INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

Embed Size (px)

Citation preview

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    1/62

    APPLICATIONOFADAPTIVEMATERIALSIN FLUTTERSUPPRESSIONOFAIRCRAFTSTRUCTURESC O N T R A C TNo.SPC-98-4082

    SubmittedbyProf.AfzalSuleman

    InstituteSuperiorTecnico DepartamentodeEngenhariaMecnica

    Av .RoviscoPais1096LisboaCodex

    PORTUGAL Tel:351-1-8417324Fax:351-1-8474045

    E-mail:suleman(a),ist.utl.pt

    F I NALR E P O R TOctober1998-October1999

    DISTRIBUTIONSTATEMENT A Approvedfo r Public ReleaseDistributionUnlimited

    2 0 0 0 0 1 1 85Q A L H YtJJEiPECTBDi. bqfoO O ^-oW L

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    2/62

    FormApprovedM BN o.0704-0188REPORTDOCUMENTATIONPAGEP u b l i creportingburden for thiscollectionof informationis estimatedtoaverage hourperresponse,includingth etimeforreviewinginstructions,searchingexistingdatas o u r c e sgatheringa n dmaintainingth edatan e e d e d andcompletinga n dreviewingthecollectionof information.endcommentsregardingthisburdenestimateo r any otheraspectof thiscollectionofinformation,includingsuggestionsforr e d u c i n gthisburdentoWashingtonHeadquartersServices,DirectorateforInformationOperationsa n dR e p o r t s 1 2 1 5JeffersonD a v i sH i g h w a y Suite1 2 0 4 Arlington,V A22202-4302,and to th e Officeof Management a n dB u d g e t PaperworkReductionProject (0704-0188), Washington,D C 2 0 5 0 3 .1 . G E N C YUS EONLY(Leaveblank) 2 .EPORTDATE

    October1999 3 .EPORT TYPEAN DDATESC O V E R E D

    FinalReport4. ITLEAN DSUBTITLE

    Applicationof AdaptiveMaterialsfo rFlutter SuppressioninAircraftStructures

    6. U T H O R ( S )Dr.AfzalSuleman

    7.ERFORMINGORGANIZATIONN A M E ( S )AN DA D D R E S S ( E S ) InstitutoSuper iorTecnico DepartmentodeEngenhar iaMecanica Av .RoviscoPais,Lisbon1096 Po rtugal

    9.PONSORING/MONITORING A G E N C YN A M E ( S )AN D A D D R E S S ( E S ) EOARD P S C80 2BO X14FP O09499-0200

    11 . S U P P L E M E N T A R YNOTES

    5.UNDINGNUMBERS F61775-98-W E125

    8.ERFORMINGORGANIZATIONR E P O R TNUMB ER N /A

    10.S P O N S O R I N G / M O N I T O R I N GA G E N C YREPORTNUMB ER S PC 98-4082

    12a.DISTRIBUTION/AVAILABILITY S T A T E M E N T Approved for publicrelease;distributionisunlimited.

    13 .A B S T R A C T(Max imum2 00wo rd s)

    12b.DISTRIBUTIONCODEA

    ThisreportresultsfromacontracttaskingInstitutoSuperiorTecnicoasfollows:h econtractorwil linvestigateth eapplicationofintegratedadaptiveactuatorsoth eproblemoffluttercontrolinaircraftstructures.h eresearchwil lfocusonelectro-mechanicalfiniteelementmodels (FEM) their application tosimulationsof flutter onairframecomponents.

    14.S U B J E C T T E R M S EOARD,StructuralDynamics ,StructuralMaterials

    17.S E C U R I T YC L A S S I F I C A T I O NOFREPORT U N C L A S S I F I E D

    18. S E C U R I T YCLASSIFICATION OF T H I SPAGEU N C L A S S I F I E D19 ,S E C U R I T YC L A S S I F I C A T I O NOF A B S T R A C TU N C L A S S I F I E D 15 . NUMBER OFPAGES 6 116 .PRICECODEN /A 2 0.LIMITATIONOFA B S T R A C TUL

    N S N7540-01-280-5500 S t a n da r dor m9 8Rev.-89) Prescribed by A N S IS t d .239-18298-102

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    3/62

    EXECUTIVESUMMAR Y

    Inecentears,igorousesearchnmaterialscienceasesultednheevelopmentofmultifunctionalmaterials.Thesemechano-electro-magneto-thermo-rheologogicalmaterialswhenembeddedinadaptivecompositesystemshavepresentedanexceptionalpromiseinth efieldsofactiveibrationuppression,hapeontrolndoisettenuation.oreformationfhin structuralelements,themostwidelyusedmultifunctionalmaterialsar epiezoelectricactuators.Piezoelectricshavehigherbandwidthsthanarepossibleinshapememoryalloys,theyar emorecompactthanmagnetostrictivedevicesan dtheyarebidirectionalbynatureunlikeelectrostrictivematerials.esignroblemsnircrafttructuresequiringctiveolutionssingdaptivecompositestosuppressvibrationan dcontrolth eshapeofthestructurear epresented. Panelflutterisaself-excitedoscillatingphenomenonan dinvolvesinteractionsbetweenelastic, inertiaan daerodynamicforces.Whenaflightvehicletravelsathighsupersonicspeeds,tm ay experiencenonlinearlimitcycleoscillationsduetoth edynamicpressurean dhighaerodynamicheatingemperatureradients.nrderonvestigateheerformanceofactivematerialsnpanelfluttersuppression,coupledelectro-thermo-mechanicalnonlinearpanelflutterequationsofmotionreerivedsingheinitelementmethod.Modelsordaptiveompositehallowshellswithmbeddediezoelectricctuatorsndensorsreeveloped.assivendctiveflutteruppressionfdaptiveompositeircraftki nanelsreresented.oundary conditions,in-planeforcesan dshellcurvatureeffectsarestudied.Theresultsrevealthatactivefluttercontrolusingpiezoelectricbendingcontrolactionsisfeasible.Experimentalsubsonicaeroelasticflutteran d buffetingsuppressionusingpiezoceramicactuatorsan dsensorstoimpartchangesindampingan daerodynamiccharacteristicstoth ewinghavealsobeennvestigated.nppreciableuffetingeductionwasbtained,speciallywhensingairfoilshapecontrol,whichcombinedwithth erootactuatorswereabletodecreaseth eaverageamplitudenuffetingrom2%o7.5%.heirfoilhapeontrolls oecreasedhe frequencyfheibrationy4% .oesolveheiminishingontroluthorityfhe piezoceramicactuatorsasairspeedisincreased,th eairfoilshapecontrolha spresented afeasiblesolutionwhereth epiezoactuatorsareusedtocreateafavourablevariationinliftcharacteristics.

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    4/62

    ACKNOWLEDGEMENTS

    TheEuropeanOfficeofAerospaceResearchan dDevelopment(EOARD)underContractNo .SPC-98-4082hasupportedth ecurrentinvestigation.Thisinvestigationwasaccompaniedan d monitoredbyDr .V.B.Venkayya,atth eAirForceResearchLaboratory,Wright-PattersonAFB an d MajorJerrySellersatEOARD.

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    5/62

    Chapter1 -AdaptiveStructuresTechnology Chapter2-NonlinearPanelFlutterChapter3 -AdaptiveCompositeModelling Chapter4-FlutterAnalysisan dControlChapter5-ExperimentalBuffetSuppression Chapter6-Conclusionsan d FurtherWork

    References

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    6/62

    CHAPTER1

    ADAPTIVESTRUCTURESTECHNOLOGYInthepastdecade,technologicaldevelopmentsinmaterialsan dcomputerscienceshaveevolved toheointwhereheirynergisticombinationav eulminatedn ewieldofmulti-disciplinaryesearchndaptation.hedvancesnaterialciencesav erovidedcomprehensivendheoreticalrameworkormplementingmultifunctionalityntomaterials,an dth edevelopmentofhighpeeddigitalomputersha spermittedth etransformationofthatframeworkintomethodologiesfo rpracticaldesignan dproduction.Theconceptiselementary:ahighlyintegratedsensorsystemprovidesdataonth estructuresenvironmenttoaprocessingan d controlsystemwhichinturnsignalsintegratedactuatorstomodifythestructuralpropertiesinan appropriatefashion.Th eultifunctionalechano-electro-magneto-thermo-rheologicalaterialsmbeddednadaptiveompositeystemsav eresentednxceptionalromisenngineeringesignproblemsrequiringsolutionsinactivevibrationsuppression,shapecontrolan dnoiseattenuation.Piezoelectricmaterials,hapememoryalloysan dmagnetostrictive materialsar eth ethreemostrecognizedtypes.hesematerialseveloptrainsrisplacementswhenxposedtolectric,thermalan dmagneticfields,respectively.

