

  • singles

    dimers

    trimers

    0 0.05 0.10 0.15 0.20x

    Predicted Predicted dopantdopant distributions distributions –– MMxxZnZn11--xxOO

    singlesdimerstrimers

    P(x) = Cxn(1 – x)kC, n, k – varied for best fit, but not equal to binomial theorem values

    Fits –Gaussians

    5 nm radius MxZn1-xO nanocrystal

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    P(x

    ,n)

    0.200.150.100.050.00x

    singles

    dimers

    trimers

    binomial theorem

    x = 0.09

  • Correcting for finite size effects in MCorrecting for finite size effects in MxxZnZn11--xxOO

    100 nm

    7.5 nm

    S/V = 5.4 x 10-2 Å-1x = 0.01

    x = 0.05

    x = 0.10

    log

    of p

    roba

    bilit

    y of

    N-m

    erfo

    rmat

    ion

    Pro

    babi

    lity

    109876543210

    N-mer

    M0.01Zn0.99O

    M0.05Zn0.95O

    M0.10Zn0.90O

    prob

    abilit

    y of

    N-m

    erfo

    rmat

    ion

    (offs

    et fo

    r cla

    rity)

    200

    100

    0

    A

    108642Dopant Concentration (%)

    1.5

    1.0

    W

    no = 0.57