33
1 Electronic Supplementary Information for: Intersystem Crossing via Charge Recombination in a Perylene-Naphthalimide Compact Electron Donor/Acceptor Dyad Muhammad Imran, a Ahmed M. El-Zohry, b Clemens Matt, c Maria Taddei, d Sandra Doria, d Laura Bussotti, d Paolo Foggi, d,f Jianzhang Zhao, a, * Mariangela Di Donato, d,e, * Omar F. Mohammed b, * and Stefan Weber c, * a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian 116024, China. E-mail: [email protected] b KAUST Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia. E-mail: [email protected] c Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany. E-mail: [email protected] d LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino, FI, Italy e ICCOM-CNR, via Madonna del Piano 10, I-50019 Sesto Fiorentino (FI), Italy E-mail: [email protected] f Dipartimento di Chimica, Università di Perugia, via Elce di Sotto 8, I-06123 Perugia, Italy M. I., A. M. E. and C. M. contributed equally to this work. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

1

Electronic Supplementary Information for:

Intersystem Crossing via Charge Recombination

in a Perylene-Naphthalimide Compact Electron

Donor/Acceptor Dyad

Muhammad Imran,a‡ Ahmed M. El-Zohry,b‡ Clemens Matt,c‡ Maria Taddei,d Sandra Doria,d

Laura Bussotti,d Paolo Foggi,d,f Jianzhang Zhao,a,* Mariangela Di Donato,d,e,* Omar F.

Mohammedb,* and Stefan Weber c,*

a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian

University of Technology, 2 Ling Gong Rd., Dalian 116024, China. E-mail:

[email protected]

b KAUST Solar Center, Division of Physical Sciences and Engineering, King Abdullah

University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi

Arabia. E-mail: [email protected]

c Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104

Freiburg, Germany. E-mail: [email protected]

d LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1,

50019 Sesto Fiorentino, FI, Italy

e ICCOM-CNR, via Madonna del Piano 10, I-50019 Sesto Fiorentino (FI), Italy

E-mail: [email protected]

f Dipartimento di Chimica, Università di Perugia, via Elce di Sotto 8, I-06123 Perugia, Italy

‡ M. I., A. M. E. and C. M. contributed equally to this work.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C.This journal is © The Royal Society of Chemistry 2020

Page 2: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

2

Index

1. Synthesis of the compounds.………………………….……………………………………………....Page S3

2. Molecular structural characterization data (NMR and HRMS spectra)..…………....Page S6

3. UV-vis absorption and fluorescence emission spectra…………………………….……....Page S13

4. Fluorescence lifetime spectra…………………………….……………………………………….....Page S14

5. Estimation of Förster Resonance Energy Transfer (FRET) radius (R0)……………Page S15

6. Calculation of Gibbs free energy changes of electron transfer………………………….Page S16

7. Femtosecond transient absorption spectra..…….……………………………………………..Page S17

8. Subnanosecond transient absorption spectra……..…………………………………………..Page S19

9. Nanosecond transient absorption spectra……..……………………………………………..…Page S20

10. Time-resolved electron paramagnetic (TREPR) spectra……..………….….....................Page S24

11. DFT computations….………….………..…………………………………………………………..........Page S25

12. TTET/TTA induced delayed fluorescence.……….……………………………………………...Page S26

13. x,y,z coordinates of the optimized geometries…………………………………………...........Page S27

14. References…..…..…………………………..………………………………………………………………..Page S33

Page 3: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

3

1. Synthesis of the compounds

Synthesis of compound 2. Compound 2 was synthesized following a similar method as we

reported previously.1 Under N2 atmosphere, a solution of compound 1 (perylene. 1.0 g, 3.96

mmol) in DMF (20 mL) was stirred at room temperature. After that, N-bromosuccinimide

(NBS. 693 mg, 3.96 mmol) in (20 mL) DMF solution was added dropwise into the reaction

mixture within 30 minutes. The mixture was stirred overnight. On completion of reaction,

water (50 mL) was added to give yellow solid, which was collected by filtration. The crude

solid is 3-bromoperylene (1.10 g, yield: 84%). This compound was directly used for the next

reaction without further purification. Only few mg was purified for some spectral

measurements by column chromatography (silica gel, DCM/ PE = 1:4, v/v). TOF MS EI+: Calcd

([C20H11Br]+), m/z = 330.0044; found, m/z = 330.0039.

Synthesis of compound 3. Compound 3 was synthesized following a reported method.2

Under N2 atmosphere, compound 2 (496.8 mg, 1.5 mmol), bis(pinacolato)diboron (571.3 mg,

2.25 mmol) and potassium acetate (442.0 mg, 4.5 mmol) were mixed in dry 1,4-dioxane (75

mL). Purged the reaction mixture with N2 for 30 minutes and Pd(dppf)Cl2CH2Cl2 (45.0 mg,

0.05 mmol) was added. Allowed the reaction mixture to stirred at 80 C for 19 h. On

completion the organic layer was extracted with DCM (4 50 mL) by washing with brine and

dried over anhydrous Na2SO4. Solvent was removed under reduced pressure and crude

product was purified by column chromatography (silica gel, DCM/ PE = 1:2, v/v) to give

yellowish orange solid (350 mg, yield: 62%). Mp: 233.0 − 234.0 C. 1H NMR (CDCl3, 400 MHz):

= 8.67 (d, 2H, J = 8.0 Hz), 8.25 − 8.17 (m, 4H), 8.08 (d, 1H, J = 8.0 Hz), 7.71 − 7.66 (m, 2H),

Page 4: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

4

7.56 − 7.46 (m, 3H), 1.45 (s, 12H). TOF MS EI+: Calcd ([C26H23BO2] +), m/z = 378.1791; found,

m/z = 378.1783.