    ActuationTechnologyWhentheshapem em o r yalloyisheatedabovecriticaltemperatureth ematerialrecoversitsoriginalpre-deformedshape.Th emostcommoncommerciallyavailableshapememoryalloyisNitinol.hi slloyser yuctilendaneeformedasily.nddition,tls oasoo d strengthan dstrainrate,itiscorrosionresistant,nditistableathightemperature.Alimited numberofeffortsaimedatusingshapememoryalloysasactuatorsincompositestructureshavebeenmade.ecenttudiesncludeheworkyBoydndagoudas1]herehe yav edevelopedamicromechanicalmodelorshapememorycomposites,nd Sullivan2] ,whoha sdevelopedamodeltopredictshapememorycompositebehaviour.Othersignificanttheoretical

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    7/62

    studiesonthemodelingofsystemscontainingshapememoryalloysincludeth eworksby Liangan dRogers3] ,en gndi4]ndGraesserndCozzarelli5] .esearchnsinghapememoryalloysinactivestructuralcontrolincludeth eworksbyBazetal6] ,Ikegamietal7]an dMacleanetal[8].

    Magnetostrictivematerialsxhibit hangenimensionwhenlacednmagneticield.Terfenol-Dsheos topularommerciallyvailableagnetostrictiveaterial.ecentresearchonmagnetostrictivematerialsshowsthattheyprovidestrokessignificantlylargerthantheirelectromechanicalcounterpartshowevertheytendtobedifficulttoimplementinstructural systems9] .orknompositesncorporatingagnetostrictiveaterialsncludehe unimorphsbyHondaetal[10]an dthemicro-compositesystemsby Bian dAnjanappa[11] .Piezoelectricaterialsresentwoistinctharacteristics:hedirect'iezoelectricffectoccurshen iezoelectricaterialecomeslectricallyhargedhenubjectedomechanicalstress.Thus,thesedevicesca nbeusedtodetectstrain,movement,force,pressureor vibrationyevelopingppropriatelectricalesponses.heconverse'iezoelectricffectoccurswhenth epiezoelectricmaterialbecomestrainedwhenplacedinnelectricield.he abilitytoinducestrainca nbeusedtogenerateamovement,force,pressure,orvibrationthroughtheapplicationofasuitableelectricfield.Th emostpopularcommercialpiezoelectricmaterialsareleadzirconatetitanate(PZT)an dpolyvinylidenefluoride(PVDF).Th epotentialofapplying piezoelectricmaterialssistributedctuatorsnompositetructuresasesultedneveralsignificanttudies.ulemanndenkayya12]av eodelled impleompositelatestructurewithpiezoelectriclayersusingclassicallaminationtheory,however,th efirstreported studiesonadaptivecompositesincludeth eworksby Baileyan dHubbard[13],Crawleyan ddeLuis[14],Leibowitzan dVinson[15]an d Wangan dRogers[16].Theelectrostrictivephenomenonisanonlinearpropertywhichexistsinal ldielectricmaterials.Whennlectricieldisppliedcrossnelectrostrictivematerial,heositivendnegativeionsaredisplacedan dastrainisinducedinthatmaterial.Theresultingstrainisproportionaltothequareofth eppliedelectricieldan dindependentoftheppliedelectricield'spolarity.Sincehetrainsroportionalohequareofthelectricield,hetrainwilllwayse

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    8/62

    positive.hi ssnalogousithheagnetostrictiveehaviorescribedarlier.heos tpopularelectrostrictivematerialisleadmagnesiumniobate(PMN);however,thismaterialisstillno tidelyvailablenheommercialarket.heseaterialsenerallyfferigherelectricallynducedtrainithowerysteresisha nheiezoelectricaterials,oweverconstitutivemodelsorelectristrictorsareno tasmatureasmodelsfo rpiezoelectricsduetothenonlinearities.Hornan dhankar17]av eormulatedullyoupledconstitutivemodelor electrostrictiveceramicmaterials.Electrostrictivematerialsusedasdistributed actuatorelementsinadaptivecompositeshaveno tbeenreportedinth eliterature.Magneto-an delectro-rheologicalfluidsaremultiphasematerialsconsistingofadispersionofpolarizableparticlesinacarrieroil,an dtheyexhibitpropertiesofatypicalviscoelasticmaterial.Th etilizationofelectro-rheologicalmaterialsorvibrationampingasee nth eubjectofconsiderableesearchincethesematerialsxhibitfast,eversiblendcontrollablehangesnbehaviour.owever,npiteofadvancesnensingndontrols,undamentalheologicalresearchasappliedtovibrationdampingha slagged behind.Specifically,essentialinformationintermsofmaterialasedtructureeliabilityndontrollabilitystilleededouccessfullyimplementsuchsystems.Typically,th eperformanceofanactuatorisevaluatedintermsofth efollowingcharacteristics: displacement(theabilityoftheactuatortodisplaceanobject;orcegeneration(theamountofforcehectuatoranroduce);ysteresistheegreefeproducibilitynositioningoperations);responsetime(howquicklyanactuatorca nstarttheactuationprocess);bandwidth(rangefrequenciesnwhichhectuatoranperateffectively;emperatureangefoperation;repeatabilityan dprecisionoftheactuator;powerrequiredtodriveth eactuator;massofactuatormaterialrequiredfo ragivenisplacement;ndcost.ableresentstheeneralcharacteristicsofcommerciallyavailableactuators[18].ThepiezoelectricPZ Tprovidesthepotentialfo rth egreatestforcehandlingcapability.PZ Talsooperateswithth ehighestbandwidthofthemicroactuatorsan damongth ehighestdisplacements. ElectrostrictivePM Npossessesth elowesthysteresisofan yof th eactuatormaterials.

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    9/62

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    10/62

    SensingTechnology

    Opticalibersmakexcellenttrainensorsecausehe yremmuneolectromagnetic interference.Opticalfibersca nbebondedtoth esurfaceofastructureorembeddeddirectlyintoth etructure.Therearemanytypesofopticalibersensors.Th emoreusefulfiberopticbasedstrainsensorsusesth eintrinsicpropertiesoftheopticalfiber.Inanintrinsicfibermeasurement,on eormoreoftheopticalfieldparameters,whichincludefrequency,wavelength,phase,modeindex,olarization,ndexfefractionndttenuationoefficient,reffectedyhe environment.

    Piezoelectricsensorsen dtoperatees tnynamicituationsecausehenducedhargeimbalancesreatedytrainingheaterialissipatewithime.owuicklyhi sccursdependsnth ematerialsapacitance,esistivityndutputoading.orceransducerstilizepiezoelectricelementstoproduceanelectricaloutputwhichisproportionaltotheappliedforce.Th eorcetransducerismountedinserieswiththeorcetransmissionpathinordertoirectly exposethepiezoelectricelementtoth eforceswhicharetobemeasured.inceth epiezoelectricispreloaded,th eforcesensorca nmeasurebothtensilean dcompressiveforces.Ahighstiffness ensuresahighresonantfrequencyan ditwillhaveaminimumeffectonthestructuralintegrity. Inth ecaseofsensors,th etechnologiesconsidered fo rth eadaptivecompositesmustbeabletowithstandth eompositemanufacturerocess.mbeddingssuesmakeNitinol uestionablechoice.Iftheshapememoryalloyhad tobeelectricallyinsulatedfromtheconductivecomposite itwouldcomplicatethecompositemanufacturingprocessan dincreaseth ecostsignificantly.Th eperformanceofan ysensorca nbeevaluatedintermsofsensitivity(amountofsignalwhichasensorwillproducefo ragivenchangeinthevariable);thelengthoverwhichth emeasurementismade;bandwidth(thefrequencyrangeoverwhichth esensorremainseffective);responsetime(thepeedatwhichth eensorca nrespondtoachangeinth evariable);thetemperaturerangeoverwhichthesensorca noperate;repeatabilityan dprecisionofth eactuator;weightan dcost.Table2presentsarelativeassessmentofthesensortypesconsideredsuitablefo rembeddinginadaptivecompositesystems.

