91
1 International Joint Master’s degree Programme – Second Cycle (D.M. 270/2004) in Environmental Sciences (Sustainable Development) Final thesis Performance testing of a combined solar and thermaldrying system for biological sludge Supervisor Ch. Prof. Francesco Gonella Assistant supervisors Ch. Prof. Ernst Worrell (Utrecht University) Dr. Paolo Franceschetti (Solwa srl) Graduand Stefano Grosso Matriculation Number 830497 Academic Year 2013 / 2014

InternationalJointMaster’sdegree ! Programme–!SecondCycle

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  1  

   International  Joint  Master’s  degree  Programme  –  Second  Cycle  (D.M.  270/2004)  in  Environmental  Sciences  (Sustainable  Development)      Final  thesis        Performance  testing  of  a  combined  solar  and  thermal-­‐drying  system  for  biological  sludge          Supervisor  Ch.  Prof.  Francesco  Gonella    Assistant  supervisors  Ch.  Prof.  Ernst  Worrell  (Utrecht  University)  Dr.  Paolo  Franceschetti  (Solwa  srl)        Graduand  Stefano  Grosso  Matriculation  Number  830497    Academic  Year  2013  /  2014    

  2  

   

  3  

TABLE  OF  CONTENTS    

ABSTRACT   5  

CHAPTER  1  –  INTRODUCTION   6  1.1   WASTEWATER  TREATMENT   7  1.1.1  A  WASTEWATER  TREATMENT  PLANT  AND  SEWAGE  SLUDGE   7  1.1.2  SLUDGE  TREATMENT  PHASES   9  1.1.3  EXISTING  SLUDGE–DEWATERING  METHODS   11  1.2  WASTEWATER  TREATMENT  PLANT  AT  TREVISO  (ITALY)   13  1.3  SEWAGE  SLUDGE  MANAGEMENT  AND  REGULATION  IN  EUROPE   14  1.3.1  SEWAGE  SLUDGE  MANAGEMENT  AND  REGULATION  IN  ITALY   16  1.3.2  DIFFERENT  SITUATIONS  IN  EUROPEAN  COUNTRIES   17  1.4  BIOLOGICAL  SLUDGE–DRYING   19  1.5  BIOLOGICAL  SLUDGE  INCINERATION   21  1.5.1  ADVANTAGES  OF  SLUDGE-­‐DRYING  AND  INCINERATION   24  1.5.2  EMISSIONS  FROM  SLUDGE  COMBUSTION   25  

CHAPTER  2  –  DESCRIPTION  OF  THE  SYSTEMS   28  2.1  SOLAR  STILL  FOR  WATER  DEPURATION   28  2.2  FOOD–DRYING  SYSTEM   30  2.3  SLUDGE–DRYING  SYSTEM   31  2.3.1  COMBUSTION  OF  THE  DRIED  SLUDGE   32  2.3.2  TECHNICAL  DESCRIPTION   33  2.3.3  COMPETITORS  OF  THE  SLUDGE-­‐DRYING  SYSTEM   35  

CHAPTER  3  –  MATERIALS  AND  METHODS   38  3.1  ANALYSIS  OF  THE  SOLAR-­‐DRYING  PROCESS   38  3.1.1  CALCULATION  OF  THE  TOTAL  SOLAR  INCOMING  RADIATION   38  3.1.2  DRYING  VELOCITY  AND  DRYING  RATE   39  3.1.3  ENTHALPY  OF  INCOMING  AND  OUTGOING  AIR  IN  THE  SOLAR  COLLECTORS   40  3.2  ANALYSIS  OF  THE  THERMAL-­‐DRYING  PROCESS   43  3.3  DETERMINATION  OF  SOLID  AND  ASHES  CONTENT  IN  THE  SEWAGE  SLUDGE   44  3.4  COD  DETERMINATION  WITH  TITRATION   45  3.4.1.  COD  DETERMINATION  WITH  DIGESTION  IN  MICROWAVES  OVEN  (MILESTONE)   46  3.5  MATERIALS   47  3.5.1  COLLECTION  OF  THE  SAMPLES   48  

CHAPTER  4  –  RESULTS   49  4.1  SOLAR  DRYING   49  4.1.1  FIRST  WEEK  OF  TESTING   50  4.1.2  SECOND  WEEK  OF  TESTING   52  4.1.3  THIRD  WEEK  OF  TESTING   57  4.1.4  COMMENTS  ON  THE  RESULTS  OF  THE  SOLAR-­‐DRYING  EXPERIMENTATION   61  4.2  ENTHALPY  AND  EXCHANGED  THERMAL  POWER  IN  THE  SOLAR  COLLECTORS   62  4.3  THERMAL  DRYING   65  4.3.1  FIRST  TEST   65  4.3.2  SECOND  TEST   67  4.3.3  VOLUME  LOSS   72  4.4  TOTAL  SOLIDS  (TS)  AND  TOTAL  VOLATILE  SOLIDS  (TVS)  DETERMINATION   72  4.5  HEATING  VALUE  OF  BIOLOGICAL  SLUDGE  AND  DIGESTATE  AFTER  COMBUSTION   73  

  4  

4.6  COD  ANALYSIS  (ORGANIC  CONTENT)   74  4.7  INPUT  AND  OUTPUT  DATA  OF  THE  SLUDGE  DRYING  SYSTEM   75  

CHAPTER  5  –  CONCLUSIONS   82  

BIBLIOGRAPHY   87  

TABLE  OF  FIGURES   90        

  5  

Abstract    The  present  work  has   the  principal  objective  of   testing  and   improving   the  per-­‐

formance  of  an   innovative  system  for  biological  sludge  drying,  which  combines  

an   inner   high-­‐performance   sludge   burner  with   solar-­‐air   heaters.   The   research  

question  is:  how  to  implement  the  design  and  structure  of  the  drying  system,  de-­‐

fining   its  best  working  conditions  (best  temperature,  materials  and  dimensions  

of  its  components,  etc.).  

Current  practices  of  wastewater  treatment,  in  particular  the  treatment  of  biolog-­‐

ical   sludge   from   urban   sewage,   are   introduced   first,   with   insight   into   current  

management   issues   in   Europe   and   Italy.   Solar-­‐drying   technology   is   then   de-­‐

scribed,   along  with   a   presentation   of   the   system  developed   for   this   project.   In  

addition,   its   technical   advantages   and   the  possible   environmental  benefits   that  

the  technology  could  bring,  especially  in  comparison  to  other  solar-­‐drying  plants  

available  on  the  market,  are  demonstrated.  

Testing  was  done  separately  on  two  solar-­‐drying  systems  and  in  a  laboratory  ov-­‐

en,  in  order  to  assess  the  response  of  the  biological  sludge  to  solar  and  thermal  

heating.  

Moreover,  the  measure  of  the  heating  value  during  the  combustion  phase  is  pre-­‐

sented,   followed  by   a   brief   literature   review   regarding  possible   emissions   into  

the   atmosphere:   this   data   is   necessary   for   the   development   of   the   project,   be-­‐

cause  the  heat  produced  by  combustion  will  be  put  back  into  the  system  to  dry  

the  new  wet  sludge,  obtaining  a  final  product  with  about  85%  dry  matter.  

This  system  is  expected  to  have  a  strong  economic  appeal,  since  it  can  produce  

large  cost  savings:  this  product  is  completely  new  on  the  market  in  terms  of  ex-­‐

pected  performance,  design,  technology  and  dimensions.  

   

  6  

Chapter  1  –  Introduction    The  present  work  is  embedded  in  a   field  of  research  started  at  Ca’  Foscari  Uni-­‐

versity  of  Venice  and  further  developed  by  Solwa  srl,  a  start-­‐up  company  found-­‐

ed  by  Dr.  Paolo  Franceschetti.  He  was  a  former  Ph.D.  student  at  Ca’  Foscari  Uni-­‐

versity  studying  “Renewable  energy  and  distributed  microgeneration”.  With  the  

creation   of   an   innovative   solar   still   for  water   depuration   called   Solwa,   he  was  

awarded  with  many   national   and   international   prizes1  (the   system  will   be   de-­‐

scribed  in  Paragraph  2.1).  Starting  from  the  knowledge  acquired  in  the  develop-­‐

ment  of   the  Solwa  prototype,  other   innovative  systems  were  proposed,  such  as  

the  one  for  food  drying  (see  Paragraph  2.2).  

 

The  prototypes  developed  are  innovative  in  terms  of  size,  design  and  technologi-­‐

cal   features   and   aim   to   enter   the   market   as   sustainable   and   environmentally  

friendly  systems,  with,  at   the  same  time,  better  performances   in   terms  of  costs  

and  efficiency,  compared  to  their  competitors.  It  is  from  this  line  of  research  that  

the  system  for  sludge  drying  and  burning  has  been  designed.  

 

The  structure  of  the  thesis  will  be  organized  as  follows:  there  will  be  a  descrip-­‐

tion  of  wastewater  and  sewage  sludge  treatment  and  management,  and  the  exist-­‐

ing  technologies  for  its  disposal;  the  regulatory  framework  will  be  described  and  

the  current  emissions  from  sludge  incineration,  as  described  in  literature,  will  be  

analysed.   Then,   the   two   prototypes   (solar   still   and   food   drying)  will   be   intro-­‐

duced,  and  the  sludge  drying  and  burning  project  will  be  fully  described.  Finally,  

the  experimental  part  will  be  presented,  including  materials  and  method  applied,  

presentation   and   discussion   of   the   results,   and   conclusions   derived   from   the  

whole  project.  

 

                                                                                                                 1  2010:  Solwa  solar  still  has  been  included  in  the  IDEASS  UN  Program  for  the   “Innovation  for  Development  of  Humanity”.  2011:  MIT   –  Massachusetts   Institute  Of  Technology   (Boston   –  USA):   Solwa  project   is   awarded   as   “Italian  innovation  of  the  year”  by  the  Journal  “Technology  review”.  2012:  Solwa  srl.  is  awarded  first  place  by  Huffington  Post  (World)  in  an  evaluation  of  the  10  technological  successes  of  the  year  worldwide.  2012:  Gaetano  Marzotto  award  (Vicenza  –  Italy):  winner  of  the  award  “Impresa  del  futuro”  (Firm  of  the  fu-­‐ture).  [http://www.solwa.it]  

  7  

1.1 Wastewater  treatment    Wastewater  Treatment  (WWT)  is  a  process  that  makes  water  suitable  for  partic-­‐

ular  uses,  such  as  drinking,  industry  or  medicine.  Depending  on  the  end  use,  the  

process   is  very  different.   In  general,  wastewater   treatment   can  be  divided   into  

three  categories:  

1) Purification  for  domestic  use  

2) Treatment  for  industrial  application  

3) Treatment  of  the  wastewater  before  discharge  or  reuse  

The  different  types  of  treatment  also  depend  on  the  quality  of  the  original  water.  

Urban  wastewater  generally  contains  a  mix  of  various  substances:  oxygen  con-­‐

suming  material,  sediments,  fats,  oils,  foam,  salts,  nutrients,  pathogens  and  a  lot  

of  other  objects  that  ends  up  in  the  discharge.  

In  WWT,  the  removed  substances  are:  

-­‐ the  sifted  material;  

-­‐ the  material  after  coarse  screening;  

-­‐ foam  and  sludge.  

 

Sludge  is  generally  the  substance  produced  most  abundantly  and  can  be  in  liquid  

or   semi-­‐solid   form,   with   a   typical   solid   content   between   0.25   and   12%  

(Stoddard,   et   al.,   2003).   Sludge,   then,   is   the   side-­‐product   of   wastewater   treat-­‐

ment  that  interests  more  the  purpose  of  this  thesis  project  because,  as  it  will  be  

presented  in  the  following  sections,  its  disposal  is  a  great  issue  of  modern  socie-­‐

ty.  

 

1.1.1  A  Wastewater  Treatment  Plant  and  Sewage  Sludge  

The  wastewater  treatment  takes  normally  place  in  one  assigned  area:  a  conven-­‐

tional  wastewater   treatment   plant   (WWTP),   which   comprises   different   pro-­‐

cesses.  The  result  is  generally  purified  water  on  one  side  and  biological  sludge  on  

the  other;  this  is  a  general  scheme:  

 

  8  

 Figure  1  –  Basic  flow  diagram  for  conventional  wastewater  treatment  plant  

It   is  then  important  to  distinguish  the  different  types  of  sludge  and  from  which  

phase  of  the  process  they  are  taken,  in  order  to  better  understand  which  might  

be   their   composition   and   physic-­‐chemical   characteristics.   A  WWTP   in   general  

produces  three  types  of  sludge  (Reverdy,  et  al.,  2013):  

-­‐ Primary  biological  sludge  comes  from  the  settling  of  the  effluents,  pre-­‐

viously  suspended  in  water.  

-­‐ Secondary  biological  sludge  is  produced  from  the  settling  of  the  organic  

matter  (including  bacteria).  Part  of  the  sludge  is  regularly  removed  from  

the  tanks  in  order  to  avoid  an  excess  of  biomass.  

-­‐ Tertiary   biological   sludge   or   physical-­‐chemical   sludge   (derived   from  

primary  sludge):  with  the  addition  of  a  coagulant,  the  organic  matter  com-­‐

ing  from  wastewaters  is  agglomerated;  90%  of  the  suspended  matter  can  

be   captured   and   settled,   forming   tertiary   sludge,   that   contains   a   major  

part  of  water  mineral  salts  and  coagulant  agent.  

 

The  characteristics  of   sewage  sludge  are  also  very  different  depending  on   the  

origin   of   the  wastewater.   In  particular,  different  hazardous   compounds   can  

be  present   in  the  sewage  from  industrial  process,  depending  on  the  production  

chain.  For  example,  tannery  sludge  generally  has  a  high  Cr6+  content  or  sludge  

from  paper   industry  contains  various  bleaching  compounds.  Another  type  of  

sludge  is  the  so-­‐called  “Red  mud”  which  is  a  waste  product  of  the  production  of  

aluminium   in  the  mining   industry  through  the  Bayer  process  (refining  bauxite  

en  route  to  alumina).  

 

One   interesting  possibility  that  has  to  be  tested   in   future  research   is   the   incin-­‐

eration  in  the  proposed  system  (see  paragraph  1.5  and  2.3.1)  not  only  of  sludge  

! N!

D'*3! G'>($! FFR2! >=%! (+.*! -(05,+#-'1* ,150."* )%(+'-(-(.* 2'^'#0%5,* )%&3

7%5(0,!.=6B!(.!B&(<8!3&%(+.!*'!B&e(<(+&$%!6B'*3)=3C!RB).!>&6(=.&!%B&!B(h('0\

*=.!6*3@*=$0.!('&!1&$&'(++8!3(0&!*D!2"'84*7'#+-)1",!HB)6B!('&!$*%!.=@@*.&0!

%*!&$0!(.!&3)..)*$.! )$%*! %B&!(%3*.@B&'&!>=%!.B*=+0!#"&'-(* -(* +2"* ',2",! %B(%!

('&!0).@*.&0!*D!)$!+($0D)++.C!A='%B&'!'&.&('6B!H)++!%B&$!B(<&!%*!D*6=.!*$!%B&!($(+8\

.).!*D!%B&!&3)..)*$.!*D!)$0=.%')(+!.+=01&C!

!

>R>R<*6150."*+#"'+&"(+*72',",*

#$! %B).! .&6%)*$a! %B&! 3()$! @'*6&..&.! D*'! .+=01&! %'&(%3&$%! ('&! >')&D+8! 0&.6')>&0c!

.+=01&! H)%B! 0)DD&'&$%! 6B('(6%&').%)6.! 9.=6B! (.! .*+)0! 6*$%&$%:! 6*3&.! *=%! D'*3!

%B*.&! @B(.&.! ($0! (+.*! %B&! .+=01&! =.&0! )$! %B&! &e@&')3&$%(+! @('%! H(.! .(3@+&0!

D'*3!.)3)+('!(@@('(%=.C!

!

Q!FFR!@'*6&..a!)$!D(6%a!(66=3=+(%&.!B)1B!(3*=$%.!*D!.+=01&!%B(%!3=.%!>&!%'&(%\

&0!($0!0).@*.&0!*D!)$!(!.(D&!($0!&DD&6%)<&!3($$&'C!RB&!3()$!@B(.&.!1&$&'(++8!('&c!

!

>X*!#"3+2-)`"(-(.*72',"c!%B&!'*+&!*D!(!%B)6_&$&'!).!%*!'&0=6&!%B&!H(%&'!6*$%&$%!

*D!%B&!.+=01&C!RB).!)3@'*<&.!%B&!@&'D*'3($6&!*D!($8!0*H$.%'&(3!0&@('%3&$%!D*'!

3&6B($)6(+!0&B80'(%)*$C!

!

RB&!%B)6_&$)$1!@B(.&!6($!*66='!>8c!

3*:#'8-+4a*.&0)3&$%(%)*$!*D!%B&!B&(<)\

&'!@('%)6+&.!9.&&!A)1='&!P:C*

3*G1%'+'+-%(a*%B&!@')$6)@+&!).!%B&!(0B&\

.)*$!*D!+)%%+&!1(.!>=>>+&.a!1&$&'(++8!()'a!

%*! %B&! .*+)0! @('%)6+&.a! )$! *'0&'! %*! '&\

0=6&! %B&! %*%(+! .@&6)D)6! H&)1B%! *D! %B&!

D*'3&0! (11+*3&'(%)*$a! %B=.! @&'3)%\

%)$1!)%.!D'&&!D+*(%(%)*$!%*!%B&!.='D(6&!*D!

%B&!H(%&'C!

RB&!(0<($%(1&.!*D!%B).!.8.%&3!6*3@('&0!%*!.&0)3&$%(%)*$!('&c!

\ D(.%&'!.*+)0\+)b=)0!.&@('(%)*$!

*

G-.5#"*<*M*:#'8-+'+-%('1*+2-)`"("#*%$*B#"8-,%*SSB!*

! "L!

\ 6(@(6)%8!%*!.&@('(%&!&<&$!.3(++!@('%)6+&.!%B(%!('&!B('0!%*!.&0)3&$%C!

QD%&'! D+*(%(%)*$a! %B&! @('%)6+&.! ('&! '&3*<&0! >8! (! .=@&'D)6)(+! ._)33&'!

95%*00('0a!&%!(+Ca!PLLK:C!

P:!O-.",+-%(*72',"c!%B).!@'*6&..!'&0=6&.!%B&!(3*=$%!*D!*'1($)6!3(%%&'!($0!%B&!

$=3>&'! *D! 0).&(.&\6(=.)$1! 3)6'**'1($).3.! @'&.&$%! )$! %B&! .*+)0.a! %B'*=1B! %B&!

0&6*3@*.)%)*$! *D! 6*3@+&e! +('1&\3*+&6=+&! *'1($)6! 6*3@*=$0.a! '&.=+%)$1! )$!

.+=01&!.%(>)+)h(%)*$C!RB&!3*.%!6*33*$!%8@&.!*D!0)1&.%)*$!('&!(&'*>)6!($0!($(&'\

*>)6c!

!!<'X* 9('"#%/-)* 0-.",+-%(c! (! >(6%&')(+!

@'*6&..!9A)1='&!K:a!6('')&0!*=%! )$!%B&!(>\

.&$6&! *D! *e81&$i! %B&! 0&1'(0(%)*$! *D! *'\

1($)6!3(%%&'!0&%&'3)$&.!%B&!D*'3(%)*$!*D!

<(')*=.! @'*0=6%.a! %B&! 3*.%! (>=$0($%! *D!

HB)6B!('&! %H*!1(.&.a!3&%B($&! 97UM:!($0!

6('>*$!0)*e)0&! 97WP:C! #%! )$<*+<&.! <(')*=.!

)$%&'(6%)$1!3)6'*>)(+!1'*[email protected]!

\ B80'*+8%)6!>(6%&')(i!

\ (6)0)D8)$1!>(6%&')(i!

\ 3&%B($*1&$!>(6%&')(a!%B(%!@'*0=6&!7UM!($0!7WP!($0!*66=@8!*$+8!%B&!D)$(+!

@*.)%)*$!)$!%B&!($(&'*>)6!%'*@B)6!6B()$!95%*00('0a!&%!(+Ca!PLLK:C!

</X*9"#%/-)*0-.",+-%(a*H)%B!%B&!@'&.&$6&!*D!*e81&$a!>(6%&')(!'(@)0+8!6*$\

.=3&!*'1($)6!3(%%&'!($0!6*$<&'%!)%!)$%*!6('>*$!0)*e)0&C!FB&$!%B&!(<()+(>)+\

)%8!*D!$*=').B3&$%! D*'!3)6'**'1($).3.!&$0.a! %B&8!.%('%! %*!6*$.=3&!$=%')\

&$%.! )$.)0&!%B&)'!@'*%*@+(.3!%*!*>%()$!%B&!$&6&..('8!&$&'18!D*'!%B&)'!.=>\

.).%&$6&C!RB).!@B&$*3&$*$!).!6(++&0!f&$0*1&$*=.!'&.@)'(%)*$gC!Q&'*>)6!0)\

1&.%)*$!).*(@@+)&0!H)%Bc!

• &e6&..!.+=01&i!

• 3)e%='&!*D!&e6&..!.+=01&!*'!.+=01&!D'*3!@&'6*+(%)*$!D)+%&'!H)%B!@')\

3('8!.+=01&i!

• &e6&..!.+=01&!D'*3!>)1!(&'(%)*$!@+($%.i!

• .+=01&!D'*3!(6%)<(%&0!.+=01&!@+($%.!H)%B*=%!@')3('8!.&0)3&$%(%)*$!

95%*00('0a!&%!(+Ca!PLLK:C!

G-.5#"*?*M*B2"*9("#%/-)*0-.",+-%(*7#%)",,*(IBW, 2009)*

  11  

 

It  can  be  observed  that  every  phase  has  a  different  result  in  the  sludge  composi-­‐

tion:   the   thickener   increases   the   solid   content  while   the   digestion   reduces   the  

organic  content  and  the  amount  of  bacteria.  

 

1.1.3  Existing  sludge–dewatering  methods  

Large  amounts  of   sludge  are  produced  from  a  WWTP  every  day.  For  this  rea-­‐

son,  various  technologies  for  sludge  dewatering  have  been  developed.  In  this  

section,  the  most  common  existing  methods  are  presented;  from  an  overall  per-­‐

spective,  they  can  be  divided  into  natural  or  artificial  methods:  

-­‐ Natural  methods:  the  sludge  is  arranged  on  an  open-­‐air  bed  where  it  is  

dehydrated  through  evaporation.  Reinforced  concrete  tanks  are  normally  

used,  with  the  bottom  covered  by  a  draining  layer,  made  of  coarse  gravel,  

over  fine  gravel  and  sand.  The  main  problem  with  this  method  is  rainfall,  

which  causes  most  of  the  water  lost  by  evaporation  to  be  reintroduced  in-­‐

to  the  system.  Other  disadvantages  are  the   large  ground  space  required,  

the  noxious   fumes  produced  and   the  possibility  of   retaining  viruses  and  

bacteria  in  the  sludge  (with  the  hazard  of  spreading  pathogens  by  air).  

-­‐ Artificial  methods:   they  are  all   the  techniques  that   include  the  applica-­‐

tion  of  machinery.  They  can  be  distinguished  into:  

• Mechanical  treatments:  

o Filtration:  the  sludge  passes  through  a  filtering  medium  such  as  a  

vacuum  pump  or  pressure  plate  partially  immersed  in  the  sludge  

itself  (belt  or  filter  press,  Figure  5).  

   

! "P!

!

o :.95-834;05869c! .&@('(%&.! %B&!H(\

%&'! D'*3! %B&! .+=01&! %B'*=1B! %B&!

(@@+)6(%)*$!*D! (! 6&$%')D=1(+! D*'6&a!

H)%B! HB)6B! %B&! .*+)0.a! (D%&'! (!

.B*'%!%)3&a!(0B&'&!%*!%B&!H(++.!*D!

%B&! 6&$%')D=1&C! RB&! D)$(+! @'*0=6%a!

B*H&<&'a!B(.!(! +*H!.*+)0! 6*$%&$%!

9A)1='&!M:C!

!

• B2"#&'1*+#"'+&"(+a*

o "-<89;c!%B&!%'($.3)..)*$!*D!B&(%!%*!%B&!.+=01&!6($!>&!(6B)&<&0!)$!

%B'&&!H(8.!*'!($8!6*3>)$(%)*$!%B&'&*Dc!!

7*$<&6%)*$! !!0)'&6%!0'8)$1!

7*$0=6%)*$! !!)$0)'&6%!0'8)$1!

S(0)(%)*$! !!)$D'('&0!0'8)$1!

RB&!@')$6)@+&!*D!%B&'3(+\0'8)$1!.8.%&3.!).!%*!>')$1!%B&!.+=01&!(%!

B)1B!%&3@&'(%='&.!%*!&<(@*'(%&!%B&!)$%&'.%)%)(+!($0!6(@)++('8!H(\

%&'C! RB&! B&(%! 6*=+0! 6*3&! D'*3! (! >='$&'! (+)3&$%&0! H)%B! D*..)+!

D=&+.a!HB)6B!B&(%.!=@!(! D+=)0!9<(@*='!*'! %B&'3(+!*)+:! +(@@)$1! %B&!

.+=01&C!

A*'!(!3*'&!0&%()+&0!0).6=..)*$!.&&!2('(1'(@B!"CMC!

!

* *

G-.5#"*K*M*C"1+*7#",,*W\\\R"#,'$R1%&/'#0-'R-+X*'(0*$-1+"#*7#",,*W62'(.'-*cPNDEE*E(8-#%(&"(+'1*7#%+")+-%(*Ed5-7&"(+*H%RX!

!G-.5#"*A*M*H"(+#-$5."*W$#%&*:F6B*M*

2++7a@@\\\R.%,+R-+@X!

  13  

1.2  Wastewater  treatment  plant  at  Treviso  (Italy)  

The  WWTP  of  Treviso  is  here  described  as  it   is  where  part  of  the  experimenta-­‐

tion  took  place  and  the  sludge  samples  were  collected.  It  can  be  also  taken  as  an  

example  of  how  a  common  WWTP  is  organised  and  which  treatment  processes  

operate  in  it.  

 

The  plant   of   the   City   of   Treviso   is   located   in   the  area  of   “Sant’Antonino”   (via  

Cesare  Pavese  n.  18)  and  discharges  the  treated  water  into  a  final  dead  branch  of  

the  Sile  River.  The  plant  has  been  in  operation  since  1975  with  an  original  capac-­‐

ity   of   30000   Population   Equivalent   (PE)   and   a   conventional   line   of   activated  

sludge  (Regione  del  Veneto,  2011).  

Due  to  the  increase  in  the  hydraulic  load  and  with  the  aim  of  ensuring  the  strict-­‐

er  standards  of  new  directives,  the  plant  was  enlarged  and  restored  until  achiev-­‐

ing  a  total  capacity  of  70000  PE  and  the  presence  of  machinery  both  for  water  

and  sludge  treatment  (see  Table  1).  

 Table  1  –  Process  chain  of  the  WWTP  of  Treviso  (Regione  del  Veneto,  2011)  

Water  treatment   Sludge  treatment  

Coarse  screen   Thickener  F  and  H  

Lifting  station   Anaerobic  digester  

Grit  removal   Belt  press  

Biological  process  –    

Anaerobic-­‐Anoxic-­‐Aerobic  

Gasometer  

 

Secondary  sedimentation   Cogenerator  

Disinfection   Torch  

 

Figure  6  presents  a  general  scheme  of  all  the  treatments  applied  in  the  WWTP  of  

Treviso.  

  14  

 Figure  6  –  Block  scheme  of  the  line  system  of  WWTP  in  Treviso  (Regione  del  Veneto,  2011)  

 

1.3  Sewage  sludge  management  and  regulation  in  Europe  

Sewage  sludge  management  is  a  complex  issue  worldwide  since  its  production  

is   continuously   increasing,  particularly   in   industrialized  countries   (Gálvez,  et  

al.,  2007).  Due  to  the  high  quantitative  produced  every  day,  in  fact,  the  treatment  

of   wastewater   shows   huge   expenses   for   the   purification   process   and   for   the  

sludge   disposal.   It   is   from   this  market   request   of   new   sludge   disposal  method  

that  the  research  described  in  this  thesis  take  its  origin.    

 

In  Europe,  sewage  sludge  production  was  nearly  11  million  tons  of  dry  matter  

(DM)   in   2012   and   is   expected   to   increase   by   at   least   10%   by   2020  

(Oikonomidis  &  Marinos,  2014).  The  progressive   implementation  of   the  Urban  

Waste  Water   Treatment  Directive  91/271/CEE  on  urban  WWT  in  all   the  EU  

Member  States  has  been  increasing  the  amount  of  sewage  sludge  requiring  dis-­‐

posal:   this   Directive   stated   that   waste   waters   from   agglomeration   with   more  

than  2000  Population  Equivalent  (PE)  had  to  undergo  to  secondary  treatment  by  

  15  

the  end  of  2005:   this   increased  the  number  of  houses  connected  to  the  sewage  

system  (EC, 2014a).    

 

In  the  EU  waste  disposal   (as  sludge  is  considered  a  waste)   is  regulated  by  the  

Waste   Framework  Directive   2008/98/CE   (EC, 2014b)   that   indicates   various  

measures   to   protect   the   environment   and   human   health,   based   on   prevention  

and  reduction  of  the  negative  impacts  caused  by  waste  production  and  manage-­‐

ment.   In  particular,  risk  to  water,  air,  soil,  plants  or  animals  should  be  avoided.  

The  main  criteria  established  by  the  Directive  are  summed  up  in  Figure  7:  

 Figure  7  –  Waste  management  hierarchy  established  by  the  

Waste  Framework  Directive  (EC,  2014a;  EC,  2014b)  

 

In   addition,   after   the   promulgation   of   the  Water   Framework   Directive   (Di-­‐

rective   2000/60/EC),   a   number   of   new   treatment   plants   have   been   built.   This  

because  the  Directive  requires  that  all  inland  and  coastal  waters  within  defined  

river  basin  districts  must  reach  at  least  good  status  by  2015  and  defines  how  this  

should  be  achieved   through   the  establishment  of  environmental  objectives  and  

ecological  targets  for  surface  waters (EC, 2014a).  

 

A  biological  sludge  is  defined  as  “treated”  when  it  has  been  subjected  to  “biolog-­‐

ical,  chemical  or  heat  treatment,  long-­‐term  storage  or  any  other  appropriate  pro-­‐

cess  so  as  significantly  to  reduce  its  fermentability  and  the  health  hazards  result-­‐

ing  from  its  use"  (EC, 2014a).  In  the  last  decades,  the  most  common  ways  to  treat  

sludge  were   landfilling,   incineration,  agricultural  use  and  alternative   fuel   in   in-­‐

dustrial  processes.  In  addition  to  this,  sludge  was  recycled,  including  all  the  pro-­‐

cesses  that  resulted  in  the  reuse  of  the  sludge  (Suh  &  Rousseaux,  2002).    

 

  16  

The  most   attractive  option   for   sludge  disposal   so   far  has  been  use   in   agricul-­‐

ture,  since  the  sewage  sludge,  due  to  the  physical-­‐chemical  processes  involved  in  

its  treatment,  is  rich  in  nutrients  (mainly  nitrogen  and  phosphorous)  and  valu-­‐

able  organic  matter,  useful  when  soils  are  depleted  or  subject  to  erosion.  This  

solution  has  been,  however,  recently  criticised  because  the  sludge  also  tends  to  

concentrate  heavy  metals  and  poorly-­‐biodegradable  trace  organic  compounds  

and  pathogens  (viruses,  bacteria  etc.)  present  in  wastewaters  (EC, 2014a).  These  

substances   (in   particular   heavy   metals)   can   cause   soil   contamination,   even  

though   European   regulations   limit   the   amount   of   metallic   materials   in   the  

sludge.  

 

More   recently,   another   issue   has   emerged,   concerning   the  organic   pollutants  

sludge  can  contain,  such  as  pharmaceuticals,  pesticides  and  personal  care  prod-­‐

ucts,   which   might   have   an   impact   on   the   food   chain   (Lederer   &   Rechberger,  

2010).  European  legislation  also  restricts  the  final  disposal  of  sludge  in  landfills,  

requiring  a  decrease  to  35%  biodegradable  content  in  it  by  2020  (Stehlik,  2009).  

 

Sludge  disposal  is  then  an  issue  that  is  going  to  worsen  in  the  next  future:  Euro-­‐

pean   regulations,   posing   stricter   limits   regarding   landfilling   and   agriculture,   is  

trying   to   direct   the   producer   to   find  new   solutions   for   a   safe   disposal   even  

though  it  seems  that  insufficient  effort  is  brought  for  a  regulation  that  should  fa-­‐

vour  this  alternatives.  

 

1.3.1  Sewage  sludge  management  and  regulation  in  Italy  

In  Italy  the  issue  of  sludge  disposal  is  urgent  as  well:  the  amount  of  sludge  pro-­‐

duced   was   around   1.7   million   tons   of   DM   in   2005.   For   sludge   from   urban  

wastewater,  it  was  nearly  1  million  ton  DM/year  (ISTAT,  2005).  

