36
1 The Role of Weakly Coordinating Thioether Group in the Ligation Controlled Molecular Self-Assemblies and Their Inter-Conversions in Ni(II) Complexes of L-methionine Derived Ligand Rakesh Kumar a , Vishal Mutreja a , Gyaneshwar Sharma b , Sanjeev Kumar b , Anzar Ali c , S. K. Mehta a , P. Venugopalan a , Ramesh Kataria *a , Subash Chandra Sahoo *a a Department of Chemistry, Panjab University, Sector-14, Chandigarh, India, 160014. b Department of Applied Science, Punjab Engineering College (PEC) University of Technology, Sector 12, Chandigarh, India, 160012. c Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector 81, SAS Nagar, Mohali, PO 140306, Punjab, India * E-mail: [email protected], Fax: + 91-172-2545074; Tel: + 91-172-2534433 Supporting Information Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

1

The Role of Weakly Coordinating Thioether Group in the Ligation Controlled Molecular Self-Assemblies and Their Inter-Conversions in Ni(II) Complexes of L-methionine Derived Ligand

Rakesh Kumara, Vishal Mutrejaa, Gyaneshwar Sharmab, Sanjeev Kumarb, Anzar Ali c,

S. K. Mehtaa, P. Venugopalana, Ramesh Kataria*a, Subash Chandra Sahoo*a

aDepartment of Chemistry, Panjab University, Sector-14, Chandigarh, India, 160014. bDepartment of Applied Science, Punjab Engineering College (PEC) University of

Technology, Sector 12, Chandigarh, India, 160012.cDepartment of Physical Sciences, Indian Institute of Science Education and Research

Mohali, Knowledge city, Sector 81, SAS Nagar, Mohali, PO 140306, Punjab, India*E-mail: [email protected], Fax: + 91-172-2545074; Tel: + 91-172-2534433

Supporting Information

Electronic Supplementary Material (ESI) for New Journal of Chemistry.This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Page 2: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

2

S.No. CONTENT Page

1. Ortep diagrams and lattice figures 3-6

2. Crystallographic data, Bond angle and bond lengths, H-bonds

and other details.

7-12

3. FT-IR spectra of ligand and complexes. 13-15

4. UV-vis spectra and data. 16-17

5. ESI-MS data for the complexes. 17-20

6. PXRD data for the complexes. 21-23

7. Thermal Gravimetric analysis (TGA) data for the complexes. 23-26

8. Kinetic analysis and calculation of binding constant 27-31

9. Comparison of complex formation ability of amino acid

derived ligands and effect of temperature on UV-Vis spectra

and molecular conversion.

32-33

10. Magnetic analysis data. 34-35

11. Description about the movies and references 36

Page 3: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

3

Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around one Ni(II) unit showing cis-arrangement of the ligands. (B) Lattice arrangement of the complex 1 down the b-axis showing propeller shaped organization (the concavities are marked as C1, C2 and C3 to which the wings protrude.

Page 4: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

4

Figure S2. (A) ORTEP diagram of 2a with thermal ellipsoids set to 40% probability level. Ethanolammonium cation is stabilized inside the open cavity of binuclear anion. Various H-bonding interactions are shown as dashed line. (B) Lattice arrangement of the complex 2a down c-axis showing a cluster like arrangement (triangular assembly) formed by the H-bonding among lattice water molecules, ammonium groups and carboxylate moieties, which is shown inside a dotted triangle. This way of arrangement creates voids (shown as blue dotted circle) which are filled with solvent water molecules. Due to minimal interactions, these water molecules are found to be highly disordered. Modelling was unsuccessful and eventually they were removed with solvent mask option in Olex2.

Page 5: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

5

Figure S3. (A) ORTEP diagram of 2b with thermal ellipsoids set to 40% probability level showing how the ethanol ammonium ion is stabilized inside the open cavity of binuclear anion. Note the dissimilar coordination environment of the two Ni(II) centres due to the free thioether moiety around Ni1 center to which DMF molecule is coordinated. H-bonding interactions are shown as dashed line. (B) Lattice arrangement of the complex 2b along ac-plane showing a lamellar motif (2D) arrangement where the cavity either opens towards c- or a- axis direction.

Page 6: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

6

Figure S4. (A) ORTEP diagram of 3a with thermal ellipsoids set to 40% probability level. The self-assembly formed around the K+ with the six O-atoms of the ligand is a reminiscent of the association of the six oxygen atoms of 18-crown-6 to the metal ion. Charge stabilizing counter anion (NO3

-) is also involved in multiple hydrogen bonds. (B) Lattice arrangement of the complex 3a along c-axis showing a layer like arrangement where lattice solvents and anions are trapped in between the SA-complex molecules.

Page 7: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

7

Table-S1: Crystallographic data and refinement parameters for the complexes.