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    11/62

    Table2-SensorTechnologyAssessmentFffiEROPTICS PZT

    Sensitivity moderate moderate GageLength moderate high Bandwidth high moderate Resolution high moderate TemperatureRange high high

    Th etemperaturerangeiscriticaltoth eadaptivecompositesystembecauseitisanticipatedthattheensorsm ayembeddedndwouldhereforendergoheompositeuringrocess.Embeddingwould befeasibleinthecaseoffiberopticsensors,bu tno tasdesirablein thecaseofPZTstrainsensors.Fromanassemblyan dhandlingpointofview,straingaugesorevenPZ Tarefavoredbecauseoftheavailability ofknowledgean dexperiencewiththesetechniques.

    1 0

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    12/62

    CHAPTER2

    NONLINEARPANELFLUTTERPanelflutterisaself-excitedoscillatingphenomenonan dinvolvesinteractionsbetweenelastic,inertianderodynamicorces.tsupersonic/hypersoniceroelastichenomenonha tsoftenencounteredinth eoperationofaircraftan dmissiles.Th eairflowsonon esideof thepanel.Becauseofthelargedeflectiongeometricaltructuralnonlinearity,imitcyclescillationswilloccurbeyondth eriticalynamicressure.When lightvehicleravelsthighupersonicspeeds,itwillexperienceflutterduetoth edynamicpressurean dhightemperatureowingtotheaerodynamicheating.Th epresenceofhightemperatureloadresultsinafluttermotionatlowerdynamicpressures.naddition,thetemperaturerisem ayalsocauselargeaerodynamic-thermaldeflectionsoftheskinpanels,whichaffectflutterresponsean dca nleadtochaoticmotion.Th emodeoffailurefo rpanelflutterisfatigueduetolimit-cycleoscillations.Toincreaseth ecriticaldynamicressurerouppressheimit-cyclescillationss,herefore,nefthean yimportantfactorsthatanaircraftdesignershouldconsider.

    Althoughtherehasbeenavoluminoustheoreticalliteratureonth epanelflutterproblemoverthepast0ears,mostnalysisal lntoneofth eou rategoriesasednhetructuralnd aerodynamictheoriesemployed:

    inearstructuraltheory;quasi-steadyaerodynamictheory inearstructuraltheory;fulllinearized(inviscid,potential)aerodynamictheory onlinearstructuraltheory;quasi-steady aerodynamictheory on-linearstructuraltheory;fulllinearized(inviscid,potential)aerodynamictheory

    Ofheseourolutionethods,heineartructural/quasi-steadyerodynamicpproach comprisesthegreatbulkofth eliteratureduetoitssimplicity.Unfortunately,thisapproachdoesno taccountfo rstructuralnonlinearities,thereforeitca nonlydetermineth eflutterboundaryan d givenoinformationaboutth eflutteroscillationitself.urthermore,th eus eofthequasi-steady

    1 1

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    13/62

    aerodynamicsneglectsth ethree-dimensionality an dunsteadinessofth eflow;henceitcannotbe usedinthetransonicflightregime.Anonlinearstructural/inviscidpotentialtheoriesrepresentthestateof th eartin panelflutteranalysis.Anumberofclassicalanalyticmethodsexistfo rth einvestigationoflimitcycleoscillationsofpanelsinsupersonicflow.Ingeneral,Galerkin'smethodisusedinth espatialdomain,wherethepaneldeflectionisexpressedintermsoftw otosixormorelinearmodes;an dvarioustechniquesinthetemporalomainuc hastheumericalntegration,armonicbalance,nd perturbationmethods,tociteafew,areemployed.Al loftheanalyticalinvestigationshavebeenlimitedto2- to3-dimensionalrectangularplateswithallfouredgessimplysupportedorclamped.Th eclassicapproachesalsoindicatethatatleastsixlinearlinearnormalmodesarerequiredfo raconvergedlimit-cycleamplitude.Earlyworksnanellutterwereoncernedmainlywithonventionalsotropicanels.he researchprogressndom eoftheeferencesanbeound,orxample,ntheextbooksbyFung[19] ,Bisplinghoffan dAshley[20],an dDowell21].Olson[22],anderetal23],Yangan dSung[24],an dM ei[25],amongothers,havestudiedtheflutterofisotropicflatpanelsusingthefiniteelementmethod.Somestudieswerealsodevotedtoth eflutterofcompositepanels.Fo rexample,Pidapartian dYang[26]considered th eeffectsofboundaryconditionsan dfiberangleofpanelsonth eflutterboundaries.Rosettosan dTong[27]appliedahybridstressfiniteelementmethodan dusedlinearizedpistontheorytoanalyzeth eflutterofanisotropiccantileverplates.Theirresultsndicatehatfluttercharacteristicsretronglydependentonth eompositeiberanglean danisotropy.rinivasanan dBabu[28]tudiedthepanelflutterofcross-plylaminatedcompositesbyusingtheintegralequationsmethod.Linetal[29]usedan8dofhighprecisiontriangularinitelementoerformlutternalysisofsymmetricallyaminatedompositepanels.Theirtudiesncludedtheffectsofcompositeiberangle,rthotropicmodulusratio,flowirection,nd,erodynamicampingnhelutteroundaries.awyer30 ]se dhe Galerkinmethodtostudyboththeflutteran d bucklingproblemsofgenerallaminatedplateswithsimplyupportedoundaryonditions.yibo31 ]resentednnalyticalpproachy combininglassicallateheoryndAckeret'serodynamictripheoryotudyhelutterbehaviourofanorthotropicpanel.Leean dCho32 ]an dLiaw[33]haveinvestigated theus eof

    12

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    14/62

    compositeanelsnlutterroblems.eendee34 ]av eerformedupersoniclutteranalysisofanisotropicpanelstakingintoconsiderationth eeffectsofpanelgeometry,boundary conditions,laminationscheme,flowdirectionsan d thermaleffects.

    Extensionofth einitelementmethodsotudyonlinearupersonic/hypersonicimitycleoscillationoftwo-dimensionalisotropicpanelsweregiven by Zhouetal[35],Ra oan dRa o[36],Sarmaan dVaradan[37],an dGrayan dM ei[38];threedimensionalisotropicpanelsby M eian d Weidman[39],M eian dYang[40],an dHanan dYang[41];an dlaminatedcompositepanelsby Dixonan dM ei[42]an dLiawan d Yang[43].

    Inmostofth eclassicndfinitelementnonlinearpanellutterstudies,th eeffectsofuniform temperaturehangearetreatedbyanequivalentsystemofmechanicaloads.ewlinearpanelfluttertudiesav eealtwithtemperatureistributionsirectly.Reportedtudiesncludehe paperby Liaw[44]an dX uean dM ei[45]haveextended th efiniteelementmethodtoinvestigatetheonlinearlutteresponsesoftwo-dimensionalanelswithemperatureistribution.he thermalnvironmentanffectanelotionsyntroducinghermaln-planeorcesnd bendingmoments.Inanellutteruppressionesignroblems,heonventionalesignpproachasee noincreaseheaneltiffnessesultingndditionalweightWithhedventofmultifunctionalmaterialsnd adaptivetructuresechnology,heresbeenonsiderableffortreportednth eliteratureinvestigatingtheapplicationofadaptivematerialsan dstructurestechnologyfo rpassivean dctiveontrolofflexibletructures.elativelyewnvestigationsav eoncentratednactivepanelluttercontrol.cottan dWeishaar46 ]ndHajelaand Glowasky47 ]roposed linearanellutterontrolsingiezoelectricctuatorsndensors.houtl48]av eextendedtheus eofpiezoelectricactuatorsan dsensorstoincludeth enonlinearpanelflutter.Xue an dM ei49 ]av eecentlytudiedtheeasibilityofapplyinghapememorylloysninearpanelsuppression.

    1 3

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    15/62

    ProposedDesi g nMethodologyThistudypresentsnoptimalcontrolmethodtouppressth epanellimit-cyclescillationsatdynamicpressuresgreaterthanth ecriticalvalueusingpiezoelectricactuatorsan dsensors.Th enonlinearinitelementquationsofmotionreevelopedbasednth eonlineargeometriclargeeflectionheory. initelementmodelorndaptiveompositehallowhellsdevelopedsubjecttoaerodynamican d thermalloads.

    Tw oontroltrategiesremployedtossessth eerformanceofth eiezoelectricctuators.First,hen-planepassivectuationcapabilityofth epiezoelectricpatchessmeasuredan ditseffectnheerodynamicarametersuantified.hispproacheliesntiffeninghe structurebyapplyingin-planeloadstoth estructureduetodenticalelectricalfieldstothetopan dbottomlayersofpiezoelectricsnthetructure.heecondapproachconsistsofactivelycontrollingthestructurebyallowingthepiezoelectricpatchestoactuateinbending.Byapplying th eoptimalontroltheory,endingcontrolctionsanbeeterminedbasedontheinearizedequationsofmotion.Numericalsimulationsbasedon th enonlinearequationsofmotionareperformedtodemonstrate theeffectivenessofth epiezoelectricactuators.Th eperformanceoftheactuatordesignsan dthemaximumflutter-freedynamicpressureareinvestigatedan d presented.