Synthesis of compound 4. Compound 4 was synthesized following a modified method.3

Under N2 atmosphere, 4-bromo-1,8-naphthalic anhydride (831.0 mg, 3.0 mmol) and n-

butylamine (219.0 mg, 3.0 mmol) were mixed in ethanol (30 mL). The reaction mixture was

refluxed for 8 h. After that, the reaction mixture was cooled to room temperature and solvent

was removed under reduced pressure. Crude product was purified by column

chromatography (silica gel, DCM/ PE = 2:1, v/v) to give white solid (500 mg, yield: 51%). 1H

NMR (CDCl3, 400 MHz): = 8.65 (d, 1H, J = 8.0 Hz), 8.56 (d, 1H, J = 8.0 Hz), 8.41 (d, 1H, J = 8.0

Hz), 8.04 (d, 1H, J = 8.0 Hz), 7.85 − 7.82 (m, 1H), 4.17 (t, 2H, J = 8.0 Hz), 1.75 − 1.68 (m, 2H),

1.48 − 1.42 (m, 2H), 0.98 (t, 3H, J = 8.0 Hz). TOF MS EI+: Calcd ([C16H14BrNO2] +), m/z =

331.0208; found, m/z = 331.0213.

Synthesis of compound NI-Ph. Under N2 atmosphere, compound 4 (265.7 mg, 0.8 mmol),

phenylboronic acid (97.5 mg, 0.8 mmol), K2CO3 (330 mg, 2.3 mmol) and EtOH/toluene/H2O

(v/v/v = 2: 2:1, 50 mL) were mixed together. After purged with N2 for 15 minutes, Pd(PPh3)4

(20.2 mg, 0.039 mmol) was added and refluxed at 80 C for 8 h. After completion of the

reaction, the mixture was cooled to room temperature and extracted with DCM (4 50 mL).

The organic layer was washed with H2O and dried over anhydrous Na2SO4. Solvent was

removed under reduced pressure and crude product was purified by column

chromatography (silica gel, DCM/n-hexane = 1:3, v/v) to give white solid (150 mg, yield:

57%). Mp: 147.0 − 148.0 C. 1H NMR (CDCl3, 400 MHz): = 8.66 (d, 2H, J = 8.0 Hz), 8.29 (d,

1H, J = 8.0 Hz), 7.72 (d, 2H), 7.60 − 7.52 (m, 5H), 4.26 (t, 2H, J = 8.0 Hz), 1.81 − 1.73 (m, 2H),

Page 5: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

5

1.54 − 1.45 (m, 2H), 1.02 (t, 3H, J = 8.0 Hz). 13C NMR (CDCl3, 125 MHz): 164.32, 164.12,

146.82, 138.86, 132.56, 131.12, 130.77, 130.07, 129.87, 128.65, 128.46, 127.82, 126.80,

122.96, 121.85, 40.28, 30.25, 20.42, 13.86. TOF MS EI+: Calcd ([C22H19NO2] +), m/z =

329.1416; found, m/z = 329.1420.

Synthesis of compound Pery-Ph. This compound was synthesized following a modified

method.4 Under N2 atmosphere, 3-bromoperylene (460, mg, 4.2 mmol), and phenylboronic

acid (170.8 mg, 1.4 mmol), K2CO3 (580.0 mg, 4.2 mmol, and EtOH/toluene/H2O (v/v/v =

2:2:1, 100 mL) were mixed together. After purged with N2 for 20 minutes, Pd(PPh3)4 (80.8

mg, 0.07 mmol, 5 mol %) was added and refluxed at 80 C for 8 h. On completion of the

reaction, the reaction mixture cooled to room temperature and extracted with DCM (4 50

mL) and the combined organic layers were dried over anhydrous NaSO4. Solvent was

removed under reduced pressure and crude product was purified by column

chromatography (silica gel, DCM/n-hexane = 1:10, v/v) to give yellow solid (328.2 mg, yield:

72%). Mp: 199−200 C. 1H NMR (CDCl3, 400 MHz): = 8.27 − 8.22 (m, 4H, J ), 7.78 (d, 1H, J =

8.0 Hz), 7.72 (d, 2H, J = 8.0 Hz), 7.55 − 7.50 (m, 6H), 7.47 − 7.43 (m, 3H). TOF MS EI+: Calcd

([C26H16] +), m/z = 328.1252; found, m/z = 328.1257.

Page 6: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

6

2. Molecular structural characterization data (NMR and MS spectra)

Fig. S1 TOF-MS EI+ spectrum of compound 2.

Fig. S2 1H NMR spectrum of compound 3 in CDCl3 (400 MHz), 25 C.

