16
www.1000projects.com INDEX Page No. 1) Abstract 1 2) Introduction 2 3) Conventional Method 2 4) Drawbacks of Conventional Method 5 5) Implementation of Fuzzy Logic 6 6) Advantages of Intelligent Cooling System 8 7) Conclusion 9 8) References 10 www.btechstudent.com

Intelligent Cooling System

Embed Size (px)

Citation preview

Page 1: Intelligent Cooling System

www.1000projects.com

INDEX

Page No.

1) Abstract 1

2) Introduction 2

3) Conventional Method 2

4) Drawbacks of Conventional Method 5

5) Implementation of Fuzzy Logic 6

6) Advantages of Intelligent Cooling System 8

7) Conclusion 9

8) References 10

www.btechstudent.com

Page 2: Intelligent Cooling System

www.1000projects.com

ABSTRACT

In the present paper, efforts have been made to highlight the concept of an

“INTELLIGENT COOLING SYSTEM”. The basic principle behind this is to control

the flow rate of coolant by regulating the valve by implementing FUZZY LOGIC.

In conventional process the flow rate is constant over the entire engine jacket.

Which induces thermal stresses & reduction in efficiency.

The “INTELLIGENT COOLING SYSTEM” i.e implementation of fuzzy logic

will overcome the above stated drawbacks in any crisp situation. The flow rate of coolant

will be controlled by control unit & intelligent sensors.

This is a concept and an innovative idea not been implemented yet.

www.btechstudent.com

Page 3: Intelligent Cooling System

www.1000projects.com

INTRODUCTION

The name “INTELLIGENT COOLING SYSTEM” represents the improved

function of cooling systems. We have given this name because in this system the sensor

will sense the cylinder temperature as similar as thermostat and will control the opening

and closing of water passage in the piston cylinder arrangement. The mass flow rate of

water will be controlled by a valve arrangement.

For regulating flow rate, a separate programming can be done. In this

programming, the piston will be considered as an object and a relation of “temperature =

water” can be used for the above purpose.

Our system will work on the same principle of an “INTELLIGENT

CARBURETOR” In which its aim is to supply the correct O/P i.e. air fuel mixture by

sensing the I/P i.e. operating conditions.

But, the system which attracted the most is the “IDLE SPEED CONTROLLER”

which is used to control the idle speed of SI engine.

CONVENTIONAL COOLING SYSTEM :-

The following are the two main characteristics desired of an efficient cooling

system

1) It should be capable of removing about 30% of heat generated in the combustion

chamber while maintaining the optimum temperature of the engine under all

operating conditions of the engines.

2) It should remove heat at a faster rate when engine is hot. However, during

starting of the engine cooling should be minimum, so that the working parts of

the engine reach their operating temperature in a short time.

www.btechstudent.com

Page 4: Intelligent Cooling System

www.1000projects.com

a) Liquid Cooled Systems :-

In this system mainly water is used and made to circulate through the jacket

provided around the cylinder, cylinder-head, valve ports and seats where it extracts

most of the heat. The diagrammatic sketch of water circulating passage is shown in

Fig.

Fig. 1 Cooling Water Passage.

b) Variation of gas temperature :-

There is an appreciable variation in the temperature of the gases inside the engine

cylinder during different processes of the cycle. Temperature inside the engine cylinder is

almost the lowest at the end of suction stroke. During combustion there is a rapid rise in

temperature to a peak value which again drops during the expansion. This variation of

gas temperature is illustrated in fig (2). for various processes in the cycle.

www.btechstudent.com

Page 5: Intelligent Cooling System

www.1000projects.com

Fig. 2 Gas Temperature Variation during a Cycle.

The cooling system comprises of the following parts namely:

Radiator,

Thermostat,

Water pump &

Piston-cylinder assembly.Fig 3

www.btechstudent.com

Page 6: Intelligent Cooling System

www.1000projects.com

DRAWBACKS OF CONVENTIONAL COOLING SYSTEMS

EFFECT OF OVERHEATING :

Evaporation of lubricating oil that lubricates the piston and cylinder wall. This will

result in metal to metal contact of the piston and the cylinder wall leading to piston

scuffing and piston seizure.

Setting up of the thermal stresses in the cylinder, cylinder head and piston. This may

lead to cracking of them.

Burning of the piston crown.

Sticking of piston rings in the ring grooves, due to carbonization of the oil. Ring

sticking will result in inefficient sealing of the cylinder increased blow by of gases

and loss of thermal efficiency.

Reduction in volumetric efficiency i.e. reduced weight of charge retained in the

cylinder.

EFFECT OF EXCESSIVE COOLING :

Reduction in thermal efficiency

Increased corrosion of engine parts.

Reduced mechanical efficiency.

Improper vaporization of the fuel.

Also due to the inadequate supply of the coolant the machine parts get overheated

and this may lead to two effects:

www.btechstudent.com

DRAWBACKSOVERHEATING

EXCESSIVE COOLING

Page 7: Intelligent Cooling System

www.1000projects.com

Generation of excessive heat which results in the break down of the engine.