    14

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    16/62

    CHAPTER3

    ADAPTIVECOMPOSITEMODELFo rheas twoecades,hereasee nnncreasedesearchctivitynhere aoffiniteelementmodellingofadaptiveomposites.herimarynterestasee nnhenalysisofpiezoelectricallyactuatedcompositesan dearlyinvestigationsweredevotedtothree-dimensionalelectromechanicallements.mongheeportedtudies,zo undseng50 ]av esed variationalmethodsomodelinitelementiezoelectricolids.Hatl51 ]evelopedneight-nodethree-dimensionalcompositebrickfiniteelementfo rmodelingth edynamican dstaticresponseflaminatedompositesontainingistributediezoelectriceramicsubjectedomechanicalan delectricalloading.Th eelectricalpotentialistakenasanodaldegreeoffreedom,leadingonlementwithou regreesfreedomerode.heseodelssinghree-dimensionalinitelementsaniv eccurateesultsyettingomputationallyxpensive refined mesheswithacceptableaspectratios.Classicalplatetheorieshavebeenproposedfo rth enalysisofrectangularpiezoelectricplates(LeendMoon52],CrawleyndLazarus53],Wangan dRogers54 ]ndLam etal55]).Otherplateformulationsincludeth eworkreportedbyChandrashekharaan dAgarwal56],who usedafiniteelementformulationbasedonfirst-ordersheardeformationtheoryfo rmodelingthebehavioroflaminatedcompositeplateswithintegratedpiezoelectricsensorsan dactuators.Th edevelopedmodeldoesno tintroduceth evoltageasanadditionaldegreeoffreedom.Tzouan dYe [57]resentedaminateduadraticCiezoelasticriangularhellinitelementsinghe layerwiseonstanthearngleheorywhichccountsor onstantpproximationofthenonlinearross-sectionalarpingppliedoiezoelectricaminatedystems. odelcontaininganactuatorelement,nadhesiventerfaceelementan daneight-nodeisoparametric plateelementwasdeveloped by Linetal[58].Ananalyticsolutionisalsoderivedan d resultsarecomparedwithth efiniteelementmodel.Chattopadhyayan dSeeley59 ]se dafinitelementmodelbasedonarefinedhigherordertheorytoanalyzepiezoelectricmaterialssurfacebounded ormbeddednompositeaminates.heisplacementieldccountsorransversehearstressesthroughthethicknessan dsatisfiesth eboundaryconditionsat th efreesurfaces.hrough

    1 5

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    17/62

    numericalexamplestheyshownthattherefinedtheorycapturesimportanthigherordereffectsthatreotmodeledyhelassicalaminateheory.ecently,odelssingigher-ordertheoriesfo rpiezoelectriclaminatesca nbefoundinReddyan d Mitchell[60]an dJonnalagaddaet al[61],amongothers.Veryfe wcompositeshellelementswithelectromechanicalpropertieshavebeenreportedinth eliterature.A-nodedhelllementxtendinghehallowhellheareformationtheoryas beenproposed,usinganequivalentsinglelayermodelfo rathreelayershell62].An8-noded quadrilateralshellelement[63]withnoelectricaldegreesoffreedomusingth e3D-degeneratedshelltheoryha salsobeenproposed,whereth epiezoelectriceffectwastreatedasaninitialstrainproblem.Anxisymmetric-noderiangularhelllementaslsoee nevelopedtotudymooneytransducers64].A2-nodeddegenerated3Dshellelementwithalayer-wiseconstantshearngleasee normulated65].However,moreesearchsequiredtonderstandnd quantifyth einfluenceofthecurvatureonth epiezoelectricactuatorsan dsensors.ulemanan d Venkayya[12]av ereportedanefficientfinitelementormulationorvibrationontrolofalaminatedcompositeplatewithpiezoelectricsensorsan dactuators:Bymodellingtheplatean d theensor/actuatorystemwithheou rodedilinearMindlinlatelement,heroblemsassociatedwiththesolidelementareeliminatedan dmodellingth eplatean dth esensor/actuatorsystemwithheou rnodedbilinearMindlinplatelementonsiderablyeducesheroblem size.Inthepresentinvestigation,heimpleuadrilateralplateinitelementha sbeenextendedto includeth eeffectofcurvaturefo rtheanalysisofadaptivelaminatedcompositeshallowshells.Theinitelementsuadrilateralnhapendasightodalointswith0egreesoffreedom.Theobjectiveistoactivelycontrolflutterusingadaptiveshapean dvibrationcontrolofaircraftskinompositepanelswithmbeddedpiezoelectricctuatorsndsensors.igurehowstheadaptivecompositeconfigurationan dthedirectionofpolarizationofthepiezoelectriclaminatesthatm ay compriseatypicalwingorfuselageskinpanel.

    1 6

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    18/62

    i

    pt^rdirection

    ' A O A f f l v f f ,coMrosrrK^LAn

    Figure1-Adaptivecompositeconfigurationandth edirectionofpolarizationofth epiezoelectriclaminatesTh eformulationan dimplementationofastructuralanalysisprogramtostudyfluttersuppressionofcurvedpanelsusingadaptivecompositeshallowpanelsispresentednext.hallowshellsaresurfaceswithnegligibleurvatureomparedtoitspan.hemediansurfaceisefinedbytheradiusofcurvatureRxand Ry nd thetwistradiusRxy,al lassumedconstant.EquationsofMotion Toeriveth equationsofmotionfo rth eaminatedcompositeplate,nanaerodynamicield withiezoelectricallyoupledlectromechanicalroperties,w eseheeneralizedor mofHamilton'sprinciple

    5' 2[T-Tl+ W +W]dt= 0 1 (1 )whereTisth ekineticenergy,Isth epotentialenergy,Wm isth eworkdoneby th emagneticfield,W e isth eworkdonebyth eelectricalfieldan dWaistheworkdonebyth eaerodynamicforces.hekinetican d potentialenergiesca nbewrittenintheform

    T= \-puTV ;= j-STTd1 7

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    19/62

    wherecndTcreth egeneralizedelastictrainan dstressectors.heworkdonebytheelectricalforcesca nbewrittenas

    1 W e=j-STTedVp 2

    whereSesavectorofelectricalfield(volts/meter)nthepiezoelectricmaterial,ndTesavectorofelectricalisplacementscharge/area).nheontextofth eresentnalysis,tsassumed thattheworkdomeby th eelectromagneticforcesisnegligible.

    ElectromechanicalConstitutiveRelationsFo riezoelectricsheropertiesreefinedelativeoheocalolingirection.Availablepiezoelectricmaterialshavethedirectionofpolingassociatedwithth etransversedirectionan d thematerialisapproximatelyisotropicinth eothertw odirections.nmatrixformtheequationsgoverningthesematerialpropertiesca nbewrittenas

    T =eTS+eSTc=cScS

    whereTesth eelectricdisplacementvector;sth edielectricpermittivitymatrix;cstheelastictrainvector;isth edielectricmatrixatconstantmechanicaltrain;estheelectric fieldvector;Tcstheelasticstressvectoran d sthematrixofelasticcoefficientsatconstantelectricfieldstrength.

    Stress-StrainRelationsTh ecompositelaminateshellispresumedtoconsistofperfectlybondedlaminae.Moreover,thebondsarepresumedtobeinfinitesimallythin.Thus,ollowingth eclassicallaminationtheory,thestateofstressintheelementisgivenby

    1 8

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    20/62

    S={T rp Spe IrpmpbpbpbptSptS\* xyyz yzEighteneralizedtrainsndnelectricalieldarametereraminaescribehetateof

    deformationorMindlinhellithlectromechanicalroperties.hus,heugmentedgeneralizedstrainvectortakestheform

    s = {sr= \s : s s

    e]sm sb xyS* -E,z-E n]

    Th estress-strainrelationshiptakesth eform

    \Tec c 0 e" ~ S m~ m~ c c 0 e sb 00 0 gS1 0

    er eT 0 e se 0AT

    wheresth etransformedmodulimatrixfo reachlaminaincludingth epiezoelectriclayers.Th etransverseshearstiffnessmatrixsdefinedintermsofth etransversestrainenergythroughthethickness.Tsth etemperatureradientacrosstheaminatendc mretheoefficientsofthermalexpansionfo reachlamina.