Complexes 1 2a 2b 3aCCDC 1836126 1836129 1836127 1836130Empiricalformula

C36H48N3Ni1.5O9S3

C28H43N3Ni2O10S2

C31H52N4Ni2O12S2

C312H438K4N36Ni12O94S24

Mr [g mol-1] 851.02 763.15 854.30 7828.14T (K) 293(2) 293(2) 293(2) 99(3)wavelength (A° ) 0.71073 0.71073 0.71073 1.54184crystal system Trigonal Trigonal Tetragonal Monoclinicspace group P321 P31 P43 P21

a [Å] 14.1696(4) 17.5135(5) 10.60766(15) 29.0680(4)b [Å] 14.1696(4) 17.5135(5) 10.60766(15) 20.8255(3)c [Å] 12.1596(4) 10.5236(3) 34.4981(8) 29.6402(4)α [deg] 90 90 90 90β [deg] 90 90 90 94.3994(12)γ [deg] 120 120 90 90V [Å3] 2114.29(10) 2795.38(18) 3881.81(14) 17890.0(4)Z 1 3 4 2ρcalc [g cm-3] 0.668 1.360 1.462 1.453μ [mm-1] 0.437 1.174 1.140 3.098F (000) 447.0 1200 1800.0 8218.0crystal size [mm]3 0.3 × 0.25 ×

0.20.31 × 0.26 × 0.19

0.25 × 0.138 × 0.106

θmin/θmax [deg] 6.64/54.634 6.622/54.792 6.486/54.818 6.92/134.158index ranges -16 ≤ h ≤

17, -17 ≤ k ≤ 17, -15 ≤ l ≤ 11

-22 ≤ h ≤ 15, -22 ≤ k ≤ 22, -12 ≤ l ≤ 13

-12 ≤ h ≤ 13, -13 ≤ k ≤ 13, -41 ≤ l ≤ 43

-34 ≤ h ≤ 25, -24 ≤ k ≤ 24, -35 ≤ l ≤ 32

reflection collected

8856 12217 27372 100611

independent reflections

2998 5963 7052 63306

max/min transmission

0.0325/0.0365

0.0505/0.0547

0.0503/0.0354

0.0373/0.0673

FLACK para -0.015(8) 0.041(18) -0.013(9) 0.031(5)data/restraints/parameters

2998/0/164 5963/2/410 7052/1/478 63306/1206/4521

GOF on F2 1.051 1.061 1.121 1.041final R indices [I > 2σ(I)]

0.0405/0.1016

0.0600/0.1770

0.0317/0.0754

0.0682/0.1861

R indices (all data) 0.0495/0.1070

0.0645/0.1800

0.0368/0.0871

0.0778/0.1941

largest diff peak/hole [e Å-3]

0.26/-0.24 0.99/-0.56 0.35/-0.36 2.04/-1.05

Page 8: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

8

Table S2. Selected bond lengths (Å) and bond angles (˚) for the complexes (1, 2a, & 2b)

Complex 1

Atoms Bond Lengths(Å)

Atoms Bond Lengths(Å)

Atoms Bond Lengths(Å)

Ni1 N1Ni1 N11

2.105(3)2.105(3)

Ni1 O3Ni1 O31

2.061(3)2.061(3)

Ni1 O1Ni1 O11

2.056(3)2.056(3)

1-X,-X+Y,-Z

Atoms Angles(˚) Atoms Angles(˚) Atoms Angles(˚)

N1Ni1 N11

O31 Ni1 N1O31 Ni1 N11

O3 Ni1 N11

O3 Ni1 N1

179.1(2)93.46(14)87.19(13)93.47(14)87.19(13)

O31 Ni1 O3O11 Ni1 N11

O11 Ni1 N1O1 Ni1 N1O1 Ni1 N11

93.4(2)79.79(12)99.52(13)79.79(12)99.52(13)

O1 Ni1 O3O11 Ni1 O31

O11 Ni1 O3O1 Ni1 O31

O11 Ni1 O1

166.50(12)166.50(12)90.95(14)90.95(14)87.8(2)

1-X,-X+Y,-Z

Complex 2a

Atoms Bond Lengths(Å)

Atoms Bond Lengths(Å)

Atoms Bond Lengths(Å)

Ni1 Ni2Ni1 O1Ni1 N1Ni2 O4Ni2 O6

2.9964(16)2.102(6)2.049(7)2.053(6)2.026(7)

Ni1 S1Ni1 O6Ni2 S2Ni2 O8

2.453(3)2.025(6)2.483(3)2.047(7)

Ni1 O3Ni1 O7Ni2 O3Ni2 N2

2.046(7)2.0(7)2.030(6)2.077(8)

Atoms Angles(˚) Atoms Angles(˚) Atoms Angles(˚)

S1 Ni1 Ni2O3 Ni1 O1O1 Ni1 Ni2O6 Ni1 S1O6 Ni1 O7O7 Ni1 S1N1 Ni1 S1S2 Ni2 Ni1O3 Ni2 O4O3 Ni2 Ni1O4 Ni2 Ni1O8 Ni2 N2O6 Ni2 Ni1O6 Ni2 O4

136.13(19)88.7(3)104.27(18)95.4(2)88.6(3)92.5(2)90.4(2)136.63(8)95.3(2)103.87(18)79.7(2)94.5(3)42.28(18)89.7(3)

O3 Ni1 Ni2O3 Ni1 O7O1 Ni1 S1O6 Ni1 O3O6 Ni1 N1O7 Ni1 O1N1 Ni1 O1O3 Ni2 Ni1O3 Ni2 O8O4 Ni2 S2O8 Ni2 S2N2 Ni2 Ni1O6 Ni2 S2O6 Ni2 O8

