Intensity and Polarization Properties of the Partially Coherent Laguerre Gaussian Vector Beams With Vortices Propagating Through Turbulent Atmosphere 2014 Optics and Laser Technology

Embed Size (px)

Citation preview

  • 7/27/2019 Intensity and Polarization Properties of the Partially Coherent Laguerre Gaussian Vector Beams With Vortices Propagating Through Turbulent Atmosphere 20

    1/6

    Intensity and polarization properties of the partially coherentLaguerreGaussian vector beams with vortices propagating throughturbulent atmosphere

    Haiyan Wang a,b,n, Hailin Wang a, Yongxiang Xu a, Xianmei Qian b

    a Department of Physics, Nanjing University of Science and Technology, Nanjing 210094, PR Chinab Key Laboratory of Atmospheric Composition and Optical Radiation, Chinese Academy of Science, Hefei 230031, PR China

    a r t i c l e i n f o

    Article history:

    Received 5 January 2013

    Received in revised form

    28 April 2013

    Accepted 26 June 2013

    Keywords:

    Atmospheric turbulence

    Optical vortices

    Polarization

    a b s t r a c t

    By using the extended HuygensFresnel principle, the analytical expressions for the cross-spectral

    density matrix of the partially coherent LaguerreGaussian vector beams with vortices propagating

    through atmospheric turbulence are derived theoretically in detail, and used to study the intensity

    and polarization properties of partially coherent LaguerreGaussian beams in atmospheric turbu-

    lence. It is found that the variations of the intensity of the completely polarized part and the

    completely unpolarized part are closely related with the strength of atmospheric turbulence, the

    topological charge and the beam width in the source plane. The spectral degree of polarization of the

    partially coherent LaguerreGaussian vector beams with vortices tends to a certain value that is

    different from the source plane after a sufficiently long propagation distance in turbulent atmo-

    sphere. Furthermore, this value is dependent of the strength of turbulent atmosphere, the topological

    charge and the beam width in the source plane. The polarization property of the partially coherent

    LaguerreGaussian vector beams with vortices can be modulated by modulating the topological

    charge and the beam width in the source plane.

    & 2013 Published by Elsevier Ltd.

    1. Introduction

    In the past decades, characterization, generation and propa-

    gation of vector beam have been studied extensively due to its

    important applications in free-space optical communications,

    optical imaging, active laser radar systems and remote sensing

    [17]. Recently, more and more attention is being paid to the

    vortex beams. Such vortex beams (so called because the phase

    circulates about the central null, much like a fluid circulating a

    drain) have been investigated for various applications ranging

    from being used as information carriers in laser communications

    [8] to being employed as optical tweezers and spanners [9].Much works have been done to study the propagation of vortex

    beams through nonlinear media, as well as free space propaga-

    tion [1013]. From a practical point of view, the Laguerre

    Gaussian (LG) beam is the most interesting. It should be noted

    that certain LG beams, whose transverse field distribution fea-

    tures an azimuthal angular dependence of the form expil,

    where l is the topological charge (also azimuthal index), carry

    orbital angular momentum (OAM) and are examples of the so-

    called optical vortices [14]. Apart from their fundamental impor-

    tance, LG beams have found applications ranging from optical

    manipulation of BoseEinstein condensates to optical imaging

    [1519]. Propagation dynamics of optical vortices in LG beams had

    been investigated [20]. Greg and Dipankar [21,22] studied the

    principle of topological charge conservation and the trajectory of

    an optical vortex propagating in atmospheric turbulence. Chen

    explored the intensity distribution and the degree of polarization

    of the stochastic electromagnetic LG vortex beam propagating in

    free space [23]. Zhong et al. [24] investigated the polarization

    properties of partially coherent LG (PCLG) beams in turbulent

    atmosphere. Chen and Li [25] have examined the scintillation index

    of LG beams propagating in simulated atmospheric turbulence. A

    partially polarized partially coherent vector beam can be locally

    represented as a sum of completely polarized beam and a com-

    pletely unpolarized beam [26]. In this paper, our aim is to explore

    the intensity (including the completely polarized and unpolarized

    parts) and the polarization properties of a PCLG vector beam with

    optical vortices in turbulent atmosphere. Firstly, applying the

    extended HuygensFresnel principle, the analytical expressions for

    the cross-spectral density matrix of the PCLG vector beams with

    vortices have been derived in turbulent atmosphere at an arbitrary

    Contents lists available at SciVerse ScienceDirect

    journal homepage: www.elsevier.com/locate/optlastec

    Optics & Laser Technology

    0030-3992/$- see front matter & 2013 Published by Elsevier Ltd.

