31
EUUSAsia Workshop on Hybrid Testing, Oct 56, 2015 Integration algorithms for hybrid simulation of structural response through collapse Gilberto Mosqueda Associate Professor Dept. of Structural Engineering University of California, San Diego

Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

EU‐US‐Asia Workshop on Hybrid Testing, Oct 5‐6, 2015

Integration algorithms for hybrid simulation of structural response 

through collapse

Gilberto MosquedaAssociate Professor

Dept. of Structural EngineeringUniversity of California, San Diego

Page 2: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

NHERI@UC San Diego LHPOST

12.2 m

Performance Characteristics in Current 1‐DOF Configuration

Designed as a 6‐DOF shake table, but built as a 1‐DOF system to accommodate funding available

Stroke ±0.75m

Platen Size 40 ft × 25 ft  (12.2 m × 7.6 m)

Peak Velocity 1.8 m/sec

Peak Acceleration 4.7g (bare table condition); 1.2g (4.0MN/400 tons rigid payload)

Frequency Bandwidth 0‐33 Hz

Horizontal Actuators Force Capacity 6.8 MN (680 tons)

Vertical Payload Capacity 20 MN (2,000 tons)

Overturning Moment Capacity 50 MN‐m (5,000 ton‐m) 2

Page 3: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

REAL‐TIME HYBRID SHAKE TABLE TESTING

Basic hardware and software in place for real‐time hybrid shake‐table testing:  Multi‐channel MTS FlexTest controller SCRAMNet ring for real‐time communication and synchronization of data flow 

between shake‐table controller, FlexTest controller, and real‐time target PC running the Matlab/SIMULINK Real‐time Workshop and xPC Target software

Easy integration of OpenSees/OpenFresco open‐source software framework 50‐ton dynamic actuator Portable hydraulic power system

3

Page 4: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

Overview of Hybrid Testing to Collapse

• Experimental simulation of framed structures to collapse• Previous shake table tests• Description of structural models

• Numerical modeling• Substructuring techniques

• Challenges in hybrid simulation to collapse• Use of complex numerical models• Stability issues

• Comparison of hybrid and shake table tests• Validation

• Large scale application of hybrid simulation for structural performance assessment

Page 5: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

Full scale four story steel moment resisting frame tested to collapse at E‐Defense Shake Table,  Sept. 2007

6m10m

14.375m

3.5m

3.5m

3.5m

3.875m

XY

Z

5

Shake table test to collapse of moment frame

Page 6: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

• 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the Northridge 1994 Canoga Park station

• Captures response range from linear elastic to collapse

• Frame has replaceable fuse type elements for repeated testing

• Provides baseline data for validation of hybrid simulation to reproduce collapse – improve acceptance of test method

NEES Project on collapse assessment using shake table testing (Lignos , Krawinkler and Whittaker 2011)

Aluminum Frame Rigid Links Mass Simulator

Shake table test to collapse of moment frame

Page 7: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

• Loading sequence for shake table tests – Canoga Park Record• Same loading sequence used in hybrid simulations

Shake table test to collapse of moment frame

Intensity Name Seismic Hazard Level

40% SLE Service Level EQ. Level

100% DBE Design Basis EQ. Level

150% MCE Maximum Considered EQ. Level

190% CLE Collapse Level EQ.

220% CLEF Final Collapse Level EQ.

Page 8: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

Numerical model of moment frame

8

OpenSeesCalibrated Numerical

Model

Page 9: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

Improved Substructuring Techniques

• Substructuring Technique with Overlapping Domain using force feedback at top of first story columns

• Define New Experimental Setup Class in OpenFresco

Page 10: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

• Substructuring Technique with Overlapping Domain• Finite Element Coupling Simulation

Model 00Model 11 Model 21

Master(Solves Equation of Motion)

Slave (FE Software) OpenFresco

u

F

Master(Solves Equation of Motion)

Slave (FE Software)

OpenFrescouF

Numerical Verification

Page 11: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

0 0.1 0.2 0.3-10

-5

0

5

10

15

1st Story Drift

1st S

tory

She

ar

0 0.1 0.2 0.3-10

-5

0

5

10

15

2nd Story Drift

2nd

Stor

y Sh

ear

0 0.05 0.1 0.15-10

-5

0

5

10

15

3rd Story Drift

3rd

Stor

y Sh

ear

0 0.02 0.04-10

-5

0

5

10

15

4th Story Drift

4th

Stor

y Sh

ear

b) CM

d) BEE

-0.1 0 0.1 0.2 0.3 0.4-40

-30

-20

-10

0

10

20

30

40

Rotation (rad)