29-Oct-201902:31:31Imran GCT CA156

m/z50 75 100 125 150 175 200 225 250 275 300 325 350 375 400

%

0

100

zjz191028-1 364 (6.052) Cm (364:377-11:47) TOF MS EI+ 2.75e4330.0039

250.0775

122.0962

97.097882.0729

136.1119

202.0769150.1270248.0621

252.0930

273.0787 329.1416

287.0929 333.0059

337.3397 369.1281

Page 7: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

7

Fig. S3 TOF-MS EI+ spectrum of compound 3.

Fig. S4 1H NMR spectrum of compound 4 in CDCl3 (400 MHz), 25 C.

07-Nov-201815:09:02imran GCT CA156

m/z50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425

%

0

100

zjz181107-1 505 (8.418) Cm (505-101:125) TOF MS EI+ 8.50e3378.1783

278.0899

277.0928

149.988398.077285.0651 248.0636188.5874

377.1842

305.1128320.1350

379.1825

380.1822415.1489

Page 8: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

8

Fig. S5 TOF-MS EI+ spectrum of compound 4.

Fig. S6 1H NMR spectrum of compound Pery-NI in CDCl3 (400 MHz), 25 C.

01-Nov-201815:44:16imran5 GCT CA156

m/z40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

%

0

100

zjz181101-4 269 (4.468) Cm (269:290-96:129) TOF MS EI+ 1.12e5276.9577

259.9546

231.9588126.0469

99.023875.0238

229.9611151.0425

331.0213

288.9744

301.9811 334.0236

335.0268

Page 9: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

9

Fig. S7 13C NMR spectrum of Pery-NI in CDCl3 (125 MHz).

Fig. S8 TOF-MS EI+ spectrum of Pery-NI.

01-Nov-201815:57:53imran4 GCT CA156

m/z50 100 150 200 250 300 350 400 450 500

%

0

100

zjz181101-5 556 (9.268) Cm (556-135:160) TOF MS EI+ 797503.1883

375.1190200.5579

97.0574176.0978

251.6028 326.0313

447.1255401.1157

504.1932

505.2028

Page 10: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

10

Fig. S9 1H NMR spectrum of NI-Ph in CDCl3 (400 MHz), 25 C.

Page 11: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

11

Fig. S10 13C NMR spectrum of NI-Ph in CDCl3 (125 MHz).

Fig. S11 TOF-MS EI+ spectrum of NI-Ph.

01-Nov-201814:34:02imran6 GCT CA156

m/z40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

%

0

100

zjz181101-2 159 (2.651) Cm (152:159-54:68) TOF MS EI+ 3.77e4273.0788

202.0786

201.0701

149.0245101.0387

88.0327 114.5380197.0487

256.0768228.0808

329.1420

287.0949

312.1395

330.1464

331.1490

Page 12: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

12

Fig. S12 1H NMR spectrum of Pery-Ph in CDCl3 (400 MHz), 25 C.

Fig. S13 TOF-MS EI+ spectrum of Pery-Ph.

31-Oct-201814:54:02imran GCT CA156

m/z40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

%

0

100

zjz181031-1 239 (3.968) Cm (218:239-72:110) TOF MS EI+ 7.47e4328.1257

326.1103

324.0950163.0536149.0276

125.040284.0552

298.0809164.5636 250.0802

329.1298

330.1346

Page 13: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

13

3. UV−vis absorption and fluorescence emission spectra

Fig. S14 UV−vis absorption spectra of (a) Pery-NI, (b) NI-Ph and (c) Pery-Ph in different

solvents, c = 1.0 × 10−5 M, 20 C.

Fig. S15 (a) UV−vis absorption, (b) fluorescence emission spectra of perylene in different

solvents, c = 1.0 × 10−5 M, 20 C.

300 400 500 6000.0

0.1

0.2

0.3

0.4 HEX

TOL

DCM

ACN

MeOH

Absorb

ance

Wavelength / nm

a

300 400 500 6000.0

0.1

0.2

0.3

0.4 HEX

TOL

DCM

ACN

MeOH

Abso

rba

nce

Wavelength / nm

c

300 400 500

0.0

0.1

0.2

0.3 HEX

TOL

DCM

ACN

MeOH

Abso

rba

nce

Wavelength / nm

b

400 500 6000

20

40

60

80 HEX

TOL

DCM

ACN

MeOH

Inte

nsity /

a.u

.

Wavelength / nm

b

300 400 5000.0

0.1

0.2

0.3

0.4 HEX

TOL

DCM

ACN

MeOH

Abso

rba

nce

Wavelength / nm

a

Page 14: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

14

4. Fluorescence lifetime spectra

Fig. S16 Fluorescence lifetime decay curves in different solvents. (a) Pery-NI at 485 nm in

n-hexane, at 530 nm in toluene and at 606 nm in DCM, ex = 445 nm; (b) NI-Ph at 414 nm in

toluene, at 420 nm in DCM, at 425 nm in ACN, ex = 340 nm; (c) Pery-Ph at 454 nm in n-

hexane, at 461 nm in DCM, at 457 nm in ACN, ex = 445 nm. c = 1.0 10−5 M. 20 C.