42.48(17)89.4(3)89.6(2)82.6(3)174.0(3)173.8(3)81.6(3)42.88(19)89.8(3)88.0(2)91.8(2)133.1(2)177.0(2)90.7(3)

O3 Ni1 S1O3 Ni1 N1O6 Ni1 Ni2O6 Ni1 O1O7 Ni1 Ni2N1 Ni1 Ni2N1 Ni1 O7O3 Ni2 S2O3 Ni2 N2O4 Ni2 N2O8 Ni2 O4O8 Ni2 S2O6 Ni2 O3O6 Ni2 N2

177.24(19)91.5(3)42.31(19)97.0(3)78.2(2)132.3(2)92.6(3)95.3(2)173.4(3)80.4(3)174.9(3)89.6(2)83.0(3)92.0(3)

Page 9: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

9

Complex 2bAtoms Bond

Lengths(Å)Atoms Bond

Lengths(Å)Atoms Bond

Lengths(Å)Ni1 O7Ni1 O9Ni2 S2Ni2 O4

2.078(3)2.085(4)2.4836(15)2.045(3)

Ni1 O1Ni1 O3Ni2 O6Ni2 O3

2.068(3)2.033(3)2.045(4)2.047(3)

Ni1 O6Ni1 N1Ni2 O8Ni2 N2

2.033(3)2.096(4)2.032(4)2.078(4)

Atoms Angles(˚) Atoms Angles(˚) Atoms Angles(˚)O7 Ni1 O9O1 Ni1 O9O6 Ni1 O1O6 Ni1 N1O3 Ni1 O1O6 Ni2 S2O8 Ni2 S2O8 Ni2 O3O4 Ni2 O6O3 Ni2 S2

87.71(14)94.83(15)97.30(13)174.78(15)91.00(14)177.74(10)88.15(11)90.32(14)92.62(14)97.05(11)

O7 Ni1 N1O1 Ni1 N1O6 Ni1 O9O9 Ni1 N1O3 Ni1 O9O6 Ni2 O3O8 Ni2 O6O8 Ni2 N2O4 Ni2 O3O3 Ni2 N2

92.35(15)80.39(14)91.82(14)93.03(15)172.02(14)81.36(13)90.25(14)94.27(16)94.82(14)171.87(16)

O1 Ni1 N1O6 Ni1 O7O6 Ni1 O3O3 Ni1 O7O3 Ni1 N1O6 Ni2 N2O8 Ni2 O4O4 Ni2 S2O4 Ni2 N2 N2 Ni2 S2

172.41(15)89.76(14)82.01(13)87.20(14)93.32(15)91.90(14)174.44(14)89.11(11)80.88(15)89.81(12)

Table S3. Selected bond lengths (Å) and bond angles (˚) for the complex 3a.

Complex 3a

Atoms Bond Lengths(Å)

Atoms Bond Lengths(Å)

Atoms Bond Lengths(Å)

Ni11 K4Ni11 075Ni11 N24Ni12 O81Ni12 N26Ni3 O15Ni3 O13Ni4 K2Ni4 O25Ni4 N9Ni6 O34Ni6 N13Ni1 O3Ni1 N1Ni9 O58Ni9 O60Ni5 K2Ni5 N11Ni10 O64Ni10 O69

3.460(2)2.115(6)2.101(7)2.123(6)2.095(7)2.116(6)2.012(6)3.497(2)2.030(6)2.090(8)2.023(6)2.067(7)2.124(6)2.082(8)2.032(6)2.143(7)3.453(2)2.088(8)2.012(7)2.123(7)

Ni11 O73Ni11 O70Ni12 K4Ni12 O78Ni12 N27Ni3 O16Ni3 N5Ni4 O22Ni4 O27Ni6 K2Ni6 O36Ni1 K1 Ni1 O6Ni1 N2Ni9 O55Ni9 N19Ni5 O33Ni5 N10Ni10 O67Ni10 N22

2.038(6)2.031(6)3.486(2)2.134(6)2.083(7)2.044(6)2.090(7)2.024(6)2.092(7)3.448(2)2.146(6)3.451(2)2.119(6)2.096(8)2.025(6)2.072(8)2.120(6)2.075(8)2.028(6)2.057(7)

Ni11 O72Ni11 N25Ni12 O79Ni12 O76Ni3 K1Ni3 018Ni3 N6 Ni4 O24Ni4 N8Ni6 O37Ni6 N12Ni1 O1Ni1 O4 Ni9 K3Ni9 O57Ni9 N20Ni5 O31 Ni10 K4Ni10 O66Ni10 N23

2.123(6)2.073(8)2.037(6)2.022(6)3.496(2)2.135(7)2.092(7)2.136(6)2.089(6)2.039(6)2.069(7)2.039(6)2.026(7)3.448(2)2.131(7)2.081(8)2.030(6)3.475(2)2.112(7)2.088(8)

Page 10: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

10

Ni7 K3Ni7 O43Ni7 N15Ni2 O10Ni2 N3Ni8 O51Ni8 O54K2 O37K2 O25K4 O73K4 O64K3 O58K3 O43K1 O1K1 O10

3.518(2)2.019(7)2.081(10)2.026(7)2.062(8)2.118(7)2.129(8)2.619(6)2.632(6)2.648(6)2.630(6)2.608(6)2.684(7)2.646(6)2.658(7)