    Strain-DisplacementRelationsTh elargedeformationstraindisplacementrelationfo rageneralshellelementundergoingbothextensionan dbendingatan ypointthroughth ethicknessisthesu mofmembranean dchangeofcurvaturestraincomponents:

    1 9

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    21/62

    sb= K l ,* 1 2 w2 w xx k .= < v,y w2y + z- W,yyMj-V 2ww ,x ,y 2wxy Th eshapefunctionsusedfo rthe8-nodedshallowshellelementare:A7=(l+^J(ll+7j77j(

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    22/62

    V

    dNdx 00

    dN* By

    dN* dN*B y00

    dx00

    0 0 0 0 0 0

    N [_ Ry yN*

    0 0

    dN* dxdN * dx

    0 0 00dN * z-

    0-N*

    0 0 0dN* dx 0 dydN * dN *

    :Zdxx N* 0

    for i=l,---,nel

    Th elementtiffnessndmassmatricesreirstvaluatedbyxpressingth entegralsnthelocalnaturalcoordinates an d 7 ]oftheelementan d then performingnumericalintegrationusingtheaussianuadrature.helementatricesrehenssembledobtainhelobalKssandMMatricesafterappropriatetransformationtoccountfo rth eurvednatureoftheshellsurface.Substitutingfo rthegeneralizedstressan dstrainexpressionsintoEquation(1),weobtainthemass,elasticstiffnessand piezoelectricstiffnessmatrices:

    M =pKTNdV,Ki^ly eb dVj,KJm=jh *h dTj, for j=l>---,nel

    21

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    23/62

    GeometrieStiffness

    Inth epassivecontrolmethodologyadoptedinthistudy,theinplaneorcesgeneratedbythepiezoelectricactuatorsareccountedfo rthroughth enonlineargeometrictiffnessmatrix.he termsinth egeometricstiffnessmatrixfo ranelementar elinearfunctionsofth ecomponentsofstressnth element.orplatendhelllementstissualtoonsideronlythemembranestresses.helementsoftheeometrictiffnessmatrixKganbeerivedro m otentialenergyfunctionlggivenby theexpression

    a 2n,K = JLg dxdywhereng= j\(xTGaX+X2 TGbX) TdS,

    an d

    du dy dw dv

    dx Xi= dx dw G0=du dv dy dx dy

    = 0

    2 1 L 2

    2 mm

    2nfflxy

    Th eembranetressomponentsrenitiallyeterminedyrescribing oltageohe piezoelectricpatchesndubsequentlythealculatedstressesreusedtoetupth eeometricstiffnessmatrix.

    22

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    24/62

    AerodynamicLoads

    Th eerodynamnicheorymployedthemostorflutteratsupersoniclo wM > v2jshe quasi-steady,firstorderpistontheory.Th eaerodynamicpressureca nbeexpressedas

    Pa- 2 qJMI-I M > Ml-2.,

    W eca nre-writethisequationinthefollowingform:

    Pa\,DaDDao Q rp

    where= paV 2/sth edynamicpressure;pasth eai rdensity; sth eairflowspeed,Msth eMachnumber, sth epanelength,D= Ehz/l2 l-v2)sth ebendingrigidity, stheradiusfurvaturend G ) 0=\D/phaA) is onvenienteference frequency.Th eon -dimensionaldynamicpressurean daerodynamicdampinggacoefficientsaregiven by :

    X = 2 qaalDyJMl-l s\AM ~-ywhere = Ml-1,ndj ,=paa/m0istheir-panelmassrationdm 0stheveragemassdensityper unitareaofthepanel.Fo rhighsupersonicflowsi.e.(M l),ga~^X\ijM.Thus,theworkdonebytheexternalaerodynamicforcesisgivenby :

    23

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    25/62

    w =-\ .Ddw ga w X D w a3x ( O 0 4t 2ra3/ w dA Substitutingntoquation1),webtainheollowingerodynamicampingndtiffnessmatricesforeachelement:

    GJ= 8a X D2ra3JA KJ=X\NTNd

    \TNdA, for j= l,-,nel

    Theerodynamictiffnessmatrixisnon-symmetric,uetoth enon-conservativenatureoftheaerodynamicloading. Fo rtheentirestructure,usingth estandard assemblytechniquefo rth efiniteelementmethodan d applyingtheappropriateboundaryconditions,weobtainth ecompleteequationsofmotionfo rathermo-piezoelectrically coupledelectromechanicalcompositepanelinaflowfield

    x 0" 0 0thermal stiffness KAT 0"

    0 0\ u <

    + aeroamping

    G 0" 0 0aerostiffnessIX 0"

    0 0

    l inear stiffness piezot iffness

    where

    Mccsth emassmatrix;Gsth eaerodynamicdampingmatrix;Kccsth elinearelasticstiffnessmatrix Ksth eelectromechanicalcouplingmatrix;

    24

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    26/62

    Kee isthepiezodielectricmatrix;KAT isth einitialthermalstressstiffnessmatrix Kg isth enonlinearstiffnessmatrix Th eequationsofmotionfo ralaminatedadaptivecompositepanelwithpiezoelectricactuatorsan dsensorssubjected toaerodynamican d thermalloadshavebeenpresented.

    SolutionProcedureToolveth eonlineareigenvalueroblem,nterativeroceduresused.oragivenetofaerodynamicarameter A,n-planeorce,od eumber,ndaximummplitude,he iterationstartsfromacorrespondinginitialmodeshapeobtainedfromlinearflutteranalysis,withamplitudescaledupbyasmallfactor.Basedonthisinitialmodeshape,thetangentialstiffnessmatrixKrisormed,ndnigenvaluendtsorrespondingigenvectorreound.hi seigenvectoristhencaledupgain,nd th eiterationcontinuesuntilth eonvergencecriterion| < p |orksachieved:

    whereM, .sthechangeineigenvalueduringth ehterativecycle.When=0,th eproblemisreducedtoha toffindinghen-vacuorequenciesorheonlinearibrationofplates.Asdynamicpressure sincreasedfromzero,tw ooftheseeigenvalueswillusuallyapproacheach otheran dcoalescetocr t= X cr nd becomeacomplexconjugatepairfo r> X cr.Herecrisconsidered tobethatvalueofX twhichthefirstcoalescenceoccursfo raspecificamplitudeofthelimitcycleoscillation.

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    27/62

    CHAPTER4

    FLUTTERANALYSISANDCONTROLToevaluateth epresentfiniteelementformulationan dsolutionprocedurean d tostudyth eeffectsofcertaindesignparametersonth enonlinearsupersonicflutterbehaviourofadaptivecomposite panels,aseriesofsimulationsfo rth enonlinearsupersonicflutteranalysisofadaptivecomposite panelswereperformed withtheresultspresented,discussed,an d physicallyinterpreted.

    A25x25x0.025msotropicquareplate6061-T6luminum)w asusedinal limulationsan da10x10elementmeshwasused toobtaintheelementlinearstiffness,initialstress,nonlinearstiffness,mass,an daerodynamicmatrices.Thisgridwasshowntonumericallytobesufficiently finean daccuratefo ral lth epresentsimulationcases.Apreliminarylinearflutteranalysiswasperformedtoprovideinformationregardingth eairflowspeedatwhichthepanelbecomesdynamicallyunstablean dtheamplitudeofoscillationgrowswithtime.Asth eamplitudeincreasestoacertainlevel,th enonlineareffectsbecomedominantand theamplitudereachesaboundedvaluedefined by thelimitcycleoscillation.Typicaleigenvaluecoalescenceresultsobtainedby usingth efiniteelementmethodfo rasimplysupported plateareshowninFigure2.Theresultswerecompared withdatareported byM ei[25]an ditisobservedthatth epresentfiniteelementformulationgivesaccurateresults.

    Bo u n d a r ysupporteffectInFigure,hepanelmplitudeofthelimitcyclescillationisivenasfunctionofAor simplyupportedndlampedboundaryonditions.heimityclescillationsreifferentsincetheclampedplateisamuchstifferstructurecomparedtoth esimplysupportedboundary conditions.