   

  17  

Table  2  –  ISTAT  (2005)  data  for  sludge  amount  in  Italy  

  Primary  [Mtons/year]  

Secondary  [Mtons/year]  

Tertiary  [Mtons/year]  

Total  [Mtons/year]  

Italy   9002   6049   1850   16901  Northwest   3773   1744   429   5946  Northeast   2752   1109   514   4375  Centre   1452   1482   330   3264  South   907   1165   359   2431  Islands   118   549   218   885  

 

In  the  Italian  regulation,  sludge  is  defined  in  the  Testo  Unico  Ambientale  (D.  Lgs.  

152/2006)   as   “treated   or   untreated   residue   coming   from   urban   wastewater  

treatment  plant”   (art.  74).   It   is   then  considered  special  waste  and   its  manage-­‐

ment  is  governed  by  part   IV  of  D.  Lgs.  152/2006;  article  127,  however,  states  

that   the   sludge   must   be   reused   whenever   it   is   appropriate.   Sludge   disposal  

should  then  be  done  by:  

-­‐ Incineration,   aimed   at   energy   recovery   of   the   sludge   itself   or   together  

with  the  organic  fraction  of  the  urban  wastes.  

-­‐ Disposal   in   controlled   landfills   for   special   waste   (resumed   from   D.  Lgs.  

36/03  and  D.M.  03/08/2005).  

In  addition,  D.  Lgs.  99/1992  (embodied  in  the  D.  Lgs.  152/2006),  which  was  the  

implementation  of   the  European   Directive   86/278/CEE,   regulates   the  use   of  

sewage  sludge  in  agriculture.  This  Directive  enhances  the  use  of  sludge  for  agri-­‐

cultural  purposes  by  spreading  onto  the  soil,  trying  at  the  same  time  to  prevent  

eventual  harmful  effects  on  agricultural  land,  vegetation,  animals  and  man.  Com-­‐

posting  of   the  sludge   is  suggested   for  a  subsequent  use   in  agriculture,   together  

with  reuse  in  the  production  of  bricks,  asphalt  and  concrete.  The  spread  onto  the  

soil  of  untreated  sludge,  however,   is   forbidden,  unless   it   is   injected  or   incorpo-­‐

rated  into  the  soil,  and  whenever  its  heavy  metals  content  does  not  meet  the  re-­‐

quirements  of  the  legislation.    

 

1.3.2  Different  Situations  in  European  countries  

The   situation   of   sludge   production   and  disposal   varies  widely   by   country:   this  

section  will  briefly  present   the  actual   situation   in   European  Union  Member  

States   (EU-­‐27)  and  the   future  predictions   by  2020  provided  by  Kelessidis  &  

Stasinakis  (2012).  

  18  

   

In   the  European  Union  countries,  specific   sludge   production   ranges   from  0.1  

kg  per  PE  and  year  (Malta)  to  30.8  kg  per  PE  and  year  (Austria)  (Kelessidis  &  

Stasinakis,  2012).  As  said  before,  the  legislation  on  this  sector  is  outlined  by  the  

European  Directive   86/278/EC  but  many   countries   have   adopted  more   strin-­‐

gent  regulations,  with  lower  limit  values  for  heavy  metals,  organic  micropollu-­‐

tants  and  pathogens  (Kelessidis  &  Stasinakis,  2012).  

 

The   type   of   treatments   adopted,   as  well,   varies  between   countries:   the  most  

popular  stabilisation  methods  are  aerobic  (in  24  countries)  and  anaerobic  di-­‐

gestion  (in  20  countries);  mechanical  sludge  dewatering  is  generally  preferred  

comparing  to  the  use  of  drying  beds  in  all  Member  states  (EU-­‐27),  while  thermal  

drying  is  the  most  common  practice  in  old  Member  States  (EU-­‐15  countries),  in  

particular  in  Germany,  Italy,  France  and  United  Kingdom.  

 

Regarding  the  final  disposal  of  sludge,  reuse  is  the  most  applied  in  EU-­‐15  coun-­‐

tries   (53%   of   produced   sludge),   followed   by   incineration   (21%   of   produced  

sludge),  while  in  the  new  Member  States  that  joined  EU  after  2004  (EU-­‐12),  the  

most   common   disposal   method   is   still   landfilling   (Kelessidis   &   Stasinakis,  

2012).    

 Based  on  current  trends,  Kelessidis  &  Stasinakis  (2012)  have  also  produced  fore-­‐

casts  for  sludge  management  by  2020,  dividing  the  countries  into  five  groups:  

• Group  1  –  Increasing  agriculture  use  only:  France,  Malta.  

• Group  2  –  Status  quo:  Germany,  Estonia,  Netherlands,  Cyprus.  

• Group   3   –   Increasing   incineration   only:   Austria   Portugal   Slovakia,  

Hungary,   Belgium   (mainly)   and   Latvia,   Denmark,   Ireland,   Luxembourg  

(less).  

• Group  4  –   Increasing  (mainly)  agriculture  and   incineration:  Sweden  

(major   shift   to   composting   and   co-­‐incineration),   Czech   Republic   (com-­‐

posting),   Lithuania,   Poland   (composting),   Romania,   Slovenia,   United  

Kingdom.  

  19  

• Group  5  –  Increasing  agriculture  and  (mainly)  incineration:  Spain,  It-­‐

aly   (composting),   Bulgaria,   Finland,   Greece   (Kelessidis   &   Stasinakis,  

2012).  

 

It  is  then  interesting  to  observe  that  the  situation  is  very  faceted:  EU-­‐12  coun-­‐

tries  will  temporary  enhance  landfilling  since  they  will  have  to  face  at  first  a  ur-­‐

gent  situation  but  then  up  to  2020  an  increase  in  agricultural  reuse  can  be  ex-­‐

pected.   Regarding   EU-­‐15   countries,   agricultural   recycling   and   incineration  

seems  to  be  the  practices  most  favourable  to  be  adopted  by  2020.  

 

1.4  Biological  sludge–drying    

 Figure  8  –  Distribution  of  sludge  drying  plants  in  European  countries  (Kelessidis  &  Stasinakis,  2012)  

Sludge  drying  is  here  analysed  more  deeply,  since  the  projected  system  will  ex-­‐

ploit  both  thermal  drying  and  incineration  (see  Paragraph  1.5).  

Drying  the  sludge,  in  fact,  is  a  possibility  to  reduce  the  expenses  for  its  disposal;  

this  is  an  important  step  showing  many  positive  results  (Oikonomidis  &  Marinos,  

2014):  

1. Drying  means  a  reduction  in  mass  and  volume,  thus  saving  in  transpor-­‐

tation  costs  because  the  sludge  is  often  moved  by  truck  from  the  produc-­‐

tion  site  to  the  place  of  final  use;  a  smaller  amount  of  sludge  thus  means  

less   costs   for   transport,   handling   and   storage.   This   is   also   an  envi-­‐

As far as concerning the new EU countries, Czech Republic is theregion’s leader in sludge management innovation (Le Blanc et al.,2008). This can be illustrated by the full-scale use of mechanicalsludge disintegration and the use of sludge lysate being producedduring the disintegration or by rich experience on thermophilicanaerobic digestion (Zabranska et al., 2009). Such innovative tech-niques of disintegration by mechanical (ultrasound, mills, homog-enizers), thermal, chemical (acids, lyes) and biological (enzymes)means have also been studied and applied mainly in Germanyand less in Sweden and Italy with encouraging results (WPCF,1989; Kunz et al., 1996; Lee and Welander, 1996; Sakai et al.,1997; Krogmann et al., 1997; Muller, 2000; Le Blanc et al., 2008).

On the other hand, sludge dewatering seems to be an importantstep in sludge management of most EU-27 countries. According toTable 3, the majority of European WWTSs use mechanicaldewatering instead of drying beds that are preferred mainly insmall WWTSs and are reported in 6 out of 27 European countries.From financial point of view, the prevailing sludge dewateringtechnologies in descending order are centrifuges (41%), belt filterpresses (28%) and filter presses (23%) (www.frost.com).

Regarding other sludge treatment methods applied in Europeancountries, thermal drying has prevailing position in sludge man-agement of EU-15 (Table 3). It should be mentioned that 110 ther-mal drying plants were operated in EU in 1995 (Hall, 1995), thedrying lines were increased to about 370 in 1999 (EC, 1999), whiletoday they exceed 450. Most of these plants constitute the firststage of incineration units. Fig. 1 represents distribution of sludgedrying plants in European countries. Except of Luxembourg andFinland, all EU-15 countries apply this technology (Drace medio-ambiente, 2010; Milieu Ltd., WRc and RPA, 2010). As Fig. 1 reveals,the big majority of thermal drying plants (almost half of them) areoperated in Germany, following by Italy, UK and France. RotaryDrum Dryers (RDD) is the most commonly used system, followingby other types as Fluidized Bed Dryers (FBD) or Belt Dryers (BD)(http://www.web4water.com/library/print.asp?id=3539; Arlabos-se et al., 2012). An innovative method called Direct MicrowaveDrying has also been used in Ireland (Turovskiy and Mathai,2006). On the other hand, excepting Slovenia, there are no thermaldrying units in the new EU-12 countries (Fig. 1).

Long term storage is also applied in several old or new MemberStates (9 out of 27) as it is an easy and cheap method for sludge

management but it requires proper climates and great areas. Othermethods such as cold fermentation, solar drying or pasteurizationare scarcely referred in a limited number of countries (Table 3).

5. Sewage sludge disposal in EU-27

The change of sewage sludge disposal methods in EU-15 afterimplementation of 91/271 Directive (CEC, 1991) can be seen inFig. 2. It should be mentioned that the most recent available datafor all European countries are these of 2005. According to the re-sults, landfilling presents a significant and continuing decrease be-tween 1992 and 2005, from 33% to 15%. On the other hand, sludgeincineration has been almost doubled (from 11% to 21%), followingthe estimate-target (EC, 1999). Biosolids reuse, which mainly in-cludes agricultural utilization and composting, has been slightlyincreased, while an important part of total sludge production (9%in 2005) has been managed using several practices. This part ofsludge is reported in several reports as ‘‘others’’ and include meth-ods such as pyrolysis, temporary storage (e.g. Greece, Italy), longstorage (e.g. Poland, Estonia, Lithuania), reuse in green areas andforestry (e.g. Ireland, Latvia, Slovakia), landfill cover (e.g. Sweden,Flanders), exportation of sludge amounts to other countries (e.g.granulated sludge from Netherlands to Germany for incineration,sludge for composting or incineration from Luxembourg to Ger-many) as well as possible differences between total sludge produc-tion and disposal amounts. Besides the banning of sludge dumpingto the sea after 1998, it is possible that high values of ‘‘others’’ ob-served in 2000 could also be due to the continued apply of thispractice in some European countries (EC, 2004).

Sludge disposal methods for year 2005 in EU-15 and EU-12 arepresented in Fig. 3a and b, respectively. As it can be seen, the phi-losophy of sludge management is quite different between old andnew Member States. The prevailing technology in EU-15 is recy-cling in agriculture (44%). In contrary, the status in new countriesis quite unclear, as for 35% of sludge no specific disposal manneris declared. This uncertainty mainly originates from Poland which,as it was mentioned in Section 2, is the greatest sludge producer inEU-12 countries. Almost half of produced sludge in Poland (48%)has no specific outlet, while according to data reported in BIOPROSproject (2006), it seems that this percentage include stockpilingand lagooning. Taking into account this notice, landfilling (28%)

0% 10% 20% 30% 40% 50% 60%

GermanyItalyUK

FranceNetherlands

SpainAustria

DenmarkBelgium

IrelandSwedenPortugal

GreeceSlovenia

Sludge drying plants in European countries (%)

Fig. 1. Distribution of sludge drying plants in European countries (EC, 1999; LeBlanc et al., 2008; HMEPPPW, 2009; Drace medioambiente, 2010; http://www.wat-erworld.com; http://andritz.com; http://www.environ.ie/en/; http://www.web4-water.com; http://www.waterworld.com; http://www.hse.gov.uk).

48 4757 50 54

11 13

1518

21

33 2918

1815

6 5 42 6 6 14 9

01020

3040506070

8090

100

1992 1995 1998 2000 2005Year

Sludg

e disp

osal

metho

ds us

ed in

EU-15

(%)

Reuse Incineration Landfill Surface waters Others

Fig. 2. Sludge disposal methods applied in EU-15 between 1992 and 2005 (year1992 does not include Italy, Sweden, while year 1998 does not take into accountItaly due to lack of data) (http://epp.eurostat.ec.europa.eu; Hall, 1995; EC, 1999,2004, 2006; EEA, 2002; BIOPROS, 2006; HMEPPPW, 2007; Milieu Ltd., WRc and RPA,2010).

A. Kelessidis, A.S. Stasinakis / Waste Management 32 (2012) 1186–1195 1191

! PL!

#%(&"(+'1*.'-(!.)$6&!+&..!<*+=3&!%*!%'($.@*'%!3&($.!(!'&0=6%)*$!)$!%B&!

6*$.=3@%)*$!*D!D*..)+!D=&+.a!.*!+&..!7WP!&3)..)*$.C!

PC RB&!B)1B!%&3@&'(%='&.!=.&0!)$!%B&!0'8)$1!@'*6&..!6($!`-11* ,%&"*7'+2%3

."(,a!%B=.!6*$%')>=%)$1!%*!%B&!.%(>)+).(%)*$!*D!%B&!.+=01&C!!

KC ?')&0!($0!0)1&.%&0! .+=01&! 9NLd!0)..*+<&0! .*+)0.! 9?5:!($0!ZLd!3)$&'(+!

D'(6%)*$!)$!?5:!B(.!(!2-.2"#*2"'+-(.*8'15"!9>=M>K*Tk*`.3>*O6:a!3(_)$1!)%!

(!.=)%(>+&!6*3>=.%)>+&!.*='6&!9(!6(@(6)%8!&b=)<(+&$%!%*!>'*H$!6*(+:!97B()a!

PLLO:!9A+(1(a!PLLN:C!

MC ?')&0! .+=01&! 6($!>&!&%#"* "',-14* ,+%#"0! 0=')$1! %B*.&!3*$%B.! )$!HB)6B!

.@'&(0)$1!.+=01&!).!@'*B)>)%&0!.)$6&!%B&!$&('!6*3@+&%&!(>.&$6&!*D!H(%&'!

@'&<&$%.!%B&!*$.&%!*D!@=%'&D(6%)*$!@B&$*3&$(C!

ZC ?'8)$1!0*&.*(%+*'1+"#*+2"*%#.'(-)*)%(+"(+!)$!%B&!.+=01&a!.)$6&!)%!).!$*%!(!

6*3>=.%)*$!@'*6&..C!

!

RB&!0'8)$1!*D!.+=01&!6($!>&!(6B)&<&0!H)%B!,%1'#*%#*+2"#&'1*"("#.4c!%B&!0)DD&'\

&$6&!).!%B(%!.*+('!0'8)$1!=.&.!&<(@*'(%)*$a!HB)+&!)$!%B&!%B&'3(+!.8.%&3.!%B&!&e\

6B($1&!*D!B&(%!>&%H&&$!()'!($0!.+=01&!).!(6B)&<&0!%B'*=1B!6*$<&6%)*$a!6*$0=6\

%)*$!($0!'(0)(%)*$!9A+(1(a!PLLN:C!

!

A*'! %B&! .(_&! *D! %B).! %B&.).a! %B).! .&6\

%)*$! H)++! D*6=.! 3*'&! *$! %B&! .*+('!

0'8)$1!.8.%&3.C!Q!6%1'#*6150."*O#43

-(.* !1'(+! 955?2:! 1&$&'(++8! B(.! %B&!

D*++*H)$1! 0&.)1$! 9A)1='&! N:!

9W)_*$*3)0).!n!-(')$*.a!PL"M:c!

": RB&! 3()$! >*08! ).! (! .#""(3

2%5,"* )2'&/"#! HB&'&! %B&!

.+=01&! ).! .@'&(0! )$! +(8&'.! *$!

%B&! D+**'a!B&(%&0!($0! %B&!H(\

%&'!&<(@*'(%&0a! %B($_.! %*! %B&!

1'&&$B*=.&!&DD&6%C!

P: N(0%%#*8"(+-1'+%#,!6'&(%&!%='>=+&$6&a!(&'(%)$1!%B&!.='D(6&!*D!%B&!.+=01&!

($0! '&3*<)$1! %B&! .(%='(%&0! ()'! +(8&'! (66=3=+(%&0! *$! )%a! HB)+&!"b2'5,+*

!G-.5#"*Y*M*9*6%1'#*,150."*0#4-(.*71'(+*

WL5/"#*B")2(%1%.4*M*\\\R25/"#+")R-+X*

  21  

fans   discharge   the   saturated   air   stored   in   the   plant   and   provide   air   re-­‐

newal.    

3) Robots   or   drums  with  rotating  scrapers  (or  similar  devices)  renew  the  

sludge  by  mixing  it.  

 

A  SSDP  can  be  pure  when  the  only  source  of  energy  is  the  solar  one,  or  hybrid  

when   there   is  a   second  source,  e.g.  waste  heat   from  combined  heat  and  power  

(CHP)  unit  (Oikonomidis  &  Marinos,  2014).  

 

The  economic  and  environmental  advantages  (since  no  fossil  fuel  are  burned)  of  

solar   systems   are   clearly   described   in   Figure   10,   an   analysis   provided   by   the  

multinational  Parkson  Company  (the  worldwide  leader  in  the  field)  (Parkson  &  

KET,  2010),  which  compares  the  traditional   technology  with  the  solar  one  (gas  

fired  dryer  costs  vs  solar  dryer  costs):  

 Figure  10  –  Thermal  energy  consumption  comparison  between  gas-­‐fired  and  solar  dryer  

(Parkson  &  KET,  2010)  

It  is  starting  from  an  analysis  of  the  current  situation  on  sludge  disposal  by  dry-­‐

ing  that  the  idea  of  an  innovative  system  came  out,  since  the  market  seems  to  be  

very  favourable  to  this  new  disposal  solution.  

 

1.5  Biological  sludge  incineration    The  innovative   idea  behind  the  projected  system  is  that  solar/thermal  drying  

should  be  combined  with  incineration  of  the  dry  sludge  (for  a  fully  description  

  22  

see  Paragraph  2.3).  The   incineration   is  here  described   for  a  better  comprehen-­‐

sion  of  the  mechanism  involved  in  the  system.  

 

Incineration   can   be   defined   as   the   complete   combustion   with   a   rapid   exo-­‐

thermic   oxidation   of   the   fuel   elements   contained   in   the   sludge:   it   requires  

temperatures  of  420°-­‐500°  C  and  the  presence  of  oxygen.  Complete  combustion  

of   all   organic   solids   requires   temperatures   over   760°-­‐820°C.   (Turovskiy   &  

Mathai,   2006).   During   the   incineration   process,   the   organic   components   of  

sludge  are  converted  into  oxidised  end  products,  such  as  carbon  dioxide  (CO2),  

water  vapour  and  ash;  particulates  and  other  gases  could  also  be  present  in  the  

final   product,   which   is   why   these   gases   are   brought   into   a   post-­‐combustion  

chamber  before  being  released  into  the  atmosphere.  

 

 Figure  11  –  Heating  Values  of  Sludge  and  Other  Residuals  (Turovskiy  &  Mathai,  2006)  

 

One  of   the  principal  parameter   that  has   to  be   taken   into  account   in   the   sludge  

incineration  is  moisture  content.  Sludge  cake  with  30  to  50%  of  solids  content  

(50   to   70%   of   moisture)   is   autogenous,   which   means   that   it   can   be   burned  

without  auxiliary  fuel.  Percentages  lower  than  those  ones  (20-­‐30%  solids)  could  

indicate  that  an  auxiliary  fuel  for  combustion  is  required.  For  this  reason,  there  is  

the   necessity   of   reducing   the   moisture   content   of   the   sludge   by  mechanical  

dewatering  or  thermal  drying  before  incineration  (Turovskiy  &  Mathai,  2006).  

Another important parameter of sludge incineration is the heating value of sludge. It represents the quantity of heat released per unit mass of solids. The amount of heat released from sludge is a function of the types and com-bustible elements present in sludge. The primary combustible elements in sludge (and in most available auxiliary fuels) are carbon, hydrogen, and sulfur. Carbon burned to carbon dioxide has a heating value of 34 MJ/kg (14.6 × 103 Btu/lb), hydrogen has a heating value of 144 MJ/kg (62 × 103 Btu/lb), and sulfur has a heating value of 10 MJ/kg (4.5 × 103 Btu/lb). Conse-quently, any changes in the carbon, hydrogen, or sulfur content of sludge will raise or lower its heating value. Table 8.4 shows the heating values of various types of sludge, grease and scum, and screenings.

8.3.1 Methods of Incineration

The process of sludge incineration in furnaces can be divided into the follow-ing stages: heating, drying, distillation of volatile matter, combustion of the organic fuel matter, and calcination to burn the residual carbon. Heating the sludge to 100°C (212°F) and then drying it at about 200°C (392°F) consume the principal quantity of heat and are generally required for the incineration process. These parameters also affect the selection of the size of the main and auxiliary equipment and consequently, determine the cost in general. In the course of moisture evaporation in the drying zone, volatile substances are liberated together with the moisture, which sometimes results in objection-able odors.

The combustion of the sludge takes place at temperatures between 200 and 500°C (392 and 932°F), due to the thermal radiation of the fl ame and the incandescent walls of the combustion chamber, as well as the convection heat transfer from the exhaust gases. The calcination of the ash fraction of the sludge is completed by its cooling to a temperature at which it can be removed from the site.

The design temperature in the furnace should not exceed the melting point of ash [usually, about 1050°C (1922°F)] and should not be below 700°C (1292°F), thus providing reliable deodorizing of the gases. Systems for sludge incineration should provide complete combustion of the organic fraction of the sludge and utilization of the heat of the exhaust gases.

INCINERATION 291

TABLE 8.4 Heating Values of Sludge and Other Residuals

Dry SolidsType of Sludge/Residual MJ/kg Btu/lb

Primary sludge 20–28 8600–12,000Activated sludge 16–22 6,900–9,500Digested sludge 10–15 4,300–6,500Grease and scum 39 16,800Screenings 21 9,000

  23  

 

 Figure  12  –  Advantages  and  Disadvantages  of  Incineration  (Turovskiy  &  Mathai,  2006)  

 

As   said   in   Paragraph   1.3.2,   incineration   (together  with   agricultural   recycling)  

seems  to  be  the  practice  most  applied  by  2020  in  the  Old  Member  States  (EU-­‐

15)   of   the   European   Union   (which   are   also   the  more   industrialised).   In   these  

countries  thermal  treatment  with  energy  recovery  is  expected  to  have  a  share  

till  37%  (double  compared  to  EU-­‐12  countries)  (Kelessidis  &  Stasinakis,  2012).    

 

There   has   been   already   important   improvements   in   the   incineration   tech-­‐

niques  during  the  last  years,  in  terms  of  technological  level,  cost  reduction  and  

environmental  protection.  Innovative  technologies,  such  as  pyrolysis  or  phos-­‐

phorous   recovery   from   sewage   sludge   have   been   already   developed   in   large-­‐

scale   project   worldwide   but   it   is   possible   that   current   technology,   like   co-­‐

incineration  in  coal-­‐fires,  use  of  cement  kilns  plants  of  incineration  of  Municipal  

Solid  Waste   (WSW)  will   still   be   preferred   in   the   following   years   (Kelessidis   &  

Stasinakis,  2012).  One  key  point  is  that  the  adoption  of  sludge  incineration  tech-­‐

nologies  is  strictly  related  to  the  adoption  of  drying  technology,  being  the  ne-­‐

cessity  of  increase  sludge  heating  value  and  transfer  cost  reduction.  A  favoura-­‐

ble  alternative  to  current  drying  technologies,  as  described  in  the  previous  sec-­‐

tion,  is  solar  drying.  

 

290 THERMAL DRYING AND INCINERATION

or supplement plant heating requirements. The dried sludge itself has a fuel value and may be used as a heat source for the drying medium.

8.3 INCINERATION

Incineration is complete combustion, which is the rapid exothermic oxidiza-tion of combustible elements in sludge. Dewatered sludge will ignite at temperatures of 420 to 500°C (788 to 932°F) in the presence of oxygen. Tem-peratures of 760 to 820°C (1400 to 1508°F) are required for complete combus-tion of organic solids. In the incineration of sludge, the organic solids are converted to the oxidized end products, primarily carbon dioxide, water vapor, and ash. Particulates and other gases will also be present in the exhaust, which determines the selection of the treatment scheme for the exhaust gases before venting them to the atmosphere.

The principal advantages and disadvantages of incineration over other methods of sludge stabilization are listed in Table 8.3. Sludge is incinerated if its utilization is impossible or economically infeasible, if storage area is limited or unavailable, and in cases where it is required for hygienic reasons.

One of the principal parameters of sludge incineration is the sludge mois-ture. Sludge cake with 30 to 50% solids (50 to 70% moisture) is autogenous; that is, it can be burned without auxiliary fuel. Sludge cake with 20 to 30% solids (70 to 80% moisture) may require an auxiliary fuel for combustion. Therefore, before incineration, the moisture content of the sludge should be reduced by mechanical dewatering or thermal drying.

TABLE 8.3 Advantages and Disadvantages of Incineration

Advantages Disadvantages

1. Reduces the volume and weight of wet 1. High capital and operating costs. sludge cake by approximately 95%, 2. Reduces the potential benefi cial thereby reducing disposal requirements. use of biosolids.2. Complete destruction of pathogens. 3. Highly skilled and experienced3. Destroys or reduces toxins. operating and maintenance staffs4. Potentially recovers energy through the are required. combustion of waste products, thereby 4. If residuals (ash) exceeds the reducing the overall expenditure prescribed maximum pollutant of energy. concentrations, they may be classifi ed as hazardous waste, which requires special disposal. 5. Discharges to atmosphere (particulates and other toxic or noxious emissions) require extensive treatment to assure protection of the environment.

  24  

Despite   the  many   improvements   of   the   last   years,   incineration   presents   some  

important   issues:   in   the   emissions,   dioxins   and   furans   are   often   detected,  

which  are  very  hazardous  compounds,  and  heavy  metals  are  generally  released;  

flue   gases   and  ashes   (side-­‐products  of   the  process)   lead   to  high  cost  of   treat-­‐

ment,   while   solid   residues   present   the   problem   of   their   handling   (Fytili   &  

Zabaniotou,  2008).  

 

1.5.1  Advantages  of  sludge-­‐drying  and  incineration    

Drying   combined   with   incineration   is   a   sludge   disposal   method   that   clearly  

opens  to  wide  economic   chances:  many  sludge-­‐producing  plants,   in  fact,  have  

to  transport  the  sludge  by  truck  from  the  site  of  production  to  a  treatment  plant,  

which  could  be  many  kilometres  far  from  it.  The  cost  of  transport,  together  with  

the   price   required   for   the   treatment,   are   generally   huge   expenses   for   the  

plant’s  owner.  Suffice  to  say  that  50-­‐60%  of  the  management  costs  of  a  depura-­‐

tion  plant  are  made  by  sludge  treatment  and  disposal.    

 

In  Italy,  the  cost  of  sludge  (20%  DM)  disposal  can  be  indicatively  estimated  as  

100-­‐300  euro/ton,  depending  on  the  distance  between  the  place  of  disposal  and  

the  depuration  plant,  on  the  type  of  disposal  (landfilling,  composting,  spreading  

etc.)   and   on   the   region   in   which   the   plant   is   located.   This   expense   regards   a  

product  that  is  80%  water:  it  clearly  emerges  that,  removing  the  water  content  of  

the   sludge,   dramatically   reduces   the   cost   of   disposal.   Incinerating   the   sludge  

gives,  in  fact,  an  amount  of  ashes,  which  is  approximately  10%  in  volume  com-­‐

pared  to  the  starting  product  (20%  DM  sludge).  This  would  mean  that  the  pro-­‐

ducer  should  have  to  dispose  of  an  amount  of  special  waste  significantly  low-­‐

er.  Future  research,  however,  will  have   to   focus  on   the  emissions   that   the  pro-­‐

cess  produces  into  the  atmosphere,  in  order  to  see  if  there  could  be  a  hazard  for  

the  human  heath  (see  following  section).  

 

! PZ!

>RKR<*E&-,,-%(,*$#%&*,150."*)%&/5,+-%(*

6150."*0#4-(.*'(0*/5#(-(.*"&-,,-%(,!'#"* +%7-),!5(0"##"7#","(+"0* -(*)5#3

#"(+* 1-+"#'+5#"a! .)$6&! H*'+0H)0&! %B&.&! @'*6&..&.! ('&! $*%! H)0&+8! =.&0C! #$! %B).!

.&6%)*$!.*3&!'&.=+%.!@'&.&$%&0!)$!'&6&$%!.6)&$%)D)6!('%)6+&!'&+(%&0!%*!.+=01&!)$6)$\

&'(%)*$!&3)..)*$.!('&!>')&D+8!0&.6')>&0C!

!

R*! @'*<)0&! ($! &.%)3(%)*$! *D! %B&! &3)..)*$.! D'*3! .+=01&! 0'8)$1a! S(1(hh)! &%! (+C!

9PLLY:!@'*@*.&0!(!)%&7'#-,%(*\-+2*"&-,,-%(,*$#%&*,150."*0#4-(.!($0!D'*3!(!

@+($%!H)%B!(!,150."* -()-("#'+-%(* 7#%)",,C! A*'!0(%(!*$!0'8)$1a!&3)..)*$.!B(<&!

>&&$!($(+8.&0!D'*3!D)<&!@+($%.!%B(%!=.&!(!6*$<&6%)<&!0')&'!H)%B!(!%')@+&!@(..!'*%(\

'8!0'=3i!D*'!)$6)$&'(%)*$a!0(%(!H(.!%(_&$!D'*3!(!@+($%!=.)$1!D+=)0!>&0!%&6B$*+*18C!

RB&!'&.=+%.!*D!%B).!($(+8.).!('&!.=33(').&0!)$!R(>+&!Kc!

!B'/1"*?*M*H%&7'#-,%(*/"+\""(*"&-,,-%(,*$#%&*0#4-(.*'(0*-()-("#'+-%(*WJ'.'^^-e*"+*'1Re*<==QX*

B47"*%$*"&-,,-%(* O#4-(.*

W&.@`.*OTX*

N()-("#'+-%(*

W&.@`.*OTX*

IF<*_*6F<* PPM! YLOCJON!

ILA* OLCM! P"CZ"Z!

O5,+,* MNCY! KCYKY!

L"'84*&"+'1,* "CP"P! LCLPMJ!

!

Q.!6($!>&!.&&$!D'*3!%B&!%(>+&a!b=($%)%(%)<&+8a!%B&!+('1&'!&3)..)*$.!0&%&6%&0!H&'&!

IF<*_*6F<!>*%B!0=')$1!0'8)$1!($0!)$6)$&'(%)*$a!HB)+&!%B&!+*H&'!*$&.!H&'&!B&(<8!

3&%(+.C!#%!6($!(+.*!>&!$*%)6&0!%B(%!%B&!&3)..)*$.!*D!IWP!r!5WP!H&'&!B)1B&'!(D%&'!

)$6)$&'(%)*$! 6*3@('&0! %*! %B&! 0'8)$1! @'*6&..a!HB)+&! %B&! *@@*.)%&! B(@@&$&0! D*'!

ILAe* 05,+,*($0* 2"'84*&"+'1,a!HB)6B!('&!.)1$)D)6($%+8! +&..!0&%&6%&0!0=')$1!%B&!

)$6)$&'(%)*$!@'*6&..C!

!

W%B&'! .%=0)&.! *$! .+=01&! 0'8)$1! &3)..)*$.! H&'&! '&@*'%&0! )$! 7B)$(! (%! qB&`)($1!

G$)<&'.)%8!9U($1hB*=:c!!

T=!&%!(+C! 9PL"K:!0&<&+*@&0!(!$*<&+!

.8.%&3! D*'! .+=01&! 0).@*.(+a! HB)6B!

6*3>)$&.! 0#4-(.* '(0* )%3!G-.5#"*>?*M*H%()"(+#'+-%(*%$*7%115+'(+,*$#%&*

,150."*0#4-(.*'+*>>]*F<*"&-,,-%(,*(Lu, et al., 2013)*

! PY!

)%&/5,+-%(C! RB&8! B(<&! %&.%&0! %B&! (%3*.@B&')6! &3)..)*$! 6B('(6%&').%)6.! D'*3!

%B&!.8.%&3!($0!%B&!'&.=+%.!('&!.=33(')h&0!)$!A)1='&!"K!($0!A)1='&!"MC!#%!6($!>&!

*>.&'<&0!%B(%!%B&!8)&+0.!*D!IL?!($0!6F<!('&!.)1$)D)6($%+8!B)1B&'!6*3@('&0!%*!%B&!

*%B&'!6*3@*=$0.!9D'*3!@*)$%!Q!%*!@*)$%.!]!($0!7a!%B&!>)*+*1)6(+!0&*0*').(%)*$!*D!

IUK! H(.! 0*$&! %B'*=1B! 0&1'(0(%)*$! *D! IUKa! =$0&'! %B&! &DD&6%! *D! %B&! >)*+*1)6(+!

%')6_+)$1!D)+%&':C!!