    http://dx.doi.org/10.1016/j.optlastec.2013.06.026

    n Corresponding author at: Department of Physics, Nanjing University of Science

    and Technology, Nanjing 210094, PR China. Tel.: +86 25 84303071.

    E-mail address: [email protected] (H. Wang).

    Optics & Laser Technology 56 (2014) 16

    http://www.sciencedirect.com/science/journal/00303992http://www.elsevier.com/locate/optlastechttp://dx.doi.org/10.1016/j.optlastec.2013.06.026mailto:[email protected]://dx.doi.org/10.1016/j.optlastec.2013.06.026http://dx.doi.org/10.1016/j.optlastec.2013.06.026http://dx.doi.org/10.1016/j.optlastec.2013.06.026http://dx.doi.org/10.1016/j.optlastec.2013.06.026http://dx.doi.org/10.1016/j.optlastec.2013.06.026http://dx.doi.org/10.1016/j.optlastec.2013.06.026mailto:[email protected]://crossmark.dyndns.org/dialog/?doi=10.1016/j.optlastec.2013.06.026&domain=pdfhttp://crossmark.dyndns.org/dialog/?doi=10.1016/j.optlastec.2013.06.026&domain=pdfhttp://crossmark.dyndns.org/dialog/?doi=10.1016/j.optlastec.2013.06.026&domain=pdfhttp://dx.doi.org/10.1016/j.optlastec.2013.06.026http://dx.doi.org/10.1016/j.optlastec.2013.06.026http://dx.doi.org/10.1016/j.optlastec.2013.06.026http://www.elsevier.com/locate/optlastechttp://www.sciencedirect.com/science/journal/00303992
  • 7/27/2019 Intensity and Polarization Properties of the Partially Coherent Laguerre Gaussian Vector Beams With Vortices Propagating Through Turbulent Atmosphere 20

    2/6

    point in the receiver plane. Then, the formulas for the intensity of

    the completely polarized and unpolarized parts as well as the

    spectral degree of polarization are obtained. Finally, some numerical

    results are illustrated.

    2. Theoretical analysis

    Based on the unified theory of coherence and polarization, the

    second-order coherence and polarization properties of the beam

    can be characterized by a cross-spectral density matrix of the

    electric field, defined by the formula [27]:

    W2

    s1; s2; 0; Wxxs1; s2; 0; Wxys1; s2; 0;

    Wyxs1; s2; 0; Wyys1; s2; 0;

    " #1

    where

    Wijs1; s2; 0; En

    i s1; 0;Ejs2; 0; i;j x;y

    Exand Ey denote the components of the random electric vector,

    along two mutually orthogonal x and y directions perpendicular to

    the z-axis. s1 and s2 are the coordinates of two arbitrary points at

    the source plane. The asterisk stands for the complex conjugate.

    Angle bracket represents the average, taken over an ensemble of

    realizations of the electric field in the sense of the coherence

    theory in the space-frequency domain. is the frequency, which

    can be omitted later for brevity.

    The element of the cross-spectral density matrix of the PCLG

    vector beams with vortices at the source plane can be expressed in

    the form

    W0ij r1; r2; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

    W0i r1;W0

    j r2;q

    0ij r1r2; 2

    where W0i represents the spectral density of the component Ei of

    the electric field and 0ij is the spectral degree of correlation

    between the components Ei and Ej in the source plane. These

    quantities can be determined experimentally. The spectral degree

    of correlation satisfies the inequality j0ij j1. Assume 0ij r1r2;

    has a Gaussian profile [28,29], i.e.