Fig. S17 Fluorescence lifetime decay curves of Pery-NI (a) in Air (b) in N2 at 606 nm in DCM,

ex = 445 nm, c = 1.0 10−5 M. 20 C.

0 15 30 45

101

102

103

104

DCM

= 4.0 ns

TOL

= 4.2 ns

Counts

Time / ns

a

HEX = 3.1 ns

0 15 30 4510

0

101

102

103

104

ACN

= 3.7 ns

DCM

= 3.6 ns

TOL

= 2.5 ns

Counts

Time / ns

b

0 15 30 45

101

102

103

104

DCM

= 3.9 ns

ACN

= 3.7 ns

HEX

= 3.4 ns

Counts

Time / ns

c

0 20 40 60 80 100

102

103

104

105

= 5.1 nsCou

nts

Time / ns

b

0 10 20 30 40 50

101

102

103

104

= 4.0 ns

Co

un

ts

Time / ns

a

Page 15: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

15

5. Estimation of Förster Resonance Energy Transfer (FRET) radius (R0)

The Förster Resonance Energy Transfer (FRET) efficiency (E) and Förster radius (R0) of the

Pery-NI dyad upon excitation into the NI moiety, were calculated by using the equation 1

and 2.5

Where ‘FDA’ is the fluorescence intensity of the donor (NI) in the presence of acceptor, the

dyad (Pery-NI) and ‘FD’ is the fluorescence intensity of the donor (NI) in the absence of

acceptor, the (NI-Ph). The absorbance at excitation wavelength is same for both the

compounds ( ex = 323 nm, A = 0.093).

Where ‘R0‘ is the Förster radius, ‘E’ is FRET efficiency and ‘r’ is the donor−acceptor distance

estimated by the optimize geometry of Pery-NI.

The Förster radius (R0) for the compact donor−acceptor dyad (Pery-NI) is calculated as

6.668 Å, and the distance from donor (NI) to acceptor (Pery) is 1.494 Å. As a result, FRET is

efficient but if the distance between donor and acceptor is <1 nm, several other modes of

energy and/or electron transfer are possible therefore electron transfer to form charge

separation state is also efficient in this case as shown in main text Fig. 5c, which imply that

FRET and charge separation are competitive processes.

𝐸 = 1−𝐹𝐷𝐴𝐹𝐷

(1)

𝐸 =1

1 + 𝑟𝑅0

6 (2)

Page 16: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

16

6. Calculation of Gibbs free energy changes of electron transfer

Gibbs free energy changes of photo-induced electron transfer process were calculated using

Weller equation 3 and 4.6, 7 The calculation indicates that the charge separation (electron

transfer) is more thermodynamically allowed in polar solvents, which is in agreement with

the fluorescence studies.

Where GCS is the static Columbic energy, which is described by equation 3. In eq. 3 and 4, e

= electronic charge, EOX = half-wave potential of electron-donor unit for one electron

oxidation, ERED = half-wave potential of electron-acceptor unit for one electron reduction; E00

= approximated energy level with the cross point of normalized UV−vis absorption and

fluorescence emission spectra at singlet excited state, S = static dielectric constant of the

solvent, RCC = center-to-center distance between perylene (electron donor unit) and

naphthalimide (electron acceptor unit) determined by DFT optimization of the geometry, RCC

[(Pery-NI) = 7.69 Å], RD, is the radius of the electron donor, RA, is the radius of the electron

acceptor, REF is the static dielectric constant of the solvent used for the electrochemical

studies, 0 is the permittivity of free space. Following solvents were used in the calculation of

the free energy of electron transfer, toluene (S = 2.38), DCM (S = 9.1) and ACN (S = 37.5)

S00CS0 ][ GEEEeG REDOX +−−=

(4)

+−−=

SAD0

2

0s

2

S

1111

84 REFCC RR

e

R

eG

(3)

Page 17: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

17

7. Femtosecond transient absorption spectra

Fig. S18 (a) Femtosecond transient absorption spectra of Pery-Ph, in DCM with excitation

at 400 nm; (b) Evolution Associated Difference Spectra (EADS) obtained from global

analysis.

Fig. S19 (a) Femtosecond transient absorption spectra of Pery-NI, in toluene with excitation

at 400 nm; (b) Evolution Associated Difference Spectra (EADS) obtained from global

analysis.

400 500 600 700

-0.07

0.00

0.07

0.14

SE

A

Wavelength / nm

a1Pery*

GSB

400 500 600 700

-0.07

0.00

0.07

0.14 4.1 ps

40.7 ps

812 ps

3.1 ns

A

Wavelength / nm

b

400 500 600 700-0.04

-0.02

0.00

0.02

0.04

A

Wavelength / nm

1.2 ps

6 ps

234 ps

3.1 ns

b

400 500 600 700-0.04

-0.02

0.00

0.02

0.04

SE

GSB

1Pery*

A

Wavelength / nm

a

Page 18: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

18

Fig. S20 (a) Femtosecond transient absorption spectra of Pery-NI, in ACN with excitation at

400 nm; (b) Evolution Associated Difference Spectra (EADS) obtained from global analysis.

Fig. S21 (a) Femtosecond transient absorption spectra of NI-Ph, in DCM with the excitation

of 400 nm; (b) Evolution Associated Difference Spectra (EADS) obtained from global

analysis.