Ni7 O46Ni7 O45Ni2 K1Ni2 O9Ni2 N4Ni8 O49Ni8 N18K2 O34K2 O31K4 O79K4 O67K3 O55K3 O49K1 O7K1 O4

2.025(6)2.154(7)3.508(2)2.108(6)2.099(9)2.032(8)2.076(11)2.622(6)2.656(6)2.632(6)2.649(6)2.643(7)2.634(6)2.660(6)2.634(7)

Ni7 O48Ni7 N16Ni2 O7Ni2 O12Ni8 K3Ni8 O52Ni8 N17K2 O22K2 O28K4 O70K4 O76K3 O46K3 O52K1 O16K1 O13

2.115(7)2.087(8)2.017(7)2.123(7)3.456(2)2.018(8)2.081(11)2.650(6)2.634(6)2.655(6)2.646(6)2.634(6)2.675(7)2.666(6)2.633(6)

Atoms Angles(˚) Atoms Angles(˚) Atoms Angles(˚)O73 Ni11 N25O70 Ni11 O73O70 Ni11 N25N25 Ni11 O72O79 Ni12 N26O81 Ni12 O78O76 Ni12 O79O76 Ni12 N26N26 Ni12 O81N27 Ni12 O81O16 Ni3 O15O16 Ni3 N6O13 Ni3 O15O13 Ni3 N5N5 Ni3 O15O22 Ni4 O27O25 Ni4 O27N8 Ni4 O24O37 Ni6 O36O37 Ni6 N13O34 Ni6 O36O34 Ni6 N13O39 Ni6 O36N12 Ni6 O39N13 Ni6 N12O1 Ni6 O6O4 Ni1 O1O4 Ni1 N1N1 Ni1 O3O58 Ni9 N19O55 Ni9 O58O55 Ni9 N19O57 Ni9 O60N19 Ni9 O57O31 Ni5 O33

80.8(3) 99.6(2)175.6(3)95.4(3)176.7(3)170.7(2)97.7(2)81.5(3)94.6(3)91.1(3)87.0(2)80.3(3)87.0(2)81.6(2)89.6(3)86.7(2)87.5(2)90.7(3)85.4(2)79.6(3)86.3(2)176.7(3)170.3(3)95.1(3)100.5(5)85.2(2)99.4(3)176.3(3)91.1(3)175.4(3)98.6(3)81.0(3)172.0(3)90.6(3)88.1(2)

O73 Ni11 O72O73 Ni11 N24O75 Ni11 O72O70 Ni11 O72O70 Ni11 N24N25 Ni11 O75N24 Ni11 O72O79 Ni12 O81O79 Ni12 N27 O76 Ni12 O81O76 Ni12 N27N26 Ni12 O78N27 Ni12 O78O15 Ni3 O18O16 Ni3 O18O13 Ni3 O16O13 Ni3 N6N5 Ni3 O18N6 Ni3 O15O22 Ni4 O24 O22 Ni4 N8O25 Ni4 N8O27 Ni4 O24N8 Ni4 O27N9 Ni4 O24O37 Ni6 O39O34 Ni6 O39O1 Ni6 N1O6 Ni1 O3O4 Ni1 O3O4 Ni1 N2N1 Ni1 O6N1 Ni1 O3O58 Ni9 O57O58 Ni9 N20

85.7(2)175.6(3)171.0(2)88.9(2)80.0(3)90.0(3)89.9(3)88.6(2)80.4(3)85.8(2)176.4(3)90.4(3)95.8(3)171.1(2)88.0(3)97.8(3)176.6(3)95.3(3)95.7(3)87.5(2)80.7(3)177.5(3)90.7(3)94.0(3)94.7(3)89.2(2)86.5(2)80.6(3)170.1(3)85.2(3)80.2(3)95.1(3)96.4(3)84.8(3)79.5(3)

O73 Ni11 O75O70 Ni11 O75N25 Ni11 N24N24 Ni11 O75O79 Ni12 O78O76 Ni12 O78N27 Ni12 N26O16 Ni3 N5O13 Ni3 O18N5 Ni3 N6N6 Ni3 O18O22 Ni4 O25O22 Ni4 N9O25 Ni4 O24O25 Ni4 N9N8 Ni4 N9N9 Ni4 O27O37 Ni6 N12O34 Ni6 O37O34 Ni6 N12N12 Ni6 O36N13 Ni6 O36O1 Ni6 O3O1 Ni6 N2O4 Ni1 O6N1 Ni1 N2N1 Ni1 O6O58 Ni9 60O55 Ni9 O60N19 Ni9 N20N20 Ni9 O60O31 Ni5 N11 O28 Ni5 O31O28 Ni5 N11N10 Ni5 N11

88.1(2)85.7(2)99.9(3)96.2(3)86.4(2)87.2(2)100.6(3)176.6(3)86.4(2)100.4(3)90.7(3)97.3(2)177.0(3)87.6(2)80.7(3)101.3(3)91.0(3)175.8(3)98.3(2)81.8(3)90.4(3)96.2(3)88.2(2)175.3(3)88.6(3)100.1(3)90.1(3)89.9(3)86.5(30)101.2(3)89.7(3)80.8(3)99.6(2)176.4(3)98.1(3)