#$!%B&!)$6)$&'(%*'!H&'&!.&$%!,"&-30#-"0*

,150."* '(0* )%'1! 9H)%B! %B&! 3(..! '(%)*!

"CLcNCJ! 9+k+::! ($0! %B&! 6*$6&$%'(%)*$.!

*D! %B&! 0).6B('1&0! D+=&! 1(.! ('&! '&@*'%&0!

)$!A)1='&!"M!9T=a!&%!(+Ca!PL"K:C!

!

!

?&$1!&%!(+C!9PLLN:!B(<&!)$<&.%)1(%&0!%B&!&3)..)*$.!*D!8%1'+-1"*)%&7%5(0,!9[7.:!

0=')$1!3=$)6)@(+!.&H(1&!.+=01&!9-55:!($0!@(@&'!3)++!.+=01&!92-5:!0'8)$1!@'*\

6&..&.a! HB&'&! %B&! %&3@&'(%='&! H(.! &+&6%')6(++8! 3()$%()$&0! (%! "YLp7C! RB&)'! '&\

.=+%.!)$0)6(%&0!%B(%!D)<&!_)$0.!*D![7.a!)C&C!HF<e*IL?e*HUL>Q*W(32"7+'("Xe*8%1'+-1"*

$'++4* ')-0,* WVG9,X* '(0* HLA!H&'&!&3)%%&0!0=')$1! %B&!0'8)$1!@'*6&..C!IL?! ($0!

HF<! H&'&! %B&! 7#-&'#4* )%&7%5(0,! '&+&(.&0! 0=')$1! %B&! -55! 0'8)$1! @'*6&..a!

HB)+&!)$!%B&!2-5!@'*6&..a!VG9,!($0!HF<!&3)..)*$.!H&'&!3*.%!(>=$0($%C!RB&!*>\

.&'<&0!@('(3&%&'.a!HB)6B!)$D+=&$6&0!3*.%!%B&!&3)..)*$!'(%&!D*'!D*='!*=%!*D!D)<&!

[7.!0&%&6%&0!9&e6&@%!D*'!7UM:a!H&'&!+"&7"#'+5#"!($0!\'+"#*)%(+"(+!*D!.+=01&!

9?&$1a!&%!(+Ca!PLLN:C!

!G-.5#"*>A*M*H%()"(+#'+-%(*%$*+2"*&'-(*)%&3

7%("(+,*%$*$15"*.',*(Lu, et al., 2013)*

  27  

 Figure  15  –  Emission  rate  of  the  four  VCs  detected  in  the  drying  process  at  160°C  (Deng,  et  al.,  2009)  

 

It  is  then  difficult  to  predict  which  type  of  emissions  will  result  from  sludge  in-­‐

cineration,  also  because  they  strongly  depend  on  what  is  in  the  sludge.  Sludge  

coming   from  Urban  WWTP,   however,   seems   to   do   not   present   emissions  with  

content  of  hazardous  compounds  higher  than  the  limits  imposed  by  the  regula-­‐

tion,  even  though  more  research  is  necessary.  Regarding  the  innovative  project,  

in  fact,  an  emissions  analysis  is  planned  in  the  short  term,  in  order  to  obtain  a  

clearer   characterization   of  what   is   emitted   from   the   projected   system   into   the  

atmosphere.    

   

188 W.-Y. Deng et al. / Journal of Hazardous Materials 162 (2009) 186–192

Fig. 3. Drying rate curves of PMS and MSS (drying temperature T = 160 ◦C, air velocityVa = 0.108 m/s).

from ambient to experimental temperature. Then, the evaporationsurface shrank from sludge surface to the interior of the sludge,and the sludge volume was reduced with the loss of moisture andvolatile matters. The rate of water vapour evolution was measuredby measuring the air humidity discharged from the drying cham-ber by FTIR analyzer, and the rate of moisture loss (Fig. 3) wasback-calculated. As shown in Fig. 3, the drying rates of both sludgesmarkedly increased at the beginning of the drying process due tothe increase of the sludge temperature. The drying rate of the PMSwas higher than that of the MSS for the same water content, becauseof different physical properties.

As suggested by Vesilind and Ramsey [1], sludge sample wouldlose 10% of high heating value when the drying temperature wasaround 150 ◦C. This indicated that the drying and loss of volatilesubstances occurred in parallel in sludge drying process, and thatthe loss of volatile substances played an important role when thedrying temperature was higher than 150 ◦C [9]. In this test, the dry-ing temperature was electrically controlled at 160 ◦C. Duplicatedexperiment was conducted to confirm the reproducibility of theresult. The differences for the results of two parallel tests was exis-tent which was caused by inhomogeneity of the sludge samples,but the percentage error of the tests were below 5%, and the resultdiscussed below came from one of the two tests. As shown in Fig. 4,FTIR spectra of gaseous samples were measured, and four kindsof volatile compound, i.e. NH3, C7H16, CO2 and volatile fatty acids(VFAs), were clearly identified.

3.1.1. NH3 emissionAs shown in Fig. 5, the NH3 emission rates of the MSS

and PMS passed through three stages in the drying process,i.e. the rising rate stage which interrelated to the increaseof sludge temperature, then the constant rate stage whichwas between 0.75–2.33 kg H2O kg−1 DS for the MSS and 0.49–1.63 kg H2O kg−1 DS for the PMS, and finally the decreasing ratestage where the NH3 emission rate dropped rapidly from the highlevel. In this study, the NH4

+ concentrations of the MSS and PMSsolutions were measured by ion chromatography. The NH4

+ con-centration was 5.46 g kg−1 DS for the MSS and 0.28 g kg−1 DS for thePMS, respectively. The higher NH4

+ concentration of the MSS maycontribute to the higher NH3 emission during the sewage sludgedrying process. It has been reported that the NH3 emitted fromsludge drying was formed through hydrolysis of protein [10]. Whenthe protein in sludge dissolves, it hydrolyzes to form multipeptide,dipeptide and amino acid. The amino acid further hydrolyzes toform organic acid, NH3 and CO2 [11].

Fig. 4. Infra-red spectra of gaseous samples from the drying of (a) MSS (at0.11 kg H2O kg−1 DS) and (b) PMS (at 0.02 kg H2O kg−1 DS) (drying temperatureT = 160 ◦C, air velocity Va = 0.108 m/s).

3.1.2. C7H16 emissionThe emission rate curves of the C7H16 shown in Fig. 5 were

much different than that of the NH3. The distribution of thewater in sludge plays an important role in the emission of volatile

Fig. 5. Time-resolved C7H16 and NH3 emission rate curves and water content of(a) MSS and (b) PMS during drying experiments (drying temperature T = 160 ◦C, airvelocity Va = 0.108 m/s).

W.-Y. Deng et al. / Journal of Hazardous Materials 162 (2009) 186–192 189

organic compounds. Rudolfs and Baumgartner [12] assumed thatvolatile matters were not driven from a sludge sample until 80–90%by weight of the original moisture content of the sludge hadevaporated given that residual moisture was evenly distributedthroughout the sludge cake. However, the sludge surface temper-ature was higher than the interior of the sludge cake before thesludge was totally dried, and the exposed sludge surface areas tendto dry faster than those buried within the sludge cake. Therefore,the C7H16 was firstly driven from dry sludge surface. As shown inFig. 5, the C7H16 emission rate of the MSS moderately increasedbefore the water content reaching to about 0.43 kg H2O kg−1 DS,and then followed by a marked increase. The C7H16 emissionrate reached a peak value of 2.80 mg kg−1 s−1 DS when the MSSwas totally dried. After that, it decreased rapidly until reacheda constant value. In the case of the PMS, the C7H16 emissionrate started a marked increase until the water content decreasedto about 0.11 kg H2O kg−1 DS, and then reached a peak value of0.76 mg kg−1 s−1 DS which was much less than that of the MSS.It was obvious that the increase of the C7H16 emission rate wasfollowed by the decrease of sludge drying rate. Since C7H16 con-tributes to the calorific value of sludge, the loss of calorific valuewould become more and more significant in the drying process.

There are two possible ways for the C7H16 formation. It mightbe present as individual component or be formed from the thermaldegradation of more complex organics. C7H16 is a volatile com-pound, with the boiling point 98.5 ◦C. Thus, it should be expectedthat most of C7H16 would be evaporated with water at the begin-ning of the drying process, given that C7H16 was present in largequantities as individual component in sludge. However, Fig. 5shows that the C7H16 emission rate kept at relatively low level andincreased mildly between the time of 0–40 min, and it reached themaximum until the sludge was completely dried. So it was rea-sonable to conclude that the C7H16 was mainly formed from thethermal degradation of more complex organics.

3.1.3. VFAs emissionThree kinds of VFAs, i.e. propionic acid, acetic acid and formic

acid, were detected during the drying process (Fig. 6). Fig. 6a showsthe VFAs emission rates of the MSS. It was found that the VFAsemission rates markedly increased at the beginning of the dryingprocess. After that, their emission rates gradually decreased withthe loss of moisture content. As for the PMS, the emission rate offormic acid was negligible compared with the other two acids, andthe propionic acid had a constant emission rate between sludgemoisture contents of 0.8–3.8 kg H2O kg−1 DS.

It has been widely reported that the VFAs could be producedfrom hydrothermal treatment of organic matters [13–15]. In thesereports, the VFAs were formed from hydrolysis of MSS, PMS, andplastic waste, etc. However, only a few researches about the for-mation of VFAs from thermal drying of sludge have been reported[10]. It indicated that the VFAs released from thermal drying pro-cess were also formed through the hydrolysis of organic matters.Because of the substantially lower temperature and pressure underwhich the drying test was conducted, the VFAs emission rates were

Fig. 6. VFAs emission rates vs. water content during drying of (a) MSS and (b) PMS(drying temperature T = 160 ◦C, air velocity Va = 0.108 m/s).

much lower than those of hydrothermal treatment process. In addi-tion, when the water content of the sludge decreases, the hydrolyticaction will be weakened, as well as the VFAs emission rates. Asshown in Fig. 6, there were no VFAs emission when the MSS andPMS were totally dried.

3.1.4. CO2 emissionAs shown in Fig. 1, the dry air was used as carrier gas in the

batch drying test. Therefore, the total CO2 concentration measuredduring the drying process included the part emitted from sludgedrying and the part existed in the dry air. The CO2 emission ratesshown in Fig. 5 was calculated by subtracting the CO2 concentrationin dry air from the total CO2 concentration. It was obvious that theCO2 emission was significant compared with other VCs emissions.There was a sharp increase of the CO2 emission at the early state ofdrying processes for both kinds of sludge. After reaching the peakvalue, the CO2 emission rate dropped continuously with time. TheCO2 emission rate of the MSS was much higher than that of thePMS, and the peak value of the CO2 emission of the MSS was morethan twice over that of the PMS.

Table 2Data of continuous drying tests

Sludge type MSS PMS

Test no. 1 2 3 4 5 6 7 8Heating oil temperature (◦C) 140 150 160 170 140 150 160 170Feed rate (kg/h) 15 14.5 13.5 16.8 13.2 12.8 12.4 15.1Inlet moisture (kg H2O kg−1 DS) 3.69 3.69 3.69 3.69 4.85 4.85 4.85 4.85Discharge moisture (kg H2O kg−1 DS) 1.91 1.12 0.97 1.01 0.42 0.32 0.31 0.35Paddle rotation (rpm) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5Air flow rate (N m3/h) 17.7 15.8 16.4 15.6 18.4 18.2 17.8 17.2

! PJ!

H2'7+"#*<*M*O",)#-7+-%(*%$*+2"*,4,+"&,*5)$6&!%B&!6'&(%)*$!*D! %B&! D)'.%!@'*%*%8@&!*D! %B&!@'*@*.&0!0'8)$1!.8.%&3!D*'!>)*\

+*1)6(+!.+=01&!).!.%)++!)$!@'*1'&..a!%B&!%&.%)$1!H(.!0*$&!H)%B!%H*!.&@('(%&!.8.%&3.!

)$%&$0&0!%*!6'&(%&!6*$0)%)*$.!.)3)+('!%*!%B*.&!*D!%B&!@'*@*.&0!.8.%&3C!!

RB&! .*+('!0'8)$1!6*3@*$&$%!H(.! %&.%&0! )$!(!,%1'#* ,+-11* $%#*\'+"#* 0"75#'+-%(!

%B(%!H)++!>&!0&D)$&0!(.!!#%+%+47"*>!($0!(!,4,+"&* $%#*0#4-(.* $%%0! %B(%!H)++!>&!

'&D&''&0!%*!(.!!#%+%+47"*<a!>*%B!0&<&+*@&0!>8!5*+H(!.'+C!RB&!%B&'3(+!0'8)$1a!*$!

%B&!*%B&'!B($0a!H(.!%&.%&0!)$!(!+(>*'(%*'8!*<&$!.&%!(%!"ZLp7C!

!

RB&!%H*!@'*%*%8@&.!H)++!>&!0&.6')>&0! )$! %B&! D*++*H)$1!.&6%)*$.a!(D%&'!HB)6B!%B&!

@'*`&6%!D*'!.+=01&!0'8)$1!($0!>='$)$1!H)++!>&!@'&.&$%&0C!

!

<R>*6%1'#*,+-11*$%#*\'+"#*0"75#'+-%(*!

!G-.5#"*>Q*M*6%1'#*,+-11*,)2"&"*'(0*72%+%.#'72*W6%1\'*,#1X*

!

2'*%*%8@&!"!).!(!.*+('!.%)++!D*'!%B&!+#"'+&"(+*%$*7%115+"0*%#*,'1+4*\'+"#a!HB)6B!

'&b=)'&.!&$&'18!*$+8!D'*3!.*+('!'(0)(%)*$C!#$!1&$&'(+a!%B&!>(.)6!@')$6)@+&!*D!(!%'(\

0)%)*$(+! .*+('! .%)++! ).! %B&! .#""(2%5,"* "$$")+c! .*+('! '(0)(%)*$! @(..&.! %B'*=1B! (!

%'($.@('&$%!6*<&'!($0!).!6*$<&'%&0!D'*3!)''(0)(%)$1!%*!B&(%)$1!&$&'18!)$!(!0('_!

>(.)$C!5(+%!H(%&'!).!@=%!)$!%B&!>(.)$!($0a!>&)$1!B&(%&0a!&<(@*'(%&.!($0!%B&$!6*$\

0&$.(%&.!(%!%B&!+*H&'!.='D(6&!*D!%B&!6*<&'a!HB)6B!).!(%!(!.+)1B%+8!+*H&'!%&3@&'(\

%='&!>&6(=.&!*D! )%.!6*$%(6%!H)%B!%B&!&e%&'$(+!()'C!RB&!6*$0&$.(%&! D+*H.!%B'*=1B!

%B&!)$%&'$(+!.='D(6&!'&(6B)$1!%B&!6*++&6%)*$!@*)$%!($0!)%! ).!%B&$!%'($.D&''&0!*=%\

.)0&!%B&!.%)++!9A'($6&.6B&%%)!n!E*$&++(a!PL"P:C!!

!

  29  

The  efficiency  of  the  system  depends  on  three  factors:  

• manifold  structure;  

• heat  conservation;  

• structure  and  design  of  the  solar  still.  

 

Prototype  1  is  a  solar  still  with  some  unusual   features:  it  combines  a  continu-­‐

ous  flow  of  water  during  the  process  with  the  suction  of  humid  air  in  the  still.  

The  former  eliminates  stagnate  water  and  system  scaling,  whereas  the  latter  re-­‐

moves  condensation  on  the  internal  surface  of  the  cover.  This  combination,  with  

the  addition  of  heat  exchangers,  minimizes  the  energy  loss  into  the  external  en-­‐

vironment.  Evaporated  water  is  channelled  into  copper  pipes,  drawn  in  by  a  cold  

salty   solution  entering   the   system.  Vapour   in   the  pipes   is   then   condensed,   and  

the  energy   from  condensation   is   returned   to   the   cold   salty   solution,   increasing  

the  efficiency  of  the  system  (Franceschetti  &  Gonella,  2012).  

 

In   addition,   this   prototype   of   solar   still   is   particularly   suitable   for   areas   of   the  

world,  where  there  is  water  scarcity  but  at  the  same  time  a  high  amount  of  in-­‐

coming  solar  radiation,  which  makes  the  depuration  process  faster;  the  lack  of  

depuration   plant   and   purified   water   causes   illness   and   diseases   through   the  

population,  that  is  forced  to  drink  contaminated  water.  Being  a  completely  free-­‐

standing  energy  system,  it  is  suitable  for  critical  situations:  the  simple  scalabil-­‐

ity  of  the  system,  in  fact,  allows  to  suit  the  needs  of  small  and  medium  isolated  

communities.    

   

! KL!

<R<*G%%0M0#4-(.*,4,+"&*!

! ! !G-.5#"*>U*M*G%%0*0#4-(.*,4,+"&a*72%+%.#'72*%$*+2"*7#%+%+47"*W%(*+2"*1"$+X*

'(0*#"(0"#-(.*W%(*+2"*#-.2+X*W6%1\'*,#1X*

!

RB&! 0'8)$1! @'*6&..! ).! *$&! *D! %B&! 3*.%! 6*33*$! %&6B$)b=&.! =.&0! %*! 7#","#8"*

$%%0! .)$6&! %B&!0&B80'(%)*$!*D! *'1($)6! 6*3@*=$0.!@'&<&$%.! %B&! 1'*H%B!*D!3)+\

0&H!($0!>(6%&')(+!6*+*$)&.C!#$.)0&!%B&!0'8&'.a!)%!).!@*..)>+&!%*!(00!(++!.*+)0!6*3\

@*=$0.! H)%B! B)1B! H(%&'! 6*$%&$%a! .=6B! (.! /-%&',,a! D*'! )$0=.%')(+! *'! D**0! =.&C!

7*33*$!0'8)$1!3&%B*0.!D*'!D**0!)$6+=0&!*<&$.!@*H&'&0!H)%B!&+&6%')6!&$&'18!*'!

B80'*6('>*$C!RB).!@'*%*%8@&!).a!)$.%&(0a!(!)%&71"+"14*'5+%(%&%5,*,4,+"&!%B(%!

'&b=)'&.!*$+8!,%1'#*"("#.4C!RB).!.8.%&3!)$B&')%.!(++!%B&!.6)&$%)D)6a!%&6B$)6(+!($0!

%B&'3*08$(3)6! _$*H+&01&! *$! .*+('! 6*++&6%*'.a! 6*++&6%&0! >8!6%1\'* ,#1i! %B&! 0&\

.)1$a!(++!*D!%B&!3(%&')(+.!($0!%B&!+&$1%B!*D!)%.!6*3@*$&$%.!H&'&!0&%&'3)$&0!(D%&'!

(!@&')*0!*D!'&.&('6Ba!&.@&6)(++8!*$!D+=)0*\08$(3)6!($(+8.).a!6*$0=6%&0!>8!5*+H(!

.'+C!!

RB&!.*+('!0'8&'!6*$.).%.!*D!($!-,%1'+"0*)2'&/"#!

H)%B!(!.&%!*D!'(6_.!)$.)0&a!HB&'&!%B&!D**0!6($!>&!

@+(6&0C! RB).! ).! 6*$$&6%&0! %*! %B&! D+(%\@+(%&! ,%1'#*

)%11")+%#,a!HB)6B!6*$<&'%!.*+('!&$&'18!)$%*!B&(%!

&$&'18C!W$&!.*+('!6*++&6%*'!).!3(0&!>8c!!

\ (! B)1B\%'($.3)..)*$\'(%&! @*+86('>*$(%&!

6*<&')$1!*$!%B&!%*@i!

\ (! 0('_\6*+*='&0! (>.*'>)$1! @+(%&! *$! %B&!

>*%%*3C!

5=$+)1B%a! @(..)$1! %B'*=1B! %B&! @*+86('>*$(%&! 6*<&')$1a! '&(6B&.! %B&! (>.*'>)$1!

@+(%&a!B&(%)$1!)%!=@!%*!B)1B!%&3@&'(%='&.!90&@&$0)$1!*$!.*+('!'(0)(%)*$a!=$%)+!OL\

JLp7:!Q!8"(+-1'+-%(*,4,+"&!%B&$!@&'3)%.!%B&!B*%!()'!6*3)$1!D'*3!%B&!6*++&6%*'.!

!G-.5#"*>Z*M*G%%030#4-(.*,4,+"&a*'-#*

$15b",*W6%1\'*,#1X*

! K"!

%*!&$%&'! %B&!@*'*=.!'(6_.! )$.)0&! %B&!6B(3>&'a!&<(@*'(%)$1! %B&!H(%&'!6*$%()$&0!

)$.)0&! %B&! D**0a!>&D*'&!&e)%)$1! %B'*=1B!(! 6B)3$&8!(%! %B&! %*@!*D! %B&!0&<)6&C!W$&!

)$%&'&.%)$1! D&(%='&! ).! %B(%! %B&! D+=e!*D!()'!3*<&.! D'*3! +&D%! %*! ')1B%!*D! %B&!.8.%&3!

9+&D%!).!H&'&!%B&!B*%!()'!('')<&.!D'*3!%B&!.*+('!6*++&6%*'.:a!&$B($6)$1!)$!%B).!H(8!

%B&!0'8)$1!&DD)6)&$68!9.&&!A)1='&!"J!A)1='&!"O:C!

!

RB).! @'*%*%8@&!H(.! =.&0!0=')$1! %B&! &e@&')3&$%(+! @B(.&! *D! %B&! @'*`&6%! .)$6&! )%!

H(.!%B&!)$.%'=3&$%.!%B(%!H(.!(<()+(>+&!D*'!%B&!%&.%)$1!@B(.&!($0!%B(%!6*=+0!>&.%!

'&@'*0=6&!%B&!.*+('!0'8)$1!6*$0)%)*$.!%B(%!H)++!>&!@('%!*D!%B&!.+=01&\0'8)$1!.8.\

%&3c!>*%B!%B&!@'*%*%8@&!($0!%B&!0&.)1$&0!@'*`&6%!('&!6+*.&0!).*+(%&0!.8.%&3.!>=%!

D*'!0)DD&'&$%!'&(.*$.c!%B&!D**0\0'8)$1!.8.%&3!3=.%!.%*'&!D**0!)$!.(D&!6*$0)%)*$.a!

(H(8!D'*3!&e%&'$(+!6*$%(3)$($%.a!HB)+&!%B&!.+=01&\0'8)$1!.8.%&3!3=.%!_&&@!%B&!

B&(%!)$.)0&!%B&!6B(3>&'!9H)%B!(!0&.)1$!.)3)+('!%*!%B(%!*D!($!)$0=.%')(+!*<&$:C!

<R?*6150."M0#4-(.*,4,+"&*!

!G-.5#"*>Y*M*J"(0"#-(.*%$*+2"*O#4S'*,4,+"&*W6%1\'*,#1X*

RB&! @'*@*.&0! %&6B$*+*18! ).! ($! )$$*<(%)<&! .8.%&3! D*'! 0'8)$1! >)*+*1)6(+! .+=01&!

D'*3!FFR2.a!0&.)1$&0!(.!(!)%&/-('+-%(*%$*'* +#'0-+-%('1* ,150."*%8"(*'(0*'*

,%1'#* .#""(2%5,"* 0#4"#a! H)%B! +*H! %B&'3(+! ($0! &+&6%')6! &$&'18! 6*$.=3@%)*$C!

7=''&$%+8a!(++!H(%&'\%'&(%3&$%!@+($%.!=.&!.@&6)(+).&0!&b=)@3&$%!%*!&e%'(6%!H(%&'!

  32  

from   the   sludge,   but   only   few   of   them   have   drying   systems   that   can   obtain   a  

dried  sludge  with  85-­‐90%  of  DM  (Frenceschetti, et al., 2014).  

 

The  proposed  system  is  something  different  from  what  is  currently  available  on  

the  market,   in   terms  of   performances,   design,   technology   and  dimensions.   The  

main  feature  that  enhances  its  energy  efficiency  is  the  size:  the  module  is  pro-­‐

jected  to  have  the  dimension  of  a  common  container  (a  box  of  approximately  6m  

x  2.5m  x  2.5m).  This  requires  a  lot  less  heat  to  dry  the  chamber  compared  to  the  

greenhouse  one  of  the  SSDP  available  in  the  market  (see  Paragraph  1.4).  

Through  the  drying  process,  the  moisture  content  of  the  sludge  is  significantly  

reduced:  for  a  sludge  coming  from  urban  wastewater,  it  is  possible  to  achieve  a  

final  water  content  of  10%  (which  means  a  DM  content  of  90%),  as  compared  

to  a  final  water  content  of  75-­‐80%  achieved  by  current  mechanical  methods  (see  

Paragraph  1.1.3)  

 

2.3.1  Combustion  of  the  dried  sludge  

The  innovative  idea  behind  the  proposed  system  is  that  the  sludge  can  be  used  as  

a  fuel  for  producing   thermal  heat   through   its   combustion,  and  this  heat  can  

be  used  for  drying  new  sludge.  The  final  phase  of  the  process  is,  in  fact,  the  incin-­‐

eration  of  the  sludge.  

 

It  is  necessary  to  dry  the  sludge  before  combustion  since  sludge  with  a  solid  mat-­‐

ter  index  between  30%  and  50%  is  autogenous  (it  does  not  require  additional  

fuel  for  the  combustion)  (Turovskiy  &  Mathai,  2006).  Anyway,  it  is  important  to  

note  that  the  thermal  drying  process  has  a  negative  energy  balance,  since  the  

energy  required  to  dry  the  sludge  is  more  than  the  energy  coming  from  the  com-­‐

bustion:  the  energy  produced  by  the  combustion,  in  fact,  supply  for  an  expected  

80%  of  the  process  while  another  20%  is  needed  (see  calculations  in  Paragraph  

4.7).  For   this  reason  an  additional   energy   source   is   required   to   fill   this  gap:  

the  combination  of  solar  air   collectors   to  the  high-­‐performance  sludge  burner  

allows  to  enhance  the  efficiency  of  the  system  and  then  cover  the  whole  drying  

! KK!

@'*6&..!9D*'!%B&!&e@&6%&0!.)h&!*D!%B&!6*++&6%*'.!.&&!2('(1'(@B!MCO:C!#$!%B).!H(8a!$*!

(00)%)*$(+!D=&+.!('&!'&b=)'&0C!

!

<R?R<*B")2(-)'1*0",)#-7+-%(**!

!G-.5#"*<=*M*6150."*0#4-(.*,4,+"&a*)%&7%("(+*,)2"&"*W6%1\'*,#1X*

!

RB&!0",-.(!*D!%B&!.8.%&3!).!<&'8!.)3)+('!%*!($!-(05,+#-'1*%8"(a!HB)6B!(++*H.!D*'!

(! +*H!%B&'3(+!0).@&'.)*$!'(%&C!W$&! )3@*'%($%! D&(%='&! ).! %B(%! %B&!.8.%&3!6($!>&!

>=)+%!)$!&%051",a!%B=.!'&0=6)$1!@'*0=6%)*$!6*.%.C!RB&!*$+8!<(')(>+&!6*3@*$&$%!

).a!)$!D(6%a!%B&!.*+('!6*++&6%*'a!HB)6B!.B*=+0!>&!0)3&$.)*$&0!(66*'0)$1!%*!%B&!1&*\

1'(@B)6(+!+*6(%)*$!HB&'&!%B&!.8.%&3!H)++!>&!=.&0!9.&&!2('(1'(@B!MCO:C!

RB&! 0'8)$1! @'*6&..! ).! &$&'1&%)6(++8! (..).%&0! >8!72%+%8%1+'-)* 7'("1,! ($0! >8! (!

2-.237"#$%#&'()"* -(("#*/5#("#a!(+)3&$%&0!>8!%B&!0')&0!.+=01&c!%B).!3(_&.! )%!

(+3*.%!($!&$&'18\'5+%(%&%5,*,4,+"&a!1'&&$!($0!.=.%()$(>+&C!

!

RB&!6*3@*$&$%.!*D!%B&!.8.%&3!('&!(.!D*++*H.c!

>X H#5,2-(.*,)#"\*

<X C"1+*)%(8"4"#*

?X 6%1'#*+2"#&'1*)%11")+%#*

AX C5#("#*

KX 9,2",*

RB&!.8.%&3!).!6*3@').&0!*D!(!B*@@&'a!H)%B!(!.6'&H!@*.)%)*$&0!(%!)%.!>*%%*3!9":!

9.&&!A)1='&!P":a! %B(%! 6'=.B&.! %B&! .+=01&a! *$!*$&!B($0a! '&0=6)$1! %B&! .)h&! *D! %B&!

1'()$.!($0a!*$!%B&!*%B&'!B($0a!0).%')>=%)$1!%B&!3(%&')(+.!*$!%B&!6*$<&8*'!>&+%!9P:!

9.&&!A)1='&!PP:a!+*6(%&0!=$0&'$&(%BC!RB&!>&+%!>')$1.!%B&!.+=01&!)$.)0&!%B&!*<&$c!

%B&! )$%&'$(+! .%'=6%='&! ).! 6*3@*.&0! *D! %B'&&! *'! D)<&! @('(++&+.! 6*$<&8*'! >&+%.a!

!"#$%&'&()*(+,-&

!"#$%&'(#)#%&*$+'&##

,"#-'./#%012'3'&##

4"#$0.5&#56$0&-'&##

7"#-*&1'&# 8"#5$+'$#

!"#$%&'&()*+&,-./0).1&

23&4("5$&6&("7485"&

93&:5;<&(=>?5#5"&

@3&4=;%"&%!4=":5"&

A3&:7">5"&B3&%4854&

! KM!

HB)6B!('&!0&.)1$&0!%*!%'($.@*'%!%B&!.+=01&!($0!%='$!)%!*<&'!&<&'8!%)3&!)%!0'*@.!

D'*3!*$&!+&<&+!%*!%B&!$&e%C!RB).!).!<&'8!)3@*'%($%!.)$6&!%B&!%='$)$1!*D!%B&!.+=01&!

.*+<&.!($!)..=&!*>.&'<&0!0=')$1!%B&!0'8)$1!@'*6&..c!%B&!D*'3(%)*$!*D!(!.=@&'D)6)(+!

6'=.%a!HB)6B!@'&<&$%.!%B&!0'8)$1!*D!%B&!.+=01&!=$0&'$&(%BC!

!G-.5#"*<>*M*H#5,2-(.*,)#"\*W6%1\'*,#1X*

! !G-.5#"*<<*M*H%(8"4%#*/"1+*W6%1\'*,#1X*

!

Q$*%B&'!@&6=+)('!D&(%='&!*D!%B&!.8.%&3!).!%B&!'-#*$15bC!RB&!0'8)$1!*D!%B&!3(%')e!).!

*>%()$&0!>8!(@@+8)$1!%B&!_$*H\B*H!0&<&+*@&0!>8!5*+H(!.'+a!>(.&0!*$!6B($$&+\

+)$1!B*%!()'!H)%B!($!-()-0"(+*'(0*+5#/51"(+*$15b!9&<&$!%*=1B!=$0&'!%B&!$=3>&'!

*D!S&8$*+0.:a! @+=.! (! .@&6)D)6! %B&'3*08$(3)6! .%=08!*$! &<(@*'(%)*$C! #%! B(.!>&&$!

0&.)1$&0! (! .8.%&3! *D! $%#)"0* 8"(+-1'+-%(! %B'*=1B! .3(++! )$0=.%')(+! D($.a! HB)6B!

&$B($6&!%B&!0&B80'(%)*$!*D!%B&!.+=01&C!

!

QD%&'!%B&!@'&<)*=.+8!0&.6')>&0!@B(.&.a!%B&!'&.=+%)$1!0')&0!.+=01&!B(.!(!,%1-0*)%(3

+"(+*%$*ZK3Y=]!9%B&!@&'6&$%(1&!6($!>&!3*0)D)&0!%*!3&&%!0)DD&'&$%!'&b=)'&3&$%.!

>8!(0`=.%)$1!%B&!%)3&!%B&!.+=01&!).!_&@%!)$.)0&!%B&!*<&$:a!H)%B!($!2"'+-(.*8'15"!

*D!('*=$0!>=3>K*Tk@`.!97B()a!PLLO:!9A+(1(a!PLLN:C!RB).!0'8!.+=01&!6($!%B&$!>&!

@=%! )$!(!/5#("#! 9M:!(.!(! D=&+a! %*!@'*0=6&!B&(%! %B(%! 6($!>&!=.&0! %*!&$B($6&! %B&!

0'8)$1!*D!%B&!H&%!.+=01&!)$!%B&!@B(.&.!0&.6')>&0!@'&<)*=.+8C!

RB&!>='$&'!).!+*6(%&0!)$!%B&!+*H&'!@('%!*D!%B&!.8.%&3!($0!).!)$%&1'(%&0!H)%B!%B&!

0'8)$1!6B(3>&'!%B'*=1B!(!3&%(+!@('%)%)*$!%B(%!B(.!%B&!D=$6%)*$!*D!B&(%!0)DD=.*'!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! "

"

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"#$%&'"#(%!