400 500 600 700

-0.04

0.00

0.04

0.08

NI•−

A

Wavelength / nm

a Pery•+

GSB

1Pery*

400 500 600 700

-0.04

0.00

0.04

0.08

A

Wavelength / nm

0.3 ps

17.6 ps

650 ps

b

400 500 600 700

0.00

0.03

0.06

A

Wavelwngth / nm

a3NI*

400 500 600 700

0.00

0.03

0.06 2.2 ps

51 ps

3.1 ns

A

Wavelength / nm

b

Page 19: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

19

8. Sub-nanosecond transient absorption spectra

Fig. S22 Subnanosecond transient absorption spectra of Compound 2 (3-bromoperylene)

after 350 nm excitation in DCM. (a) Extracted spectra at different time delays and (b) The

decay trace at 500 and 702 nm.

Fig. S23 Subnanosecond transient absorption spectra of NI-Ph, after 350 nm excitation in

toluene (a) Extracted spectra at different time delays (b) The decay trace at 435 and 500 nm.

500 600 700 800

0

20

40

60

3Pery*

10 ns

20 ns

30 ns

A

/ m

OD

Wavelength / nm

a1Pery*

0 100 400 800

0

20

40

= 500 ns = 10 ns

702 nm

500 nm

Fitting

A

/ m

OD

Time / ns

b

400 500 600 700

0

20

40a 10 ns

30 ns

120 ns

380 ns

900 ns

A

/ m

OD

Wavelength / nm100 150 400 800

0

20

40

b

= long

= 600 ns

= 10 ns

= 6000 ns

435 nm

500 nm

Fittting

A

/ m

OD

Time / ns

Page 20: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

20

9. Nanosecond transient absorption spectra

Fig. S24 Nanosecond time-resolved transient absorption spectra of (a) Pery-NI, (b) decay

trace at 493 nm. ex = 445 nm. c = 5.0 × 10−6 M. In deaerated toluene. 20 C.

Fig. S25 Nanosecond time-resolved transient absorption spectra of (a) Pery-NI, (b) decay

trace at 493 nm. ex = 445 nm. c = 2.0 × 10−5 M. In deaerated ACN. 20 C. Note; in (a) the

spectrum is noisy due to weak signals.

0 500 1000 1500

0.00

0.04

0.08

0.12

O

.D.

Time / s

b

493 nm = 296 s

400 500 600 700

0.00

0.04

0.08

O

.D.

Wavelength / nm

a 0 s

37.8 s

..

1823.8 s

1861.8 s

0 200 400 600 800

0.000

0.005

0.010

O

.D.

Time / s

493 nm

= 113 s

b

400 500 600 700

-0.01

0.00

0.01

O

.D.

Wavelength / nm

a

Page 21: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

21

Fig. S26 Nanosecond time-resolved transient absorption spectra of (a) Perylene (b) decay

trace at 545 nm. ex = 430 nm. c = 1.0 × 10−5 M. In aerated DCM. 20 C.

Fig. S27 Nanosecond transient absorption spectra of Pery-NI, (a) In deaerated glycerin

triacetate and (b) In deaerated triethylene glycol. c = 2.0 × 10−5 M. 20 °C.

400 500 600 700

-0.01

0.00

0.01

0.02

0 s

75.6 s

...

3721.2 s

Pery•+

O

.D.

Wavelength / nm

a

GSB

0 1000 2000 3000 4000

0.00

0.01

0.02

0.03

1 = 344 s 6.36%

2 = 1210 s 93.64%

Time / s

.

O.D

.

b

400 500 600 700

-0.02

0.00

0.02

0.040 s

3.1 s

...

91.8 s

.

O.

D.

Wavelength /nm

a 3Pery*

400 500 600

-0.1

0.0

0.1

0.2

3Pery*

0 s

37.8 s

...

1860.6 s

O

. D

.

Wavelength / nm

b

Page 22: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

22

Fig. S28 Nanosecond time-resolved transient absorption spectra of Pery-Ph. (a) Under N2

atmosphere and (b) Under air atmosphere. ex = 430 nm. c = 1.0 × 10−5 M. In DCM. 20 C.

400 500 600 700

-0.01

0.00

0.01

0.02

1860.6 s

...

37.8 s

0 s

Pery•−

O

.D.

Wavelength / nm

b

GSB

400 500 600 700

-0.01

0.00

0.01

GSB

1860.6 s

...

37.8 s

0 s

Pery•−

O

.D.

Wavelength / nm

a

Page 23: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

23

Fig. S29 (a) Intermolecular triplet-triplet energy transfer (TTET) from 2,6-diiodobodipy to

Pery-Ph, monitored by nanosecond transient absorption spectra of the mixture of triplet

energy donor (2,6-diiodobodipy) and acceptor Pery-Ph. c [2,6-diiodobodipy] = 1.0 × 10−5 M,

c [Pery-Ph] = 4.0 × 10−5 M. (b) Decay trace of the mixture at 490 nm, (c) decay trace of

mixture at 540 nm. (d) Transient absorption spectra of the mixture with different delay time.

The triplet energy donor 2,6-diiodobodipy was selectively excited at 532 nm with OPO

pulsed laser. In deaerated toluene. 20 C.