    0ij r1r2 Bij expr1r2

    2=2s2gij 3

    where sgij is a positive constant characterizing the correlation

    length in the source plane.

    The elements of the cross-spectral density matrix of the PCLG

    beam with vortices can be expressed as [23,24]

    W0ij r1; r2; 1; 2; 0 AiAjBij

    2r1r2s

    2I

    lexp

    r21 r22

    s2I

    expil12expr1r22=2s2gij 4

    where sI is the beam width, l is the topological charge, and r;

    represent the modulus and the azimuth of the position vector in

    the source plane.Using the paraxial form of the generalized HuygensFuneral

    principle, the elements of the cross-spectral density matrix of the

    PCLG vector beams with vortices propagating in a turbulent

    atmosphere are given by [21,24,26]

    Wij1;2;z k

    2

    4z2

    Z20

    Z20

    Z10

    Z10

    W0ij r1; r2; 1; 2; 0

    exp ik

    2zr11

    2 ik

    2zr22

    2

    !expr1;1;z r2;2;zr1r2dr1 dr2 d1 d2

    5

    where ; represent the modulus and the azimuth of the

    position vector in the output plane. k is the wave number related

    to the wave length by k 2=, and r; stands for the random

    part of the complex phase of a spherical wave due to the

    turbulence. The angular bracket denotes averaging over the

    ensemble of turbulent media, which can be expressed as [30]

    expr1;1;z r2;2;z

    exp0:5Dr1r2;12

    expfMr1r22 r1r212 12

    2g 6

    M 2k2

    z3

    Z1

    0

    k3nd 7

    where the quantityR1

    0 k3nkdk describes the effect of turbu-

    lence, nk being the spectrum of the refractive index fluctuations

    that can be characterized by the Tatarskii model or the Kolmo-

    gorov model, where is 2=l, where l is the size of eddies. The

    quantity Mcan be represented as 0:5465C2nl1=30 k

    2zfor the Tatarskii

    spectrum and as 0:49C2n6=5k

    12=5z6=5 for the Kolmogorov spectrum,

    with C2n being the refraction index structure constant which

    describes how strong the turbulence is and l0 being the inner

    scale of turbulence.

    In this paper, the Kolmogorov spectrum and a quadratic

    approximation of the 5=3 power law for Rytov's phase structure

    function are employed, which is accepted to be valid not only for

    weak fluctuations but also for strong ones. Eq. (6) can be expressedas

    exp r1;1;z r2;2;z

    exp 1

    20r1r2

    2 r1r212 122

    h i( )8

    where 0 0:545C2nk

    2z3=5 denotes the coherence length of a

    spherical wave propagating through turbulence.

    Substituting (8) and (4) into (5), we can express the elements of

    cross-spectral density matrix for a PCELG beams with vortices in

    the receiver plane as follows:

    Wij1;2;1;2;z AiAjBijk

    2

    4z2

    exp 1

    2

    0

    21 22( )exp

    ik

    2z

    2122& '

    exp21220

    cos 12

    Z20

    Z20

    Z10

    Z10

    2r1r2s

    2I

    l

    exp 1

    s2I

    1

    20

    1

    2s2gij

    r21 r

    22

    ( )exp

    ik

    2zr21r

    22

    & '

    expikr11 cos 11

    z

    ikr22 cos 22

    z

    & '

    exp 1

    20r11 cos 11

    ( )exp

    1

    20r12 cos 21

    ( )

    exp1

    2

    0

    r21 cos 12( )exp 1

    2

    0

    r22 cos 22( )exp

    r1r2s

    2gij

    2r1r220

    cos 12

    ( )

    expfil12gr1r2dr1 dr2 d1 d2 9

    Using following equations [31]:

    expikr

    zcos

    !

    n 1

    n 1inJn

    kr

    z

    exp in 10

    Z20

    exp il1 r1r2s

    2gij

    2r1r220

    cos 12

    " #d1

    2expil2Ilr1r2s

    2

    gij

    2r1r22

    0 11

    H. Wang et al. / Optics & Laser Technology 56 (2014) 162

  • 7/27/2019 Intensity and Polarization Properties of the Partially Coherent Laguerre Gaussian Vector Beams With Vortices Propagating Through Turbulent Atmosphere 20