"#$%&'()$!"**(+$#"$%&"'$()*+",-+".$()')/0"1"23)"%$44$"56%7*8/3$9":;"1"<=:>;".$6$?3)"@.AB"1"58)4C",$-(.'$%$/!"**(+$#"D3)??)"E3+2)6$4439":F"1"<;=G>"H+2$68)"')%+2)6)"@'IB"–"58)4J" 01234!5!6171#"=FK:>>L=GL;"8$9#"M<N"<F>"L>F==L;"""1""":;<#$#"*+4O)&*/P" " 2.+%(''&!&9!,121!/(!0&/=)&#"QAR"F=FKG=">$?:('$#"OOO&*+4O)&38"""1"""@AB&(9#"36S+T*+4O)&38"1"*+4O)TD$,&38" " 6&#('&9$!:=+(&9$: € 10.000,00 i.v."

54"D/+,$**+"%3"$**3,)?3+6$"U"$6$/($83,)V$68$",+)%372)8+"%)"76"3VD3)68+"S+8+2+48)3,+"$"%)"76"W/7,3)8+/$"368$/6+"

)%" )48+" /$6%3V$68+" )43V$68)8+" %)4" S)6(+" *8$**+&" I/CX)" Y736%3" U" 76" *3*8$V)" $6$/($83,)V$68$" )78+6+V+9"

8+8)4V$68$"(/$$6"$%"$,+*+*8$63W34$9",+6"?$/+"3VV3**3+63"6+,32$&"

"

Z7$*8$",)/)88$/3*83,[$" /$6%+6+"IQJXR" 34" *3*8$V)")"D3\")48)"$SS3,3$6?)"6$4" *$88+/$"%$3"*3*8$V3"%3"($*83+6$"%$3"

S)6([3&"

"

)*+,-../"0-1"23*+41""

R44+"*8)8+")887)4$"87883"(43"3VD3)683"%3"($*83+6$"%$3"/3S3783"*+6+"%+8)83"%3"*3*8$V3"36"(/)%+"%3"/3%7//$"34",+68$678+"%3"

acqua all’interno de3" S)6([39"Y7)43" S348/+D/$**$9"6)*8/+D/$**$"+",$68/3S7([$&" 54",+68$678+" 3%/3,+"(/)?3$")"Y7$*83"

*3*8$V3"D)**)"%)"G1<]"%3"^+*8)6?)"^$,,)")",3/,)"34"G=1G;]9"D)**)6%+"%)"76+"*8)8+"43Y73%+")%"76+"*+43%+"%$4"S)6(+"

*8$**+&"_7883" 3" *3*8$V3"$*3*8$683"%3"%3*3%/)8)?3+6$",+VD/3V+6+"$"*8/3??)6+" 3" S)6([3")4" S36$"%3"$*8/)//$" 34"V)((3+/"

,+68$678+"D+**3W34$"%3"),Y7)9"V)")44+"*8$**+"8$VD+",/$)6%+"%$(43")((4+V$/)83"%3"(/+**$"%3V$6*3+63"%3" S)6(+&"

H$4" NN]" %$(43" 3VD3)683" $*3*8$683" %+D+" Y7$*8)" +D$/)?3+6$" 3" S)6([3" 2$6(+6+" /),,+483" $" D+/8)83" )" 3VD3)683" %3"

*V)483V$68+"@%3*,)/3,[$9"*D)/(3V$68+")"8$//)9"$,,&B&"

"

54" *3*8$V)"IQJXR"*3" D+6$" 3VV$%3)8)V$68$"%+D+" 3" *3*8$V3"%3"%3*3%/)8)?3+6$9" )6%)6%+6$")" ,+4$88)/$" 3" S)6([3&"

I/CX)"U"%+8)8+"%3"76)"8/)V+((3)"*74",73"S+6%+"U"D/$*$68$"76)",+,4$)"S/)687V)8/3,$",[$"D$/V$88$"%)"76"4)8+"%3"

ridurre le dimensioni dei grani di fanghi e dall’altro distribuire e calibrare il materiale sul nastro trasportatore

D+/8+"*+88+"%3"$**)&"

"

""

"

"

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! "

"

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"#$%&'"#(%!

"#$%&'()$!"**(+$#"$%&"'$()*+",-+".$()')/0"1"23)"%$44$"56%7*8/3$9":;"1"<=:>;".$6$?3)"@.AB"1"58)4C",$-(.'$%$/!"**(+$#"D3)??)"E3+2)6$4439":F"1"<;=G>"H+2$68)"')%+2)6)"@'IB"–"58)4J" 01234!5!6171#"=FK:>>L=GL;"8$9#"M<N"<F>"L>F==L;"""1""":;<#$#"*+4O)&*/P" " 2.+%(''&!&9!,121!/(!0&/=)&#"QAR"F=FKG=">$?:('$#"OOO&*+4O)&38"""1"""@AB&(9#"36S+T*+4O)&38"1"*+4O)TD$,&38" " 6&#('&9$!:=+(&9$: € 10.000,00 i.v."

)*+,-./012,*/."3.,"41/56,"

5"S)6(U3"%3*3%/)8)839"76)"2+48)"8/38)83"$"%3*D+*83"*74"D3)6+9"2$6(+6+"8/)*D+/tati all’interno del forno DRYWA da un

6)*8/+" 8/)*D+/8)8+/$&" L’architettura" 368$/6)" %3" I/CV)9" ,+W$" *3" $236,$" )6,U$" %)44)" S3(7/)9" X" ,+*838738)" %)" D3Y"

D3)639"3WD34)83")"*Z)4?3"6$()8323&"[+6"\7$*8+"*3*8$W)"34"S)6(+9",)%$6%+"%3/$88)W$68$"*74"6)*8/+"*+88+*8)68$9"U)"4)"

possibilità di “autorivoltarsi”," /3*+42$6%+" 4)" D/+Z4$W)83,)" %$44)" S/)687W)?3+6$" %$44+" *8/)8+" *7D$/S3,3)4$"

3WD$/W$)Z34$"$%")/3$((3)W$68+"368$/6+&"]7$*8)",+6%3?3+6$"X"D/+8/)88)"D$/"87883"(43"*Z)4?3"D/+($88)83&"

"

54" S)6(+"2iene quindi trasportato lungo tutta l’intera lunghezza del

6)*8/+9" 4)" ,73"2$4+,38^"%3"W+23W$68)?3+6$"X" /$(+4)8)")88/)2$/*+"76"

*3*8$W)" $4$88/+63,+" @($*838+" %)" 76)" *$/3$" %3" *$6*+/3B" ,U$" /34$2)"

l’incidenza solare e" l’energia fornita dal bruciatore interno,

()/)68$6%+" \736%3" 76" 8$WD+" %3" D$/W)6$6?)" 3%+6$+" )4" S)6(+" D$/"

/)((376($/$"34"(/)%+"%3"$**3,,)?3+6$"*8)Z3438+&"

"

.3*8)"4)"%32$/*)"(/)674+W$8/3)"%$4"S)6(+")4"2)/3)/$"%$4",+68$678+"3%/3,+"36"$**+",+68$678+9"*3"3D+83??)"%3"78343??)/$"

%32$/*$"83D+4+(3$"%3"6)*8/3")44+"*,+D+"%3"()/)683/$"4)"W)((3+/$"S7+/37*,38)"%3"2)D+/$"%)4"4)8+"%3")DD+((3+"%$4"S)6(+"

*74"6)*8/+&"R"8)4"S36$"34"D/3W+"6)*8/+"8/)*D+/8)8+/$"*)/^",+*838738+"%)"76)"W)(43)"S36$"W$8)443,)9"D$/"D)**)/$"D+3"

nei nastri trasportatori inferiori all’impiego di una membrana idrofobica traspirante. Quest’ultima membrana è

/$)43??)8)" 36" 6)6+S/3Z/$" ,U$" ,+6*$68+6+" 34" D)**)((3+" %$4" 2)D+/$9" D7/" ()/)68$6%+" 4)" 8$678)" %$4" S)6(+" ,+6"

(/)674+W$8/3)"W+48+"S36$&""

"

L’essiccazione della matrice viene garantita sfruttando 34" _6+O" `+O" *2347DD)8+" %)" a+4O)" a/49" Z)*)8)" *744)"

,)6)43??)?3+6$"%3")/3)",)4%)"36",+6"S47**+"36,3%$68$"$"87/Z+4$68+"@6+6+*8)68$"*3"*3)"*+88+"34"67W$/+"%3"Q$C6+4%*B"

ed ad uno specifico studio termodinamico sull’evaporazione&"

'$/" ()/)683/$" 34"W)**3W+" /$6%3W$68+" 8$/W+" $" S473%+%36)W3,+" X" *8)8+" D/+($88)8+9" )88/)2$/*+" D3,,+4$" 2$68+4$"

36%7*8/3)439" 76" *3*8$W)" %3" )$/$)?3+6$" S+/?)8)" 36" (/)%+" %3" +88$6$/$"un aumento di estrazione dell’acqua dalla

W)8/3,$"S)6(+*)&"

"

  35  

through  conduction  towards  the  conveyor  belt  area.  The   lowest   level,   then,  has  

the  highest  temperature  of  the  system,  since  it  is  the  part  with  the  last  and  most  

difficult  drying  phase  (highest  thermal  energy  required).  The  combustion  gases  

coming  from  the  burner  manage  to  touch  the  second  and  third  level  of  the  con-­‐

veyor  belt,  as  well,  through  pipelines  and  fans.    

 

The  drying  process  is  then  enhanced  by  the  solar  thermal  collectors  (3),  which  

should   be   very   similar   to   those   used   in   the   food-­‐drying   prototype   (see   Figure  

17).  The  solar  collectors  are  one  of  the  innovative  features  of  the  system  since  

they  supply  the  extra  ~20%  energy   that   is  lacking   from  sludge   combustion:  

in  the  other  systems  on  the  market,  this  deficit  is  made  up  by  fossil  fuel  combus-­‐

tion.  The  air  passes  through  the  solar  collectors,  heating  up  through  solar  radia-­‐

tion.  The  hot  air  then  travels  through  a  ventilation  system  to  the  first  level  of  the  

conveyor  belt,  where  the  temperature  necessary  for  drying  the  sludge  is  not  very  

high  (50-­‐80°C).  The  best  design  for,  and  the  location  of,  the  solar  collectors  has  

been  hypothesised   to  be   two  wings  connected   to   the   top  of   the  system  (height  

from  the  ground  of  around  2.5  m)  (see  Pragraph  4.7).  

 

2.3.3  Competitors  of  the  sludge-­‐drying  system  

An  analysis  on  the  possible  competitors  in  the  market  of  the  innovative  sludge-­‐

drying  and  burning   system   (commercially   called   Drywa)   is  here  provided:   it  

was  decided  to  observe  the  solar  drying  systems  already  functioning  worldwide  

and  not  to  analyse  other  sludge  incineration  plant,  because,  as  said  in  the  previ-­‐

ous  sections,  the  development  process  of  the  system  has  started  as  an  evolution  

of  the  solar  still  for  water  depuration  and  the  food-­‐drying  system.  The  innovative  

sludge  drying  system  has  then  been  compared  with  the  solar  drying  greenhous-­‐

es,  with  a  design  similar  to  the  one  described  in  Paragraph  1.4.  The  main  objec-­‐

tive  of  this  comparison  is,  in  fact,  to  give  an  idea  of  the  potential  of  the  system  in  

term  of  efficiency.  

 

What   emerges   from   this  market   analysis   is   that   the   conventional   solar-­‐drying  

plants  present  many  limitations:  

  36  

-­‐ high  thermal  dispersion:  this  is  the  main  flaw  that  can  be  observed;  the  

environment  that  needs  to  be  heated  up,  in  fact,  is  very  wide,  correspond-­‐

ing   to   the   indoor   space   of   the   greenhouse,  meaning   that   a   lot   of   empty  

space   is  brought   to  higher   temperatures   in  vain   (just  around  1/5  of   the  

volume  is  occupied  by  the  sludge);  

-­‐ the  necessity  of  continuously   turning  over   the  sludge  to  avoid  the  for-­‐

mation   of   a   superficial   crust   (see   Paragraph   1.4),  which   requires   high  

energetic  costs  being  made  mechanically;  

-­‐ the  sludge  needs  to  be  posed  and  spread  on  the  ground  and  then  removed  

when  dry  (manpower  required,  see  Figure  23);  

 Figure  23  –  Manpower  required  in  the  conventional  solar-­‐drying  plants  

-­‐ necessity  of  constant  supervision;  

-­‐ wide  surfaces  occupied  (see  Figure  24);    

 Figure  24  –  View  from  above  (left)  and  inside  (right)  of  a  solar-­‐drying  plant  

-­‐ high  initial  investment  costs  for  building  the  plant;  

-­‐ external  dispersion  of  bad  odours.  

 

In  Figure  25  the  capability  of  the  different  systems  is  displayed  in  terms  of  tons  

per  square  meter  that  can  be  yearly  treated  (the  combustion  of  sludge  is  not  tak-­‐

en   into   account   in   the   calculation  of  Drywa’s   capacity):   it   emerges  how  Drywa  

! KO!

.8.%&3! B(.! (! @*%&$%)(+! .)1$)D)6($%+8! B)1B&'! 9(<&'(1&+8! %B'&&! %)3&.! 3*'&:! %B($!

(+3*.%! (++! %B&! *%B&'! @+($%.! 9(@('%! D'*3! %B&! @+($%! *D! F&$0&H*+D! )$! I)6('(1=(!

9%B)'0!6*+=3$:a!HB)6B!).!@'*>(>+8!0=&!%*!)%.!1&*1'(@B)6(+!@*.)%)*$:C!

!G-.5#"*<K*M*O#4-(.*7"#$%#&'()"*)%&7'#-,%(*/"+\""(*O#4\'*W%(14*,%1'#*,150."*0#4-(.X*'(0*%+2"#*

,%1'#*.#""(2%5,",*'#%5(0*+2"*\%#10*W6%1\'*,#1X*-(*+"#&,*%$*+%(,*7"#*,d5'#"*&"+"#*+2'+*)'(*/"*4"'#14*+#"'+"0*W+%(@&<@4X*

RB&! 1(@! H)%B! %B&! 6*3@&%)%*'.! '&.=+%.! &<&$! 3*'&! &<)0&$%! )D! (+.*! %B&! .B('&! *D!

.+=01&!>='$)$1!).!)$6+=0&0!)$%*!%B&!6(+6=+(%)*$.!*D!?'8H(/.!&DD)6)&$68C!RB&!()3!*D!

.=6B!($!($(+8.).! ).!6+&('+8!$*%!(%!0)'&6%+8!6*3@(')$1!%B&!@'*@*.&0!.8.%&3!9%B(%!

%='$.!*=%!%*!>&!3*'&!.)3)+('!%*!(!6*3>)$(%)*$!*D!($!)$0=.%')(+!*<&$!($0!($!)$6)$\

&'(%*':!H)%B! .*+('!1'&&$B*=.&.! D*'! .+=01&!0'8)$1a!>=%!2-.21-.2+-(.* 2%\*&5)2*

7%+"(+-'1*-+*)'(*2'8"*-(*+2"*&'#`"+!6*3@('&0!%*!%B&!.8.%&3.!%B(%!('&!6=''&$%+8!

(0*@%&0C!

! !

  38  

Chapter  3  –  Materials  and  methods    The  experimental  part  has  the  aim  of  testing  different  types  of  sludge  that  come  

from  a  WWTP  in  Treviso  (Italy)  (see  Paragraph  1.2),  with  Prototype  1  and  2  (see  

Paragraph  2.1  and  2.2)  and  a  laboratory  oven.  

The  three  types  of  sludge,  sampled  for  the  experimentation,  are  taken  after  three  

different   phases   of   the   WWTP   of   Treviso:   the   Secondary   sedimentation,   the  

Thickening  phase  and  the  Anaerobic  digestion  phase.    

 

The  main  characteristic  of  these  sludge  samples  (for  the  sake  of  this  experimen-­‐

tation)  is  solid  content  (the  first  two  types  are  the  same  sludge  only  with  differ-­‐

ent  %  DM  while  the  third  one  is  digestate);  it  is,  however,  not  possible  to  previ-­‐

ously  know  the  exact  %  DM  in  the  sludge,  since  it  depends  on  several  variables  of  

the  WWTP’s  processes.  The  samples  were:  

-­‐ sludge  after  the  secondary  sedimentation  –  around  0.5-­‐1%  DM;  

-­‐ sludge  after  the  thickening  phase  –  around  2.5-­‐3%  DM;  

-­‐ digestate   after   anaerobic   digestion   goes   under   mechanical   de-­‐

watering   (belt   press)   resulting   in   a   final   product   with   around   20-­‐

25%  DM.  

The  goal   is   to  observe   their  different  behaviour  during   the  drying  process   and  

draw  various  drying  curves  in  order  to  understand  which  are  the  best  settings  

for  an  optimal  design  of  the  projected  system  (see  Chapter  4).  

For  a  better  comparison  between  the  samples,  it  would  have  been  better  to  have  

the  same  biological  sludge  also  at  the  higher  solid  content,  but  this  was  not  pos-­‐

sible  since  the  belt  press  in  the  WWTP  in  Treviso  is  located  only  after  the  anaer-­‐

obic  digestion  phase.  

 

3.1  Analysis  of  the  Solar-­‐drying  process  

3.1.1  Calculation  of  the  Total  Solar  Incoming  Radiation    The   incoming   solar   radiation  has  been  constantly  detected  with  a  sensor,   lo-­‐

cated  on  the  top  of  the  electrical  box.  For  a  better  comprehension  of  the  sludge  

drying   rate,   the   total   amount   of   radiation   that   the   sludge   absorbed   during   the  

  39  

testing  period  has  been  calculated   for  each  sample.  These  values  are  necessary  

also  for  the  calculation  of  the  drying  rate  (see  Paragraph  3.1.2).  

The   detector   displays   a   value   in  Watt/m2,   which  means   that   for   every   square  

meter  the  amount  of  Joule  per  second  is  shown.    

To  calculate  the  amount  of  solar  radiation  absorbed  by  each  sample,  data  from  a  

weather  station  located  very  close  to  the  place  of  the  experimentation  has  been  

downloaded2.  The  measures  are   taken  every  10  minutes  so   the  total  amount   is  

equal  to  the  sum  of  the  detected  solar  radiation  (W/m2)  multiplied  by  the  time  

interval  (600  seconds)  per  square  meter  of  the  prototype  surface  area.  Equation  1  

𝑡𝑜𝑡𝑎𝑙  𝑠𝑜𝑙. 𝑟𝑎𝑑. 𝐽

=  𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  𝑠𝑜𝑙. 𝑟𝑎𝑑.𝑊𝑚! ∙ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒  𝑎𝑟𝑒𝑎 𝑚! .𝑑𝑡

!

!

= 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  𝑠𝑜𝑙. 𝑟𝑎𝑑. 𝑖𝑊𝑚! ∙ 𝑡𝑖𝑚𝑒  𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  𝑖   sec

!

!!!

∙ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒  𝑎𝑟𝑒𝑎 𝑚!  

where   i   is   the   single  measurements   of   solar   radiation   and  N   is   the   number   of  

measurements.  

 

The  surface  area  of  the  solar  still   for  water  depuration  (P1)   is  2  m  x  0.9  m  =  

1.8  m2  while  the  surface  area  of  both  solar  collectors  of  P2  is  1.2  m  x  0.6  m  x  2=  

1.44  m2.  

 

 

3.1.2  Drying  Velocity  and  Drying  Rate  

For  every  sample  of  the  solar  testing,  drying  velocity  and  rate  is  calculated:  Equation  2  

𝑫𝒓𝒚𝒊𝒏𝒈  𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚  [𝑔ℎ] =

𝑊𝑒𝑖𝑔ℎ𝑡!"#$% −𝑊𝑒𝑖𝑔ℎ𝑡!"!#!$%𝑇𝑖𝑚𝑒  𝑙𝑒𝑛𝑔ℎ𝑡  

The  drying  velocity  indicates  how  much  water  was  evaporated  from  the  sample  

per  hour  of  experimentation.  

                                                                                                               2  The  data  are  available  at:  http://fistec.iuav.it/    

  40  

Equation  3  

𝑫𝒓𝒚𝒊𝒏𝒈  𝒓𝒂𝒕𝒆  𝑔𝐽 =

𝑊𝑒𝑖𝑔ℎ𝑡!"#$% −𝑊𝑒𝑖𝑔ℎ𝑡!"!#!"#𝑡𝑜𝑡𝑎𝑙  𝑠𝑜𝑙𝑎𝑟  𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛  

where  total  solar  radiation  is  the  amount  of  energy  absorbed  by  each  prototype  

during  the  experiment  (as  calculated  in  Paragraph  3.1.1).  

 

The  drying  rate  correlates  the  amount  of  water  lost  by  the  sample  to  the  amount  

of  energy  (J  of  solar  radiation)  that  it  has  absorbed  during  the  experimentation.  

 

3.1.3  Enthalpy  of  incoming  and  outgoing  air  in  the  solar  collectors    In  this  section,  some  calculations  will  be  described  regarding  the  solar  collectors  

of   the   food   drying   prototype,  where   temperature   and   humidity   have   been   de-­‐

tected  regularly  at  the  entrance  and  at  the  exit  of  the  air  (and  also  one  recorder  

was  located  in  the  middle  way).  These  data  are  useful  to  calculate  the  amount  of  

enthalpy   that   the   air   acquires  within   the   passage   through   the   collector   and  

consequently  how  much  thermal  power  is  exchanged.  

 

Enthalpy   is  a  defined   thermodynamic  potential   (indicated  with   the   letter   “H”),  

which  represents  the  internal  energy  of  the  system  U,  plus  the  product  of  pres-­‐

sure  (P)  and  volume  (V)  of  the  system  (Zemansky,  1968)  and  is  defined  as:  Equation  4  

𝐻 = 𝑈 + 𝑃𝑉  

The  system  is,   in  fact,  put  under  the  condition  of  exchanging  only  volume  work  

with  a  reservoir  at  constant  pressure.    

Enthalpy  assumes  an  important  physical  meaning  in  the  calculation  of  heat  bal-­‐

ance,  because  its  differential,  (P  =  constant)  is:  Equation  5  

𝑑𝐻 = 𝑑𝑈 + 𝑃𝑑𝑉  

Knowing  that  the  expression  of  the  First  Principle  of  the  Thermodynamic  is:  Equation  6  

𝑑𝑈 = 𝛿𝑄 − 𝑃𝑑𝑉   →  𝛿𝑄 = 𝑑𝑈 − 𝑃𝑑𝑉  

   

  41  

it   can  be  highlighted   that   the   infinitesimal  variation  of  enthalpy   is  equal   to   the  

incoming  or  outgoing  heat  of  the  system:  Equation  7  

(𝑑𝐻)!,!" = (𝛿𝑄)!,!"  

 

The   aim   of   the   section   is   then   to   determine,   through   the   enthalpy,   how  much  

thermal  energy  can  be  absorbed  by  a  surface  located  on  the  Earth,  thanks  to  the  

solar  radiation  coming  from  the  Sun.  Radiation  is  one  way  of  physical  transfer  of  

energy  through  the  Space,  generally  emitted  in  an  electromagnetic  form.  In  par-­‐

ticular,   the   interest   is   placed   on   how  much   energy   can   absorb   the   air   passing  

through  the  solar  collector  of  the  applied  prototype.  

The  solar  collector  can  be  considered  as  a  heat  exchanger,  i.e.  a  system  where  the  

energetic  exchange  takes  place,  in  the  form  of  heat,  from  the  hotter  source  to  the  

colder  one,  without  a  mass  exchange  between  the  two  fluids  (that  can  be  gas  or  

liquid)  (Franceschetti,  2013).  

 

The  enthalpy  of  the  air  coming  inside  the  solar  collector  can  then  be  calculat-­‐

ed  as  follows:  Equation  8  

𝐻!"#,!" = 1.005  𝑇!"#,!" + (2501.3+ 1.82 ∙ 𝑇!"#,!") ∙ 𝜔  

where  𝑇!"#,!"  is  the  temperature  of  the  incoming  air  (T  of  the  environment)  and  𝜔  

is  the  humid  mass  ratio  which  is:  Equation  9  

𝜔 = 0.662𝑅𝐻!!"#,!"#$

𝑃!"# − 𝑅𝐻!!"#,!"#$  

where  𝑃!"#  is   the   atmospheric   pressure   and  𝑃!"#,!"#!  is   the   equilibrium   va-­‐

pour  pressure:  Equation  10  

𝑃!"#,!"#$ = 1000 ∙ 𝑒!".!"#!!( !"#".!"#

!!"#,!"!!"#)  

 

The  same  calculations  can  be  applied  for  the  enthalpy  of  the  air  going  out  from  

the  solar  collector,  knowing   the   temperature  of   the  exiting  air   (Tair,out)  and  set-­‐

  42  

ting   the  humidity  with   the  measured   relative  humidity   at   that   temperature;   in  

fact,  the  absolute  humidity  does  not  change  whereas  mass  transfers  do  not  take  

place.  This  could  also  be  noticed  analysing  the  Mollier’s  chart  (passage  from  B  to  

C  in  Figure  26).  

 Figure  26  –  Psychrometric  chart  at  atmospheric  pressure  (Patm  =  1.013  bar),  with  on  the  x-­‐axis  the  

water  mass  and  on  the  y-­‐axis  the  temperature  T  (Mollier’s  chart)  

Once  calculated  the  enthalpy  of  the  air  coming  in  and  going  out,  it  is  possible  to  

determine  the  exchanged  thermal  power:  Equation  11  

𝑊! = 𝑄𝑚!"#,!" ∙ (𝐻!"#,!" − 𝐻!"#,!"#)  

where  𝑄𝑚!"#,!"  is  the  air  mass  flow  rate  moved  by  the  fan,  knowing  the  volu-­‐

metric  flow  rate  of  the  fan  (𝑄𝑣!"#,!"  =  266  m3/h):  Equation  12  

𝑄𝑚!"#,!" = 𝑄𝑣!"#,!" ∙ 𝜌!"#,!"#  

where  𝜌!"#,!"#  is  the  wet  air  density:  Equation  13  

𝜌!"#,!"# =𝜌!"#,!"# ∙ (1+ 𝑅𝐻!"#,!")(1+ 1.609 ∙ 𝑅𝐻!"#,!")

 

where  𝑅𝐻!"#,!"  is  the  relative  humidity  of  the  entering  air  and  𝜌!"#,!"#  is  the  den-­‐

sity  of  dry  air:  

- 62 -

Grafico 17 – Diagramma psicrometrico a pressione atmosferica (Patm=1.013 Bar), con nelle ascisse la massa di acqua e nelle ordinate la temperatura a cui ci si trova. Nello studio delle serre solari, ed in particolare dell’aria che in esse circola, ci si soffermerà ad analizzare i passaggi che avvengono dal punto di vista della condensazione nello scambiatore di calore (da punto A a punto B), nel surriscaldamento dell’aria (da punto B a punto C) e nella camera di evaporazione (da punto C a punto A), sotto la spinta della radiazione solare.

7.1.1. Radiazione solare

7.1.1.1. Introduzione La radiazione è una modalità di trasferimento fisico di energia attraverso lo spazio, emessa generalmente sotto forma di onde elettromagnetiche. La caratteristica comune della radiazione è la cessione di energia alla materia investita dal fascio elettromagnetico emesso. Nel caso della presente ricerca ci si soffermerà nella radiazione solare, che viene emessa da parte del Sole, conseguenza delle reazioni atomiche che avvengono all’interno del corpo celeste. In particolare l’interesse è comprendere e quantificare come una superficie collocata sulla superficie terreste sia in grado di assorbire energia, per via radiativa, e convertirla ad una lunghezza d’onda utilizzabile al fine dell’evaporazione della soluzione che si vuole trattare all’interno di una serra solare. Come appena affermato, l’intensità radiativa è funzione dell’intensità del corpo emittente, del mezzo attraverso cui l’onda elettromagnetica passa e della geometria del corpo ricevente. Per quanto riguarda il primo punto i ricercatori Stefan-Boltzmann [6] hanno sviluppato una formulazione in grado di calcolare la potenza irradiata nelle 3 dimensioni da parte di un corpo nero che si trova ad una determinata temperatura (vedi Equazione 46). Equazione 46

Con Ir la potenza irradiata, T la temperatura del corpo emittente (espressa in Kelvin) e σ denominata costante di Stefan-Boltzmann paria a 5.67*10-8 Wm-2K-4. Secondo questa legge, risulta che il Sole emette, essendo un corpo nero dalla temperatura superficiale di 6000 °K, in tutte le lunghezze d’onda ma in particolare nello spettro del visibile. La superficie terrestre d’altro canto

A

B

C

  43  

Equation  14  

𝜌!"#,!"# =𝑃!"#

286.9 ∙ 𝑇!"#,!"  

 

3.2  Analysis  of  the  thermal-­‐drying  process    

The  data  obtained  from  thermal  drying  are  weight  measures  of  the  samples,  tak-­‐

en  every  30  minutes.  For  a  better  comprehension  of  the  behaviour  of  the  differ-­‐

ent  types  of  sludge,  many  calculations  can  be  performed;  in  particular  it  was  cho-­‐

sen  to  calculate:  Equation  15  

1) 𝑾𝒆𝒊𝒈𝒉𝒕  𝒍𝒐𝒔𝒔  𝒇𝒓𝒐𝒎  𝒕𝒉𝒆  𝒔𝒕𝒂𝒓𝒕  [%] = !"#$!!!"!#!$%  !!"#$!!  (!)!"#$!!!"!#!$%

∙ 100  

where  i  is  the  single  measurement  

The   drying   differential   is   an   indication   on   how  much   water   has   been   lost  

through  every  step  of  the  process,  until  the  complete  drying,  compared  to  the  

initial  weight  (in  %).  

 Equation  16  

2) 𝑾𝒂𝒕𝒆𝒓  𝒆𝒗𝒂𝒑𝒐𝒓𝒂𝒕𝒊𝒐𝒏  𝒓𝒂𝒕𝒆  [%] = !"#$!!(!)!!"#$!!!"#$%!"#$!!!"!#!$%!!"#$!!!"#$%

∙ 100  

The   water   evaporation   rate   is   the   ratio   between   the   weight   of   water   lost  

through  every  step  and  the  weight  of  the  total  amount  of  water  present  in  the  

sample  (in  %).  

 Equation  17  

3) 𝑺𝒐𝒍𝒊𝒅  𝒄𝒐𝒏𝒕𝒆𝒏𝒕  [%] = !"#$!!  (!)!"#$!!!"#$%

∙ 100  

The  solid  content  (or  %  Dry  Matter)  is  the  exact  opposite  of  the  Drying  ratio  

and  its  curve  is  specular  to  it.  It  indicates  the  decrease  in  %  of  the  solid  con-­‐

tent  inside  the  sludge  sample  per  every  step  of  the  process.  

 Equation  18  

4) 𝑫𝒓𝒚𝒊𝒏𝒈  𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚  [!!] = !!

!!= !"#$!!   ! !!"#$!!  (!!!)

!(!)  

  44  

The  drying  velocity  describes  the  drying  differential  through  time.  It   is  than  

an  indication  of  the  velocity  of  the  drying  process,   in  terms  of  tiered  weight  

loss  (g/h).  

 

For   each   one   of   the   previous   equations,   a   curve   graph  has   been  drawn   and   in  

Chapter  4  (see  Paragraph  4.2.2)  each  one  is  discussed  (for  the  second  test  in  the  

oven).  

 

3.3  Determination  of  solid  and  ashes  content  in  the  sewage  sludge    

The   three   types   of   sludge   have   also   been   characterised   relative   to   their   solid  

content.  The  standard  procedure  is  as  follows:  

• a   small   amount   of   each   type   of   sludge   is   put   in   a   melting   pot   (weight  

known)  and  after  weighing,  it  is  heated  up  in  an  oven  at  around  105°C  for  

48  hours,   in  order  to  evaporate  the  non-­‐solid  portion  and  determine  the  

Total  Solid  (TS)  content.  After  that,  the  melting  pot  with  the  solid  portion  

of  the  sludge  is  weighed  and  the  solid  ratio  can  be  calculated:  Equation  19  

𝑇𝑆 % =  𝑊𝑒𝑖𝑔ℎ𝑡2− 𝑇𝑎𝑟𝑒2𝑊𝑒𝑖𝑔ℎ𝑡1− 𝑇𝑎𝑟𝑒1×100  

where:  

TS  (%)  =  percentage  of  total  solid  

Weight1  =  initial  weight  of  the  melting  pot  with  the  sludge  [g]  

Weight2  =  weight  of  the  melting  pot  with  the  sludge  after  48  hours  

[g]  

Tare1  =  weight  of  the  empty  melting  pot  [g]  

Tare2  =  weight  of  the  empty  melting  pot  [g]  

 

• After  this  process  it  is  also  possible  to  determine  the  Total  Volatile  Sol-­‐

ids  (TVS),  putting  the  melting  pots  in  a  mitten  at  600°C  for  24  hours.  The  

resulting  ashes  are  weighed  and  the  TVS  ratio  can  be  determined  as  fol-­‐

lows:  

  45  

Equation  20  

𝑇𝑉𝑆   % =  𝑊𝑒𝑖𝑔ℎ𝑡2− 𝑇𝑎𝑟𝑒2 − 𝑊𝑒𝑖𝑔ℎ𝑡3− 𝑇𝑎𝑟𝑒3

(𝑊𝑒𝑖𝑔ℎ𝑡1− 𝑇𝑎𝑟𝑒1) ×  100  

where:  

Weight3  =  weight  of  the  melting  pot  with  the  ashes  after  24  hours  

[g]  

Tare3  =  weight  of  the  empty  melting  pot  [g]  

 

3.4  COD  determination  with  titration    The  COD   (Chemical   Oxygen   Demand)   is   the   chemical   demand   to   oxidise   the  

total   organic   matter   present   in   the   sample   and   so   it   indirectly   measures   the  

amount  of  organic  compounds  present.  The  analysis  has  been  done   in  order   to  

have  a  comparison  of  the  COD  value  before  and  after  the  drying  process,  in  order  

to  see  if  there  is  a  change.  It  is  generally  expressed  in  milligrams  per  litre  (mg/L),  

which  indicates  the  mass  of  oxygen  consumed  per  litre  of  solution.  