    26

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    28/62

    2000

    1500

    1000

    5 00

    -500

    -1000

    6 00

    A e r o d y n a m i cP a r a m e t e r

    LFigure2-Typicalvariationof eigenvalueswithdynamicpressureforasimplysupported panel

    1000

    l_ Figure3-Limitcycleamplitudevs.dynamicpressurefo rsimplysupportedpanelfo rtwodifferentsupportconditions

    27

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    29/62

    Effectofin-planeloadingFigure howsheanelmplitudes.erodynamicarameterorifferentn-planeorcesactingn implyupportedanel.helassicalulerucklingoadorimplyupported panelsisNcr=-7t2D/a2.Th etotalmembraneforceiscomposedoftheappliedin-planeload A^andthemembraneforceNxnduced by th elargedeflectionsofth epanel.Itisobservedthattheppliedcompressivein-planeorcereducesth eriticalynamicpressure.However,sthedynamicressuresncreased,heanelmplitudencreases,whichnducesensilen-planeforceshatounteractheppliedompressiveorces.hisrocessontinuesntil lutterdynamicpressureisreachedwhichcorrespondstoagivenlimitcycleamplitude.

    2 000000 AerodynamicParameter 80 0L _

    Figure4-Limitcyclemplitudevsynamicpressurefo rsimplysupportedpanelunderdifferentin-planeforces

    28

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    30/62

    CurvedPanelsTh epplicationofth epresentshallowhelliniteelementformulationinfluttersimulationofsimply-supportedcylindricalan dspericalskinpanelsisshown.Th ecurvedpanelswereassumedtohaveradiusofcurvaturex=Ry=50 0cm.Theoalescenceofmodesorth eylindricalan dsphericalpanelsareshowninFigures5(aan db) ,respectively.Itca nbeobservedthator thecylindricalpanel,th efluttermodeiscausedby th ecoalescenceofmodesnd3,whilefo rthephericalshells,thecriticalflutteriscausedbyth ecoalescenceofmodesnd2orbothcases.Summarizing,thecurvatureha saneffectonthecoalescenceofmodesan dflutterdoesno tnecessarilyoccurby th ecoalescenceofthetw olowestmodes.

    29

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    31/62

    w oo - K

    30 0 0 -D ;3T 00 0D

    mS i

    1000 K 1

    111i1i 111 i i i i2 3 4 0 0 5 B O O 7 6AerodynamicParameter

    4000

    3 0 0 0

    C D 00 0CD raLJ

    1000

    :4:3 ; 2 ' K1

    L 000 20 0 30 0 40 0 50 0 60 0 70 0 60 0AerodynamicParameterFigure5-Coalescenceofmodesforcylindricallyandsphericallycurvedpanelswithallsimplysupported edges.

    3 0

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    32/62

    NONLINE R FLUTTER ONTROLPassiveControlBeforeattemptingtous epiezoelectricmaterialsinpanelfluttercontrolproblems,aknowledgeoftheegreefontroluthorityxhibitedy ypicaliezoelectricctuatoreedsoequantified.

    Relationshipsetweenheppliedorcesndheesultantesponsesependponhe piezoelectricpropertiesofth ematerial,th esizean dshapeofth epatchan dth edirectionoftheelectricalndmechanicalxcitation.orexample,onsideratypicalpiezoceramicatchwithdimensionsx x .0 5m .Thetressreeengthhangenhen-planeirectionaneexpressedasDL=d3]Ea=6.6mm,whereE,th eelectricalfield,isth eappliedvoltageperunitlength.Th estrainfreeforceinthein-planedirectionduetoanappliedvoltageof40 0V isF= YduEbh=2 0 0 N. Th eeffectofin-planestressesisparticularlyimportantsincepassivecontrolca nbeimplementedby thein-planetressesgeneratedbythepiezoelectriclayersinthecompositepanel.twillbe assumedthatth epanelasreachedastateofequilibriumduetoth epresenceofth en-planestresses,an dth estabilityofth esystemwillbeexaminedatthatposition.Itisalsoassumedthatthepanelha sno treachedabuckledstate.heffectofthenitialpre-stressivesiseothegeometricstiffnessmatrixKgTh euestionthateedsoeaisedowsheiezoceramicatchapableofgeneratingsignificantforceoutputinordertoaffectthestiffnessofth epanel,an dthuspushbackth eflutterboundaryenvelope.Tensileloading,whichca nbegeneratedbypiezoelectricctuators,ausesthelutteroundaryohiftonsiderably.orxample,or imply-supportedanelwithdimensions30 x30 x0 .1cm ,therangeofin-planeforcethataffectsth ecoalescenceofthefirstmodeliesnthe2 0 0 to2 ,000 N range.tca nbeinferredthatanarrangementofpiezoelectric

    3 1

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    33/62

    patcheswhereeachexertsanin-planeforceofapproximately2 0 0 N ,duetoanappliedvoltageof40 0V,couldconsiderablyaffectth epanelfluttercharacteristics.

    First,le tusexamineth edevelopmentofflutterinth epanel,intheabsenceofan ypiezolectricactuation.Thealuminiumpanelissimplysupportedalongal lfourofitssides.Asth edynamicpressurencreases,heaturalrequenciesoftheirstan dsecondmodesge tcloser,untiltheycoalesce,nd theynamicpressure tthispointiscalledthecriticaldynamicpressure.or thisparticularpanel,neglectingth eaerodynamicdampingeffect,th ecriticaldynamicpressureparameters8 .8 si.fteroalescenceofth eirstwomodes,hemaginaryartsoftheeigenvaluesbecomesplit,on etowardsthenegativeside,an dtheothertowardsth epositiveside.When assesheriticaloint,heystembecomesnherentlyunstable,uc hha tmalldisturbancemakeshemplitudeofth eaneleflectioniverge.As ncreasesurther,he thirdan dfourthmodescoalesceaswell.Usingth eassiveontrolmethodology,heluttervelocityofpanels,rimilarlyth eriticaldynamicressure,anbencreasedbymakingiezoelectricctuatorsnducen-planeensileforcesthatalterth eeffectivetiffnessofthepanel.Theam evoltageisappliedtothetopan d bottompiezoelectriclayers,resultinginuniformcompressionortensionintheplate.Thisstaticloadingonditionntheanelnducesn-planetressesNx,yan dNxy.Thesetressesresubsequentlyusedtoalculateth egeometrictiffnessoftheplate,whichcouplesthen-planean dtransversemotionsofth epanel.Subsequently,thegeometricstiffnessmatrixisaddedtoth elinearstiffnessmatrix,an d th eeigenvalueproblemissolved.Th evaluefo rXatwhichacomplexsolutionexistsisconsideredtobetheonsetofflutter.Whenth epiezoelectricpatchescreateastateoftensioninth epanel,theynamicpressureincreases.fth epiezoelectricpatchesxertcompressiveforcesonth epanel,thedynamicpressuredecreases.

    Now,le tusexamineapassiveactuationconfigurationinwhichth epiezoelectricpatchescoverthecenteroftheplate(Figure6).First,consideracasewhereth epatchescoveronly6 oftheplatearea.Here,th emassincreasesby17 duetoth eadditionofth epiezopatchestothebasestructure.bviously,heffectivetiffnesslsoncreases.tw asbservedhatheriticaldynamicpressureincreasedfrom36.8to46.9,animprovementof2 7 .Notethatthisincreaseis

    32

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    34/62

    solelyduetoth ebondingofth epiezopatchestoth etopan dbottomsurfacesofth ealuminumpanel.ubsequently,heiezoatcheswerectuatedwith oltageof40 0and,nhisinstance,urtherncreaseof42 w asttained,elativeoheas ewhereooltagewas applied.ummarizing,betterperformancewasindeedattainedbyth epiezoelectricactuation.Theeffectivestiffnesswasincreasedbymerelyattachingth epiezopatchesinthefirstinstance,an dafurtherincreasewasobtained byactuatingthepiezopatcheswithanappliedvoltage. Next,heperformanceofapatchwhichovered2 5 oftheplatereawasssessed.Here,substantialincreaseinmasswasobserved(69 ).Theadditionofpiezopatcheswithnovoltageappliedresultedinanincreaseof9 2 > indynamicpressure.Furtherapplicationof40 0 acrosseachayeresultedn mallerurthermprovementnynamicressureo3.5, r2relativetoth e case.hus,tisnotedthatanncreasenizeofth epiezoatchesnd/oractuationower,oe sotecessarilyesultnettererformance.nact,he5 atchconfigurationerformedworsehanhe atchase.pparently,heargeriezoatchconfigurationresultedinarelativelymuchlargermassincreasethusoffsettingth ebenefitsofan increasedactuationcapability.Threemoreatchonfigurationsav eee nnalyzedtourtherprobehi smatter.etusal ltheseconfigurations2an d3,asshowninFigure6.Inconfiguration1,fivepiezopatchesareplacedinastarshapedform,resultinginamassincreaseof86 .Th eflutterdynamicpressure,inthepresenceofanappliedvoltageof40 0 , xhibitspoorperformancewithmereincreasenalueelativeoheoppliedoltagease.ntherwords, argerctuationcapability,ollowedbyamuchlargermassncreaseresultedinanegligiblemprovement.orconfiguration2,with4piezoelectricpatchesarrangedinacrossshape,th emassincreasedby69

    .Th eresultantcriticaldynamicpressureincreasedby 8 to99.2 duetoanappliedvoltageof40 0V .Finally,configuration3 withthepiezopatchesarranged alongth eperimeterofasquareat thecentreofth eplate,xhibitedanincreaseof2 0 indynamicpressure,withanincreaseof52 inmass.Thus,nconfiguration3,betterperformancewasattainedinth epresenceofarelativelysmallerincreaseinmass,whileinconfiguration,apoorperformancewasexhibited withanincreaseinmass.