    3/6

    Z20

    expimd2 m 0

    0 m0

    (12

    Eq. (9) can be simplified as

    Wij1;2;z AiAjBijk

    2

    z2exp

    1

    2021

    22

    ( )exp

    ik

    2z21

    22

    & '

    exp

    21220 cos 12

    n 1

    n 1Z1

    0Z1

    0

    2r1r2s2I

    l

    exp 1

    s2I

    1

    20

    1

    2s2gij

    r21 r

    22

    ( )exp

    ik

    2zr21r

    22

    & '

    Jnkr11

    z

    Jn

    kr22z

    Jn

    r1120

    Jn

    r1220

    Jn

    r2120

    Jn

    r2220

    Inlr1r2s

    2gij

    2r1r220

    expin12r1r2dr1 dr2 d1 d2

    13

    where Jn denotes the Bessel function of order n and Inl denotes

    the modified Bessel function of order n l.

    In Eq. (5), if we set 1 2 , the elements of the cross-spectral density matrix in the output plane can be expressed as

    Wij;z AiAjBijk

    2

    z2

    n 1

    n 1

    Z10

    Z10

    2r1r2s

    2I

    lexp

    1

    s2I

    1

    20

    1

    2s2gij

    r21 r

    22

    ( )

    exp ik

    2zr21r

    22

    & 'Jn

    kr1

    z

    Jn

    kr2

    z

    Inl

    r1r2s

    2gij

    2r1r220

    r1r2dr1 dr2

    14

    The average intensity of the PCLG vortex beam at the output

    plane is expressed as

    I;z Tr2W;z Wxx;z Wyy;z 15

    where Tr denotes the trace of the matrix.

    Assume that the x- and y-components of the electric field are

    uncorrelated at each source point (i.e., jBxyj jByxj 0). According

    to Eq. (4), we can obtain the off-diagonal elements of the cross-

    spectral density matrix in the source plane that tend to zero. That

    is to say, W0xy r1; r2; 0 W0

    yx r1; r2; 0 0ij.

    It was shown in [32] that a completely polarized partially

    coherent beam is depolarized (i.e., becomes partially polarized)

    after propagation, thus it is important to analyze its state of

    polarization. The cross-spectral density matrix of a partially

    polarized partially coherent beam at point can be locally

    represented as a sum of completely polarized beam and a

    completely unpolarized beam [26]

    2W;;z 2Wu;;z 2Wp;;z 16

    where

    W2 u

    ;;z A;;z 0

    0 A;;z

    17

    W2 p

    ;;z B;;z D;;z

    Dn;;z C;;z

    18

    with

    A;;z 12

    "Wxx;;z Wyy;;z

    ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiWxx;;zWyy;;z

    2 4jWxy;;zj2

    q #

    19 1

    B;;z 12

    "Wxx;;zWyy;;z

    ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

    Wxx;;zWyy;;z2

    4jWxy;;zj2q #

    19 2

    C;;z 12

    "Wyy;;zWxx;;z

    ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiWxx;;zWyy;;z

    2 4jWxy;;zj2

    q #19 3

    D;;z Wxy;;z 19 4

    The degree of polarization of the PCLG vortex beams with

    vortices at point is defined by the expression [28]

    P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi14Det2W;;z

    Tr2W;;z2s 20where Det stands for the determinant of the matrix.

    Substituting (15) into (20) with 1 2 and considering

    jBxyj jByxj 0, we can obtain the polarization degree across the

    output-plane which is given by

    P;z

    ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1

    4Wxx;;zWyy;;z

    Wxx;;z Wyy;;z2

    s21

    Applying the above derived formulas, the polarization as well

    as the intensity of the completely polarized part and the

    Fig.1. The influence of the strength of atmospheric turbulence on the variation of the on-axis intensity of the completely polarized part and the completely unpolarized part

    of the PCLG vector beams with vortices propagating through turbulent atmosphere. (a) C2n 0 and (b) C

    2n 10

    13

    m2=3 .