Different   from  BOD  (Biological  Oxygen  Demand),   the  COD  parameter  considers  

also  recalcitrant  compounds  that  cannot  be  oxidised  by  microorganisms.    

 

The  COD  is  determined  through  titration,  which  is  a  common  analytical  method  

of  quantitative  chemical  analysis:  through  this  method  the  unknown  concentra-­‐

tion  of  a  solution  (called  analyte)  can  be  determined.  In  general,  a  reagent,  called  

the  titrant  or  titrator,  is  prepared  as  a  standard  solution.  The  latter  (known  con-­‐

centration  and  volume)  then  reacts  with  a  solution  of  analyte,  in  order  to  deter-­‐

mine  the  concentration.  The  volume  of  titrant  that  reacted  is  called  titre.  

The  method  for  COD,  in  particular,  consists  in  oxidising  the  organic  matter  using  

a  strong  oxidiser,  a  Potassium  Dichromate  (K2Cr2O7)  solution  at  high  tempera-­‐

tures  in  an  acidic  environment  (which  is  created  through  the  addition  of  Sulfuric  

Acid  (H2SO4)).  

 

Since  the  dichromate  reacts  after  a  long  time  and  at  high  temperatures,  it  cannot  

be  directly   titrated:   for   this  reason  the  dichromate   is  added   in  excess  and  then  

heated  up  in  a  microwave  oven;  it  is  then  necessary  to  perform  a  Back  Titration,  

  46  

where   the   remaining   dichromate   is   titrated   with   a   Ferrous   Ammonium   Sul-­‐

phate  (FeSO4(NH4)2SO4*6H2O  –  FAS  or  Mohr’s  Salt)  solution.    

 

All   the   substances   that   can   be   oxidised  with   this  method   (reduced   iron,   urea,  

chlorides)   are   considered   an   interference,   because   they   are   not   organic   com-­‐

pounds;  to  avoid  the  interference  of  chlorides,  a  mercury  salt  is  added,  Mercury  

Sulphate   (HgSO4),  which   forms  mercury   chloride   (HgCl2),  which   cannot   be   at-­‐

tacked   by   dichromate   (this   process   is   called   complexation).  Moreover,   dichro-­‐

mate   is   not   able   to   oxidise   some   organic   compounds   and   so   a   catalyst,   Silver  

Sulphate  (AgSO4),  is  added  to  achieve  the  complete  oxidation  of  the  organic  mat-­‐

ter  

 

Reactions  involved:  

• Oxidation  of  organic  matter:  Cr2O7  +  Org.  Mat.  +  H+  à  CO2  +  Cr3+  +  H2O  

• Back  titration:  Cr2O72-­‐  +  6Fe2+  +  14  H+  à  2Cr3+  +  6Fe3+  +  H20  

 

3.4.1.  COD  determination  with  digestion  in  microwaves  oven  (Milestone)  

The  procedure  for  the  COD  determination  for  solid  sample  is  as  follow:  

in  a  glass  bottle  put  0.02  g  of  dry  sludge  samples  (dried  in  a  105°C  oven  for  24-­‐48  

hours)  and  weigh  it  with  the  analytical  balance  (to  four  decimal  places).  Add  10  

ml  of  distilled  water,  a  small  amount  of  AgSO4  and  HgSO4  and  then  add  15  ml  of  

dichromate  0.25  N.  Afterwards,  add  15  ml  of  H2SO4  concentrated  to  96%.  

 

Besides   the  sample,  a  blank  solution  and  a   “titre”  must  be  prepared.  The  blank  

solution   includes  all   the  substances  placed   into   the  sample,  besides   the  sample  

itself.  The  “titre”   is   like  the  blank  solution  but  without   the  catalysts,  AgSO4  and  

HgSO4.  The  blank  solution  is  necessary  to  verify  if  there  is  contamination  in  the  

catalysts  and  in  the  reagents  and  eventually  consider  it  in  the  final  calculation.    

The  sample  and  the  blank  solution  are  then  put  in  the  microwave  oven  for  diges-­‐

tion  (56  minutes).  After  that,  the  titration  can  be  made:  some  drops  of  indicator  

must  be  added,  Ferroin,  which  turn  blue  in  an  oxidising  environment  and  dark  

red  in  a  reducing  environment.  

  47  

 

The  titration  with  FAS  has  to  be  done  for  the  sample,  the  blank  solution  and  the  

“titre”.  The  FAS  must  be  at   the  same  concentration  as   the  dichromate  solution.  

The   colour   of   the   solution   at   the   endpoint   turns   from   green/light   blue   to   red-­‐

brown/orange,  depending  on  the  normality  (N).  

The  COD  of  the  sample  is  then  equal  to:  Equation  21  

𝐶𝑂𝐷  𝑚𝑔𝑂2𝑔𝑇𝑆 =

𝐵 − 𝑆 ∗  𝑉 ∗ 𝑁𝑇 ∗ 8𝑤  

where:  

B  =  volume  of  FAS  titrated  in  the  blank  solution  [mL]  

S  =  volume  of  FAS  titrated  in  the  sample  [mL]  

V  =  total  volume  of  initial  dichromate  [mL]  

N  =  normality  of  dichromate  [N]  

T  =  volume  of  FAS  titrated  in  the  “titre”  [mL]  

8  =  factor  that  considers  the  milliequivalent  weight  of  oxygen  

w  =  weight  of  the  sample  (to  four  decimal  places)  [g]  

 

3.5  Materials    During  the  experimental  phase,  the  following  materials  have  been  used:  

1) Solar  still  prototype  (Prototype  1)  (see  Paragraph  2.1).  

2) Food-­‐drying  prototype  (Prototype  2)  (see  Paragraph  2.2).  

3) Solar  panels  22.4  Volts  (54.5  cm  x  53  cm).  

4) Laboratory  oven  

5) Balance   KERN   PCB-­‐6000-­‐1  with   the   precision   d   =   0.1   g   and  maximum  

weight  =  6000  g.  

6) Various  containers  for  the  sludge,  in  polystyrene  and  in  aluminium.  

7) Use  of  the  chemistry   lab  at  the  WWTP  in  Treviso  (Italy)  for  TS/TVS  and  

COD  determination.  

 

 

! MJ!

?RKR>*H%11")+-%(*%$*+2"*,'&71",*!Q++! %B&! .(3@+&.! =.&0! )$! %B).! &e@&')3&$%(%)*$! ('&! 6*++&6%&0! D'*3! %B&! FFR2! )$!

R'&<).*!9.&&!2('(1'(@B!"CP:C!RB&!.(3@+)$1!H(.!0*$&!>8!($!*@&'(%*'!*D!%B&!@+($%!

D*'! HB(%! 6*$6&'$! .+=01&! 6*3)$1! D'*3! %B&! .&6*$0('8! .&0)3&$%(%)*$! ($0! %B&!

%B)6_&$)$1!@B(.&a!HB)+&! D*'! %B&!0)1&.%&0!.+=01&!%B&!.(3@+)$1!H(.!0*$&!0)'&6%+8!

D'*3! %B&! 6*$<&8*'! >&+%! 6*3)$1! *=%! D'*3! %B&! >&+%! @'&..! 9A)1='&! PO:! 9.&&! 2('(\

1'(@B!"C"CK:C!

RB&!.(3@+&.!=.&0!)$!%B&!.*+('\0'8)$1!%&.%.!H&'&!%B&$!>'*=1B%!%*!%B&!'**D!*D!%B&!

5*+H(!.'+!*DD)6&a!HB&'&!%B&!%H*!@'*%*%8@&.!B(<&!>&&$!(..&3>+&0C!

! *

! ! !G-.5#"*<U*M*6'&71-(.*7%-(+,*'+*+2"*,")%(0'#4*,"0-&"(+'+-%(*+'(`*W1"$+X*'(0*

'$+"#*'('"#%/-)*0-.",+-%(*W)"(+"#*'(0*#-.2+X*

  49  

Chapter  4  –  Results    In  the  whole  Results  section,  the  three  types  of  sludge  will  be  referred  to  as  “A”  

for  sludge  after  the  secondary  sedimentation,  “B”  for  sludge  after  the  thickening  

phase   and   “C”   for   the   digestate   after   anaerobic   digestion   and   mechanical   de-­‐

watering   (see  Chapter  3).  The   two  solar  dryer  will  be  referred  as  Prototype   1  

(P1)  for  the  solar  still  and  Prototype  2  (P2)  for  the  food  drier.    

 

4.1  Solar  drying    The  drying  tests  with  solar  energy  were  done  inside  Prototype  1  and  2  during  a  

period  of  around  3  weeks  from  14th  October  to  3rd  November.  During  the  weeks  

before,   the  prototypes  were  assembled  and  prepared   for   the   testing  phase  and  

all   the   temperature   and  humidity   sensors  were   connected   to   an   electrical   box,  

associated   in   real   time  with  a  personal   computer.  All   this   instrumentation  was  

arranged  on  the  roof  of  the  Solwa  srl  office  (Vega  Scientific  Park,  Via  delle  Indus-­‐

trie  n.15,  Marghera,  Venice).  

 

The  detected  parameter  were:  

-­‐ Temperature  (°C)  inside  and  outside  the  prototypes  

-­‐ Relative  Humidity  (RH%)  inside  and  outside  the  prototypes    

-­‐ Solar  radiation  (W/m2)  

-­‐ Weight  (g)  of  the  samples,  measured  hourly  with  a  balance  (precision  

0.1  g  –  see  Paragraph  3.5)  

-­‐ T  and  RH  were  also  detected  in  three  positions  of  one  of  the  solar  col-­‐

lector  of  P2  (at  the  entrance  of  the  air,  in  the  middle  of  the  panel  and  

at  the  exit  of  the  heated  air).  

 

For  every  week  of  testing,  various  graphs  were  drawn:  

-­‐ Drying  curves  of  the  samples  (through  the  weight  measures);  

-­‐ Curves  of  the  Temperature,  detected  inside  and  outside  the  two  pro-­‐

totypes,  put  also  in  relation  with  the  Solar  Radiation;  

-­‐ Curves   of   the   Relative   Humidity,   detected   inside   and   outside   the  

two  prototypes.  

! ZL!

AR>R>*G-#,+*\""`*%$*+",+-(.*!#$! %B&! D)'.%!H&&_! 9"M%B!4!P".%!W6%*>&':! %B&! .+=01&!H(.!0')&0! )$.)0&!2'*%*%8@&!"!

($0!Pa!H)%B!%B&!<&$%)+(%)*$!.8.%&3!%='$&0!*DDa!)$!*'0&'!%*!3(_&!(!6*3@(').*$!>&\

%H&&$!%B&!'&.=+%.!H)%B!($0!H)%B*=%!<&$%)+(%)*$C!#%!H(.!*>.&'<&0!%B(%!%B&!%&3@&'\

(%='&! )$.)0&! 2"! 6*=+0! '&(6B! B)1B! <(+=&.! 9)$! '&+(%)*$! H)%B! .*+('! '(0)(%)*$:! (+.*!

H)%B*=%! <&$%)+(%)*$! 9!KZp7:a! 0=')$1! %B&! 6&$%'(+! B*='.! *D! %B&! 0(8c! %B).! >&6(=.&!

.*+('!'(0)(%)*$!('')<&.!0)'&6%+8!%*!%B&!.='D(6&!*D!%B&!.+=01&C!#$!2Pa!*$!%B&!6*$%'(\

'8a!R!H(.!+*H&'!>&6(=.&!)%!).!(!6+*.&0!.8.%&3!($0!%B&!()'!).!B&(%&0!=@!)$.)0&!%B&!

.*+('!6*++&6%*'.!($0!&$%&'.!%B&!.8.%&3!`=.%!>&6(=.&!*D!6*$<&6%)*$!9H)%B*=%!<&$%)\

+(%)*$:a!&<&$!%B*=1B!(!R!B)1B&'!*D!M\Zp7!%B($!*=%.)0&!6($!>&!1&$&'(++8!*>.&'<&0!

9.&&!A)1='&!PJ:C!!

!

!G-.5#"*<Z*M*B"&7"#'+5#"*-(,-0"*'(0*%5+,-0"*+2"*7#%+%+47",*_*6%1'#*J'0-'+-%(*-(*S""`*>*+",+-(.*

!

RB&!3()$!)..=&!H(.!S&+(%)<&!U=3)0)%8!9SUd:a!*D!HB)6B!B)1B!<(+=&.!H&'&!0&%&6%\

&0!)$!>*%B!@'*%*%8@&.!9YL\JLd!SU:!9.&&!A)1='&!PN:!($0!)$!2"!6(=.&0!6*$0&$.(\

%)*$!*D!H(%&'!(%!%B&!>*%%*3!@('%!*D!%B&!%'($.@('&$%!@+(.%)6!6*<&')$1a!@'*0=6)$1!(!

0'*@@)$1!*D! %B&! &<(@*'(%&0!H(%&'!>(6_! )$%*! %B&! .+=01&! 9%*! (<*)0! %B).a! %B&! 6*$\

0&$.&0!H(%&'!H(.!'&3*<&0!B*='+8!H)%B!(!6+*%B:C!

!"!!!#

$!"!!!#

%!!"!!!#

%$!"!!!#

&!!"!!!#

&$!"!!!#

'!!"!!!#

'$!"!!!#

(!!"!!!#

!#

$#

%!#

%$#

&!#

&$#

'!#

'$#

(!#

($#

%%)'!# %&)'!# %()'!# %$)'!# %*)'!# %+)'!# %!)'!# %!)!!# %%)!!# %&)!!# %')!!#

%(,%!# %(,%!# %$,%!# %*,%!#

!"#$

%&%$'

($)"

*&+,

-./0

&

12.

32%$

45%2

&+670

&

1(.2&$*'&8$42&

&12.32%$45%2&(*9('2&$*'&"549('2&4:2&3%"4"4;329&<&!"#$%&=$'($)"*&>,22?&@A&

-#./01..2#3456#

-#78#9&#3456#

-#78#9%#3456#

:.;<2#2<1"#3=,>&6#

9.;?"#@-#./01..2#3456A#

9.;?"#@-#78#9&#3456A#

9.;?"#@-#78#9%#3456A#

9.;?"#@:.;<2#2<1"#3=,>&6A#

! Z"!

!G-.5#"*<Y*M*J"1'+-8"*L5&-0-+4*-(,-0"*'(0*%5+,-0"*+2"*7#%+%+47",*-(*S""`*>*+",+-(.*

!RB&!.(3@+&!)$.)0&!2P!H&'&!@=%!*$!%B&!1')0.!)$.)0&!%B&!.8.%&3!H)%B!(!.B&&%!*$!%B&!

>*%%*3! )$!*'0&'! %*! +&%! %B&!B*%!()'!@(..! %B'*=1B!($0! +(@! %B&!.(3@+&! 9.&&!A)1='&!

K":C!RB&!@&'6&$%(1&.!*D!,%1-0*)%(+"(+!('&!)1%,"*+%*+2"*"b7")+"0*8'15",!9)%!).!$*%!

@*..)>+&!%*!@'&<)*=.+8!_$*H!%B&!d!?-!)$!%B&!.+=01&a!.)$6&!)%!0&@&$0.!*$!.&<&'(+!

<(')(>+&.!*D!%B&!FFR2/.!@'*6&..&.:C!A*'!%B).!D)'.%!H&&_!*D!%&.%)$1a!%B&!%*%(+!.*+('!

'(0)(%)*$!H(.!$*%!6(+6=+(%&0!.)$6&!%B&'&!H(.!$*%!($!(6%=(+!@&')*0!*D!&e@&')3&$\

%(%)*$!(.!%B&!<&$%)+(%)*$!H(.!%='$&0!*DD!(++!%B&!%)3&i!D*'!%B&!.(3&!'&(.*$a!%B&!0=\

'(%)*$!)$!R(>+&!M!).!)$0)6(%&0!)$!0(8.C!

!

!G-.5#"*?=*M*O#4-(.*)5#8",*%$*,'&71"*9e*C*-(*!>*'(0*H*-(*!<*WS""`*>X*

!

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

##,%!" #$,%!" #&,%!" #',%!" #(,%!" #),%!" #!,%!" #!,!!" ##,!!" #$,!!" #%,!!"

#&-#!" #&-#!" #'-#!" #(-#!"

!"#$

%&"'

()*

+,+-.

'/01'

2+*"'$3,'4$-"'

!"#$%&"'()*+,+-.'+35+,"'$3,'6)-5+,"'-7"'896-6-.8"5':;""<'=>'

./"0123004"567"

./"89":$"567"

./"89":#"567"

:0;<=">./"0123004"567?"

:0;<=">./"89":$"567?"

:0;<=">./"89":#"567?"

!!"#$%&#

$%'("# $)$#$*!()#

$(%#

)$$(%#

*$'#

"!"#!+*#

!)*#!"*#

!'*#

**(!#"!# !$# $&#

$*#

$%+("#$))("# $*,(*# $*)("# $*"(%# $*$()# $*$(*#

$!)(+# $$&($# $$%(+# $$%#

*&()#

'#

$''#

!''#

"''#

*''#

)''#

%''#

$$-"'# $!-"'# $*-"'# $)-"'# $%-"'# $+-"'# $'-"'# $'-''# $$-''# $!-''# $"-''# $%-''#

$*.$'# $*.$'# $).$'# $%.$'# !$.$'#

!"#

$%&'(

$)'

*#+"',-.'/,&"'

/01#-$'2304"5'67'5,+89"':;'<'#-'=>',-.'?'#-'=@'A!""B'>C'

/#0'(+1#234#

5#0!(+1#234#

6#0!&(%1#234#

  52  

All  the  data  of  thickness,  weight  before  and  after  drying,  solid  content  and  time  

length  are  summed  up  in  Table  4:  Table  4  –  Results  from  week  1  in  Prototype  1  and  2  (with  ventilation  off)  

Prot.   Sludge   Thickness  

(cm)  

Initial  W  

(g)  

Final  W  

(g)  

DM  (%)   Time  length  

(d)  

1   A   1   223   1.6   0.71   6  

1   B   1   511.6   14   2.74   6  

2   C   2   167.3   49.5   29.59   6  

 

4.1.2  Second  week  of  testing    

   Figure  31  –  Testing  in  the  Prototype  1  (left)  and  2  (right)  in  week  2  

 

In  the  second  week  (21st  –  26th  October),  the  ventilation  system  was  turned  on:  it  

could   then   be   noted   that,   as   expected,   the  humidity   was   significantly   lower  

(values  of  20-­‐30%  RH  in  P1  and  30-­‐45%  RH  in  P2)  and  the  detected  tempera-­‐

tures  were  higher  too  (around  45-­‐50°C  in  P1  and  30-­‐38°C  in  P2  during  the  hot-­‐

test   part   of   the   day)   (see   Figure   32   and   Figure   33),   compared   to   the   previous  

week.  It  can  be  observed  that  the  temperatures  inside  the  prototypes  follow  the  

trend   of   the   solar   radiation   but   a   little   later   in   time   (one-­‐two   hours),   which  

means  that  the  temperature  inside  the  prototypes  have  more  thermal  inertia  

compared  to  the  temperature  of  the  environment.  Regarding  the  humidity,  it  

! ZK!

6($!>&!*>.&'<&0!%B(%!)%!).!1&$&'(++8!1%\"#* -(*!>*)%&7'#"0* +%*!<!9(.!&e@&6%&0!

(+.*!D'*3!%B&!B)1B&'!%&3@&'(%='&.:!9.&&!A)1='&!KK:C!

!G-.5#"*?<*M*B"&7"#'+5#"*-(,-0"*'(0*%5+,-0"*+2"*7#%+%+47",*_*6%1'#*J'0-'+-%(*WS""`*<X*

*

!G-.5#"*??*M*J"1'+-8"*L5&-0-+4*-(,-0"*'(0*%5+,-0"*+2"*7#%+%+47",*WS""`*<X*

!

RB&!%)3&!+&$1%B!D*'!&(6B!.(3@+&!).!B&'&!0&%&'3)$&0!.=33)$1!=@!%B&!B*='.!*D!&e\

@&')3&$%(%)*$! 9*$+8! HB&$! %B&! <&$%)+(%)*$! .8.%&3! H(.! *$! ($0! %B&! H&)1B%!

3&(.='&.!H&'&! 0*$&:C! RB&! 0)DD&'&$%! .)%=(%)*$!H)%B! %B&! <&$%)+(%)*$! *$a! %B&$! '&\

.=+%.!)$!(!B)1B&'!0'8)$1!'(%&a!.*!%B&!)%&71"+"*0#4-(.!H(.!(6B)&<&0!)$!(!,2%#+"#*

7"#-%0*%$*+-&"c!('*=$0!B(+D!)$!2"!($0!JLd!)$!2Pa!6*3@('&0!H)%B!F&&_!"C!!

!

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

)!!"

*!!"

!+!"

#!+!"

$!+!"

%!+!"

&!+!"

'!+!"

(!+!"

##,&!"#$,&!"#&,#!"#',#!"#(,#!"#),#!"#!,!!"##,!!"#$,!!"#%,!!"#&,!!"#',!!"#!,%!"##,%!"#$,%!"#%,%!"#&,%!"#',%!"

$$-#!" $%-#!" $&-#!"

!"#$

%&%$'

($)"

*&+,

-./0

&

12.

32%$

45%2

&+670

&

1(.2&$*'&8$42&

12.32%$45%2&(*9('2&$*'&"549('2&&4:2&3%"4"4;329&<&!"#$%&=$'($)"*&>,22?&/@&

."/012"

."34"5#"/012"

."34"5$"/012"

678+"9:;"/<-=$2"

578>+"?."/012@"

578>+"?."34"5#"/012@"

578>+"?."34"5$"/012@"

578>+"?678+"9:;"/<-=$2@"

!"

#!"

$!"

%!"

&!"

'!"

(!"

##)&!" #$)&!" #&)#!" #')#!" #()#!" #*)#!" #!)!!" ##)!!" #$)!!" #%)!!" #&)!!" #')!!" #!)%!" ##)%!" #$)%!" #%)%!" #&)%!" #')%!"

$$+#!" $%+#!" $&+#!"

!"#$

%&"'

()*

+,+-.

'/01'

2+*"'$3,'4$-"'

!"#$%&"'()*+,+-.'+35+,"'$3,'6)-5+,"'-7"'896-6-.8"5':;""<'=>'

,-"./0"

,-"12"3$"./0"

,-"12"3#"./0"

34567"8,-"./09"

34567"8,-"12"3$"./09"

34567"8,-"12"3#"./09"

! ZM!

#$!2'*%*%8@&!"a!%B&!0'8)$1!6='<&.!.B*H.!(!,-&-3

1'#*+#"(0!'&1('0)$1!,'&71",*9*'(0*C!($0!%B&)'!

H&)1B%! +*..! 6='<&! ).! .%&&@&'! %B($! %B&! *$&! *D!

.(3@+&!7a!HB)6Ba!*$!%B&!6*$%'('8!.B*H.!(!3*'&!

1'(0=(+! 0&6'&(.&! =$%)+! %B&! 6*3@+&%&! 0'8)$1C!

RB).! ).!(+.*!6*$D)'3&0!>8!%B&*O#4-(.*8"1%)-+4a!

HB)6B! ).! +*H&'! D*'! .(3@+&! 7! 9!OCZ! 1kB:! 6*3\

@('&0!%*!Q!($0!]!9!"Y\PL!1kB:!($0!>8!%B&!O#43

-(.*#'+"!9!O\""!1k-,!D*'!Q!($0!]!6*3@('&0!%*!

!!!!!1k-,!D*'!7:C!

!

!G-.5#"*?K*M*O#4-(.*)5#8",*%$*,'&71"*9e*C*'(0*H*-(*!>*05#-(.*S""`*<*

! !

!!"#$%

!&'#"%'(!#!%

')$#*%'$"#+%

'!"#'% '!'#!%+!#!%

(*#!% (&#+%"'#"%

)*#$% ,(#"%

!(#"% ',#,%

,#,% '#$% '% '% '%

!"!#+%

!$&%

'+,#(%

'*'#$%'$*#$%

'!,#!%''*#"%

($#+% "(#$%"'#+% *'#+%

,$#)%$,#"%

'+%

+#'%

*#+% *#,% *#*%"#(%

',!#(%

'''#)%

+&#"%"!#!% *!#+% )(#)%

)*#!% ,)#*% ,,#$% ,$%,'#!% $"#$%

$"#'%$*#+% $,#'% $$#'% $!#,% $!#'% !(#'%

!(#'%

&%

)&%

'&&%

')&%

!&&%

!)&%

$&&%

'*-$&% ''-,&% '!-,&% ',-'&% ')-'&% '*-'&% '"-'&% '&-&&% ''-&&% '!-&&% '$-&&% ',-&&% ')-&&% '&-$&% ''-$&% '!-$&% '$-$&% ',-$&% ')-$&% '&-&&%

!'.'&% !!.'&% !$.'&% !,.'&% !*.'&%

!"#

$%&'(

$)'

*#+"',-.'/,&"'

/01#-$'2304"5'67'5,+89"':;'<',-.'='#-'>?'@!""A'BC'

/%0&#,1%234%

5%0!#$1%234%

6%0'+#"1%234%

!G-.5#"*?A*M*6'&71"*9*0#-"0*-(*

!#%+%+47"*>*

! ZZ!

!

!#$!R(>+&!Z!($0!)$!R(>+&!Y!%B&!3()$!0(%(!*D!%B).!H&&_!*D!%&.%)$1a!)$!2"!($0!2P!'&\

.@&6%)<&+8a!('&!.=33&0!=@C!

!B'/1"*K*M*J",51+,*%$*\""`*<*-(*!#%+%+47"*>*W\-+2*8"(+-1'+-%(*%(X*

6'&71"* B2-)`*

g)&h*

N(-+-'1*

\"-.2+*

g.h*

G-('1*

S"-.2+*

g.h*

OT*

g]h*

B-&"*

1"(.+2*

g2h*

B%+R*6%1R*

J'0R*

gTkh*

O#4-(.*

8"1%)-+4*

g.@2h*

O#4-(.*

#'+"*

g.@Tkh*

Q! "! PPOCK! "! LCMM! "MCZ! K"CP! "ZCY"! OCPZ!

]! "! POPCN! YCM! PCKZ! "KCZ! PPCMM! "NCOM! ""CJJ!

7! "! "MPCJ! PJC"! "NCYJ! "ZCZ! KKCMO! OCML! KCMK!

!

!

#$!2'*%*%8@&!P!9A)1='&!KO:!%B&!%'&$0!*D!.(3@+&!Q!($0!]!)$!%B&!D)'.%! %)3&!.%&@!).!

<&'8!.%&&@a!HB&'&!%B&!3*.%!@('%!*D!%B&!<*+=3&!).!+*.%c!%B).!B(@@&$&0!>&6(=.&!%B&!

+)b=)0!.+=01&!H(.! D)+%&'&0! %B'*=1B!(!.B&&%a! D)e&0!(%! %B&!>*%%*3!*D! %B&!6*$%()$&'!

9(D%&'!B(<)$1!'&3*<&0!%B&!>*%%*3!@('%:!9.&&!A)1='&!KY:i!%B).!3&($.!%B(%!&%,+*%$*

+2"*\'+"#*\',*1%,+*8"#4*$',+!90')@@)$1!0*H$:a!@'*<&0!>8!%B&!0'(3(%)6!)$6'&(.&!

)$!%B&!0'8)$1!<&+*6)%8!9%)++!!YO!1kB:!($0!0'8)$1!'(%&!9%)++!!!"!1kB:a!($0!%B&$!%B&!

'&3()$)$1!%)3&!H(.!=.&0!%*!0'8!%B&!.+=01&!(0B&'&0!%*!%B&!.B&&%C!RB).!6B*)6&!*D!

'&3*<)$1!%B&!>*%%*3!@('%!*D!%B&!6*$%()$&'!H(.!0=&!%*!%B&!D&(%='&!*D!%B&!@'*%*\

%8@&a!HB&'&!%B&!B*%!()'!6*3)$1!D'*3!%B&!.*+('!6*++&6%*'.!6*3&.!)$!D'*3!%B&!+&D%!%*!

%B&!')1B%!($0!D'*3!%B&!+&<&+!>&+*HC!

!

#%!H(.!(+.*!)$%&'&.%)$1!%*!%&.%!%B).!%&6B$)b=&!>&6(=.&!(!,-&-1'#*$-1+"#-(.*&"+2%0!

6($!>&!(@@+)&0! )$! %B&! )$$*<(%)<&! .8.%&3!HB&$! %B&!FFR2!0*&.!$*%!B(<&!(!3&\

6B($)6(+!0&H(%&')$1!.8.%&3!($0!.*!%B&!.+=01&!%*!0'8!).!+)b=)0i!D*'!&e(3@+&a!+#'(3

! ! !G-.5#"*?Q*M*6'&71"*Ca*\"+*W1"$+Xe*8-"\*-(,-0"*!<*W)"(+"#X*'(0*0#4*W#-.2+X*-(*!<*

! ZY!

,7-#-(.*&"&/#'(",* $%#* +2"* )%(8"4%#* /"1+! 6($!>&!=.&0a!HB)6B!.B*=+0! +&%! %B&!

H(%&'!<(@*='!@(..!>=%!B*+0!%B&!.+=01&!@('%)6+&.C!

!

6'&71"*H*90)1&.%&0!.+=01&!PLd!?-:!H(.!%&.%&0!H)%B!0-$$"#"(+*+2-)`(",,c!Z!63\

%B)6_$&..! .(3@+&! %**_! (! +*$1! @&')*0! 9PO! B*='.:! %*! (6B)&<&! (! 6*3@+&%&! 0'8)$1!

9PYd! ?-:! 9)$! A)1='&! KOa! %B&! +(.%! %H*! 0(8.! ('&! $*%! 0).@+(8&0:a! &<&$! %B*=1B! )%!

.B*H.!2-.2*8'15",*>*%B*%$!0#4-(.*8"1%)-+4!9"ZCJ!1kB:!($0!#'+"!9"ZCN!1k-,:i!%B&!

%'&$0! D*'! >*%B! .(3@+&.a! B*H&<&'a! .B*H.! (! .%&(08! 0&6'&(.&! =$%)+! %B&! 6*3@+&%&!

0'8)$1C!RB&!0#4-(.*8"1%)-+4!D*'!.(3@+&!7!).!1&$&'(++8!B)1B&'!)$!2P!6*3@('&0!%*!

2"C!?)DD&'&$%!%B)6_$&..&.!H&'&!%&.%&0!)$!@('%)6=+('!D*'!%B&!.+=01&!H)%B!B)1B&'!.*+\

)0!6*$%&$%!90)1&.%(%&:a!)$!*'0&'!%*!*>.&'<&!)%.!>&B(<)*='a!>&6(=.&!)%!).!%B&!d?-!*D!

%B&!.+=01&!&e@&6%&0!%*!=.&!)$!%B&!@'*@*.&0!.8.%&3C!!

!

!G-.5#"*?U*M*O#4-(.*)5#8",*%$*,'&71"*9e*C*'(0*H*-(*!<*05#-(.*S""`*<*

!B'/1"*Q*M*J",51+,*%$*\""`*<*-(*!#%+%+47"*<*W\-+2*8"(+-1'+-%(*%(X*

B47"*%$*

,150."*

B2-)`R*

g)&h*

N(-+-'1*

\"-.2+*

g.h*

G-('1*

S"-.2+*

g.h*

OT*

g]h*

B-&"*

1"(.+2*

g2h*

B%+R*6%1R*

J'0R*

gTkh*

O#4-(.*

8"1%)-+4*

g.@2h*

O#4-(.*

#'+"*

g.@Tkh*

Q! t! "OMC"! PCN! "CYY! K! ""CJP! ZOCLO! "MCMJ!

]! t! KJL! NCK! PCMZ! ZCZ! NCZO! YOCML! KJCOM!

7! K! "JY! PJCJ! "ZCMJ! "ZCZ! ZMCPK! "LC"M! PCNL!

7! Z! ZOMCZ! "MJCZ! PZCJZ! PO! PYCOO! "ZCOJ! "ZCN"!