Page 11: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

11

O31 Ni5 N10O28 Ni5 O30O28 Ni5 N10N11 Ni5 O33N10 Ni5 O33O64 Ni10 O69O66 Ni10 O69N22 Ni10 O66O46 Ni7 N16 O48 Ni7 O45O43 Ni7 O48O43 Ni7 N15N16 Ni7 O48N15 Ni7 O48O7 Ni2 O10O7 Ni2 N3O10 Ni2 O9O10 Ni2 N4N3 Ni2 O12N4 Ni2 O9O51 Ni8 O54O49 Ni8 O54O49 Ni8 O54O52 Ni8 O54

176.8(3)81.6(3)81.17(19)90.4(3)94.9(3)87.5(3)90.1(3)90.1(3)81.1(3)170.1(3)86.5(3)80.3(3)90.9(3)95.3(4)97.8(3)81.3(3)85.8(3)81.1(3)93.9(3)95.1(3)168.9(3)168.9(3)87.3(3)87.0(3)

O55 Ni9 O57O55 Ni9 N20N19 Ni9 O60N20 Ni9 O57O33 Ni5 O30O31 Ni5 O30O28 Ni5 O33O28 Ni5 N11N11 Ni5 O30N10 Ni5 O30O64 Ni10 O67O64 Ni10 N22O64 Ni10 O69N22 Ni10 O69N23 Ni10 O66O46 Ni7 O48O46 Ni7 N15O43 Ni7 O45N16 Ni7 O45N15 Ni7 N16O7 Ni2 O9O7 Ni2 N4O10 Ni2 O12N4 Ni2 O12

88.3(3)175.8(3)94.6(3)95.3(3)169.8(3)87.0(3)86.1(3)176.4(3)97.6(3)90.2(3)98.2(2)81.4(3)172.6(3)94.6(3)95.2(3)86.7(3)176.8(4)87.8(3)94.6(3)101.3(3)86.7(3)177.8(3)88.3(3)91.1(3)

O64 Ni10 O66O64 Ni10 N23N22 Ni10 N23N23 Ni10 O69O46 Ni7 O45O43 Ni7 O46O43 Ni7 N16O7 Ni2 O12O9 Ni2 O12N3 Ni2 O9O49 Ni8 O54O49 Ni8 O51O49 Ni8 N17O52 Ni8 O49O52 Ni8 N17 N18 Ni8 O51N18 Ni8 N17N17 Ni8 O54 O52 Ni8 O51O52 Ni8 N18N17 Ni8 O51 O49 Ni8 N18N18 Ni8 O54

87.5(3)177.1(3)99.7(3)89.7(3)86.1(3)97.3(3)177.0(3)87.0(3)170.6(3)92.0(3)168.9(3)86.9(3)79.9(4)100.0(3)81.7(4)97.5(3)98.9(5)98.8(4) 84.6(3)81.7(4)89.5(4) 175.4(3)88.5(4)

Table S4. Selected H-bonds parameters (Å, ˚) for the Complexes (1, 2a, 2b and 3a).

Complexes D―H∙∙∙A (Å) D―H (Å)

H∙∙∙A (Å) D∙∙∙A (Å) D―H∙∙∙A

1 O3―H3∙∙∙O2 0.909 1.539 2.440 170.95

2a N3―H3D∙∙∙O4 O.890 1.876 2.748 166.09N3―H3E∙∙∙O1 0.890 1.955 2.772 152.05N3―H3C∙∙∙O10 0.890 1.909 2.781 166.07O9―H9A∙∙∙O5 0.821 2.036 2.845 168.55O10―H10A∙∙∙O2 0.850 2.409 2.867 114.43N1―H1∙∙∙O5 0.980 2.034 2.917 148.88

2b N4―H4C∙∙∙O1 O.890 1.898 2.777 169.29N4―H4D∙∙∙O4 0.890 1.858 2.740 170.65N4―H4E∙∙∙O12 0.890 2.260 3.012 142.07O10―H10A∙∙∙O2 0.820 1.966 2.783 174.22O11―H11A∙∙∙O7 0.664 2.073 2.735 174.22O12―H12B∙∙∙O11 0.850 1.852 2.661 158.53

3a N5―H5∙∙∙O20 0.980 2.098 3.062 167.69N6―H6A∙∙∙O21 0.980 2.242 3.017 135.06O18―H18C∙∙∙O11 0.863 1.673 2.532 172.68O9―H9∙∙∙O14 0.862 1.715 2.573 173.20