    H. Wang et al. / Optics & Laser Technology 56 (2014) 16 3

  • 7/27/2019 Intensity and Polarization Properties of the Partially Coherent Laguerre Gaussian Vector Beams With Vortices Propagating Through Turbulent Atmosphere 20

    4/6

    completely unpolarized part of the PCLG vector beams with

    vortices propagating through turbulent atmosphere can be

    directly investigated.

    3. Numerical calculation and analysis

    Now we study the numerical results of the intensity and the

    spectral degree of polarization for the PCLG vector beams with

    vortices propagating through turbulent atmosphere by using the

    formulas derived in the above section. The parameters of numer-

    ical simulation about the PCLG vector beam with vortices in thesource plane are: Ax Ay 2; Bxx Byy 1; 632:8 nm;sI 3 mm; l 2; sgxx 3 mm, and sgyy 6 mm. The refraction

    index structure constant is C2n 1013 m2=3.

    Figs. 13 are intended to show the on-axis intensity distribu-

    tion of the PCLG vector beams with vortices propagating through

    turbulent atmosphere, its completely polarized and unpolarized

    parts. One finds from Figs. 13 that the on-axis intensity of the

    completely polarized and unpolarized parts depends on the

    propagation condition and the parameters of the source beam.

    Both the completely polarized part and the completely unpolar-

    ized part have oscillation in the near field of the source plane.

    With the increasing of the propagation distance, the on-axis

    intensity of the completely polarized and unpolarized parts

    increases first. Due to the scattering and beam wandering in the

    atmospheric turbulence, the on-axis intensity of the completely

    polarized and unpolarized parts decreases with the increasing of

    the propagation distance. Fig. 1 indicates that the oscillation in

    near field is stronger and the peak value is higher when the PCLG

    vector beams are propagating in turbulent atmosphere than in free

    space. Generally speaking, the intensity of the completely unpo-

    larized part is larger than that of the completely polarized part.

    Comparing with Fig. 2(a) and (b), one can find that the on-axis

    intensity of the PCLG vector beam with l 0 is higher than that of

    the PCLG vector beam with l 4, because there is no dark hollow

    in the center of the source beam for l 0. Fig. 3 shows that

    variation in the beam width of the source beam can change theintensity distribution of the completely polarized and unpolarized

    parts obviously. Although in the near field, the completely unpo-

    larized part is in dominated position, the intensity of the com-

    pletely polarized part can exceed that of the completely

    unpolarized part with the increasing of the propagation distance

    for the PCLG vector beams with higher beam width in the

    source plane.

    Fig. 4 indicates that the spectral degree of polarization of the

    PCLG vector beams with vortices is closely related with the

    strength of atmospheric turbulence, the topological charge as well

    as the correlation property in the source beam. As shown as in

    Fig. 4, the on-axis spectral degree of polarization has oscillation

    property in the near field that is similar to its intensity distribu-

    tion. With the increase of the propagation distance, the spectral

    Fig. 2. The influence of the strength of the topological charge on the variation of the on-axis intensity of the completely polarized part and the completely unpolarized part

    of the PCLG vector beams with vortices propagating through turbulent atmosphere. (a) l 0 and (b) l 4.

    Fig. 3. The infl

    uence of the strength of the coherence of the source beam on the variation of the on-axis intensity of the completely polarized part and the completelyunpolarized part of the PCLG vector beams with vortices propagating through turbulent atmosphere. (a) sI 2 mm and (b) sI 4 mm.