Mom

ent (

kips

.in)

Full Numerical ModelModel 11Model 21

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1-25

-20

-15

-10

-5

0

5

10

15

20

Rotation (rad)

Mom

ent (

kips

.in)

Full Numerical ModelModel 11Model 21

a) CE

c) CW

-0.1 0 0.1 0.2 0.3 0.4-40

-30

-20

-10

0

10

20

30

40

Rotation (rad)

Mom

ent (

kips

.in)

Full Numerical ModelModel 11Model 21

-0.1 0 0.1 0.2 0.3 0.4-40

-30

-20

-10

0

10

20

30

40

Rotation (rad)

Mom

ent (

kips

.in)

Full Numerical ModelModel 11Model 21

Global Response: Local Response:

0 2 4 6 80

20

40

60

80

Displacement at Collapse (in)H

eigh

t (in

)

Full Numerical ModelModel 11Model 21Model 4000

1994 Canoga Park Record

Numerical Verification

Page 12: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

• Model with 2.5 story experimental substructure• Pretest numerical simulations provided good results with integration parameters selected– Newmak Method with fixed number of iterations– t=0.0039 with 4 iterations for MCE

Issues with Numerical Instability

Page 13: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

• Response traced well until MCE record (24.9 sec)

Issues with Numerical Instability

0

5

10

15

20

25

30

Nor

m V

alue

Norm of th eUnbalanced Force Vector

Point of Instability

SLE DBE MCE CLE CLEF24 24.2 24.4 24.6 24.8 25

-2024

Time (sec)

Acc

(g)

-2

0

2

Acc

(g)

-6

-2

2

Acc

(g)

-2

0

2

Acc

(g) Experimental Test

Numerical ReferenceRoof

2nd Floor

3rd Floor

1st Floor

-0.05

0

0.05

0.1

Drif

t (ra

d)

Hybrid SimulationCoupled NumericalShake Table

DBE MCESLE

Story - 4

Page 14: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

14

• Model with 1.5 story experimental substructure

Experimental Verification

Page 15: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

10

-0.01 -0.005 0 0.005 0.01

-4

-2

0

2

4

1st Drift (rad)

SLE

- 1st

Shea

r (ki

ps)

-0.02 0 0.02 0.04-10

-5

0

5

10

1st Drift (rad)

DB

E-1s

t She

ar (k

ips)

-0.02 0 0.02 0.04 0.06-15

-10

-5

0

5

10

15

1st Drift (rad)

MC

E-1s

t She

ar (k

ips)

0 0.05 0.1 0.15-15

-10

-5

0

5

10

15

1st Drift (rad)

CLE

-1st

Shea

r (ki

ps)

0 0.1 0.2 0.3-10

-5

0

5

10

15

1st Drift (rad)C

LEF-

1st S

hear

(kip

s)

ExperimentalNumericalShake Table

-0.05

0

0.05

Drif

t - D

BE

-0.05

0

0.05

0.1

Drif

t - M

CE

0

0.10

0.20

Drif

t - C

LE

0 1 2 3 4 5 6 7 8 9 10 11

0.10

0.30

Drif

t - C

LEF

Time (s)

-0.02

0

0.02

Drif

t - S

LE

ExperimentalNumericalShake Table

-20

0

20

BS

-DB

E (k

ips)

-20

0

20

BS

-MC

E (k

ips)

-20

0

20

BS

-CLE

(kip

s)

0 1 2 3 4 5 6 7 8 9 10 11-20

0

20

Time (s)

BS

-CLE

F (k

ips)

-05

0

05

BS

-SLE

(kip

s)

ExperimentalNumericalShake Table

Northridge 1994 Canoga Park Station Record

Full Ground Motion Test Series: Results:

Experimental Verification

Page 16: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

• Integration parameters were revised especially for MCE and above, and stiff elements were relaxed– Newmark Method with fixed number of iterations– t=0.00156 with 8 iterations for MCE

Assessment of Numerical Errors

0 5 10 15 20 25 30 35 40 45

10-5

100

Time (sec)

Nor

m (P

eff)

Hybrid SimulationCoupled Numerical

0 5 10 15 20 25 30 35 40 4510

-20

10-10

100

Time (sec)

u.