    33

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    35/62

    Anotheraspectthatdrawsattentionisth efactthatth e2 5 centralpatchconfigurationan dthenumber2configurationprovideasimilarmassincrease69 ).However,th e2 5 centralpatchconfigurationesultedn 2 mprovementnynamicressure,hilehectuationnconfiguration2xhibitedapoor8 mprovement.Onpreliminarynalysisasis,tanbe inferredthatno tonlyistheaddedmasstotiffnessratioimportant,butalsoth econfigurationan dplacementofth epatchesnthetructurehouldbetakenintoccounturingtheesignprocess.

    Summarizing,thereisanoptimumpatchsize,an dthereinanoptimalpatchconfigurationwhichdeliverth ebestperformance.Aompromiseneedstobeoundbetweenth edvantagesofan increasedactuationcapabilityan d th edisadvantagesofanincreased weightduetoth eadditionofpiezoelectricmaterial.Thesequestionsneedtobeaddressedthroughformaloptimizationdesign procedures.

    # 1 2 3 4

    X # 5

    CriticalAerodynamicParameterhcritical = 36 .8

    Configuration#1 # 2 #3 # 4 # 5ov 46.9 70.5 88.5 91.8 63.9400V 66.7 93.5 92.5 99.2 76.5

    ^critical +42% +32% +5% +8% +20% Mass +17% +69% +86% +69% +52%

    Figure6-Passivecontrolperformancefo r5differentpiezoelectricpatchconfigurations.

    34

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    36/62

    ActivecontrolTh eendingmomentinducedbyth epiezoelectricsotffectiveoontrolheinearpanelfluttersincethereisnobendingbehaviourinthelinearcase.Onth eotherhand,th einducedin-planeforceisno tsufficientinlinearpanelfluttercontrolbecauseofthelo wmodulusan dlimited abilityof th epiezoelectricstocreatelargein-planeforces.Fo rsuppressionofpanelflutterlimit-cyclemotions,noptimalcontrolapproachbasedonthelinearoptimalontrolheorysproposed.heinearpanellutterisunstablewhen X^whereasthenonlinearpanelflutterisastablelimit-cycleoscillation.inceth eflutteriscaused by theinstabilityofth elinearmodel,th egoalofth econtroldesignistokeepth esystemstable.Th eactivecontrolmethodologyselectedisbasedonth estate-spacedomainsincethesystemisamulti-input-multi-outputwithalargenumberofpiezoelectricactuatorsand sensors.Th egenericstatespaceequationfo radynamicsystemisgivenin th eform

    3 c =A3c+Bw+FvyCx+H+w

    whereisthesystemstatevector,istheactuatorinputvector,yisth esensoroutputvector,isthestatesperturbationvector,wsthesensornoisevector,Asth esystemdynamicsmatrix,Bsactuatorinputmatrix, Can d D areoutputmodellingmatricesan dFsth estateperturbationmatrix.Aommonor mofcontroleliesneedingbacktheensedoutputvariablesmultipliedbyaconstantmatricialfactor(gainmatrixG).Thisformofcontrolisknownasthelinearfeedbackcontrol,i.e.

    U= -Gy

    35

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    37/62

    ThelinearQuadraticRegulator(LQR)ha sbeenselected todetermineth evaluesofth ematrixG.TheLQ Rmethodisbasedonthessumptionthatal lthetatesofth eystemaremeasurable.Whenitisno tpossibletomeasureal lth estatesofthesystem,thereisaneedtoimplementan observer.heobserveroutputisanestimateofthestatesofth esystemx.Thus,th econtrolleriscomposedoftw omainblocks:theestimator,whichreceivesth einputan doutputofthesystem an dprocessesth estatesofth esystem;an dthefeedbackgain,whichreceivesth estateestimatesan d processesth esystemcontrolactuation.

    Theclosedloopdynamicsofth esystemca nberepresentedasfollows:PlateStructuralModel:

    x= Afxf+Bfea+Ffv e=Cfxf+w

    Observerdynamics : xr=Arx+Brea+K(esrx)

    Feedbackla w

    es=-Gxwhereheubscript refersoheul ltatemodelndreferstoheeducedrdermodel. Combiningth eaboveequations,th edynamicsofth eclosedloopsystemca nbewritteninmatrixformas:

    KC/BG

    A-BG-KCFf 00 F lvIw l

    Th enumericalsimulationwascarriedou tusingth eMATLABsoftwaretool.Th eblockdiagramsforth ecompletemodelwithfeedbackispresentedinFigure7.Th eKaimanobserverisastate-spaceblockwithmatricesA &Be,C ean dDe.Th einputsfo rth edynamicmodelaretheactuation

    3 6

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    38/62

    voltagese a .Therearetw ooutputsfromthedynamicmodelblock:th estatesofth esysteman d thesensedvoltagesfromth esensorpiezopatchese u.Th estatevectorisusedtocomparewiththeestimatedstatesand th esensedvoltagesarefe dtoth eobserverblock.Thereslsonrroralculationlock.heurposeofthislocksoalculateherrorgenerated by theobserverand thisisgivenby

    error=(x-x) (x -x)

    ThepenaltyfunctionweightmatricesQan dRweredefinedasdiagonalwithavalueof10000 an dxlO" 5,espectively.heoiseovarianceorhetateswasett0%ofthenitialdeflection.Fo rth esensornoise,th enon-correlated covariancematrixw assetwithanoisepowerof2V 2.hesevalueswereusedtodesignthecontrollerinal lsimulations.Th efullordermodelaccountsorllheegreesoffreedomncludednth elatemodelwhileheeducedrdermodelincludesonlytheirst6modesofvibration.Thefirst6naturalfrequencyvaluesfo ran isotropicsquareplatewithfourpairsofactuatorsan d2pairsofsensorsareshownbelow:

    Mode ( O nrad/s)1 57.30 2 365.473 1057.714 1133.86 5 1193.716 2178.08

    37

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    39/62

    DynamicModelofPlatew f t h PiezoelectricSensors andActuators

    Eh >r n_1 J %

    x sA x + B uy=C x + D u

    StateNoiseSourceSum Outport

    clisp |

    Figure7-Blockdiagramforthecompletemodelwithfeedback,stateobserverand errorestimation.

    3 8

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    40/62

    Th etablebelowdepictsth efirstsixmodescontrolled by areducedordercontroller.

    M o d e OpenL o o p ClosedLoop c o n(rad/s) c orad/s) D a m p i n g Co m m en t s

    1 57.30249 57.30438561 0.009520978 Structure2 365.4731 70.25461695 0.927711305 Controller3 1057.714 365.4493213 0.007791086 Structure4 1133.858 567.3243875 0.52316159 Controller5 1193.705 1056.67806 0.000688374 Structure6 2178.078 1133.858129 0 Structure

    Th eommentsolumnefersoheriginofth emodehatseterminedbyomparingthenaturalfrequenciesofthesysteminopenan dclosedlooparchitecture.Asca nbeobserved,thecontrollerinthelosedloopystemintroducestw odditionalmodes,whicharequivalentto fouradditionaltates.ro mthetable,tca nalsobebservedthatthereretw oWellbehavedmodes(2ndan d4th)whichareassociatedwiththecontroller.Alsoitwasobservedthatthemodesestimatedbyth econtroller(1stan d3 rd)presentlo wdampingwhileth eremainingmodespresentzeroamping,whichmeansthattheontrollerdoesno taffectthesemodes.Thisindicatesthepossibilityofaspill-overeffect.Figure8showstimehistory plotsof th e1 stand 2ndmodes.