    H. Wang et al. / Optics & Laser Technology 56 (2014) 164

  • 7/27/2019 Intensity and Polarization Properties of the Partially Coherent Laguerre Gaussian Vector Beams With Vortices Propagating Through Turbulent Atmosphere 20

    5/6

    degree of polarization increases firstly and then decreases exceptfor the PCLG vector beams with l 0. When the propagation

    distance is sufficiently long, the spectral degree of polarization

    tends to a certain constant value. From Fig. 4(a), one can see that

    the spectral degree of polarization of PCLG vector beams propa-

    gating in free space tends to a higher constant value than that of

    PCLG vector beams propagating in turbulent atmosphere. The

    stronger the strength of atmospheric turbulence, the lower the

    constant value due to the depolarization property of atmospheric

    turbulence. Fig. 4(b) indicates that the spectral degree of polariza-

    tion of PCLG vector beams with l 0 increases with the increasing

    of propagation distance, and then tends to a constant value that is

    higher than that of PCLG vector beams with higher topological

    charge l. Fig. 4(c) shows that the spectral degree of polarization of

    the PCLG vector beams with wider beam width is lower than thatof the vector beam with narrower beam width property. From

    Fig. 4(b) and (c), one can conclude that the distribution of the

    spectral degree of polarization of the PCLG vector beams during

    the propagation can be controlled by modulating the topological

    charge and the beam width in the source beam. It is obviously

    shown in Fig. 4 that PCLG vector beams with lower topological

    charge and poor coherence can reduce the effect of the atmo-

    spheric turbulence on the polarization properties.

    4. Conclusion

    In this paper, based on the extended HuygensFresnel princi-

    ple, the explicit expressions for the cross-spectral density matrix

    function of PCLG vector beams with vortices propagating throughatmospheric turbulence have been derived and used to study their

    propagation properties and evolution behavior of completely

    polarized and unpolarized parts in the PCLG vector beams. It is

    found from numerical results that the on-axis intensity of the

    completely polarized and unpolarized parts of the PCLG vector

    beams with vortices has oscillatory behavior in the near field of

    the source plane. When the PCLG vector beams with vortices are

    propagating in turbulent atmosphere, the on-axis intensity of the

    completely polarized and unpolarized parts increases firstly and

    then decreases with the increasing of the propagation distance,

    which is closely related with the strength of atmospheric turbu-

    lence, the topological charge and the beam width of the source

    beam. The investigation also shows that the spectral degree of

    polarization of the PCLG vector beams acquires a particular valueat a certain distance in turbulent atmosphere, which is different

    from the value in the source plane. Furthermore, this value is

    dependent on the strength of atmospheric turbulence, the topo-

    logical charge and the beam width in the source plane. The results

    obtained in this paper would be useful for studying the propaga-

    tion dynamics of stochastic electromagnetic vortex beams in

    atmospheric turbulence

    Acknowledgments

    This project was supported by the National Natural Science

    Foundation of China (11204135), Research Fund for the Doctoral

    Program of Higher Education of China (20113219120039), and

    Fig. 4. The spectral degree of polarization of the PCLG vector beams with vortices propagating through turbulent atmosphere (a) with different C2n; (b) with different

    topological charge l; and (c) with different sI.

    H. Wang et al. / Optics & Laser Technology 56 (2014) 16 5

  • 7/27/2019 Intensity and Polarization Properties of the Partially Coherent Laguerre Gaussian Vector Beams With Vortices Propagating Through Turbulent Atmosphere 20

    6/6

    Open Research Fund of Key Laboratory of Atmospheric Composi-

    tion and Optical Radiation, Chinese Academy of Sciences, China.

    The author is indebted to the reviewers for valuable comments.

    References

    [1] Roxworthy BJ, Toussaint Jr. KC. Optical trapping with pi-phase cylindricalvector beams. New Journal of Physics 2010;12(7):073012.

    [2] Gu Y, Korotkova O, Gbur G. Scintillation of nonuniformly polarized beams inatmospheric turbulence. Optics Letters 2009;34(15):22613.

    [3] Biss DP, Youngworth KS, Brown TG. Dark-field imaging with cylindrical-vectorbeams. Applied Optics 2006;45(3):4709.

    [4] Zheng R, Gu C, Wang A, Xu L, Ming H. An all-fiber laser generating cylindricalvector beam. Optics Express 2010;18(10):108348.

    [5] Moh KJ, Yuan XC, Bu J, Low DKY, Burge RE. Direct noninterference cylindricalvector beam generation applied in the femtosecond regime. Applied PhysicsLetters 2006;89(25):251114.