50 100 150 200

0.6

0.3

0.0

540 nm

= 4.6 s

O

.D.

Time / s

c

400 500 600 700 800

-0.12

-0.06

0.00

0.06

200 s

280 s

360 s

500 s

O

.D.

Wavelength / nm

d

400 500 600 700 800-0.12

-0.06

0.00

0.06

O

.D.

Wavelength / nm

a

959.9 s

979.9 s

...

19.9 s

0 s

200 400 600 800

-0.06

0.00

0.06

0.12

0.18

1

= 4.2 s

O

.D.

Time / s

b

2

= 76.9 s

Page 24: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

24

10. TREPR spectra

Fig. S30 TREPR spectra of Pery-NI, in liquid crystal matrix (E7) recorded with different

liquid crystal director against the external magnetic field (0 and 90 degree), following pulsed

laser excitation at 445 nm, 10 mJ per pulse. Red lines are computer simulation and black

curves are experimental TREPR spectra. A stands for enhanced absorptive positive signal

amplitudes, E stands for emissive negative amplitude polarization of the respective

transition.

Table S1. Zerofield splitting parameters D and E, and triplet-state populations

sublevels p1, p2, p3 obtained from the simulation of the TREPR spectra with different

sample orientation

Compound Medium T

(K)

|D|

(MHz)

|E|

(MHz)

E / D p1 p2 p3 Order

Pery-NI E7 ordered 0°

80 1635 35 0.021 0.238 0.000 0.762 0.05

E7 Ordered 90°

80 1622 74 0.045 0.000 0.342 0.658 0.09

280 320 360 400 440

80 K

90 degree

0 degree

80 K

E7

B0 / mT

E7

Z X Y YX Z

A

E

Page 25: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

25

11. DFT computations

Fig. S31 (a) Calculated ground state (S0) potential energy curve of Pery-NI of the torsion of

the linker between the NI and perylene moiety. Blue line shows the thermal (kBT). (b)

Magnified view of (a). Calculations were performed at the (B3LYP/6-31G (d)) level with

Gaussian 09W.

Fig. S32 Spin density distribution of (a) Pery-NI, (b) NI-Ph, and (c) Pery-Ph obtained by

B3LYP/6−31G (d) level using Gaussian 09W.

0 30 60 90 120 150 180

0.00

0.05

0.10

0.15

0.20

Energ

y / e

V

Dihedral angle / °

kBT

b

0 30 60 90 120 150 180

0.0

0.2

0.4

0.6

0.8

1.0E

ne

rgy /

eV

Dihedral angle / °

kBT

a

Page 26: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

26

Fig. S33 The comparison of UV−vis results calculated by TD-DFT (B3LYP/6-31G (d)) and

experimental data of (a) Pery-NI, and (b) NI-Ph.

12. TTET/TTA induced delayed fluorescence

Fig. S34 Fluorescence emission spectra of (a) PBI, (ex = 445 nm. c = 4.0 10−5 M) (b) SG5,

(ex = 445 nm. c = 3.0 10−5 M), in DCM, 20C.

300 400 500 600 7000

1x104

2x104

3x104

4x104

5x104

DFT

Exp

Wavelength / nm

Ep

silo

n

a

0.0

0.2

0.4

0.6

0.8

Oscill

ato

r S

tre

ng

th

300 400 5000.0

7.0x103

1.4x104

2.1x104

2.8x104

Wavelength / nm

Epsilo

n

0.0

0.2

0.4

0.6 DFT

Exp

Oscill

ato

r S

tre

ng

th

b

500 600 700 8000.0

9.0x104

1.8x105

2.7x105

3.6x105

4.5x105

PBI

Prompt FL

C.p

.s

Wavelength / nm

a

500 600 700 800

0.0

8.0x104

1.6x105

2.4x105

3.2x105

SG5

Prompt FL

C.p

.s

Wavelength / nm

b

Page 27: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

27

Fig. S35 (a) Delayed fluorescence spectra of the mixture of Pery-NI with SG5; (b) decay trace

of the fluorescence at 510 nm; (c) 3D spectra of the observed delayed fluorescence. [Pery-

NI] = 1.0 × 10−5 M, [SG5] = 3.0 × 10−5 M in DCM. ex = 445 nm. The asterisks in (b) indicated

the scattered laser.

13. x,y,z coordinates of the optimized geometries

Pery-NI:

Charge = 0; Multiplicity = 1

Symbolic Z−Matrix:

C 6.50146700 -2.02365500 -0.58985800 C 7.87871200 -1.82817900 -0.37772500 C 8.34711800 -0.61448900 0.07051500 C 7.44476400 0.45009700 0.32331600 C 6.03922500 0.25476100 0.10731700 C 5.56977600 -1.01496800 -0.36059200 C 7.91439000 1.70521700 0.78778000 C 7.02942000 2.73025800 1.03257200 C 5.65086900 2.54274400 0.82301700 C 5.13374000 1.33406200 0.36505500 C 3.68877700 1.13300300 0.14021900

0 100 200 300

0.000

0.003

0.006

0.009

2 = 46.9 s

In N2

In Air

Inte

nsity /

a.u

.Time / s

1 = 3.3 s

*b

400 500 600 700 800

0.000

0.002

0.004

0.006

0 s

4.4 s

..