Page 12: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

12

O12―H12∙∙∙O5 0.830 1.911 2.585 138.78N2―H2∙∙∙O85 0.980 2.223 2.985 133.64O3―H3∙∙∙O8 0.861 1.668 2.521 170.60O15―H15J∙∙∙O2 0.820 1.758 2.541 159.03O6―H6∙∙∙O17 0.820 1.696 2.516 178.95N2―H2∙∙∙O85 0.980 2.223 2.985 133.64O93―H93C∙∙∙O88 0.850 1.933 2.752 161.27N8―H8A∙∙∙O93 0.980 2.108 3.004 151.22O30―H30∙∙∙O26 0.820 1.750 2.536 159.77O24―H24E∙∙∙O32 0.820 1.767 2.521 152.08O33―H33∙∙∙O35 0.820 1.859 2.498 133.90O39―H39A∙∙∙O29 0.820 1.738 2.556 174.59N12―H12A∙∙∙O40 0.980 2.063 3.034 170.69N13―H13A∙∙∙O41 0.980 2.088 2.879 136.45O27―H27K∙∙∙O38 0.820 1.721 2.539 175.36N20―H20∙∙∙O62 0.980 2.043 2.858 139.28N19―H19∙∙∙O61 0.980 2.091 3.046 164.21O51―H51∙∙∙O56 0.820 1.802 2.502 142.32O54―H54∙∙∙O47 0.859 1.683 2.528 167.24N15―H15∙∙∙O94 0.980 2.059 3.019 165.75O94―H94C∙∙∙O90 0.851 2.080 2.644 123.23O48―H48∙∙∙O59 0.820 1.729 2.545 172.74N18―H18∙∙∙O86 0.980 2.291 3.020 130.50O57―H57∙∙∙O44 0.820 1.703 2.523 178.36N27―H27A∙∙∙O83 0.980 2.167 3.000 141.98O26―H26A∙∙∙O82 0.980 2.053 3.001 162.13O78―H78∙∙∙O74 0.820 1.731 2.541 168.96O72―H72∙∙∙O80 0.820 1.705 2.523 176.14N24―H24∙∙∙O92 0.980 2.167 2.964 137.49O66―H66A∙∙∙O77 0.820 1.719 2.539 177.60O81―H81∙∙∙O68 0.857 1.696 2.530 163.46O69―H69∙∙∙O71 0.820 1.836 2.545 143.88O75―H75∙∙∙O65 0.820 1.700 2.511 169.56

Page 13: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

13

Figure S5. IR spectrum of the ligand Salmet.

Figure S6. IR spectrum of the complex 1.

Page 14: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

14

Figure S7. IR spectrum of the complex 2a.

Figure S8. IR spectrum of the complex 2b.

Page 15: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

15

Figure S9. IR spectrum of the complex 3a.

Figure S10. IR spectrum of the complex 3b.

Page 16: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

16

Figure S11. Electronic spectra of the complex 1 and 2a in DMF. The highlighted yellow box and the yellow dots show the shoulder peak and red-shift, respectively for 2a.

Figure S12. Electronic spectra of the complex 3a and 3b in DMF. The blue arrows show the blue shift in 3b.

Page 17: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

17

Table S5. Electronic Spectral Dataa

Complexes Solvent λmax (nm)

DMF 379.9, 636.9, 1020.91

MeOH 373.8, 629.3, 1003.5

DMF 379.9 sh, 639.8, 1031.82a

MeOH 634.1, 1003.8

2b DMF 381.2 sh, 640.2, 1032.5

MeOH 635.2, 1004.6

DMF 387.9, 553.8, 752.7, 851.1, 1181.0, 1435.1, 1553.33a

MeOH 386.6, 553.8, 755.0, 852.3

DMF 379.9, 548.4, 747.3, 836.8, 1120.4, 1435.0, 1555.73b

MeOH 377.3, 551.7, 752.0, 835.2aScan range in DMF, 300-1600 nm, MeOH, 200-1100 nm.

Figure S13. ESI- Mass (+ve) spectra of the complex 1 in MeOH

Page 18: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

18

Figure S14. ESI- Mass (+ve) spectrum of the complex 2a in MeOH. Expanded figure of the highlighted portion is shown below.

Figure S15. ESI- Mass (+ve) spectrum of the complex 2a in MeOH. Expanded view of Fig S27 between the m/z of 550-850.

Page 19: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

19

Figure S16. ESI- Mass (+ve) spectrum of the complex 2b in MeOH shown in the m/z of 550-850.

WATERS, Q-TOF MICROMASS (ESI-MS) SAIF/CIL,PANJAB UNIVERSITY,CHANDIGARH

m/z100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

%

0

100RAKESH GK-57- 12 (0.247) Cm (1:17) TOF MS ES+

1.65e41738.316510

1736.310556

974.14348

972.13018

976.12881

978.21083

1229.2654

1740.314245

1741.38384

1742.37052

1743.32688

1744.31455

Figure S17. ESI- Mass (+ve) spectra of the Complex 3a in MeOH.

Page 20: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

20

WATERS, Q-TOF MICROMASS (ESI-MS) SAIF/CIL,PANJAB UNIVERSITY,CHANDIGARH

m/z100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

%

0

100RAKESH RK-213 1 (0.019) Cm (1:20) TOF MS ES+

1.24e41723.311236896.40

12235

1719.39779296.83

7515

644.945041

169.472516

97.321504

97.86490

589.082146256.44

1795

257.161177

567.131060483.17

716334.29426

646.924525

957.473449

955.502617

648.102610

648.922051

710.851619

650.91711

901.65881879.71

853

959.472409

961.471190

1399.77709

1045.33640 1234.08

4701190.22

421

1724.3610267

1726.387101

1727.355619

1739.364715

1740.353599

1742.362256

1743.361813

1744.351143

1746.34494

Figure S18. ESI- Mass (+ve) spectrum of the complex 3b in MeOH.