!"#$!%

&#$#% !'$(%&$)%

'*+%

!,&%

*,%(&% '&$#% &'$"% )$'% )$'%

)$'%

("#$(%('*$,%

(!"$&%#)+$!%#,,$)%

#(!$"%#')$&%

')*$!%')+$)%'*'$,%'"($&%',&$#% '(($)%''+% '!($*% '+'$(% &**% &",$#%

&,,$#%

!*)$)%!*,%

!(($&% !#,$*%!'(% !&,$,% !&+$"%!!($*%)($'% )&$"% *)$!% *,% *+$)% "*$(% ,($)% (*$)% ("$(% (,$(% (#$&% (&$#%&*$*%

+%

!++%

&++%

'++%

#++%

(++%

,++%

"++%

!,-'+%!!-#+%!&-#+%!#-!+%!(-!+%!,-!+%!"-!+%!+-++%!!-++%!&-++%!'-++%!#-++%!(-++%!+-'+%!!-'+%!&-'+%!'-'+%!#-'+%!(-'+%!+-++%

&!.!+% &&.!+% &'.!+% &#.!+% &,.!+%

!"#

$%&'(

$)'

*#+"',-.'/,&"'

/01#-$'2304"5'67'5,+89"':;<',-.'='#-'>?'@!""A'?B'

/%0!$,1%234%

5%0&$#1%234%

6%0&($*1%234%0(784%

%6%0!($(1%234%0'%784%

! ZO!

t!%B&!%B)6_$&..!6($!$*%!>&!&.%)3(%&0!.)$6&!%B&!.+=01&!H(.!D)+%&'&0!%B'*=1B!(!.B&&%!

($0!+&%!0')@@)$1C!

AR>R?*B2-#0*\""`*%$*+",+-(.*

#$! %B&! %B)'0!H&&_! *D! %&.%)$1! 9PO%B! %*! K".%! W6%*>&':a! )%! 6($! >&! *>.&'<&0! %B(%! %B&!

6='<&!*D!.*+('!'(0)(%)*$!).!B&'&!.%')6%+8!D*++*H&0!>8!%B&!%H*!+)$&.!*D!%B&!%&3@&'(\

%='&!)$!2"!($0!2Pc!.*a!0)DD&'&$%+8!D'*3!%B&!@'&<)*=.!H&&_a!%B&'&!).!$*%!(!.B)D%!)$!

%)3&!>&%H&&$!)$6'&(.&!)$!.*+('!'(0)(%)*$!($0!%&3@&'(%='&!)$.)0&!%B&!@'*%*%8@&.C!

RB).!).!@'*>(>+8!0=&!%*!%B&!D(6%!%B(%!)$!%B*.&!0(8.!+2"*\"'+2"#*\',*)1%504!($0!

.*! %B&! )$%&$.)%8! *D! ,%1'#* #'0-'+-%(! H(.! ,-.(-$-)'(+14* 1%\"#! 6*3@('&0! %*! %B&!

@'&<)*=.!H&&_!9.&&!%B&!>+=&!0(.B&0!+)$&!)$!A)1='&!KJ:C!RB).!).!B)1B+)1B%&0!(+.*!>8!

%B&!6='<&.!*D!SU!9.&&!A)1='&!KN:a!HB)6B!B(<&!B)1B&'!@&'6&$%(1&.!($0!$*%!6+&('!

<(')(%)*$.!>&%H&&$!6&$%'(+!B*='.!*D!%B&!0(8!($0!%B&!+(%&!(D%&'$**$C!

!

!G-.5#"*?Z*M*B"&7"#'+5#"*-(,-0"*'(0*%5+,-0"*+2"*7#%+%+47",*_*6%1'#*J'0-'+-%(*WS""`*?X*

!

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

)!!"

*!!"

!"

'"

#!"

#'"

$!"

$'"

%!"

%'"

&!"

&'"

'!"

#!+!!"

##+!!"

#$+!!"

#%+!!"

#&+%!"

#(+!!"

#)+!!"

!,+%!"

#!+%!"

##+%!"

#%+!!"

#&+%!"

#'+%!"

#(+%!"

!,+%!"

#!+%!"

##+%!"

#$+%!"

#%+%!"

#&+%!"

#'+%!"

#(+%!"

#!+!!"

#)+!!"

##+%!"

#$+%!"

#%+%!"

#&+%!"

#'+%!"

#(+%!"

##+!!"

#%+!!"

#&+%!"

#(+!!"

$)-#!" $*-#!" $,-#!" %!-#!" %#-#!" %-##"

!"#$

%&'$(

)$*"

+&,-

./01

&

23/

43%$

56%3

&,781

&

2)/3&$+(&9$53&

23/43%$56%3&)+:)(3&$+(&"65:)(3&5;3&4%"5"5<43:&=&!"#$%&'$()$*"+&>-33?&@A&

."/012//3"4567"

."89":#"4567"

."89":$"4567"

;/<=">?2="4@-A$7"

:/<B="C."/012//3"4567D"

:/<B="C."89":#"4567D"

:/<B="C."89":$"4567D"

:/<B="C;/<=">?2="4@-A$7D"

! ZJ!

!G-.5#"*?Y*M*J"1'+-8"*L5&-0-+4*-(,-0"*'(0*%5+,-0"*+2"*7#%+%+47",*WS""`*?X*

!T**_)$1!(%!A)1='&!MLa! %B&!H&)1B%! +*..!*D! %B&!.(3@+&.! ).!(1()$!,-&-1'#* /"+\""(*

,'&71"*9*'(0*Ca!HB)+&!H!.B*H.!(!1%\"#* +-1+i!%B).!).!@'*<&0!(+.*!>8!%B&!0#4-(.*

8"1%)-+4! 9!"KCZ!1kB!D*'!Q!($0!]!6*3@('&0!%*!!O!1kB!D*'!7:a!($0!>8!%B&!0#4-(.*

#'+"!9!Y!1k-,!D*'!Q!($0!]a!($0!!K!1k-,!D*'!7:C!RB&!.(3&!6($!>&!('1=&0!D*'!A)1\

='&!M"a!HB&'&!%B&!KL%B!W6%*>&'!.B*=+0!$*%!0&6&)<&a!>&6(=.&!)$!%B(%!0(8!)%!H(.!0&\

6)0&0! %*! +&(<&! %B&! .(3@+&.! )$.)0&! %B&! @'*%*%8@&.a! $*%! %(_)$1! %B&3! *=%! D*'! %B&!

H&)1B%!3&(.='&.a!0=')$1!%B&!&$%)'&!0(8a!)$!*'0&'!%*!.&&!B*H!3=6B!B)1B&'!%B&!0'8\

)$1!'(%&!H(.C!

!G-.5#"*A=*M*O#4-(.*)5#8",*%$*,'&71"*9e*C*'(0*H*-(*!>*WS""`*?'X*

!

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'!(!!"

''(!!"

'#(!!"

')(!!"

'$()!"

'%(!!"

'*(!!"

!+()!"

'!()!"

''()!"

')(!!"

'$()!"

',()!"

'%()!"

!+()!"

'!()!"

''()!"

'#()!"

')()!"

'$()!"

',()!"

'%()!"

'!(!!"

'*(!!"

''()!"

'#()!"

')()!"

'$()!"

',()!"

'%()!"

''(!!"

')(!!"

'$()!"

'%(!!"

#*-'!" #&-'!" #+-'!" )!-'!" )'-'!" )-''"

!"#$

%&"'

()*

+,+-.

'/01'

2+*"'$3,'4$-"'

!"#$%&"'()*+,+-.'+35+,"'$3,'6)-5+,"'-7"'896-6-.8"5':;""<'=>'

./"012003"4567"

./"89":'"4;7"

./"89":#4;7"

:0<=>"?./"012003"4567@"

:0<=>"?./"89":'"4;7@"

:0<=>"?./"89":#4;7@"

!"#$%&

!'($)&

!)!$*&

!(!$!&

"!$)& +%$,&+!&

*%$!&%+$+&

(($*&"$!& %$*& ,$*& ,$)& ($)& (&

!"+$*&!+($)&

!)"$%&

!,"$"&!!*& !#+$"&

!#)$'&"#$,&

''$)&

))$%&

,)$*&(($)&!+$!&!*$)&!#$!&)$+&

!#)$!&

+($,&**$!&)*$%&)($%& )#$,&

%($(&,%$)&("$)&(*$*&(*$%&()$+&()$+&

#&

)#&

!##&

!)#&

(##&

()#&

!#-##&

!!-##&

!(-##&

!,-##&

!%-,#&

!*-##&

!'-##&

#"-,#&

!#-,#&

!!-,#&

!,-##&

!%-,#&

!)-,#&

!*-,#&

#"-,#&

!#-,#&

!!-,#&

!(-,#&

!,-,#&

!%-,#&

!)-,#&

('.!#& (+.!#& (".!#&

!"#

$%&'(

$)'

*#+"',-.'/,&"'

/01#-$'2304"5'67'5,+89"':;'<',-.'='#-'>?'@!""A'B,C'

/&0!1&234&

5&0,1&234&

6&0(%$)1&234&

! ZN!

!G-.5#"*A>*M*O#4-(.*)5#8",*%$*,'&71"*9e*C*'(0*H*-(*!>*WS""`*?/X*

!B'/1"*U*'(0*

!R(>+&!J!.=3!=@!%B&!3()$!0(%(!*D!%B&!&e@&')3&$%(%)*$c!!

B'/1"*U*M*J",51+,*%$*\""`*?*-(*!#%+%+47"*>*W\-+2*8"(+-1'+-%(*%(X*

B47"*%$*

,150."*

B2-)`R*

g)&h*

N(-+-'1*

\"-.2+*

g.h*

G-('1*

S"-.2+*

g.h*

OT*

g]h*

B-&"*

1"(.+2*

g2h*

B%+R*6%1R*

J'0R*gTkh*

O#4-(.*

8"1%)-+4*

g.@2h*

O#4-(.*

#'+"*

g.@Tkh*

Q! "! "NLCM! P! LCNN! "Z! KNCJO! "PCZY! MCOK!

Q! "! "NJCP! "CK! LCYZ! "K! PZCMO! "ZC"Z! OCOK!

]! "! "NJCY! ZCJ! PCNP! "Z! KYCOJ! "PCJZ! ZCPM!

]! "! "NOCO! ZC"! "CNP! "K! POCOM! "MCJP! YCNM!

7! "! "LZC"! PZCJ! PMCZZ! "P! PNCZY! YCY"! PCYJ!

7! "! ""JC"! PNC"! PMCYM! "L! PMCYY! JCNL! KCY"!

!

#$!2'*%*%8@&!P!9A)1='&!MP:a!.(3@+&!Q!($0!]!('&!0')&0!H)%B!%B&!.(3&!3&%B*0!&e\

@+()$&0!)$!F&&_!Pa!(6B)&<)$1!(!D(.%!0'8)$1!9"L!B*='.:a!)D!%B&!)$)%)(+!(3*=$%!).!$*%!

<&'8!B)1B!9.(3@+&!Q:!*'!%(_)$1!+*$1&'!@&')*0!*D!%)3&!HB&$!%B&!)$)%)(+!(3*=$%!).!

B)1B&'!9.(3@+&!]":C! #%! ).! )$%&'&.%)$1!%*!*>.&'<&!%B(%! )$!%B).!6(.&!3($8!0(8.!9PO!

B*='.!*D!&e@&')3&$%(%)*$:!)$.)0&!%B&!@'*%*%8@&!H&'&!$&6&..('8!%*!.+*H+8!(6B)&<&!

%B&!6*3@+&%&!0'8)$1!9.&&!S&0!+)$&!)$!A)1='&!MP:C!RB).!'&.=+%.!(+.*!)$!0#4-(.*8"3

1%)-+-",!($0!0#4-(.*#'+",!1&$&'(++8!+*H&'!6*3@('&0!%*!F&&_!Pa!&<&$!%B*=1B!.%)++!

!"#$%&

!'%$'&!()$(& !(*$!&

!)+$(&

!!$!&!$(&

!$"& !$)& !$)&

!"+$+&

!+!$"& !')$,& !("$+&

!,#$,&

(+&(+&

"$%& +$#& (&

!!#$!&

,#$'&)'$,& )*$"& )*$!& %"$!&

*&

(*&

!**&

!(*&

%**&

%(*&

!)-)*& !,-)*& !(-)*& !'-)*& !*-**& !+-**& !!-)*& !%-)*& !)-)*& !,-)*&

%".!*& )*.!*& )!.!*&

!"#

$%&'(

$)'

*#+"',-.'/,&"'

/01#-$'2304"5'67'5,+89"':;'<',-.'='#-'>?'@!""A'BCD'

/&0*$'1&234&

5&0%$(1&234&

6&0%,$'1&234&

! YL!

.)1$)D)6($%+8!B)1B&'!D*'!Q!($0!]!9!P"!1kB!($0!!""!1k-,:!6*3@('&0!%*!7!9!Y!1kB!

($0!!K!1k-,:!

!

!G-.5#"*A<*M*O#4-(.*)5#8",*%$*,'&71"*9e*C*'(0*H*-(*!<*WS""`*?X*

!B'/1"*Z*M*J",51+,*%$*\""`*?*-(*!#%+%+47"*<*W\-+2*8"(+-1'+-%(*%(X*

6'&R* B2-)`*

g)&h*

N(-+-'1*

\"-.2+*g.h*

G-('1*

S"-.2+*

g.h*

OT*

g]h*

B-&"*

g2h*

B%+R*6%1R*

J'0R*gTkh*

O#4-(.*

8"1%)-+4*

g.@2h*

O#4-(.*

#'+"*

g.@Tkh*

Q! K! POJaY! PaJ! "! "L! PKCYO! POCZJ! ""CYZ!

]! K! M"JaZ! "KaP! KC"Z! PJCZ! ZLCPY! "MCPP! JC"L!

]! K! KZOaN! "PaK! KCMZ! "ZCZ! PZCNM! PPCKL! "KCKP!

7! P! "LOCN! P"CP! "NCYZ! "M! PKCKJ! YCPL! KCO"!

7! "L! ""JO! JOOt! OMt! J!0(8.t! t! t! t!

t6*3@+&%&! 0'8)$1! H(.! $*%! (6B)&<&0! >&6(=.&! %B&! %B)6_$&..! H(.! %**! B)1Bi! %B).!

.(3@+&!).!$*%!0).@+(8&0!)$!A)1='&!MY!($0!%B&!%*%(+!.*+('!'(0)(%)*$!H(.!$*%!6(+6=\

+(%&0!

! !

!"#$%&

#'$!&

()$%& !)$%& '*$(& +$%& "$'& ,$'& !$#&

('#$*&

!(,$+&

!)"$%&'"+$"&'")$'&

'%'$*&',*$%&

''#&'),$%&

##$"& "%& ",$%& ,#$%& ,)$*& !"$"& !*& !($*&!,& '*$*&',$!&

,*"$+&

#+$!&%)& *'$"&(#$"&

(,$%& (!&()$%&

'($"& '!$%& '!$,&

')"$+&+,$*&#+$,&

#'$'&%"$#&

,($#& !,$#& !!$%& !'$%& !'$,& !'$!&)&

*)&

'))&

'*)&

!))&

!*)&

,))&

,*)&

())&

(*)&

')-,)&

''-,)&

',-))&

'(-,)&

'*-,)&

'%-,)&

)+-,)&

')-,)&

''-,)&

'!-,)&

',-,)&

'(-,)&

'*-,)&

'%-,)&

')-))&

'"-))&

''-,)&

'!-,)&

',-,)&

'(-,)&

'*-,)&

'%-,)&

''-))&

',-))&

'(-,)&

!#.')& !+.')& ,).')& ,'.')& ,'.')& ,.''&

!"#

$%&'(

$)'

*#+"',-.'/,&"'

/01#-$'2304"5'67'5,+89"':;'<',-.'=''#-'>?'@!""A'BC'

/&0'1&234&

5&0,$!1&234&0'4&

5&0,$(1&234&0!4&

6&0'+$%1&234&0!784&

  61  

4.1.4  Comments  on  the  results  of  the  solar-­‐drying  experimentation    

Table  9  –  Summary  of  the  main  results  of  solar  experimentation  (Week  2  and  3)  

Parameter   Prototype   Sample  A   Sample  B   Sample  C  

Average  DM  [%]  1   0.52   2.40   22.96  

2   1.33   3.02   20.33  

both   0.95   2.71   21.64  

Average  Drying  time  [h]  

1   14.17   10.38   12.50  

2   16.50   16.50   18.83  

both   15.33   13.44   15.67  

Average  solar  radiation  [MJ]  

1   32.18   28.99   29.23  2   17.75   28.59   34.79  

both   24.96   28.79   32.01  

Average  Drying  velocity  [g/h]  

1   14.44   15.80   7.64  

2   57.07   34.64   10.71  

Average  Drying  rate  [g/MJ]  1   6.57   8.02   3.24  2   13.07   20.04   7.51  

 

In  Table  9  the  main  data  collected  during  the  Solar-­‐drying  part  are  summed  up,  

with  average  values  of  the  parameters  for  every  type  of  sample  and  divided  also  

for   Prototype   1   and   2   (regarding   drying   rate   and   velocity   an   average   value   of  

both  prototypes  is  not  provided  since  the  data  for  A  and  B  are  too  much  differ-­‐

ent).  

 

Looking  at  the  drying  velocity  (g/h)  of  the  samples,  it  can  be  observed  how  Pro-­‐

totype  1  has  in  general  a  higher  capacity  regarding  sample  C,  with  an  average  

rate  of  7.64  g/h  (in  ~12.5  hours  on  average),  compared  to  10.71  g/h  in  proto-­‐

type   2   (in  ~19  hours).   The   drying   rate   shows   averagely   lower   values   in   P1  

compared  to  P2  for  all  the  samples.  It  is  evident,  regarding  sample  A  and  B,  that  

the  filtering  method  adopted  in  P2,  described  in  Paragraph  4.1.2,  is  very  effec-­‐

tive,  since  the  drying  of  most  of  the  water  content  is  quickly  achieved  in  few  

hours:  on  average  57  g/h  for  sample  A  and  34.64  g/h  for  sample  B,  compared  to  

14-­‐15   g/h   observed   in   P1   for   both   samples.   It   has   to   be   underlined,   however,  

that  the  complete  drying  took  a  long  time,  higher  as  more  initial  weight  was  in-­‐

troduced,  making  eventually   the  drying  time   longer   in  P2  than   in  P1   for  all   the  

filtered  samples.  This   is,  however,  not  a  negative  point   for   the  project,  because  

  62  

the  incineration  of  the  sludge  requires  around  85%  DM,  so  the  filtering  method  

results  to  be  applicable.  

 

Comparing   the   two   prototypes,   it   can   then  be   argued   that   the  drying   rate   is  

similar  only  when  there  is  a  high  level  of  solar  radiation  (sunny  weather).  On  the  

other  hand,  when  the  amount  of  incoming  solar  radiation  is  low  (cloudy  weath-­‐

er),  the  drying  capacity  of  P2  is  very  weak,  while  in  P1  evaporation  still  happens  

(this   is  due   to   the  already  described  characteristic  of   the  systems:   the  samples  

receive  direct  solar  radiation  inside  P1).  

 

Regarding   the   solid   content   (%DM),   the   average   values   are   close   to   the   ex-­‐

pected  percentages   (also  determined  with   the  standard  method  at  105°C  –  see  

Paragraph  4.5),  on  average  for  all   the  samples:  0.95%  for  sludge  type  A,  2.71%  

for   B   and   21.64%   for   C.   It   can   be   observed   from   Table   9   that   the   values   are  

slightly  higher  in  P2  for  sample  A  and  B  compared  with  P1  but  slightly  lower  for  

sample  C.  This  can  be  due  to  the  lower  temperature  inside  Prototype  2.  

 

4.2  Enthalpy  and  Exchanged  Thermal  Power  in  the  Solar  Collectors    The  results  of  the  calculations  described  in  Paragraph  3.2,  regarding  enthalpy  of  

the   air   passing   through   the   solar   collectors   of   Prototype  2,   are  here  presented  

and   discussed.   Hin,   which   is   the   enthalpy   of   the   air   entering   the   collector,   has  

been  calculated  considering  T  (°C)  and  RH  (%)  of  the  environment,  while  for  Hout,  

which   is   the   air  heated  up  by   the   collectors,   entering   the  box  of  P2,  data  were  

taken  by  a  sensor  put  at  the  end  of  the  collector.  Looking  at  the  curves  of  enthal-­‐

py  and  thermal  power,  the  comments  made  in  the  previous  section  are  here  con-­‐

firmed:  during   the   second  week   (Figure  43  and  Figure  44)   there  was  more   in-­‐

coming  solar  radiation  which  results  in  a  fluctuating  trend,  with  peaks  at  the  cen-­‐

tral  hours  of  the  day  (approximately  65-­‐80  kJ/kg).  

 

! YK!

!G-.5#"*A?*M*N()%&-(.*'(0*F5+.%-(.*9-#*E(+2'174*-(,-0"*+2"*6%1'#*H%11")+%#,*%$*!<*WS""`*<X*

*

!G-.5#"*AA*M*Eb)2'(."0*+2"#&'1*7%\"#*%$*+2"*'-#*-(,-0"*+2"*6%1'#*H%11")+%#,*%$*!<*WS""`*<X*

!

Q!0)DD&'&$%!.)%=(%)*$!).!0).@+(8&0!)$!%B&!1'(@B.!*D!H&&_!K!9.&&!A)1='&!MZ!($0!A)1\

='&!MY:c!%B&!%'&$0!).!3*'&!.%&(08!6*3@('&0!%*!H&&_!Pa!H)%B!(+.*!$&1(%)<&!<(+=&.!

*D!&e6B($1&0!%B&'3(+!@*H&'!0=')$1!%B&!+(%&!(D%&'$**$a!HB&$!%B&!@'*%*%8@&!H(.!

(+'&(08! )$! .B(0*HC!RB).!H(.! 6*$D)'3&0!(+.*!>8! %B&! D(6%! %B(%! )$! %B*.&!3*3&$%.!

%B&!%&3@&'(%='&!)$.)0&!%B&!.8.%&3!H(.!&<&$!+*H&'!%B($!*=%.)0&c!%B).!).!@'*>(>+8!

0=&!%*!%B&!D(6%!%B(%!%B&!6+*.&0!>*e!*D!2Pa!H)%B*=%!%B&!@'*<).)*$!*D!B&(%!D'*3!%B&!

6*++&6%*'.a!(6%.!(.!($!)$.=+(%*'a!_&&@)$1!%B&!6*+0!)$.)0&C!

!

!"!!#

$!"!!#

%!"!!#

&!"!!#

'!"!!#

(!"!!#

)!"!!#

*!"!!#

+!"!!#

,!"!!#

$!!"!!#

$$-'!# $%-'!# $'-$!# $(-$!# $)-$!# $*-$!# $!-!!# $$-!!# $%-!!# $&-!!# $'-!!# $(-!!# $!-&!# $$-&!# $%-&!# $&-&!# $'-&!# $(-&!#

%%.$!.$'# %&.$!.$'# %'.$!.$'#

!"#$

%&'(

)*+,-

+./)

0123)%"4)5%#3)

6"7821".)%"4)9:#.81".);1<)!"#$%&'()=>33?)@A)

/#01#

/#234#

5267"#8/#019#

5267"#8/#2349#

!"#$$%

$#$$%

"#$$%

&$#$$%

&"#$$%

'$#$$%

'"#$$%

($#$$%

("#$$%

)$#$$%

&&*)$% &'*)$% &)*&$% &"*&$% &+*&$% &,*&$% &$*$$% &&*$$% &'*$$% &(*$$% &)*$$% &"*$$% &$*($% &&*($% &'*($% &(*($% &)*($% &"*($%

''-&$-&)% '(-&$-&)% ')-&$-&)%

!"#$%&'()*+

#$(,-

./(

!0%#(

123"&45#6(7"#$%&'(8*+#$(9.7:(9.##;(<:(

./%

0123#%4./5%

! YM!

!G-.5#"*AK*M*N()%&-(.*'(0*F5+.%-(.*9-#*E(+2'174*-(,-0"*+2"*6%1'#*H%11")+%#,*%$*!<*WS""`*?X*

!

!G-.5#"*AQ*M*Eb)2'(."0*+2"#&'1*7%\"#*%$*+2"*'-#*-(,-0"*+2"*6%1'#*H%11")+%#,*%$*!<*WS""`*?X*

! *

!"!!#

$!"!!#

%!"!!#

&!"!!#

'!"!!#

(!"!!#

)!"!!#

*!"!!#

+!"!!#

$!,!!#

$$,!!#

$%,!!#

$&,!!#

$',&!#

$),!!#

$*,!!#

!-,&!#

$$,&!#

$&,!!#

$',&!#

$(,&!#

$),&!#

!-,&!#

$!,&!#

$$,&!#

$%,&!#

$&,&!#

$',&!#

$(,&!#

$),&!#

$!,!!#

$*,!!#

$$,&!#

$%,&!#

$&,&!#

$',&!#

$(,&!#

$),&!#

$$,!!#

$&,!!#

$',&!#

$),!!#

%*.$!# %+.$!# %-.$!# &!.$!# &$.$!# &.$$#

!"#$%&'()*+

,-+./)

0123)%"4)5%#3)

6"7821".)%"4)9:#.81".);6<)!"#$%&'()=>33+)?@)

/#01#

/#234#

5267"#8/#019#

5267"#8/#2349#

!"#$%%&

!"%$%%&

!#$%%&

%$%%&

#$%%&

"%$%%&

"#$%%&

'%$%%&

'#$%%&

(%$%%&

(#$%%&

"%)%%&

"")%%&

"')%%&

"()%%&

"*)(%&

"+)%%&

",)%%&

%-)(%&

"")(%&

"()%%&

"*)(%&

"#)(%&

"+)(%&

%-)(%&

"%)(%&

"")(%&

"')(%&

"()(%&

"*)(%&

"#)(%&

"+)(%&

"%)%%&

",)%%&

"")(%&

"')(%&

"()(%&

"*)(%&

"#)(%&

"+)(%&

"")%%&

"()%%&

"*)(%&

"+)%%&

',."%& '/."%& '-."%& (%."%& ("."%& (.""&

!"#$%&'()*+

#$(,-

./(

!0%#(&12(3&4#(

567"&18#2(4"#$%&'(9*+#$(:.4;(:.##<(=;(

01&

2345$&6017&

! YZ!

AR?*B2"#&'1*0#4-(.*!RB&!&e@&')3&$%(%)*$!*D!.+=01&! %B&'3(+!0'8)$1!H(.!@&'D*'3&0! )$!($!*<&$!(%!($!

(<&'(1&!R!*D!"ZLp7C!RB&!R!H(.!(6%=(++8!.&%!(%!"YLp7!>=%a!.)$6&!%B&!*<&$!*@&$&0!

%B'*=1B!(!0**'a!&<&'8!%)3&!%B&!.+=01&!H(.!%(_&$!*=%!D*'!%B&!H&)1B%!3&(.='&a!%B&!

R! )$.)0&!0'*@@&0! %*! ('*=$0!"MLp7! ($0! %**_! ('*=$0!"L!3)$=%&.! %*! 1&%! >(6_! %*!

"YLp7C! 5*! "ZLp7! ).! 6*$.)0&'&0! (! 1**0! &.%)3(%)*$! *D! %B&! (<&'(1&! R! )$! %B&! *<&$!

0=')$1!%B&!&e@&')3&$%(%)*$C!RB&!,'&71",!('&!%B&!.(3&!%B'&&!*D!%B&!.*+('!%&.%)$1!

($0!H)++!>&! )$0)6(%&0!B&'&!(.!9e* Ce* H! (.!H&++C!F&)1B%!3&(.='&3&$%.!B(<&!>&&$!

0*$&!"8"#4*?=*&-(5+",!H)%B!($!($(+8%)6!>(+($6&!H)%B!%B&!@'&6).)*$!*D!LC"!1!9.&&!

2('(1'(@B!KCZ:C!

!

AR?R>*G-#,+*+",+*!#$!%B&!D)'.%!%&.%!%B&!>)*+*1)6(+!.+=01&!H(.!@=%!)$!K!1+(..!6*$%()$&'.!($0!)$!(!6&'(3\

)6!6'=6)>+&!($0!@=%! )$.)0&! %B&!*<&$!9.&&!A)1='&!MO:c!(!H&)1B%!3&(.='&!H(.!'&6\

*'0&0!&<&'8!KL!3)$=%&.C!?)DD&'&$%!6*$%()$&'.!H&'&!=%)+).&0!>&6(=.&!*D!(! +(6_! )$!

3(%&')(+.a!>=%!(%!%B&!.(3&!%)3&!)%!H(.!)$%&'&.%)$1!%*!*>.&'<&!)D!%B&'&!H(.!(!0)DD&'\

&$%!>&B(<)*='!)$!%B&!.+=01&\0'8)$1!'(%&a!0=&!%*!%B&3C!

! ! !G-.5#"*AU*M*!2%+%.#'72,*%$*+2"*,'&71",*W$#%&*1"$+*+%*#-.2+a*,'&71"*Ce*H>*'(0*H<X*

RB&!M!.(3@+&.!H&'&c!

": 5+=01&!(D%&'!.&0)3&$%(%)*$!%($_! )$!%B&!.&6*$0('8!%'&(%3&$%!9Q:!9LCZ\"d!

?-:!4!K!63!%B)6_$&..C!

P: 5+=01&!6*3)$1!*=%!D'*3!%B&!%B)6_&$&'!9]:!9PCZ\Kd!?-:!4!"!63!%B)6_$&..C!

K: ?)1&.%(%&!97":!9PL\PZd!?-:!4!K!63!%B)6_$&..C!

M: ?)1&.%(%&!97P:!4!"L!63!%B)6_$&..C!

!

  66  

It  was  decided  to  settle  these  various  thicknesses  in  order  to  make,  as  much  as  

possible,  a  comparison  with  the  solar  experimentation.  As  done  in  the  solar  ex-­‐

perimentation,  more  attention  was  given  to  the  digested  sludge,  due  to  its  higher  

solid  content,  more  suitable  for  the  project:  the  choice  of  10  cm-­‐thickness  for  C2,  

in  fact,  was  due  to  the  formulated  hypothesis  about  the  thickness  that  the  enter-­‐

ing  sludge  should  have  in  the  projected  system.  

 

The   weight   was   measured   until   when   the   same   value   was   identified   in   many  

subsequent  measurements,  which  meant  a  complete  evaporation  of  water  in  the  

biological  sludge.  The  duration  of  the  experimentation  was  11  hours  and  a  half.  

In  that  period  of  time  it  was  not  possible  to  achieve  a  complete  drying  of  the  10  

cm-­‐digestate.  This  result  in  particular,  was  important  in  the  definition  of  an  op-­‐

timal  value  of  thickness.  

 

 Table  10  –  Results  summary  of  thermal  drying  for  sample  A,  B  and  C  (1st  Test)  

Sample   Thick.  [cm]  

Initial  Weight  [g]  

Final  Weight  [g]  

Duration  [h]  

DM  [%]   Drying  velocity  [g/h]  

A   3   644.2   1.7   11.5   0.26   55.87  B   1   397.9   9.4   7.5   2.36   51.80  C   3   218.8   40.8   10.5   18.65   16.95  C   10   653.9   302.4*   11.5*   46.25*   30.57*  

*  complete  drying  not  achieved  

 

Looking  at  Table  10,  it  can  be  observed  that  the  drying  velocity  for  sample  A  and  

B  are,  as  expected,  significantly  higher   than  with  solar-­‐drying,  even   though  not  

the  same  can  be  argued  for  sample  C  (only  16.95  g/h).  The  DM  percentages  are  

lower   than   the   one   calculated   for   the   solar   experimentation:   that   could  mean  

that  with  solar  energy  only,  a  100%  drying  cannot  be  achieved.  

 

! YO!

!G-.5#"*AZ*M*H5#8",*%$*,150."*0#4-(.*'+*>K=lH*W>,+*B",+X*

#$!A)1='&!MJ!)%!6($!>&!$*%)6&0!%B(%!.(3@+&!Qa!>&)$1!3(0&!3()$+8!*D!H(%&'a!.B*H.!

(!6*$.%($%!B)1B!0)3)$=%)*$!=$%)+!%B&!D)$(+!<(+=&!9(D%&'!""!B*='.!($0!KL!3)$=%&.:C!!

5(3@+&!]!6='<&a!)$.%&(0a!B(.!(!0'(3(%)6!6*$.%($%!0)3)$=%)*$!)$!%B&!D)'.%!K!B*='.!

($0!%B&$!(!.+)1B%&'!0)3)$=%)*$!D*'!*%B&'!K!B*='.a!=$%)+!6*3@+&%&!.%(>)+).(%)*$!9(D\

%&'!O!B*='.!($0!KL!3)$=%&.:C!

5(3@+&!7a!D)$(++8a!.B*H&0!0)DD&'&$%!>&B(<)*='.!0&@&$0)$1!*$!%B&!%B)6_$&..c!)$!%B&!

K63\.(3@+&!%B&!0'8)$1!'(%&!H(.!+*H&'!($0!(+3*.%!.%&(08!=$%)+!6*3@+&%&!.%(>)+)\

.(%)*$!9(D%&'!"L!B*='.!($0!KL!3)$=%&.:i!)$!%B&!"L634.(3@+&!)%!6($!>&!*>.&'<&0!

%B(%!%B&!0'8)$1!'(%&!).!B)1B&'!9B)1B&'!%)+%:a!>=%!.%)++!6*$.%($%a!0=')$1!%B&!HB*+&!@&\

')*0!96*3@+&%&!0'8)$1!H(.!$*%!(6B)&<&0:C!

!