210.2 s

215.6 s

Inte

nsity /

a.u

.

Wavelength / nm

a

Page 28: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

28

C 3.21156800 -0.13879300 -0.31880200 C 4.12281900 -1.21550500 -0.58275900 C 2.76213800 2.14683200 0.35409000 C 1.38749500 1.95110800 0.15069200 C 0.88707000 0.73296200 -0.27016800 C 1.80230700 -0.33829000 -0.53028500 C 1.34704300 -1.59084900 -1.01884900 C 2.23819400 -2.60897100 -1.26950100 C 3.61278900 -2.42324200 -1.04863700 C -0.58585000 0.58767800 -0.47559600 C -1.40436900 -0.16398400 0.43186500 C -2.81171800 -0.24351200 0.19017800 C -3.38116500 0.42140600 -0.92500700 C -2.57291700 1.15356000 -1.77498200 C -1.18637900 1.23352300 -1.54707300 C -0.88453400 -0.82132600 1.57950500 C -1.70994900 -1.52956500 2.42996700 C -3.09344100 -1.61289200 2.17894300 C -3.64021000 -0.97862900 1.07694000 C -4.83806200 0.34807700 -1.18556200 C -5.10108300 -1.07057900 0.83845600 N -5.60454700 -0.41903400 -0.29671100 O -5.85280200 -1.68656500 1.58686400 O -5.36804100 0.92243100 -2.13110200 C -7.05629000 -0.50631700 -0.54616900 C -7.84349300 0.61163200 0.14596100 C -9.35003000 0.50601000 -0.12227800 C -10.15477600 1.61387700 0.56499400 H 6.17945900 -2.99684300 -0.94160900 H 8.56717300 -2.64590600 -0.57141000 H 9.40898300 -0.45377100 0.23753200 H 8.98106300 1.84019500 0.94679300 H 7.38672100 3.69184900 1.39010000 H 4.99088200 3.37665600 1.03207100 H 3.08445500 3.12492000 0.69112400 H 0.70303600 2.77274200 0.34199300 H 0.28816800 -1.73631100 -1.20141300 H 1.88317800 -3.56451700 -1.64510400 H 4.27651200 -3.25318100 -1.26048800 H -3.02437200 1.66069200 -2.62110000 H -0.56786600 1.80575100 -2.23177100 H 0.17852500 -0.75836000 1.78553000 H -1.29268500 -2.02403700 3.30189100 H -3.74919800 -2.16679100 2.84222100 H -7.38131800 -1.48290000 -0.18468600 H -7.19418900 -0.45832800 -1.62715500

Page 29: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

29

H -7.47114700 1.58177500 -0.20716500 H -7.65554900 0.56465100 1.22612800 H -9.71184300 -0.47448900 0.21787200 H -9.52961700 0.54095300 -1.20597100 H -11.22632200 1.51488000 0.35759400 H -9.83747700 2.60537500 0.21948300 H -10.02049000 1.58293700 1.65319200 Calculation Type = FREQ

Calculation Method = RB3LYP

Basis Set = 6−31G(d)

Charge = 0

Spin = Singlet

E(RB3LYP) = −1592.2222 a.u.

RMS Gradient Norm = 0.000003 a.u.

Imaginary Freq = 0

Dipole Moment = 5.605510 Debye

Point Group = C1

NI-Ph: Charge = 0; Multiplicity = 1

Symbolic Z−Matrix:

C -0.23398900 2.76760200 0.19638000 C 1.14360600 2.94060500 0.42706400 C 2.00789700 1.86608400 0.35211300 C 1.53862900 0.56227500 0.03478000 C 0.13146000 0.39064800 -0.16774400 C -0.73672600 1.51074200 -0.09143400 C 2.39624200 -0.58767100 -0.05243000 C 1.82584100 -1.83377000 -0.28377500 C 0.44208900 -1.99303100 -0.46886400 C -0.40097500 -0.89736600 -0.42638900 C -1.85355400 -1.08758900 -0.64379500 C -2.19524700 1.34982800 -0.30712300 C 3.87451600 -0.49081900 0.09372700 N -2.65845500 0.05934900 -0.59859900 O -2.34961900 -2.18918500 -0.85821500

Page 30: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

30

O -2.97808300 2.29214800 -0.24127700 C -4.10654700 -0.11277900 -0.82307700 C -4.87482200 -0.40328400 0.47072300 C -6.37790800 -0.58023200 0.22115700 C -7.16152700 -0.87948700 1.50327800 C 4.54570100 -1.31362600 1.01382900 C 5.93460500 -1.26502100 1.13383700 C 6.67900900 -0.39907100 0.33007000 C 6.02500800 0.41725800 -0.59532800 C 4.63569700 0.37387600 -0.71211600 H -0.92071600 3.60546900 0.25164800 H 1.52695900 3.92602000 0.67384100 H 3.06339800 2.01378700 0.55006300 H 2.47178700 -2.70355100 -0.35393500 H 0.01888900 -2.97292600 -0.66275300 H -4.22089200 -0.93672100 -1.52883000 H -4.46652400 0.80843500 -1.28304700 H -4.71064000 0.42153500 1.17589600 H -4.46631800 -1.31161500 0.93147400 H -6.53312200 -1.39414800 -0.50099400 H -6.77802300 0.32879500 -0.24938500 H -8.23079000 -1.00244000 1.29688800 H -7.05288900 -0.06691100 2.23200500 H -6.80425000 -1.80135300 1.97813900 H 3.97034400 -1.98202200 1.64842500 H 6.43424600 -1.90256900 1.85806400 H 7.76089200 -0.36229100 0.42224600 H 6.59681800 1.08540000 -1.23347200 H 4.13759700 0.99691700 -1.44943800