Evaporation of the coolant (water) may results in SCALE formation.

Effect of high temperature on lubricating oil consumption :

High speed produces high temperature this in turn, lowers the viscosity of the oil.

Now it can more readily work past the piston rings into the combustion chamber, where it

is burnt. Due to more temperature more oil gets into the combustion chamber, where it

burns and fouls spark-plugs, valves, rings and pistons. Carbon formation worsens the

condition since it further reduces the effectiveness of the oil rings. The burning of oil in

the combustion chamber usually produces blue smoke from the tail pipe.

It should be remembered that abstraction of heat from the working medium by

way of cooling the engine components is a direct thermodynamic loss.

IMPLEMENTATION OF FUZZY LOGIC

Fig. 4 Principle of Engine idle speed control.

www.btechstudent.com

Page 8: Intelligent Cooling System

www.1000projects.com

To control the idle speed of spark ignition engine, there are two possibilities. The

first one is spark advancer and the second is volumetric control of air.

In spark advancer if revolution decreases then an advance spark increases the

torque and vice versa.

In second method if there is reduction in number of revolution, the auxiliary air

regulator increases the by-pass cross-section which increases the air flow and vice versa.

FUZZY IN COOLING SYSTEM :

Fig. 5 Basic Principle

1) Controlling valve 2) Sensors 3) Coolant Outlet 4) Coolant Inlet 5) Cylinders

6) Intermediate Jacket 7) Outer Jacket

Consider the engine jacket as shown in figure 5 above which shows the sensors,

valve, cylinder & an intermediate jacket, in which sensors and valve are connected to

control unit.

This control unit will not work unless the temperature of the engine reaches to 70 0

C. When it reaches to 700C or beyond it the flow will start. It begins with maximum at

middle two cylinder and less at first and last cylinders. This change in flow rate will

minimize the temperature difference between the middle and the end cylinders. Due to

www.btechstudent.com

Page 9: Intelligent Cooling System

www.1000projects.com

this the thermal stresses get reduce and the optimum temperature will be maintained wear

will not take place.

If the temperature of the engine cylinders increases, the sensor will sense the

temperature and the signal is given to the control unit and it controls the valve opening

resulting in increase in the flow rate. Similarly when the engine retards the temperature of

the cylinder decreases which will be sensed by the sensor and will operate the valve.

ADVANTAGES OF INTELLIGENT COOLING SYSTEM

1) It will try to maintain the cylinder temperature within the certain limit so that

lubricating oil should not evaporate and hence will prevent metal to metal contact.

2) It will help to reduce the thermal stresses and hence cracking of piston cylinder.

3) Thermal efficiency will improve.

4) It will prevent the carbonization of oil since dealing with the optimum

temperature.

5) It will prevent the corrosion of engine parts.

6) Mechanical efficiency will improve.

7) Proper vaporization of fuel will take place.

8) Excessive cooling results in increased viscosity of lubricant oil and hence more

friction and will consume more fuel to overcome the friction and hence results in

decrease thermal efficiency. So, our system will prevent the above factors.

9) During starting, the engine takes some time to reach it's operating temperature and

hence it requires less or no coolant to be circulated around if so that it can reach

operating temperature easily.

10) Although initial cost will be more but running cost will be less.

11) Less maintenance will require.

www.btechstudent.com

Page 10: Intelligent Cooling System

www.1000projects.com

CONCLUSION

We have proposed an approach to implement fuzzy logic in an "Intelligent

Cooling System". Possible implementation of the system and an approach is discussed

along with its possible advantages. The use of such system will solve the problems of

technology acceptance in India.

Scope for future work would concentrate on type of sensor's, valve opening

mechanisms and different coolants.

www.btechstudent.com

Page 11: Intelligent Cooling System

www.1000projects.com

REFERENCES

1) Ramalingam K. K., Automobile Engineering,

Published by : Scitech Publications (India) Pvt. Ltd.

Page No. 156, 161, 167.

2) Narang G. B. S., Elements of Automobile Engineering, Second Edition,

Published by : Khanna Publishers.

3) William H. Crouse, Donald L. Anglin, Automotive Mechanics, Ninth Edition,

Published by : Tata McGraw-Hill

Page No. 213, 224, 237

4) Stamatios V. Kartalopoulos, Understanding Fuzzy Logic, Second Edition,

Published by : Asoke K. Ghosh, Prentice-Hall

Page No. 121, 124, 131.

5) Mohammad Jamshidi, Andre Titli, Lofti Zadem & Serge Boverie, Application of

Fuzzy Logic,

Published by : Prentice Hall PTR Publication

Page No. 153, 1 154, 155

6) Ganesan V. I., Internal Combustion Engines, Second Edition,

Published by : Tata McGraw - Hill

Page No. 469, 479.

www.btechstudent.com

Page 12: Intelligent Cooling System

www.1000projects.com

www.btechstudent.com