    [6] Wang XL, Ding J, Ni WJ, Guo CS, Wang HT. Generation of arbitrary vectorbeams with a spatial light modulator and a common path interferometricarrangement. Optics Letters 2007;32(24):354951.

    [7] Cheng W, Haus JW, Zhan QW. Propagation of vector vortex beams through aturbulent atmosphere. Optics Express 2009;17(20):1782936.

    [8] Paterson C. Atmospheric turbulence and orbital angular momentum of singlephotons for optical communication. Physical Review Letters 2005;94:153901.

    [9] Simpson NB, Dholakia K, Allen L, Padgett MJ. Mechanical equivalence of spinand orbital angular momentum of light: an optical spanner. Optics Letters1997;22:524.

    [10] Basistiy IV, Yu. V, Bazhenov MS, Soskin, Vas-netsov MV. Optics of light beamswith screw dislocations. Optics Communications 1993;103:4228.

    [11] Roux FS. Dynamical behaviors of optical vortices. Journal of the Optical Societyof America B 1995;12:121521.

    [12] Rozas D, Sacks ZS, Swartzlander Jr GA. Experimental observation of fluidlikemotion of optical vortices,. Physical Review Letters 1997;79:3399402.

    [13] Molina-Terriza G, Wright EM, Torner L. Propagation and control of noncano-nical optical vortices. Optics Letters 2001;26:1635.

    [14] Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angularmomentum of light and the transformation of LaguerreGaussian laser modes.Physical Review A 1992;45:81859.

    [15] Grier DG. A revolution in optical manipulation. Nature 2003;424:810.

    [16] MacDonald MP, Paterson L, Volke-Sepulveda K, Arlt J, Sibbett W, Dholakia K.Creation and manipulation of three-dimensional optically trapped structures.Science 2002;296:11013.

    [17] Paterson L, MacDonald MP, Arlt J, Sibbett W, Bryant PE, Dholakia K. Controlledrotation of optically trapped microscopic particles. Science 2001;292:9124.

    [18] Kapale KT, Dowling JP. Vortex phase qubit: generating arbitrary counter-rotating superposition in BoseEinstein condensates via optical angularmomentum beams. Physical Review Letters 2005;95:173601.

    [19] Swartzlander GA. Peering into darkness with a vortex spatial filter. OpticsLetters 2001;26:4979.

    [20] Flossmann F, Schwarz UT, Maier Max. Propagation dynamics of optical

    vortices in LagurreGaussian beams. Optics Communications 2005;250:21830.

    [21] Gbur Greg, Tyson Robert K. Vortex beam propagation through atmosphericturbulence and topological charge conservation. Journal of the Optical Societyof America A 2008;25(1):22530.

    [22] Dipankar A, Marchiano R, Sagaut P. Trajectory of an optical vortex in atmo-spheric turbulence. Physical Review E 2009;80:046609 .

    [23] Chen Ziyang, Pu Jixiong. Stochastic electromagnetic vortex beam and itspropagation. Physics Letters A 2008;372:273440.

    [24] Zhong Y, Cui Z, Shi J, Qu J. Polarization properties of partially coherentelectromagnetic elegant LaguerreGaussian beams in turbulent atmosphere.Applied Physics B 2011;102:93744.

    [25] Chen Z, Li C, Ding P, Pu J, Zhao D. Experimental investigation on thescintillation index of vortex beams propagating in simulated atmosphericturbulence. Applied Physics B 2012;107:46972.

    [26] Korotkova O, Wolf E. Changes in the state of polarization of a randomelectromagnetic beam on propagation. Optics Communications 2005;246:3543.

    [27] Wolf E. Unifi

    ed theory of coherence and polarization of random electromag-netic beams. Physics Letters A 2003;312(56):2637.[28] Wolf E. Introduction to the Theory of Coherence and Polarization of light,

    Cambridge, University Press, Cambridge, 2007.[29] Gori F, Santarsiero M, Borghi R, Ramrez-Snchez V. Realizability condition for

    electromagnetic Schell-model sources. Journal of the Optical Society ofAmerica A 2008;25(5):101621.