Calculation Type = FREQ

Calculation Method = RB3LYP

Basis Set = 6−31G(d)

Charge = 0

Spin = Singlet

E(RB3LYP) = −1055.06606318 a.u.

RMS Gradient Norm = 0.00001536 a.u.

Imaginary Freq = 0

Dipole Moment = 5.4266 Debye

Point Group = C1

Page 31: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

31

Pery-Ph Charge = 0; Multiplicity = 1

Symbolic Z−Matrix:

C 0.84084900 2.94731700 -0.29399900 C -0.54135200 2.71104800 -0.22666400 C -1.05701700 1.42438700 -0.10907000 C -0.14524200 0.31704500 -0.05598300 C 1.27350500 0.56450200 -0.08441400 C 1.73224000 1.90103900 -0.22317600 C -0.63292500 -1.02939500 0.00742800 C 0.29547400 -2.06372200 0.03006100 C 1.67618100 -1.82161700 0.02257800 C 2.19150600 -0.53707800 -0.01435200 C -2.51219200 1.17451800 -0.04720800 C -2.99163000 -0.17361500 0.01703100 C -2.08625000 -1.28331800 0.03943600 C -4.40549200 -0.41800100 0.06219300 C -4.88439500 -1.75184200 0.11898700 C -3.99996300 -2.80611200 0.13425500 C -2.61335900 -2.57081500 0.09682300 C -3.44284400 2.21014000 -0.04677200 C -4.82794700 1.96690100 0.00104500 C -5.30612700 0.67759100 0.05122600 C 3.66986500 -0.35622900 0.02412400 C 4.48607300 -1.02846000 -0.90131800 C 5.87588800 -0.91608200 -0.84660700 C 6.47862100 -0.13160300 0.13866500 C 5.68046600 0.53793000 1.06925000 C 4.29108100 0.42726200 1.01292900 H 1.20316100 3.96519900 -0.40850900 H -1.20613800 3.56496800 -0.28494800 H 2.79687000 2.09050200 -0.29045300 H -0.03250000 -3.09587100 0.07141800 H 2.35798700 -2.66564200 0.07666700 H -5.95724800 -1.92326900 0.15092200 H -4.36428800 -3.82873300 0.17799500 H -1.95461400 -3.43133200 0.11580700 H -3.11342100 3.24210500 -0.08044600 H -5.51516000 2.80842900 -0.00216300 H -6.37433300 0.47980000 0.08615600 H 4.02190800 -1.63270300 -1.67606100 H 6.48707600 -1.43947600 -1.57714600 H 7.56076300 -0.04374300 0.18251900

Page 32: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

32

H 6.13999000 1.14257900 1.84668100 H 3.67986500 0.93644500 1.75274100

Calculation Type = FREQ

Calculation Method = RB3LYP

Basis Set = 6−31G(d)

Charge = 0

Spin = Singlet

E(RB3LYP) = −1000.46343670 a.u.

RMS Gradient Norm = 0.00000365 a.u.

Imaginary Freq = 0

Dipole Moment = 0.2318 Debye

Point Group = C1

Page 33: Intersystem Crossing via Charge Recombination in a Perylene … › suppdata › d0 › tc › d0tc00017e › d0tc00017e1.pdf · 2020-05-29 · e ICCOM-CNR, via Madonna del Piano

33

14. References:

1 M. Imran, A. A. Sukhanov, Z. Wang, A. Karatay, J. Zhao, Z. Mahmood, A. Elmali, V. K.

Voronkova, M. Hayvali, Y. H. Xing and S. Weber, J. Phys. Chem. C., 2019, 123, 7010−7024.

2 Y. Avlasevich and K. Müllen, J. Org. Chem., 2007, 72, 10243−10246.

3 H. zhang, C. Yin, T. Liu, J. Chao, Y. Zhang and F. Huo, Dyes Pigments., 2017, 146, 344−351.

4 X. Cui, A. Charaf-Eddin, J. Wang, B. Le Guennic, J. Zhao and D. Jacquemin, J. Org. Chem.,

2014, 79, 2038−2048.

5 T. W. J. Gadella, Jr., G. N. M. van der Krogt and T. Bisseling, Trends in Plant Sci., 1999, 4,

287−291.

6 C. B. KC, G. N. Lim, V. N. Nesterov, P. A. Karr and F. D'Souza, Chem.−Eur. J., 2014, 20,

17100−17112.

7 R. Ziessel, B. D. Allen, D. B. Rewinska and A. Harriman, Chem.−Eur. J., 2009, 15,

7382−7393.