AR?R<*6")%(0*+",+*!#$!%B&!.&6*$0!%&.%a!%H*!(.@&6%.!B(<&!>&&$!6B($1&0a!%B(%!H&'&!)0&$%)D)&0!%*!>&!0&\

%&'3)$)$1!D(6%*'.!)$!%B&!@'&<)*=.!%&.%c!

• %B&!6*$%()$&'.!H&'&!(++!0)DD&'&$%!)$!.B(@&!($0!3(%&')(+.a!

• %H*!.(3@+&.!H&'&!%**!%B)6_c! %B&!0)1&.%(%&!H)%B!"L!63!%B)6_$&..!($0!%B&!

.+=01&!(D%&'!.&6*$0('8!.&0)3&$%(%)*$!9K!63:!

A*'! %B*.&! '&(.*$.a! %B'&&! )0&$%)6(+! (+=3)$)=3! 6*$%()$&'.! H&'&! =.&0! ($0! %B&!

%B)6_$&..! H(.! "! 63! D*'! %B&! %H*! >)*+*1)6(+! .+=01&.! ($0! K! 63! D*'! %B&! 0)1&.%&0!

.+=01&C!#$!A)1='&!MN!%B&!%B'&&!(+=3)$)=3!6*$%()$&'.!6($!>&!.&&$!(D%&'!%B&!"ZLp7!

0'8)$1!@'*6&..C!

!

!""#$% !&!#$%!'(#$%

()&#*%

(&+#*%(,)#*%

"*'#*%"&$#*%

&+*#*% &*!#$%&!&#*%

&&)#$%

$++#*%$!&#*%

$&$#$%

'+(#*%'!+#*%

'$'#$% )*#$%!"#$%

$*#$%+#$%

'#*%

&+*#+%

&"!#"%

$*'#"%

$,(#+%

'",#+%

+)#+%

"!#"% ')#"% ''#+% '(#+% '&#"% '$#+% '$#"% ''#"% ''#"% ''#"% ',#"% ',#"% +#"% +#"% +#"% +#"% +#"%

$')#)%'*,#&%

'(&#&% '&*#)% '$(#)% ''*#&%',(#)% +!#&% )"#&% ),#)% *!#&% *,#&%

!$#&% ("#&% ($#&% (,#&% "!#)% "&#)% "$#)% ",#)% ",#)%

!(&#+%!""#+% !$(#+%

!,*#"%()*#"% (*$#+%

("+#"%(&'#"% (',#"%"+*#"%

")+#"% "*)#+%"!,#+%

"&+#+%"$!#"% ",)#+%&+(#+%

&*&#+%&(!#"%

&"&#"% &$!#"% &'$#+%&,$#"%

,%

',,%

$,,%

&,,%

",,%

(,,%

!,,%

*,,%

,#,% ,#(% '#,% '#(% $#,% $#(% &#,% &#(% "#,% "#(% (#,% (#(% !#,% !#(% *#,% *#(% )#,% )#(% +#,% +#(% ',#,% ',#(% ''#,%

!"#

$%&'(

$)'

*#+"',%-'

./0#1$'23/4"5'67'58+9:"';<'='81>'?'8&'@ABC?',@5&'*"5&-'

-%.,#&/%012%

3%.$#"/%012%

4%.&562%.')#!/%012%4%.',562%."!#$/%012%

  68  

 Figure  49  –  Photograph  of  the  three  samples  after  thermal  drying  

 Table  11  –  Results  summary  of  thermal  drying  for  sample  A,  B  and  C  (2nd  Test)  

Sample   Thick.  [cm]  

Initial  Weight  [g]  

Final  Weight  [g]  

Duration  [h]  

DM  [%]   Drying  rate  [g/h]  

A   1   306.3   2.3   3.5   0.75   86.86  B   1   397.4   13.8   5.5   3.47   69.75  C   3   495.2   117.3   7.5   23.69   50.39    

Table  11  displays  higher  DM  percentages  compared  to  the  previous  test,  which  

discredit   the   hypothesis  made   for   it   in   the   comparison  with   solar   drying.   The  

variability   in   solid   content   is   therefore   to   be   attributed   probably   just   to   the  

changeability  of  the  samples.  The  drying  velocity,  instead,  are  significantly  higher  

compared  to  the  solar-­‐drying  (higher  as  lower  is  the  solid  content).  This  is  due  to  

the  lower  thickness,  the  larger  open  surface  and  the  materials  of  the  containers  

(aluminium)  compared  to  the  ones  applied  in  the  first  test  (glass  and  ceramic).  

 

Since  these  data  are  more  reliable  compared  with  the  first  test,  they  are  analysed  

more  in  depth.  The  analyses  described  in  Paragraph  3.3  are  applied.    

 

The  drying   curves   (Figure  50)   show   the   line   of   the  weight  measures   through  

time:  the  trend  of  water  loss  of  the  three  samples  is  very  similar,  even  though  C  

has  a  steeper  decrease  until  2.5-­‐3  hours,  where  it  reaches  around  90%  DM  (see  

Figure  53)  and  then  stabilize  till  the  complete  drying.  This  is  probably  due  to  its  

high  content  of  water,  which  evaporates   faster  compared  to   the  other  samples,  

because  less  trapped  into  the  sludge.  

! YN!

!

!G-.5#"*K=*M*O#4-(.*)5#8",*%$*,'&71"*9e*C*'(0*H*-(*>K=lH*%8"(*W<(0*+",+X*

!

RB&!S"-.2+* 1%,,* $#%&* +2"* ,+'#+! ).!($!)$0)6(%)*$!*$!B*H!3=6B!H(%&'!B(.!>&&$!

+*.%! %B'*=1B!&<&'8! .%&@!*D! %B&!@'*6&..a! =$%)+! %B&! 6*3@+&%&!0'8)$1a! 6*3@('&0! %*!

%B&!)$)%)(+!H&)1B%!9)$!d:!9.&&!;b=(%)*$!"Z:C!#$!A)1='&!Z"!%B&!%'&$0!*D!%B&!6='<&.!).!

.)3)+('!>&%H&&$!%B&!.(3@+&!Q!($0!]a!HB)+&!.(3@+&!7!B(.!(!.+*H&'!H&)1B%!+*..C!

!

!G-.5#"*K>*M*S"-.2+*1%,,*$#%&*+2"*,+'#+*%$*,'&71"*9e*C*'(0*H*-(*>K=lH*%8"(*W<(0*+",+X*

!RB&!S'+"#*E8'7%#'+-%(*J'+"!9A)1='&!ZP:!).!%B&!'(%)*!>&%H&&$!%B&!H&)1B%!*D!H(\

%&'!+*.%!%B'*=1B!&<&'8!.%&@!($0!%B&!H&)1B%!*D!%B&!%*%(+!(3*=$%!*D!H(%&'!@'&.&$%!)$!

%B&!.(3@+&!9)$!d:!9.&&!;b=(%)*$!"Y:C#

!"#$!%

&#"$'%

&"!$(%

)!)$*%

*"$'%

)($(% &$'% &$!% &$!%

!(+$'%

!#*$(%

!&)$(%

&,#$,%

&)"$!%

)'($)%))!$,%

,'$'%!!$+% &)$'% )'$'% )!$*%

)!$*%

'(,$&%

'#"$#%

'"($,%

!''$(%

!"&$+%

&,)$(%

&&!$(%)*"$#%

),*$&% )!,$(%))($*% ))*$!% ))*$)% ))+$+% ))+$,%

))+$!%

"%

)""%

&""%

!""%

'""%

,""%

#""%

"$"% "$,% )$"% )$,% &$"% &$,% !$"% !$,% '$"% '$,% ,$"% ,$,% #$"% #$,% +$"% +$,%

!"#

$%&'(

$)'

*#+"'(%)'

,-.#/$'01-2"3'45'36+78"'9:';'6/<'='#/'>?@A='42"/'BC/<'&"3&D'

-%."$+/%012%

3%.!$,/%012%

4%.&!$+/%012%

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!(!" !()" '(!" '()" #(!" #()" *(!" *()" $(!" $()" )(!" )()" %(!" %()" +(!" +()"

!"#$%&'()**'+,)-'&%

"'*&.,&'/01'

2#-"'3%4'

!"#$%&'()**'+,)-'&%"'*&.,&')+'*.-5("'67'8'.9:';'#9'<=>?;')@"9'3A9:'&"*&4'

,"-!(+."/01"

2"-*()."/01"

3"-#*(+."/01"

! OL!

RB&!D(.%&'!0'8)$1!'(%&!*D!.(3@+&!Q!).!B&'&!6+&('&'c!)%!+*.&.!3*'&!%B($!NLd!*D!%B&!

H(%&'!(D%&'!%H*!B*='.!($0!(!B(+Da!HB)+&!%B&!.(3&!@&'6&$%(1&!).!'&(6B&0!D*'!]!($0!

7!(D%&'!(@@'*e)3(%&+8!M!($0!MCZ!B*='.!'&.@&6%)<&+8C!

!

*

G-.5#"*K<*M*O#4-(.*#'+-%*W]X*%$*,'&71"*9e*C*'(0*H*-(*>K=lH*%8"(*W<(0*+",+X*

!

RB&!6='<&!*D!O#4*T'++"#* W]X! '&@'&.&$%.! %B&!.*+)0!6*$%&$%! %B'*=1B!&<&'8! %)3&!

.%&@!*D!%B&!@'*6&..!($0!.B*H.!0)DD&'&$%!%'&$0.!>&%H&&$!%B&!.(3@+&.!9.&&!;b=(\

%)*$!"O:C!5(3@+&!Q!B(.!(!.+*H!0&6'&(.&!=$%)+! %B&!_&8!@*)$%!*D!PCZ!B*='.!H&'&!(!

0'(3(%)6! +*..!*D!H(%&'! %**_!@+(6&! )$!(!<&'8!.B*'%!@&')*0!*D! %)3&! 9B(+D!($!B*=':!

9%B).!).!%B&!3*3&$%!)$!HB)6B!%B&!0'8)$1!'(%&!).!%B&!B)1B&.%:C!RB).!).!@'*>(>+8!0=&!

%*!%B&!D(6%!%B(%!%B&!.(3@+&!%**_!PCZ!B*='.!%*!'&(6B!%B&!\'+"#*/%-1-(.* +"&7"#'3

+5#"! 9"LLp7:!($0!B&'&!%B&!3*.%!@('%!*D!H(%&'!&<(@*'(%&.!=$%)+!(!6*$%&$%!*D!"L\

"Zd!9JZ\NLd!?-:C! 5(3@+&!]! '&(6B&.! %B&!>*)+)$1!@*)$%! (!>)%! +(%&'! 9(%!K!B*='.:!

($0a!0=&!%*!)%.!+*H&'!)$)%)(+!H(%&'!6*$%&$%!9P\Kd!?-:a!%B&!&<(@*'(%)*$!'(%&!(D%&'!

%B).!@*)$%!).!+*H&'!6*3@('&0!%*!.(3@+&!Q!($0!%(_&.!('*=$0!P!B*='.!%*!1&%!%*!"Z\

"Ld!*D!H(%&'!6*$%&$%C!T(.%+8a!.(3@+&!7!0*&.!$*%!.B*H!(!@('%)6=+('!@*)$%!)$!HB)6B!

%B&!0'8)$1! '(%&! .=00&$+8! )$6'&(.&.!>=%! .B*H.! (! .%&(08! )$6'&(.&!=$%)+! %B&! 6*3\

@+&%&!0'8)$1!9"LLd!?-:C!

!"!!#

$!"!!#

%!"!!#

&!"!!#

'!"!!#

(!!"!!#

($!"!!#

!"!# !")# ("!# (")# $"!# $")# *"!# *")# %"!# %")# )"!# )")# &"!# &")# +"!# +")#

!"#

$%&'

(")*

%"+*

,&-"

#$&./

0&

123$&.40&

!"#$%&'(")*%"+*,&-"#$&5/6&*7&8"3)9$&:;&<&",=&>&2,&?@AB>&*($,&5C,=&#$8#6&

,#-!"+.#/01#

2#-*").#/01#

3#-$*"+.#/01#

! O"!

!G-.5#"*K?*M*O#4*T'++"#*W]OTX*%$*,'&71"*9e*C*'(0*H*-(*>K=lH*%8"(*W<(0*+",+X*

!

S&1('0)$1!%B&!O#4-(.*V"1%)-+4!9A)1='&!ZM:a!HB)6B!0&.6')>&.!%B&!0'8)$1!0)DD&'&$\

%)(+!!!!!!%B'*=1B!%)3&!9.&&!;b=(%)*$!"J:a!)%!6($!>&!*>.&'<&0!%B(%!%B&!%'&$0!*D!%B&!

.(3@+&.!).!1&$&'(++8!0&6'&(.)$1c!)%!).!)$%&'&.%)$1!%*!$*%&!%B(%!%B&!.(3@+&.!.%('%&0!

D'*3!0)DD&'&$%!<(+=&.!($0!(D%&'!"CZ!B*='.!%B&8!6*$<&'1&.!%*!(!.)3)+('!<(+=&!=$%)+!

%B&! %)3&! *D! K! B*='.!HB&'&! %B&! 6='<&! *D! .(3@+&! 7! 0)<&'1&.a! >&6(=.&! %B&! 0'8)$1!

'(%&!).!.)1$)D)6($%+8!+*H&'C!

*

G-.5#"*KA*M*O#4-(.*8"1%)-+4*Wo&@o+X*%$*,'&71"*9e*C*'(0*H*-(*>K=lH*%8"(*W<(0*+",+X*

!

!"!!#

$!"!!#

%!"!!#

&!"!!#

'!"!!#

(!!"!!#

($!"!!#

!"!# !")# ("!# (")# $"!# $")# *"!# *")# %"!# %")# )"!# )")# &"!# &")# +"!# +")#

!"#$%&'

("$)*

+$

,-.($)/+$

!"#$%&'("$0*!%1$23$4&.56($78$9$&:;$<$-:$=>?@<$2A(:$0B:;$C(4C1$

,#-!"+.#/01#

2#-*").#/01#

3#-$*"+.#/01#

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

!,!" !,'" #,!" #,'" $,!" $,'" %,!" %,'" &,!" &,'" ',!" ','" (,!" (,'" ),!" ),'"

!"#$

%&'(

)*+,

$-#'.&

/01'

2$3)'.01'

!"#$%&'()*+,$-#'453/5-6'+7'893:*)';<'='9%>'?'$%'@ABC?'+()%'4D%>'-)8-6'

-".!,)/"012"

3".%,'/"012"

4".$%,)/"012"

! OP!

AR?R?*V%15&"*1%,,*

RB&!'&0=6%)*$!)$!<*+=3&!(D%&'!0'8)$1!@'*6&..!H(.!0&%&'3)$&0!%B'*=1B!%B&!(@@+)\

6(%)*$! *D! (! KLL! 3T\1'(0&0! +(>*'(%*'8! >&(_&'C! RB&! .+=01&! (3*=$%! H(.! D)'.%+8!

3&(.='&0! )$.)0&! %B&!>&(_&'a! %B&$!0')&0! )$!*$&!*D! %B&!(+=3)$)=3!6*$%()$&'!9(@\

@+)&0!(+.*!)$!%B&!*%B&'!%&.%.:!)$!%B&!*<&$!(%!"ZLp7!($0!%B&$a!HB&$!6*3@+&%&!0'8\

)$1!H(.!(6B)&<&0a!)%!H(.!@=%!>(6_!)$.)0&!%B&!1'(0&0!>&(_&'a!)$!*'0&'!%*!*>.&'<&!

%B&!0)DD&'&$6&!)$!<*+=3&c!)%!6($!>&!.%(%&0!%B(%!D'*3!(!<(+=&!*D!KLL!3T!>&D*'&!0'8\

)$1a!%B&!<*+=3&!B(.!0&6'&(.&0!=$%)+!('*=$0!"LL!3Ta!HB)6B!3&($.!(!#"05)+-%(*%$*

'#%5(0*<@?*%$*-+,*,+'#+-(.*8%15&"C!

! !G-.5#"*KK*M*O-.",+"0*,150."*-(,-0"*+2"*.#'0"0*/"'`"#*/"$%#"*'(0*'$+"#*0#4-(.*

!

ARA*B%+'1*,%1-0,*WB6X*'(0*B%+'1*V%1'+-1"*6%1-0,*WBV6X*0"+"#&-('+-%(*

RB&! 0&%&'3)$(%)*$! *D! R*%(+! .*+)0.! 9R5.:! ($0! R*%(+! [*+(%)+&! 5*+)0.! 9R[5.:! H(.!

0*$&!D*++*H)$1!%B&!@'*6&0='&!0&.6')>&0!)$!2('(1'(@B!KCK!($0!(@@+8)$1!;b=(%)*$!

"N! ($0! ;b=(%)*$! PLC! RB&! 0&%&'3)$(%)*$! H(.! 0*$&! %H)6&! D*'! R5.! ($0! *$6&! D*'!

R[5.!>&6(=.&!%B&!3)%%&$!H(.!$*%!(<()+(>+&!0=')$1!%B&!.&6*$0!%&.%C!

RB&!'&.=+%.!('&!.=33&0!=@!)$!R(>+&!"P!($0!!!R(>+&!"Kc!!

B'/1"*><*M*G-#,+*+",+a*B6*'(0*BV6*0"+"#&-('+-%(*

6'&71"*

N(-+-'1*S"-.2+*

g.h*O#4*S"-.2+*

g.h*

9,23",*g.h*

B6*[email protected]*

B6*g]h*

BV6*[email protected]*

BV6*%(*0#-"0*g]h*

9* OKCP! LCJ! LCK! "LCNK! "CLN! YCJK! KOCZd!C* NLCK! KCK! "! KYCZZ! KCYZ! PZCMO! KLCKLd!H* PZCK! YCN! PCK! POPCOK! POCPO! "J"CJP! KKCKKd!

  73  

   

Table  13  –  Second  test:  TS  determination  

Sample  Initial  

Weight  [g]  Dry  Weight  

[g]  TS  

[gTS/Kg]   TS  [%]  A   160.0   1.8   11.25   1.13  B   89.8   2.9   32.29   3.23  C   107.0   28.3   264.49   26.45  

 The  produced  data  are  comparable  with  all  the  other  drying  test  (both  with  solar  

and  thermal  energy):  it  is  important  to  remember  that  the  solid  content  is  varia-­‐

ble  in  the  sludge  samples  due  to  various  factors  occurring  in  the  plant’s  process-­‐

es.   The   data   of   this   section,   however,   are   inside   the   range   of   expected   values  

even   though   it   is   interesting   to   observe   that   they   are   generally   slightly   higher  

than  the  results  of  the  drying  in  the  oven.  It  can  then  be  supposed  that  the  tem-­‐

perature  of  105°C  could  not  be  enough  for  a  complete  drying  (even  though  this  is  

the  standard  method  for  TSs  determination)  or  the  differences  are  just  attribut-­‐

able  to  the  variability  of  the  samples.  

 

Regarding  TVSs  content,  the  value  are  similar  to  the  expected  ones,  even  though  

there   is   a   difference   between   the   two   samples   of   biological   sludge   (A   and   B),  

which,  on  the  contrary  are  supposed  to  be  equal  since  the  sludge  is  actually  the  

same  (it  just  varies  in  solid  content).  

 

4.5  Heating  value  of  biological  sludge  and  digestate  after  combustion  

The  analysis  on  the  heating  value  have  been  commissioned  to  the  University  of  

Padova   since   the  necessary   instrumentation   for  heating  value  determination   is  

not  available  at  Ca’  Foscari  University  of  Venice.  The  samples  are  the  same  of  the  

experimental  part  (it  was  not  necessary  to  analyse  A  and  B  separately  since  they  

are  the  same  sludge).  

The  results  are  reported  in  Table  14.  Table  14  –  Heating  value  and  ashes  content  of  biological  sludge  and  digestate  

Sample   TVS  %  on  dried  

Higher  heating  value  “as  it  is”  MJ/Kg   kWh/Kg  

Biological  sludge   25.77   15.83   4.40  Digestate   33.32   15.23   4.23  

 

  74  

It  can  be  noted  that  the  heating  values  are  in  the  highest  part  of  the  range  of  val-­‐

ues  found  in  literature  of  10-­‐15  MJ/Kg  DS:  15MJ/Kg  is  comparable  to  the  heat-­‐

ing  value  of  Lignite,  around  2/3  of   the  heating  value  of  coal  (24  MJ/Kg)  and  

half  of  the  one  of  coking  coal  (30  MJ/Kg)  (Fisher,  2003).  

 

This   is  clearly  good  news   for   the  sake  of   the  drying  project  since   it  means   that  

fast  drying  can  be  achieved  using  the  energy  from  sludge  incineration.  

 

In  addition,  it  is  interesting  to  observe  that  the  values  of  TVSs  obtained  with  this  

analysis   are   the   same   compared   to   the   analysis   shown   in   the   previous   section  

(Paragraph   4.5)   regarding   the   digested   sludge   but   lower   for   the   biological  

sludge:  the  values  of  the  previous  analysis,  however,  differs  also  between  sample  

A  and  B,  so  further  tests  are  necessary  to  determine  the  actual  value.  

 

4.6  COD  analysis  (Organic  content)  

With   the  procedure  described   in  paragraph  3.4,   the  COD  of   the   three  different  

types  of  sludge  was  determined  before  and  after  the  drying  process.  The  analysis  

was  repeated  three  times  in  order  to  have  more  reliable  data.  The  focus  was  not  

in  the  value  of  COD  per  se  but  it  was  interesting  to  observe  if  there  was  a  differ-­‐

ence  in  the  value  before  and  after  drying  in  order  to  see  if  a  loss  of  organic  mat-­‐

ter  during  the  process  took  place.  COD,  in  fact,  can  also  be  related  to  the  organic  

content   in   the   sludge   sample.  The   results  of   the  analysis   are   reported   in  Table  

15:  

 Table  15  –  COD  data  for  the  three  types  of  sludge  

Sample   COD  before  drying  [mgO2/gTS]  

Average   Average   COD  after  drying  ß   à   [mgO2/gTS]  

A   1278.73   1046.96   997.42   1107.70   884.55   993.83   836.06   823.77  B   939.31   879.96   949.33   922.87   860.06   1018.71   737.71   823.77  C   926.77   936.89   977.8   947.15   902.29   924.08   860.65   922.13  

 It   can   then  be  noticed   that   there   is   a  general   trend   of   slight   decrease   in   the  

COD  value  for  all  the  types  of  sludge,  even  though  the  decrease  is  steeper  for  bio-­‐

logical  sludge  samples  (collected  after  secondary  sedimentation  and  thickening  

  75  

phase)  than  for  the  digestate.  This  is  acceptable  because,  during  anaerobic  diges-­‐

tion,  the  organic  matter  is  partially  consumed  by  the  involved  microorganisms.  

 

It  is,  however,  important  to  underline  that  there  is  a  high  variability  of  the  meth-­‐

od  and  a  high  uncertainty  due   to  many  possible   errors   (variable  %DM  of   the  

samples,   different   composition  of   the   substances  used   in   the   titration,   error   of  

the  operator  etc.)  and  the  available  data  came  from  only  three  repetitions.  Those  

COD  values  have  then  to  be  taken  as  an  indication  about  the  difference  before  

and  after  drying  of  the  sludge  and  not  as  a  clear  indication  of  the  organic  matter  

quantity  present  in  the  sample.  

 

4.7  Input  and  Output  data  of  the  Sludge  drying  system    In   this   section,   the   expected   input   and   output   of   the   projected   system   for  

sludge  drying  and  burning  will  be  calculated,   in  terms  of  matter  and  energy  re-­‐

quired.   In  addition,   the  efficiency  of  both  the  drying   and  burning  portion  of  

the   system  will  be  determined.  The  calculations  are  based  on   the  data  coming  

from   the  experimentation  described   in   the  previous   sections,   regarding   the  di-­‐

gested  sludge,  since  it  was  the  one  with  the  highest  %DM  (20-­‐25%).  The  objec-­‐

tive  of  this  section  is  to  give  an  idea  of  the  effective  capacity  of  the  system  for  a  

future  marketing.  

 

First  of  all,  a  1000   tons/year   is  the  amount  of  sludge  that  the  entire  system  is  

expected  to  treat,  assumed  to  be  a  reasonable  quantitative.  The  solid  content  of  

the  incoming  sludge  should  be  around  20%  DM  since  this  is  the  content  general-­‐

ly  obtained  after  mechanical  dewatering  (belt  or  filter  press).  Future  experimen-­‐

tation  should  test  also  lower  %DM  of  the  entering  sludge.  The  dimension  of  the  

system   are   settled   as   the   one   of   a   standard   container   (about   6m   x   2.5m   x  

2.5m),  since  the  basic  idea  is  to  have  a  prototype  the  most  modular  possible  for  

a  higher  appeal  in  the  market.  

 

The  solid  content  of  the  sludge  exiting   the  drier  and  entering   the  burner   is  

settled  to  be  85%  DM,  within  a  time  of  around  3  hours,  derived  from  the  data  

  76  

described  previously  (see  Paragraph  4.2).  The  loss  of  volume  was  also  observed  

to  be  of  around  2/3  of  the  initial  volume  (see  Paragraph  4.2.1).  Also  in  this  case,  

future  experimentation  should  test  lower  %DM  of  the  sludge  exiting  the  drier:  it  

has  to  be  determined  which  is  the  optimum  value,  since  lowering  the  solid  con-­‐

tent  of  the  sludge  entering  the  burner  would  diminish  its  heating  value  but  at  the  

same  time  that  would  mean  a  shorter  period  of  time  for  the  drying  process.  Low  

%  DM,  anyway,  can  cause  issues  regarding  the  maintenance  of  the  burner  and  for  

the  hazardous  emissions   into   the  atmosphere.   It   is   important   also   to  be  aware  

that   the  operating  efficiency  both  of   the  drier  and  the  burner  can  not  be  100%  

(Second   Law   of   Thermodynamics   –   Carnot’s   principle)   so,   an   operating   effi-­‐

ciency  of  75%  for  the  drier  and  85%  for  the  burner  is  a  good  estimate  (after  a  

research  in  the  market  and  in  the  literature).  

 

Finally,  some  other  parameters  have  been  settled:    

-­‐ a  15-­‐day  yearly  inactivity,  necessary  for  the  system  maintenance  

-­‐ A  flow  of  the  recirculating  air  of  6000  m3/h  

   

  77  

All  the  input  data  are  summed  up  in  Table  16:  Table  16  –  Input  data  for  the  projected  sludge  drying  and  burning  system  

INPUT  DATA  

Material    Unit  of  measure  

 Input  Volume   ton/year   1000  %  DM  input   %   20  %  DM  output   %   85  %  Ashes   %   33.32  

           System  dimensions  

     

Length   m   6  Width   m   2.5  Height   m   2.5  Number  of  belts  level   n   3  Belt  width   m   1.8      

     

Functioning  parameters    

   Inactive  days  per  year   days   15  Time  for  sludge  drying  (till  85%)   hours   3  Expected  drier  efficiency   %   75  Expected  burner  efficiency   %   85  Volume  loss   m3   0.67  

 

Starting  from  the  data  of  1000  ton/y  entering  sludge  and  knowing  the  duration  

of  the  drying  process  and  the  dimension  of  the  belts  inside  the  system,  a  weight  

value  of  around  137  kg/hour  has  been  calculated,  which  is  the  amount  of  sludge  

entering  the  system  every  hour  (for  brevity,  these  calculations  are  here  avoided).  

 

The   entering   sludge   is   20%  DM  so   its  solid   and  water   content   can  be  deter-­‐

mined  (27.5  kg/h  and  109.9  kg/h,  respectively).  The  drier   is  expected  to  pro-­‐

duce  a  sludge  85%  DM  so  that  means  that  the  exiting  amount  of  sludge  can  be  

calculated:  Equation  22  

𝑠𝑙𝑢𝑑𝑔𝑒!"# = 𝑠𝑜𝑙𝑖𝑑  𝑐𝑜𝑛𝑡𝑒𝑛𝑡!"#$%&  !" ∙10085 = 137.4  𝑘𝑔/ℎ ∙

10085 = 𝟑𝟐.𝟑𝟐  𝒌𝒈/𝒉  

of  which  4.85  kg/h  are  still  water  (15%).    

 

 

 

  78  

The  water  evaporated  in  the  drying  process  is  then:  Equation  23  

𝑤𝑎𝑡𝑒𝑟  𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑒𝑑 = 𝑤𝑎𝑡𝑒𝑟  𝑐𝑜𝑛𝑡𝑒𝑛𝑡!"#$%&  !" − 𝑤𝑎𝑡𝑒𝑟  𝑐𝑜𝑛𝑡𝑒𝑛𝑡!"#$%&  !"#

≅  𝟏𝟎𝟓  𝒌𝒈  

The  combustion  process  that  takes  place  in  the  burner  produces  emissions  in-­‐

to  the  atmosphere  (see  Paragraph  1.5.2)  on  one  side  and  ashes  on  the  other.  The  

amount  of   the   latter  can  be  calculated  knowing  the  ashes  content  of   the  sludge  

(33.32%)  (see  Paragraph  4.5).  

These  data  are  summed  up  in  Table  17:  Table  17  –  Amount  of  sludge  exiting  the  drier  

Wet  sludge  in   kg/h   137.36  Solid  content   kg/h   27.47  Water  content   kg/h   109.89  

Dry  sludge  out  (85%)   kg/h   32.32  Solid  content   kg/h   27.47  Water  content   kg/h   4.85  

Water  evaporated  during  the  drying  process   kg/h   105  Ashes  produced   kg/h   9.15    

To  calculate  the  efficiency  of  both  the  drying  and  burning  portion  of  the  system,  

it  is  necessary  to  know  some  other  parameters  

-­‐ the  heating   value   (h.  v.)   of   the  digested   sludge   (15230   kJ/kg)   (see  

paragraph  4.5),  

-­‐ the   evaporation   latent   heat   (e.   l.   h.)   of   the   sludge   (3100   kJ/kg)  

(Parkson,  2010)),  which  is  the  energy  that  the  water  require  to  evapo-­‐

rate  from  the  sludge,  

-­‐ the  water  latent  heat  (w.  l.  h.)  (2272  kJ/kg).  

 

The  energy  theoretically  produced  by  the  drying  process  is:  

 Equation  24  

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐  𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑  𝑒𝑛𝑒𝑟𝑔𝑦!"#$%& = 𝑤𝑎𝑡𝑒𝑟  𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑒𝑑   ∙ 𝑒. 𝑙. ℎ.

= 105𝑘𝑔ℎ ∙ 3100

𝑘𝐽𝑘𝑔 ≅ 325  𝑀𝐽/ℎ  

  79  

Since  the  efficiency  of  the  drier  is  expected  to  be  75%,  the  actual  produced  en-­‐

ergy  by  drying  the  sludge  (considering  the  losses)  is:  Equation  25  

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑  𝑒𝑛𝑒𝑟𝑔𝑦  𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔  𝑙𝑜𝑠𝑠𝑒𝑠!"#$%& = 𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐  𝑒𝑛𝑒𝑟𝑔𝑦 ∙ 1+100− 75100

≅ 407  𝑀𝐽/ℎ  

 

The  energy  that  can  be  theoretically  produced  by  sludge  burning  is  equal  to  

its  heating  value,  without  the  energy  coming  from  the  water:  Equation  26  

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐  𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑  𝑒𝑛𝑒𝑟𝑔𝑦!"#$ = ℎ. 𝑣.!"#  !"#$%&∙85100 − 𝑙. ℎ.!"#∙

100− 85100

= 12604.7𝑘𝑗/𝑘𝑔 ≅ 𝟏𝟐.𝟔  𝑴𝑱/𝒌𝒈  

Knowing  the  weight  (Kg)  of  the  entering  sludge,  the  hourly  value  can  be  calculat-­‐

ed  (≅407.4  MJ/h)  and  can  be  also  converted  in  kWh  (≅113  kWh).  

Since  the  burner  has  an  efficiency  settled  at  85%,  the  actual  value  without  the  

energy  lost  is  a  bit  lower:  Equation  27  

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑  𝑒𝑛𝑒𝑟𝑔𝑦  𝑤𝑖𝑡ℎ𝑜𝑢𝑡  𝑙𝑜𝑠𝑠𝑒𝑠!"#$ = 407.4𝑀𝐽ℎ ∙

85100 = 𝟑𝟒𝟔  𝑴𝑱/𝒉  

The  results  of  the  energy  produced  by  drying  and  burning  are  summed  up  in  Ta-­‐

ble  18:  Table  18  –  Results  of  the  calculations  of  the  output  of  the  system  

Theoretic  combustion  energy  per  kg   MJ/kg   12.6  Theoretic  combustion  energy  per  hour   MJ/h   407  Theoretic  combustion  energy  in  kWh   kWh   113  Combustion  Energy  without  losses   MJ/h   346  Theoretic  energy  absorbed  by  evaporation   MJ/h   325  Energy  absorbed  by  evaporation  without  losses   kJ/h   407  

 

The   difference   between   the   theoretic   produced   energy   and   the   actual   values  

both   from   drying   and   combustion   can   be   determined   (81.76  MJ/h   and   -­‐60.75  

MJ/h  respectively)  and  finally,  the  efficiency  of  the  system  can  then  be  calculat-­‐

ed:  

  80  

Equation  28  

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐  𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦  𝑜𝑓  𝑡ℎ𝑒  𝑠𝑦𝑠𝑡𝑒𝑚

= 100−𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐  𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛  𝑒𝑛𝑒𝑟𝑔𝑦𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐  𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛  𝑒𝑛𝑒𝑟𝑔𝑦 ∙ 100 = 20.07%  

Equation  29  

𝐴𝑐𝑡𝑢𝑎𝑙  𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦  𝑜𝑓  𝑡ℎ𝑒  𝑠𝑦𝑠𝑡𝑒𝑚

= 100−𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒  𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛  𝑒𝑛𝑒𝑟𝑔𝑦𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒  𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛  𝑒𝑛𝑒𝑟𝑔𝑦 ∙ 100 = −𝟏𝟕.𝟓%  

 Table  19  –  Theoretic  and  actual  differences  and  efficiencies  

Difference  of  theoretic  available  energy   MJ/h   81.76  Difference  of  actual  available  energy   MJ/h   -­‐81.4  Theoretic  efficiency  of  the  system   %   20  Actual  efficiency  of  the  system   %   -­‐17.5    

The  value  of  Actual  Efficiency   -­‐17.5%  obtained  with  the  calculations  is,  as  ex-­‐

pected,   negative,   because   the   system   is   not   able   to   provide   the   whole   energy  

necessary  and  the  lacking  part  has  to  be  supplied  by  an  alternative  source  (see  

Paragraph  2.3).    