    [30] Gbur G, Wolf E. Spreading of partially coherent beams in random media.Journal of the Optical Society of America A 2002;19:15928.

    [31] Gradshteyn IS, Ryzhik IM. Table of Integrals, Series, and Products. New York:Academic; 1980.

    [32] Dong Y, Cai Y, Zhao C, Yao M. Statistics properties of a cylindrical vectorpartially coherent beam. Optics Express 2011;19:597992.

    H. Wang et al. / Optics & Laser Technology 56 (2014) 166

    http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref1http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref1http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref1http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref2http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref2http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref2http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref2http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref2http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref3http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref3http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref3http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref3http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref3http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref3http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref3http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref4http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref4http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref4http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref4http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref4http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref4http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref4http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref5http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref5http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref5http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref5http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref6http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref6http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref6http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref6http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref6http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref6http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref7http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref7http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref7http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref7http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref7http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref8http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref8http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref8http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref9http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref9http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref9http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref9http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref9http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref9http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref10http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref10http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref10http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref10http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref10http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref11http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref11http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref11http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref11http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref11http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref12http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref12http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref12http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref12http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref12http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref12http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref12http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref13http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref13http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref13http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref13http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref13http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref14http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref14http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref14http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref14http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref14http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref14http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref14http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref14http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref15http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref15http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref16http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref16http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref16http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref16http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref16http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref16http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref17http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref17http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref17http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref17http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref17http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref18http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref18http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref18http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref18http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref18http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref18http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref19http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref19http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref19http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref19http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref19http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref19http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref19http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref20http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref20http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref20http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref20http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref20http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref20http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref20http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref20http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref21http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref21http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref21http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref21http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref21http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref21http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref22http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref22http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref22http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref23http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref23http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref23http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref23http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref23http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref24http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref24http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref24http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref24http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref24http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref24http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref24http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref24http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref32http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref32http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref32http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref32http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref32http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref32http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref25http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref25http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref25http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref25http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref25http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref25http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref26http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref26http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref26http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref26http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref26http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref26http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref26http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref26http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref26http://refhub.elsevier.com/S0030-3992(13)00242-9/othref0010http://refhub.elsevier.com/S0030-3992(13)00242-9/othref0010http://refhub.elsevier.com/S0030-3992(13)00242-9/othref0010http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref28http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref28http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref28http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref28http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref28http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref28http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref29http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref29http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref29http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref29http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref29http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref30http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref30http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref30http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref31http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref31http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref31http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref31http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref31http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref31http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref31http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref30http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref30http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref29http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref29http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref28http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref28http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref28http://refhub.elsevier.com/S0030-3992(13)00242-9/othref0010http://refhub.elsevier.com/S0030-3992(13)00242-9/othref0010http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref26http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref26http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref25http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref25http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref25http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref32http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref32http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref32http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref24http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref24http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref24http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref23http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref23http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref22http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref22http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref21http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref21http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref21http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref20http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref20http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref20http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref19http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref19http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref18http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref18http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref18http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref17http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref17http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref16http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref16http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref16http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref15http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref14http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref14http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref14http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref13http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref13http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref12http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref12http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref11http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref11http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref10http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref10http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref9http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref9http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref9http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref8http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref8http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref7http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref7http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref6http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref6http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref6http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref5http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref5http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref5http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref4http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref4http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref3http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref3http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref2http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref2http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref1http://refhub.elsevier.com/S0030-3992(13)00242-9/sbref1