WATERS, Q-TOF MICROMASS (ESI-MS) SAIF/CIL,PANJAB UNIVERSITY,CHANDIGARH

m/z100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

%

0

100RAKESH RK-292 12 (0.223) Cm (12:32) TOF MS ES+

1.16e41725.0711580

1723.0510807

1721.137509

567.145347

461.044144

148.653457

149.192350

255.511552

149.81417

256.241048 384.94

669

462.043339

463.042822

464.041886

465.05921

534.15354

880.164936

568.203613

570.222080

623.091571

645.08798 772.13

764698.14;506

1191.203870

881.552969 1189.25

2808

1135.311766

883.191583

936.111188

1027.211187

1193.232923

1720.181936

1194.261906 1504.23

1720

1484.241326

1196.251159

1197.22848

1482.29819

1506.191294

1716.291030

1544.10723

1741.0610145

1742.088098

1744.095872

1745.084971

1796.953055

1798.952505

1799.921655

1801.96994

Figure S19. ESI- Mass (+ve) spectrum of the Complex 1 in presence of KNO3 in MeOH.

Page 21: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

21

A s - sy nthesize d

S i m ul ated

5 1 0 1 5 2 0 2 5 3 0 4 0 4 5 5 03 5

Figure S20.Comparison of the experimental PXRD pattern of the as-synthesized complex 1 (top) with simulated from its single crystal structure (bottom).

Figure S21.Comparison of the experimental PXRD pattern of the as-synthesized complex 2a (top) with simulated from its single crystal structure (bottom).

Page 22: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

22

A s - sy nthesize d

S i m ul ated

5 1 0 1 5 2 0 2 5 3 0 4 0 4 5 5 03 5

Figure S22. Comparison of the experimental PXRD pattern of the as-synthesized complex 2b (top) with simulated from its single crystal structure (bottom).

A s - sy nthesize d

S i m ul ated

5 1 0 1 5 2 0 2 5 3 0 4 0 4 5 5 03 5

Figure S23. Comparison of the experimental PXRD pattern of the as-synthesized complex 3a (top) with simulated from its single crystal structure (bottom).

Page 23: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

23

A s - sy nthesize d

5 1 0 1 5 2 0 2 5 3 0 4 0 4 5 5 03 5

Figure S24. PXRD pattern of the as-synthesized complex 3b.

Figure S25. Thermal Gravimetric analysis (TGA) of the complex 1. The complex 1 showing a loss of lattice solvent (water) molecule around the temperature of 120 °C. The stability of

complex is table up to 400 °C.

Page 24: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

24

Figure S26. Thermal Gravimetric analysis (TGA) of the Complex 2a showing a gradual loss in lattice solvents molecule in the temperature range of 120-280 °C and stability of complex

is up to 400 °C.

Figure S27. Thermal Gravimetric analysis (TGA) of the complex 2b showing a sudden loss in lattice solvents between the temperature range of 120-260 °C and stability of complex is

up to 380 °C and decomposition starts after that.

Page 25: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

25

Figure S28. Thermal Gravimetric analysis (TGA) of the complex 3a (KNO3) showing a two-step weight losses where the first step (~14 %) loss due to lattice solvent molecules up to 200

°C followed by decomposition of the assembly goes till 400 °C.

Page 26: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

26

Figure S29. Thermal Gravimetric analysis (TGA) of the complex 3b showing a two-step weight losses where the first step (~9 %) loss due to lattice solvent molecules up to 200 °C followed by decomposition of the assembly goes till 400 °C.

Page 27: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

27

Figure S30. UV-visible spectra (titration) of 1 solution (2 mL, 70 mM) with varying amount sodium perchlorate (30 mM per addition) in DMF. Colour change of 1 (green) to 3b (blue) is shown as inset.

Calculation of Binding Constant

Binding ability of complex 1 with KNO3 was determined as per the reported

method.[1] Firstly, stoichiometry of 1 to 3a conversion was evaluated using method of

continuous variation at absorbance 851 nm for 3a (Figure S7). Maximum absorption

was obtained corresponding to the mole fraction of 0.25 which confirm the

stoichiometry of 3:1 for 1 to K-ion. The following equation was used for the

calculation of binding constant.

𝐾 =[𝑆𝑒𝑙𝑓 ‒ 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦]

( [𝑀𝑜𝑛𝑜𝑚𝑒𝑟]𝑡 ‒ 3[𝑆𝑒𝑙𝑓 ‒ 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦])3.([𝑃𝑜𝑡𝑎𝑠𝑠𝑖𝑢𝑚]𝑡 ‒ 1[𝑆𝑒𝑙𝑓 ‒ 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦])1

[Monomer]t,= total concentration of monomer at initial state; [Potassium]t,= total

concentration of potassium at initial stage; [Monomer], [Potassium], [Self-assembly]

are concentration terms at final stage, namely, at equilibrium.