 

From  the  need  of  filling  this  gap  comes  the  idea  of  the  solar  collectors  on  the  top  

of  the  container,  which  are  expected  to  provide  the  missing  ~20%  of  energy  re-­‐

quired.  The  solar  collectors  have  clearly  the  limitation  to  do  not  provide  energy  

when  there  is  no  incoming  solar  radiation,  so  it  is  an  intermittent  source.  

 

The  required  area  of  solar  collector  can  be  calculated  as  follows:  

Knowing   the   energy   theoretically   produced   by   the   drying   process   (325  MJ/h)  

previously  calculated,   the   theoretical  part  of  energy   that  has   to  be  provided  by  

the  solar  collector  is  Equation  30  

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐  𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑  𝑒𝑛𝑒𝑟𝑔𝑦!"#$%  

=  𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐  𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑  𝑒𝑛𝑒𝑟𝑔𝑦!"#$%&#'(%) ∙17.5100 = 325

𝑀𝐽ℎ ∙

17.5100

= 56.875𝑀𝐽ℎ = 1365  𝑀𝐽/𝑑𝑎𝑦  

  81  

Considering  an  averaging  value  of  solar  radiation  during  the  whole  day  of  ~150  

W/m2  (which  is  a  reasonable  estimation  for  North  Italy),  that  means  that  the  to-­‐

tal   amount  of   incoming  energy   is  150   *  24  hours   *  60  minutes   *  60   seconds  =  

12.96  MJ/m2.  

The  square  meter  of  solar  collector  necessary  to  get  this  amount  of  energy  then  

is:  Equation  31  

𝑎𝑟𝑒𝑎!"#$%  !"##$!%"& =𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐  𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑  𝑒𝑛𝑒𝑟𝑔𝑦!"#$%

𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔  𝑠𝑜𝑙𝑎𝑟  𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 =1365  𝑀𝐽/𝑑  12.96  𝑀𝐽/𝑚!

= 105.32  𝑚!  

 

From   previous   calculations   done   by   Solwa   srl’s   staff   (for   brevity   not   reported  

here),  the  expected  efficiency  of  a  solar  collectors  is  ~56%  which  means  that  the  

actual  area  should  be  ~𝟏𝟓𝟏  𝒎𝟐.  

 

Knowing  that  the  surface  of  the  container  is  15  m2,  it  means  that  the  total  area  

of  one  wings  should  be  68  m2  with  a  dimension  of  ~6m  x  11m.  

 

Geographical  position,  however,  is  fundamental  since  incoming  solar  radiation  

varies  greatly  depending  on   latitude  (as  can  be  seen   in  Figure  56  which  repre-­‐

sents  the  average  solar  radiation  on  Earth’s  surface).    

 

 Figure  56  –  Average  solar  radiation  (W/m2)  on  Earth’s  surface  (Franceschetti,  2013)  

 

   

- 93 -

Figura 27 – Radiazione solare media (W/km2) sulla superficie terrestre. Elaborazione raster (1 grado). APPLICAZIONE DEL MODELLO Secondo i dati sperimentali sin ora analizzati della serra solare, descritte nei paragrafi precedenti, si può affermare che la correlazione fra produzione di acqua depurata e la radiazione solare si esprime secondo la seguente equazione: Equazione 102 Qw,Ir= 2.5669*10-7*Irsun*3600*12 Con Qw corrispondente al quantitativo di acqua depurata (l/m2/giorno), mentre Irsun è la radiazione solare incidente (W/km2). RISULTATI Applicando l’Equazione 102, ne deriva che i valori di depurazione delle acque variano da 1.45 a 9.3 litri/m2/giorno (si veda Figura 28).

Figura 28 – Produzione giornaliera, calcolata a 12 ore, della serra solare in funzione della radiazione solare Dall’elaborazione dei dati della radiazione solare, con la produzione delle serre solari, si evince come vi sia una correlazione perfetta fra radiazione e portata dell’acqua depurata. Le aree con maggiore capacità depurativa risultano essere le zone ad elevata aridità (zone desertiche), lungo i due tropici in particolare, e sui crinali delle maggiori catene montuose del Pianeta. Quest’ultimo

  82  

Chapter  5  –  Conclusions    This  thesis,  as  part  of  a  wider  field  of  research  in  sustainable,  innovative  technol-­‐

ogies,  focuses  on  the  development  of  a  system  for  the  disposal  of  sludge  coming  

from  wastewater  treatment  plants.  The  objective  is  to  design  a  system  in  which  

sludge  can  be  dried  with  the  energy  acquired  from  its  subsequent  burning,  creat-­‐

ing  a  system  that  is  almost  energy  autonomous,  fuelled  by  the  sludge  itself.  This  

system   is   expected   to   have   a   strong  market   appeal   since   the   request   for   new  

sludge  treatment  methods  is  pressing  in  industrialised  countries  as  well  as  in  the  

emerging  industrial  economics,  such  as  China  and  India.  In  Europe,  in  particular,  

sludge  management  and  disposal  is  regulated  by  EU  legislation,  which  has  posed  

stricter  limits  for  sludge  spreading  on  soils  and  in  oceans,  making  it  necessary  to  

treat  the  sludge  more  thoroughly  first.  

 

The  experimental  part  of  this  thesis  aims  to  produce  useful   information  for  the  

further   development   of   the   projected   sludge-­‐drying   system:   the   behaviour   of  

sludge  samples  with  different  solid  content  is  analysed  during  drying  with  solar  

and   thermal   energy.   From   a   thorough   analysis   of   sludge-­‐drying   techniques,  

based   on   direct   observations   and   a   literature   review,   several   factors   are   im-­‐

portant  in  optimising  the  drying  process:  

 

-­‐ Thickness   is   one   of   the   main   determining   factors.   An   increase   in   the  

thickness  of   the  sludge  was  observed  to  greatly   increase  the  duration  of  

the  drying  process,  even  inhibiting  complete  drying  in  the  solar  tests.  The  

main  problem  is  the  formation  of  a  superficial  dry  crust,  which  does  not  

allow  the  energy  coming  from  radiation  or  from  the  air,  to  reach  the  un-­‐

derlying   sludge.   In   prototype   2   and   in   the   laboratory   oven,   digested  

sludge  sample  were  tested  with  1,  2,  3,  5  and  10  cm  thickness:   in  Proto-­‐

type  2,  the  10cm-­‐sample  was  left  for  some  weeks  inside  the  prototype  but  

the  inner  part  always  remained  wet,  while  in  the  oven,  12  hours  were  just  

enough   to  achieve  a  bit   less   than  50%  DM.  Since   tests  with  a  5cm-­‐thick  

sludge   sample   negatively   affect   the   drying   rate,   a   suggested   optimum  

value  of  sludge  thickness  for  the  proposed  system  should  be  ~3cm.  

  83  

 

-­‐ Surface  area  is  directly  related  to  the  thickness.  It  is  clear  that,  during  the  

solar-­‐drying  tests,  a  wider  surface  absorbed  more  direct  solar  radiation  in  

Prototype  1  and  more  heat  from  the  hot  air  in  Prototype  2.  Inside  the  la-­‐

boratory  oven,  a  test  was  also  made  with  a  container  with  a  narrow  open-­‐

ing  (a  flask):  it  was  noted  that  the  evaporation  process  was  not  expedited  

by  this   factor.  These  observations  can  be  useful   in  determining  the  opti-­‐

mal  number  of  levels  of  the  conveyor  belt,  carrying  the  sludge,  in  the  pro-­‐

jected  system:  a  number  between  3  and  5   levels   seems  to  be  the  best  

possibility.  

 

-­‐ Container’s   material:   the  material   of   the   container   (in   the   case   of   the  

proposed  system,  the  conveyor  belt)  is  very  important  because  it  is  in  di-­‐

rect   contact  with   the   sludge,  which  means   that   some  heat   can  be   trans-­‐

ferred   through  conduction.   It  was  observed  that   the  aluminium  contain-­‐

ers   enhanced   the   thermal   drying   process.   The   optimal   material   of   the  

conveyor  belt  is,  in  fact,  projected  to  be  a  metallic  grid.  

 

-­‐ Solid   content:   the  tested  samples  with  different  %DM  show  various  be-­‐

haviours.  In  general,  for  the  same  amount  of  energy  received,  the  samples  

with  0.5-­‐3%  DM  lost  water  a  bit  faster  in  the  initial  phase  than  the  more  

solid  samples  (20%  DM)  (excluding  the  samples  that  were  filtered  in  Pro-­‐

totype  2  which  are  not  comparable).  This  is  more  evident  in  the  thermal  

drying  process,  where  the  drying  rate   is   inversely  proportional  to  the  %  

DM.  Different  values  of  %DM  must  be  tested  inside  the  projected  system  

during  a  future  research  phase:  the  current  hypothesis   is  to  use  the  sys-­‐

tem  for  sludge  coming  out  of  a  mechanical  dewatering  process  (20-­‐25%  

DM)  and  to  dry  the  sludge  to  85%  DM  before  using  it   in  the  incinerator.  

Liquid  sludge  that  is  not  dewatered  (1-­‐3%  DM)  could  also  be  used  if,  for  

example,  transpiring  membranes  were  applied  to  the  conveyor  belt,  al-­‐

lowing  the  water  vapour  to  pass  through  but  holding  the  sludge  particles  

in  place.  

 

  84  

What   can   be   deduced   from   the   experiments  with   solar   energy   (which,   in   the  

proposed   system,   is   supposed   to   cover   approximately  1/5   of   the   drying   pro-­‐

cess),  is  that  the  drying  capacity   is  generally  good  in  terms  of  both  velocity  

and  rate:  for  a  20%  DM-­‐sludge  sample,  on  average  7.5-­‐10.5  g/h  of  water  can  be  

removed  at  a  rate  of  3-­‐7  g/MJ   (depending  on  the  prototypes).  For  liquid  sludge  

samples   (with  0.5-­‐3%  DM),  ~14   g/h  of  water   can  be   extracted   in  11-­‐14   hours  

with  a  rate  of  6-­‐8  g/MJ,  but  a  filtering  system  (applied  in  Prototype  2)  should  be  

considered,  as  it  dramatically  decreases  the  dewatering  time  (achieving  a  drying  

velocity  of  ~67  g/h  with  a  rate  of  ~38  g/MJ).    

 

The  necessary  solar  radiation  averages  ~𝟐𝟎  MJ,  absorbed  in  10-­‐15  hours,  but  

varies  greatly  depending  on  weather  conditions.  An  important  consideration  for  

the  solar  drying  experiment  part  is  that  the  period  of  testing  was  from  October  to  

November,  when   the  weather  was   not   particularly   favourable   for   this   type   of  

system  testing:  solar  radiation  is  not  very   intense  and  there  are  fewer  hours  of  

light   compared   to   summer.   Clouds   and  mist   are   also   important   factors:   they  

drastically  reduce  the  amount  of   incoming  radiation,  causing  variable  efficiency  

throughout   the  day  (with  mist  high  values  of  humidity  are  observed,  which  re-­‐

duce   the   evaporation   rate).   Despite   the   inclement   weather,   the   data   obtained  

remains  significant,  because  the  drying  rate  can  be  related  to  the  actual  solar  ra-­‐

diation:  the  ratios  can  be  projected  for  higher  levels  of  radiation.  

 

Thermal  drying  (at  150°C)  shows,  as  expected,  better  performance  in  terms  

of  drying  velocity  (with  values  between  ~87  g/h  to  ~50  g/h)  and  duration  of  

the   drying   process   (complete   drying  was   achieved   in   3.5,   5.5   and   7.5   hours,  

from  the  sample  with  the  lowest  %  DM  to  the  one  with  the  highest).  For  the  liq-­‐

uid   sample  ~𝟗𝟎%  drying   is  observed  after   just  2.5  hours,  which  makes   the  hy-­‐

pothesis  of  applying  it  in  the  system  more  valid  (in  combination  with  a  filtering  

system).  Higher  temperatures  (200-­‐250°C),  however,  must  be  tested  in  a  future  

research  phase.  

 

An  analysis  of  the  expected  input  and  output  of  the  innovative  system  has  also  

been  performed:  an  incoming  amount  of  ~140  kg/h  of  20%  DM-­‐sludge  (calcu-­‐

  85  

lated  by  Solwa’s  staff  starting  from  an  estimated  value  of  1000  ton/y)  is  expected  

to  produce  ~10  kg/h  of  ashes  to  dispose  of,  which  means  a  reduction  of  mass  

of  approximately  14  times  (~93%  of  the  initial  weight).  

 

The   theoretical   and   actual   energy,   required   for   evaporation   and   provided   by  

combustion,  of  140  kg/h  of  sludge  and  consequently  the  theoretic  and  actual  ef-­‐

ficiency  of  the  system  have  also  been  calculated:  on  one  hand  the  theoretical  ef-­‐

ficiency   is  20%  and  on  the  other  hand,  considering  an  operating  efficiency  of  

~75%   for   the   drier   and  ~85%   for   the   burner,   the  actual   efficiency   of   the  

system  is,  as  expected,  negative  (-­‐17.5%),  if  only  energy  from  sludge  burning  is  

considered:   this  deficit  of  energy  must  be  covered  by  another  source,  which   in  

this   project,   is   solar   collectors,   but   it   is   also   possible   to   apply   traditional  

sources,  such  as  burning  fossil  fuel.  

 

The  surface  area  of  the  solar  collectors,  optimised  for  a  latitude  comparable  to  

the   one   of  North   Italy   (150  W/m2   on   a   yearly   average   during   24   hours),   have  

been   calculated   to   be  ~𝟏𝟓𝟏  m2:   given   the   dimensions   of   the   container   (6m   x  

2.5m  x  2.5m),  the  surface  of  which  has  to  be  covered,  two  wings  of  ~𝟔m  x  11  m  

each   should   be   added.   Their   length   should   clearly   be   significantly   lower   if   the  

system  is  located  in  areas  with  higher  incoming  solar  radiation.  Geographic  po-­‐

sition   is,   in   fact,   a   determining   factor,   since   incoming   solar   radiation   varies  

greatly  depending  on  latitude  (see  Figure  56).  

 

Some  other  boundary  analyses  were  done:  TS  and  TVS  values  are  useful  to  see  

how  the  results  of   solar  and   thermal   testing  are  comparable  with   the  standard  

methods   of   classification,   normally   done   in   the   laboratory   of   a   wastewater  

treatment   plant;  COD   values,   before   and   after   the   drying   process,   have   shown  

that  the  loss  of  organic  matter  seems  to  be  not  very  significant,  considered  also  

that  the  dry  sludge  shows  a  high  heating  value  (~15  MJ/kg).  

 

To  conclude,  the  project  seems  to  be  valid  and  with  high  potential,  in  particular  

because  it  is  a  modular  system  that  can  be  located  very  close   to   (if  not  inside)  

the   treatment  plant;  the  main  strengths  are  the  high  efficiency  and  the  great  

  86  

volume   reduction   of   the   sludge   waste,   which   means   high   cost   savings   in  

transport   and   disposal   for   the  plant’s   owner.  Further   research,   however,   is  

required,   in   particular   regarding   the   incineration   phase:   an   analysis   of   the  

emissions  into  the  atmosphere  is  compulsory  for  the  next  research  phase,  in  or-­‐

der  to  see  if  they  meet  the  requirements  outlined  by  EU  legislation.  In  addition,  

the  dimensions  and  typology  of   the  burner,  which   is  part  of   the  project,  should  

be  determined,  in  order  to  complete  the  design  of  the  system.  

 

   

  87  

Bibliography      Chai,  L.  H.  (2007).  Statistical  dynamic  features  of  sludge  drying  systems.  International  Journal  of  Thermal  Sciences  ,  46,  pp.  802-­‐811.    Deng,  W.-­‐Y.,  Yan,  J.-­‐H.,  Li,  X.-­‐D.,  Wang,  F.,  Zhu,  X.-­‐W.,  Lu,  S.-­‐Y.  (2009).  Emission  characteristics  of  volatile  compounds  during  sludges  drying  process.  Journal  of  Hazardous  Materials,  162,  pp.  186-­‐192.    EC.  (2014a).  Sewage  sludge.  Retrieved  February  22,  2015  from  Official  website  of  the  European  Commission:  http://ec.europa.eu/environment/waste/framework/    EC.  (2014b).  Directive  2008/98/EC  on  waste  (Waste  Framework  Directive).  Retrieved  December  13,  2014  from  Official  Website  of  the  European  Commission:  http://ec.europa.eu/environment/waste/sludge/    Fisher,  J.  (2003).  Energy  Density  of  Coal.  Retrieved  January  7,  2015  from  The  Physics  factbook:  http://hypertextbook.com/facts/2003/JuliyaFisher.shtml    Flaga,  A.  (2009,  October  26-­‐28).  Sludge  drying.  Lviv,  Ukraine:  E.  Plaza  &  E.  Levlin.    Franceschetti,  P.  (2013).  Energie  rinnovabili  e  microgenerazione  distribuita  -­‐  Serra  solare  ad  evaporazione  (Tesi  di  dottorato).  Ca'  Foscari  University  of  Venice,  Dipartimento  di  Scienze  Ambientali,  Informatica  e  Statistica,  Venice.    Franceschetti,  P.,  Gonella,  F.  (2012).  New  Solar  Still  with  the  Suction  of  Wet  Air:  A  Solution  in  Isolated  Areas.  Journal  of  Fundamentals  of  Renewable  Energy  and  Applications  ,  5.    Franceschetti,  P.,  Gonella,  F.,  Pavan,  P.  (2014).  Drywa  –  Sludge  Dryer  with  hot  air  and  dry  sludge  combustion.  pp.  1-­‐8.    Fytili,  D.,    Zabaniotou,  A.  (2008).  Utilization  of  sewage  sludge  in  EU  application  of  old  and  new  methods:  a  review.  Renewable  &  Sustainable  Energy  Review  ,  12,  pp.  116-­‐140.    Gálvez,  A.,  Conesa,  J.,  Martín-­‐Gullón,  I.,  &  Font,  R.  (2007).  Interaction  between  pollutants  produced  in  sewage  sludge  combustion  and  cement  raw  material.  Chemosphere  ,  69,  pp.  387-­‐394.    IBW  (2009).  IBW  -­‐  Department  of  Industrial  Biological  Science.  Retrieved  January  11,  2015  from  http://www.enbichem.ugent.be:  http://www.enbichem.ugent.be/sites/default/files/images/Watertechnology.pdf        

  88  

ISTAT.  (2005).  ISTAT  -­‐  Istituto  Nazionale  di  Statistica.  Retrieved  February  19,  2015  from  Statistiche  Ambientali  -­‐  Ambiente  e  Territorio:  http://www3.istat.it/dati/catalogo/20051114_00/ann0508statistiche_ambientali.pdf    Kelessidis,  A.,  Stasinakis,  A.  S.  (2012).  Comparative  study  of  the  methods  used  for  treatment  and  final  disposal  of  sewage  sludge  in  European  countries  .  Waste  Management  ,  32,  pp.  1186–1195.    Lederer,  J.,  Rechberger,  H.  (2010).  Comparative  goal-­‐oriented  assessment  of  conventional  and  alternative  sewage  sludge  treatment  options  .  Waste  management  ,  30,  pp.  1043-­‐1056  .    Lu,  S.,  Yang,  L.,  Zhou,  F.,  Wang,  F.,  Yan,  J.,  Li,  X.  (2013).  Atmospheric  emission  characterization  of  a  novel  sludge  drying  and  co-­‐combustion  system  .  Journal  of  Environmental  Sciences  ,  25,  pp.  2088–2092  .    Oikonomidis,  I.,  Marinos,  C.  (2014).  Solar  sludge  drying  in  Pafos  wastewater  treatment  plant:  operational  experiences.  Water  Practice  &  Technology  ,  9,  pp.  62-­‐70.    Parkson  &  KET  (2010).  Economical  Conversion  of  Municipal  Sludge  (Biosolids)  into  a  Renewable  Energy  Product  using  Solar  Sludge  Dryers.  Ideas  and  Innovations.  Mabiosoilid.    Parkson.  (2010).  THERMO-­‐SYSTEM®  brochure.  Retrieved  February  3,  2015  from  Parkson  -­‐  Treating  Water  Right:  http://www.parkson.com/sites/default/files/documents/brochure_thermosystem_low_march_29_2011_0.pdf    Ragazzi,  M.,  Rada,  E.,  Cocarta,  D.,  Venturi,  M.,  Mallocci,  E.,  Bianchi,  M.  (2006).  Combustione  diretta  e  indiretta  di  fanghi.  In  R.  M.  Rada  E.C.,  La  valorizzazione  energetica  dei  fanghi  di  depurazione  (pp.  45-­‐55).  Trento:  Università  degli  Studi  di  Trento.    Regione  del  Veneto.  (2011,  September  6).  Bollettino  Ufficiale  della  Regione  del  Veneto  (in  versione  telematica).  Retrieved  December  12,  2014  from  http://bur.regione.veneto.it/:  http://bur.regione.veneto.it/BurvServices/Pubblica/Download.aspx?name=1416_AllegatoA_234732.pdf&type=9&storico=False    Reverdy,  A.  L.,  Dieudé-­‐Fauvela,  E.,  Ferstlerb,  V.,  Baudeza,  J.  C.  (2013).  Anaerobic  digestion  of  sewage  sludge:  overview  of  the  French  situation.  Water  Practice  &  Technology  ,  8  (2),  pp.  180-­‐189.    Stehlik,  P.  (2009).  Contribution  to  advances  in  waste-­‐to-­‐energy  technologies  .  Journal  of  Cleaner  Production  ,  17,  pp.  919-­‐931.    

  89  

Stoddard,  A.,  Harcum,  J.  B.,  Simpson,  J.  T.,  Pagenkopf,  J.  R.,  Bastian,  R.  K.  (2003).  Municipal  Wastewater  Treatment:  Evaluating  Improvements  in  National  Water  Quality.  New  York:  John  Wiley  &  Sons.    Suh,  Y.,  Rousseaux,  P.  (2002).  An  LCA  of  alternative  wastewater  sludge  treatment  scenarios.  Resources,  Conservation  and  Recycling  ,  35,  pp.  191-­‐200  .    Turovskiy,  I.  S.,  Mathai,  P.  K.  (2006).  Wastewater  Sludge  Processing.  Hoboken,  USA:  Wiley.    Zemansky,  M.  W.  (1968).  Heat  and  Thermodynamics  (Vol.  5th  edition).  New  York:  McGraw  Hill.  

       

  90  

Table  of  Figures    Figure  1  –  Basic  flow  diagram  for  conventional  wastewater  treatment  plant  ...............................................  8  Figure  2  –  Gravitational  thickener  of  Treviso  WWTP  ................................................................................................  8    Figure  3  –  The  Anerobic  digestion  process  (IBW,  2009)  ...........................................................................................  9    Figure  4  –  Centrifuge  (from  GOST  –  http://www.gost.it/)  ...................................................................................  11  Figure  5  –  Belt  press  (www.ersaf.lombardia.it)  and  filter  press  (Shangai  QUILEE  Environmental  protection  Equipment  Co.)  ..................................................................................................................................................  11    Figure  6  –  Block  scheme  of  the  line  system  of  WWTP  in  Treviso  (Regione  del  Veneto,  2011)  ..............  14  Figure  7  –  Waste  management  hierarchy  established  by  the  Waste  Framework  Directive  (EC,  2014a;  EC,  2014b)  ...................................................................................................................................................................  15  Figure  8  –  Distribution  of  sludge  drying  plants  in  European  countries  (Kelessidis  &  Stasinakis,  2012)  .........................................................................................................................................................................................................  19  Figure  9  –  A  Solar  sludge  drying  plant  (Huber  Technology  –  www.hubertec.it)  ........................................  19  Figure  10  –  Thermal  energy  consumption  comparison  between  gas-­‐fired  and  solar  dryer  (Parkson  &  KET,  2010)  ..................................................................................................................................................................................  21  Figure  11  –  Heating  Values  of  Sludge  and  Other  Residuals  (Turovskiy  &  Mathai,  2006)  .......................  22  Figure  12  –  Advantages  and  Disadvantages  of  Incineration  (Turovskiy  &  Mathai,  2006)  .....................  23  Figure  13  –  Concentration  of  pollutants  from  sludge  drying  at  11%  O2  emissions  (Lu,  et  al.,  2013)  24    Figure  14  –  Concentration  of  the  main  components  of  flue  gas  (Lu,  et  al.,  2013)  ......................................  25    Figure  15  –  Emission  rate  of  the  four  VCs  detected  in  the  drying  process  at  160°C  (Deng,  et  al.,  2009)  .........................................................................................................................................................................................................  27  Figure  16  –  Solar  still  scheme  and  photograph  (Solwa  srl)  ..................................................................................  28  Figure  17  –  Food  drying  system:  photograph  of  the  prototype  (on  the  left)  and  rendering  (on  the  right)  (Solwa  srl)  .....................................................................................................................................................................  30  Figure  18  –  Food-­‐drying  system:  air  fluxes  (Solwa  srl)  ..........................................................................................  29    Figure  19  –  Rendering  of  the  DryWa  system  (Solwa  srl)  .......................................................................................  31  Figure  20  –  Sludge  drying  system:  component  scheme  (Solwa  srl)  ..................................................................  33  Figure  21  –  Crushing  screw  (Solwa  srl)  .........................................................................................................................  34  Figure  22  –  Conveyor  belt  (Solwa  srl)  ............................................................................................................................  34  Figure  23  –  Manpower  required  in  the  conventional  solar-­‐drying  plants  .....................................................  36  Figure  24  –  View  from  above  (left)  and  inside  (right)  of  a  solar-­‐drying  plant  ............................................  36  Figure  25  –  Drying  performance  comparison  between  Drywa  (only  solar  sludge  drying)  and  other  solar  greenhouses  around  the  world  (Solwa  srl)  in  terms  of  tons  per  square  meter  that  can  be  yearly  treated  (ton/m2/y)  .................................................................................................................................................................  37  Figure  26  –  Psychrometric  chart  at  atmospheric  pressure  (Patm  =  1.013  bar),  with  on  the  x-­‐axis  the  water  mass  and  on  the  y-­‐axis  the  temperature  T  (Mollier’s  chart)  ...................................................................  42  Figure  27–  Sampling  points  at  the  secondary  sedimentation  tank  (left)  and  after  anaerobic  digestion  (center  and  right)  ................................................................................................................................................  47    Figure  28  –  Temperature  inside  and  outside  the  prototypes  +  Solar  Radiation  in  Week  1  testing  ....  50  Figure  29  –  Relative  Humidity  inside  and  outside  the  prototypes  in  Week  1  testing  ................................  51  Figure  30  –  Drying  curves  of  sample  A,  B  in  P1  and  C  in  P2  (Week  1)  .............................................................  51  Figure  31  –  Testing  in  the  Prototype  1  (left)  and  2  (right)  in  week  2  ..............................................................  52  Figure  32  –  Temperature  inside  and  outside  the  prototypes  +  Solar  Radiation  (Week  2)  .....................  53  Figure  33  –  Relative  Humidity  inside  and  outside  the  prototypes  (Week  2)  .................................................  53  Figure  34  –  Sample  A  dried  in  Prototype  1  ..................................................................................................................  53    Figure  35  –  Drying  curves  of  sample  A,  B  and  C  in  P1  during  Week  2  .............................................................  54  Figure  36–  Sample  B:  wet  (left),  view  inside  P2  (center)  and  dry  (right)  in  P2  ...........................................  54    Figure  37  –  Drying  curves  of  sample  A,  B  and  C  in  P2  during  Week  2  .............................................................  56  Figure  38  –  Temperature  inside  and  outside  the  prototypes  +  Solar  Radiation  (Week  3)  .....................  57  Figure  39  –  Relative  Humidity  inside  and  outside  the  prototypes  (Week  3)  .................................................  58  Figure  40  –  Drying  curves  of  sample  A,  B  and  C  in  P1  (Week  3a)  ......................................................................  58  Figure  41  –  Drying  curves  of  sample  A,  B  and  C  in  P1  (Week  3b)  ......................................................................  59  Figure  42  –  Drying  curves  of  sample  A,  B  and  C  in  P2  (Week  3)  .........................................................................  60  Figure  43  –  Incoming  and  Outgoing  Air  Enthalpy  inside  the  Solar  Collectors  of  P2  (Week  2)  .............  63  Figure  44  –  Exchanged  thermal  power  of  the  air  inside  the  Solar  Collectors  of  P2  (Week  2)  ...............  63  Figure  45  –  Incoming  and  Outgoing  Air  Enthalpy  inside  the  Solar  Collectors  of  P2  (Week  3)  .............  64  Figure  46  –  Exchanged  thermal  power  of  the  air  inside  the  Solar  Collectors  of  P2  (Week  3)  ...............  64  

  91  

Figure  47  –  Photographs  of  the  samples  (from  left  to  right:  sample  B,  C1  and  C2)  ...................................  65  Figure  48  –  Curves  of  sludge  drying  at  150°C  (1st  Test)  .........................................................................................  67  Figure  49  –  Photograph  of  the  three  samples  after  thermal  drying  .................................................................  68  Figure  50  –  Drying  curves  of  sample  A,  B  and  C  in  150°C  oven  (2nd  test)  .......................................................  69  Figure  51  –  Drying  differential  (Δm)  of  sample  A,  B  and  C  in  150°C  oven  (2nd  test)  ................................  69  Figure  52  –  Drying  ratio  (%)  of  sample  A,  B  and  C  in  150°C  oven  (2nd  test)  ...............................................  70  Figure  53  –  Dry  Matter  (%DM)  of  sample  A,  B  and  C  in  150°C  oven  (2nd  test)  ...........................................  71  Figure  54  –  Drying  velocity  (Δm/Δt)  of  sample  A,  B  and  C  in  150°C  oven  (2nd  test)  ................................  71  Figure  55  –  Digested  sludge  inside  the  graded  beaker  before  and  after  drying  ..........................................  72  Figure  56  –  Average  solar  radiation  (W/m2)  on  Earth’s  surface  (Franceschetti,  2013)  .........................  81            Table  1  –  Process  chain  of  the  WWTP  of  Treviso  (Regione  del  Veneto,  2011)  .............................................  13  Table  2  –  ISTAT  (2005)  data  for  sludge  amount  in  Italy  .......................................................................................  17  Table  3  –  Comparison  between  emissions  from  drying  and  incineration  (Ragazzi,  et  al.,  2006)  ........  25  Table  4  –  Results  from  week  1  in  Prototype  1  and  2  (with  ventilation  off)  ...................................................  52  Table  5  –  Results  of  week  2  in  Prototype  1  (with  ventilation  on)  ......................................................................  55  Table  6  –  Results  of  week  2  in  Prototype  2  (with  ventilation  on)  ......................................................................  56  Table  7  –  Results  of  week  3  in  Prototype  1  (with  ventilation  on)  ......................................................................  59  Table  8  –  Results  of  week  3  in  Prototype  2  (with  ventilation  on)  ......................................................................  60  Table  9  –  Summary  of  the  main  results  of  solar  experimentation  (Week  2  and  3)  ....................................  61  Table  10  –  Results  summary  of  thermal  drying  for  sample  A,  B  and  C  (1st  Test)  ........................................  66  Table  11  –  Results  summary  of  thermal  drying  for  sample  A,  B  and  C  (2nd  Test)  .......................................  68  Table  12  –  First  test:  TS  and  TVS  determination  .......................................................................................................  72  Table  13  –  Second  test:  TS  determination  ....................................................................................................................  73  Table  14  –  Heating  value  and  ashes  content  of  biological  sludge  and  digestate  ........................................  73  Table  15  –  COD  data  for  the  three  types  of  sludge  ....................................................................................................  74  Table  16  –  Input  data  for  the  projected  sludge  drying  and  burning  system  .................................................  77  Table  17  –  Amount  of  sludge  exiting  the  drier  ...........................................................................................................  78  Table  18  –  Results  of  the  calculations  of  the  output  of  the  system  ....................................................................  79  Table  19  –  Theoretic  and  actual  differences  and  efficiencies  ..............................................................................  80