P eff

Hybrid SimulationCoupled Numerical

Page 17: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

Large-scale Application

Two ½-scale subassemblies of a moment and gravity frames were tested via hybrid simulation.

4-Story Moment Frame Prototype Structure

After Lignos and Krawinkler, 2012

Page 18: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

Experimental Program

Hybrid Model #1 (Moment Frame)

Subjected to 25%, 100%, 160% & 200% Loma Prieta (LGPC)

Page 19: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

Physical Sub-Structures

Physical Sub-Structure #1 (1/2-Scale Subassembly of Moment Frame)

Composite Floor Slab

Page 20: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

Test Setup

Page 21: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

Test Setup

Page 22: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

Substructuring Technique

Substructuring Technique with Overlapping Domain and Simplified Boundary DOFs

Page 23: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

Integration Method

Similar to previous test, used Newmark Method with Fixed number of iterations

Conducted numerical studies to examine modeling approaches, time step and iterations

M1 M4 M5 M61.0E00

1.0E02

1.0E04

1.0E06

1.0E08

1.0E10

1.0E12

1.0E14

1.0E16

(t,

8)*

(t/2

, 8)*

(t/4

, 8)*

(t,

10)*

(t/2

, 10)

*(

t/4, 1

0)(

t/4, 8

)

(t,

10)

(t/2

, 10)

(t/4

, 8)

(t/4

, 12)

(t,

10)

(t/2

, 10)

(t/4

, 10)

Numerical Model

Max

imum

Nor

m o

f Unb

alan

ced

Forc

e V

ecto

r (X,Y) = time step, number of iterations * = numerical instability

Numerical Model

Geometric Transf.

Stiffness Factor “n”

Integration Method

M1 Corotational 10 INM-HSM4 Corotational 1 HHT-HSM5 P-Delta 1 HHT-HSM6 P-Delta 1 INM-HS

INM: Implicit Newmark MethodHHT: Hilber, Hughes and Taylor"n" is used to distribute the rotational elastic stiffness between the elastic beam and rotational springs (plastic-hinge elements) in a concentrated plasticity model (Ibarra and Krawinkler 2005)

Page 24: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

Substructuring Technique

Hybrid Sim. #1: SubstructuringAlgorithm

Page 25: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

Hybrid Simulation #1; HS01-160% LGPC

Page 26: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

Hybrid Simulation #1; HS01-200% LGPC

Page 27: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

Test Results: Hybrid Simulation #1

Roof Drift Ratio

Page 28: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

Test Results: Hybrid Simulation #1

Base Shear: Hybrid Model #1

Page 29: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

Test Results: Hybrid Simulation #1

East Column Plastic-Hinge Region

Page 30: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

Concluding Remarks

• Application of hybrid simulation to realistic and complex structural models to collapse  was validated– Application to small scale moment frame compared well to previous 

results from shake table test– Use of complex models presents challenges in numerical integration –

monitoring of unbalance force errors seems to be indicator of stability– Use of substructuring techniques simplified experimental setup

• Application of hybrid simulation to large‐scale structures provides insight into system level structural response– Test provided insight into response of columns, beams with composite 

slab, panel zones, and interaction between these components– Damage to each component is clearly documented after each level of 

loading

Page 31: Integration algorithms for hybrid simulation of structural ...€¦ · ISPRA Oct 5‐6, 2015 • 1:8 scale moment frame structure was subjected to 5 ground motion intensities of the

ISPRA Oct 5‐6, 2015

Acknowledgements

• Former PhD students• M. Javad Hashemi, Swinburne Institute of Technology• Maikol Del Carpio, KPFF Consulting Engineers, Los Angeles

• This work was primarily supported by the National Science Foundation (NSF) under grant CMMI-0936633 and CMMI-0748111. Any opinions, findings, and conclusion or recommendation expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation.

• Part of this work resulted from a collaborative project with Eduardo Miranda (PI), Ricardo Medina (Co-PI), Dimitrios Lignos and Helmut Krawinkler.

• NEES equipment at the University at Buffalo