Page 28: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

28

Further the equilibrium concentration of 3a was obtained from UV-Vis spectrophotometer

using fixed amount (2 mL) of 1 solution (75 mM, solvent; DMF) and varying amount (0.25-3

ml) of 60 mM KNO3 (Figure 2, manuscript). Absorption bands of 1 and 3a was found to

overlapped at 851 nm and therefore, following equation was used for the calculation of conc.

of 3a as per the reported method [1]

[3𝑎] =𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒𝑆𝑒𝑙𝑓 ‒ 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 ‒ 𝜖𝑚𝑜𝑛𝑜𝑚𝑒𝑟[𝑚𝑜𝑛𝑜𝑚𝑒𝑟]𝑡

𝜖𝑆𝑒𝑙𝑓 ‒ 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 ‒ 𝑎𝜖𝑚𝑜𝑛𝑜𝑚𝑒𝑟

ϵmonomer and ϵSelf-assembly; molar extinction coefficients of

monomer and self-assembly, respectively determined using regression method (Figure S7-

11). a; stoichiometeric amount of monomer in the reaction. Figure S12 depicts an increase in

conc. of 3a which follows the nonlinear curve fitting (Guass, Figure S13) upon addition of

0.25-3 ml of titrant (potassium nitrate). Equilibrium conc. of Self-assembly (16.5 mM) was

determined from plateau of curve (Figure S12) and used in the calculation and the binding

constant found to be 6.633×10-4 mM-3L3. The gradual binding of KNO3 to 1 for 3a formation

can also be clearly observed through the sequence of colour change from green to blue by

naked eye (movie_ S1).

Figure S31. Absorbance (at λ=851 nm) versus conc. of complex 1 (0.005-0.08 M). Molar extinction coefficient of monomer at λ=851 nm is 4.1865.

Page 29: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

29

Figure S32. Job's plot; absorbance (@851 nm) of complex 3a versus mole fraction of KNO3

Figure S33. Absorbance (at λ =300-1100 nm) versus conc. of complex 1 (0.005-0.08 M)

Page 30: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

30

Figure S34. UV-visible spectra of 3a in DMF. The peaks positions at ~ 851 nm correspond the self-assembly formations.

Figure S35. Absorbance (at λ=851 nm) versus conc. of complex 3a (3-15 mM). Molar extinction coefficient of 3a at λ=851 nm is 21.684.

Page 31: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

31

Figure S36. UV-visible spectra of titration of 3a solution (1 mL, 0.2 M) with varying amount (0-2 mL) of 0.2 crown ether (18-crown 6-ether) in methanol-DMF (5:1).

Figure S37. Amount (mM) of self-assembly formed upon addition of 60 mM of KNO3 (0.25-3 mL). Curve follow nonlinear fitting using gauss function.

Page 32: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

32

Figure S38. A comparison of three salicylaldehyde amino acid derived ligands and their complex formation with Ni(II) salts. Each ligand has very similar binding sites but differ by their side arms. Salhis has a strong imidazole unit; methionine has a weak binding site while Salleu has none. The complex formation ability of these three ligands with Ni(II) ions is diagrammatically compared here.

Page 33: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

33

Figure S39. (top) Effect of cooling on conversion of 2a (green) to 3a (blue). (bottom) UV-Vis spectra of conversion of 3a to 2a upon increasing temperature.

Page 34: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

34

Figure S40. M2vs H/M curve, Arrott plot, is shown for 3a, 3b and 2a, obtained from rescaling of isothermal magnetization curve. Curves M2 of 3a and 3b grows with field strength and are parallel (but not a straight line) to adjacent temperature. In limiting region, H → 0T, M2 and extrapolated (from high field) slope of M2-H/M intercepts H/M and M2 intercepts at lower and higher values, which suggest strong modulation in nature of spin interaction.

Page 35: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

35

Figure S41.Temperature dependence of Magnetic entropy ( ) at various strength of ‒ Δ𝑆𝑀

magnetic field for 3a, 3b and 2a ( ). Specimen 3a and 3b exhibits broad 2𝐾 < 𝑇 < 10𝐾

anomaly and 2a have no anomaly in low field region. Curve is modulated in ‒ Δ𝑆𝑀(𝑇,𝐻)

high strength of field.

Page 36: Inter-Conversions in Ni(II) Complexes of L-methionine 7KLV ... · 3 Figure S1. (A) ORTEP diagram of 1 with thermal ellipsoids set to 40% probability level, and coordination around

36

Caption and description for movies

Movie_S1: Methanolic solution of KNO3 was mixed with the solution of 1 in DMF. The instant colour changed from green to blue confirms the formation of Self-assembly complex 3a. The resulting blue solution remains same for several days and get crystalized as 3a. Heating has no effect on the resulting blue solution.

Movie_S2: Methanolic solution of 18-Crown-6 was mixed with the solution of 3a in methanol. Colour changed from blue to green confirms the formation of 1.

Movie_S3: Addition of methanolic solution of KNO3 and ligand salmet in to the solution of 2a followed by addition of small amount of DMF. Colour changed from green to blue confirms the formation of self-assembly 3a. Heating the resulting blue solution up to at 66-75 °C, colour changed from blue to green occurs due to formation of binuclear complex 2a. However, after cooling the hot solution under cold water or simple cooling to room temp, the colour changes blue again. The above reversible colour change due to heating-cooling can be repeated for several times.

References

1. K. A Hirose, J. Incl. Phenom. Macrocycl. Chem. 2001, 39, 193–209.2. S. C. Sahoo, M. Dubey, M. A. Alam, M. Ray Inorg. Chem. Acta. 2010, 363, 3055.3. S. C. Sahoo, M. Ray, Chem. Eur. J. 2010, 16, 5004–5007.4. C. R. Das, S. C. Sahoo, M. Ray, Cryst. Growth Des.2014, 14, 3958–3966.5. M. Dubey, R. R. Koner, M. Ray, Inorg. Chem. 2009, 48, 9294–9302.