    PtpMXtOiOi*..:

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    41/62

    Thepassivecontrolincreasescriticaldynamicpressureby approximately20%whensettingtheappliedelectricfieldtoth emaximumvalue(400V).Theeffectofth epiezoelectricallyinduced in-planeorcessmallndtsoncludedhatassiveontroloe sotuppresslutterefficiently.hectiveontrolpproachisttemptednext,whereth epiezoelectricpatchesreassumed toimpartonlybendingmomentstothestructure. Thus,heptimalontrolheorywasmplementedoctivelyuppresslutterysinghe piezoelectricpatchestoinducebendingmomentsonly.Thepaneldeflectionwasrepresentedby theirstixodes.onlinearquationsfmotionav eee nsedorllheumericalsimulations.hemaximumlutterfreeynamicressure maxisefinedasth emaximumunderwhichth eflutterca nbecompletelysuppressed withpiezoelectricactuation.Th enumericalsimulationhowedhathelutteraneuppressedompletelyelowmaxbysinghe constantgaincontrolfeedbackdesignedatth emaximumdynamicpressure.Th erationofXmax to raselectedasnndicatorfo rth eperformancereffectivenessofth epiezoelectricactuatordesign.Th eiv eonfigurationstudiednheassiveontrolmethodologywereonsideredorhe activeontrolmethodologystudy.heresultsrepresentedbelow.twasbservedthatmorepiezoelectricactuatorsdono tnecessarilyimplyabetterperformanceinactivecontrolapproachaswell.However,nthectiveontrolmethodology,th eperformaceslsoependentonthecontrolleresign.hectiveontrolmethodonsistentlyerformedetterha theassive controlethodologyith77 %nerodynamicressurearametersomparedo2% improvementnassivemodeoronfiguration1.heam erendwasbservedortherconfigurations.heesultsemonstratethatth ebendingctuationtechniqueut-performsth epassivecontrolapproachbyanorderofmagnitudean dthatfurthersimulationsar enecessaryto studytheeffectof th econtrollerdesignon thesolution.

    40

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    42/62

    CriticalAerodynamicParameterXr=36.8no piezoelectricpatches)

    # 1 # 2 # 3 # 4 # 5cr 46.9 70.5 88.5 91.8 63.9 ma x 128.6 163.4 152.5 175.5 115.8ax 2.7 2.3 1.7 1. 9 1.8

    ConcludingRem a r ksAnonlinearsupersoniclutteranalysisoflaminatedcompositeplatesnd shellssarriedou tusing oublyurveduadrilateralhinhellinitelement,evelopednheasisoftheMindlinhinhellheory,lassicalaminationheoryndinearistonerodynamicheory. Numericalresultsar eobtainedfo rlaminatedcompositeplatesand curvedshells.Th efirst-orderpistontheoryusedtomodelth eaerodynamicpressure,providesareasonableestimateofflutter,deflectionshapes,ndfrequenciesorthinplate/shellpanelstapproximateMachnumbersofgreaterthan2 Goodgreementoftheom eofth ebtainedolutionswithexistingresultsservedostablishhealidityoftheresentormulationorupersoniclutternalysisofadaptivecompositeplatesan dshells.Th eerformanceflutteruppressionsingiezoelectricctuationsemonstratedy increasinghemaximumlutter-freeynamicressure maxorheatioofthe maxohe criticalynamicpressure r.Th eptimalontroldesignisbasedonth einearequationsofmotionwhereasthesimulationsarebasedonthenonlinearequationsofmotion.Th enumerical simulationsho whatth en-planeorcesnducedbyth eiezoelectricctuatorsreotverysignificantenoughinordertoconsiderablyaffectth eflutterenvelope.tw asobservedthattheperformaceoftheiezoelectricctuatorsnynamicendingctuationmodesonsiderably superiorcomparedtoth epassiveactuationmode(177%improvementcomparedto42%inthepassivemodefo rconfiguration#1).

    41

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    43/62

    CHAPTER5

    EXPERIMENTALBUFFETSUPPRESSION

    Experimentalbuffetingan dgustalleviationresponseresultsarepresentedfo rasweptbackflatwingmodelusingpiezoelectricactuatorstocontrolbendingan dwingtipcambershape.Modelresponsewasensedbytraingages,ccelerometersnd piezoelectricensors.hepen-loop an dclosed-loopresultsofthisexperimentalstudyshowthatpiezoelectricactuationiseffectiveinattenuatingibrationndheake-induceduffetesponsev erheangefarametersinvestigated.Th eairfoilcambershapecontrolincreasesremarkablytheefficiencyofth esystem,byusingacontrolledchangeofliftinordertoproducetherequired bendingmoments.

    Introduction Th eprimarypassivesolutionstodynamicaeroelasticproblemsconsistofincreasingth estiffnessan dblancingth emassan dthesehavebeenusedasearlyas922.Theystillcompriseth ebasicpassivemeansofimprovingth eresponsean dstabilityofanaircraft.Increasedstiffnessca nalsobechievedysingdvancedompositeailoringhichanreatlylterhetability characteristicsofagivenwing.Activeontrolonceptstomprovetheaeroelasticperformanceofwingshaveincemerged.Theactiveaeroelasticcontrolsolutionsconsistofusingaerodynamiccontrolsurfacesastheyarereadilyavailableonconventionalaircraft.On eofthefirstactiveaeroelasticcontrolexperimentsbegantestingn972nNASALangleyResearchCenter'sTransonicDynamicsTunnel.he modelwasaclippeddeltawingwithaleadingedgean datrailingedgeactuator.Sincethattime,controlexperimentsusingflapactuatorshavestudiedavarietyofcontroldesigntechniquesan d objectives.TheActiveFlexibleWingprojectusedth eflexibilityofthewinginconjunctionwithactivecontrolstoprovidegreatermaneuverability. Inthelastcoupleofdecades,activeaeroelasticcontrolhasevolvedand ane wactuationconcept

    4 2

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    44/62

    ha semergedfo rstructuralcontrol.Thisisthedirectstrainactuationusingadaptivematerialsan d structures.heselectro-magneto-thermo-mechanicalmaterialsav eresentednxceptionalpromisewhencomparedtoconventionalones.ordeformationofthinstructuralelements,themostidelyse dultifunctionalaterialsreiezoelectricctuators.iezoelectricsav eseveraladvantagesoverhydraulicactuatorsbecausetheyhaveahigherfrequencybandwidthofoperationan dbecausetheyac tdirectlyinthestructurebystrainingit.Piezoelectricshavehigherbandwidthshanreossiblenhapeemorylloys,he yreoreompactha nmagnetostrictivedevicesan d theyarebidirectionalbynatureunlikeelectrostrictivematerials.Thereasee nonsiderablenalyticalndomputationalworkerformedoeterminehe feasibilityofapplyingpiezoelectricactuatorstocontrolwingflutteran dbuffeting.However,theexperimentalverificationeffortha sbeenratherlimitedtoafe wstudiesreported intheliterature. TheDARPA/USAFWrightaboratoryrogramwasoesign,uildndes twindunnelmodelstouantifyerformancemprovementsthatouldbechievedbyncorporatingmartmaterialssuchha sPZT'sfo ractuationan dsensingsystemsinaircraftwings.Th emartWingprogramerformedwindtunneleststheNASALangley'sransonicDynamicunnelodemonstratehesefmartctuatorystemsn ealisticodeledircraftperationalenvironment.Thewindtunneltestquantifiedaerodynamicimprovementsoftw ooncepts:he us eofembeddedSM Awiresinthetrailingedgetoprovideasmoothvariablecontouredcontrolsurface,an dSM Atorquetubesbuiltintoth ewingstructurewhichenabled th ewingtobetwisted or torqued.Severalactivevibrationssuppressionconceptshavealsobeeninvestigated byaprogramshared betweenDaimler-BenzAerospaceMilitaryAircraftDASA),Daimler-BenzorschungDBF)an dDeutscheorchungsantalturuftundRaumfahrtDLR).ere, hinurfaceofpiezoactuatorsissetouttoflattenth edynamicportionofthecombinedstatican ddynamicmaximum bendingmomentloadingcasedirectlyintheshellstructure. Crawleyndeuis66 ]onductedneoftheirsttudiesnheseofpiezoelectricsnvibrationontrolofflexibletructures.nhereaofactiveuffetoa dlleviation,heirstexperimentemonstratingth eeasibilityofusingpiezoelectricctuatorsneroelasticontrol

    4 3

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    45/62

    wasconductedby Heegetal[67].Shapeontrolofalexiblewingtructureas reatpotentialomproveheerodynamiclifting-surfaceperformance.Significantreductionsinth eshock-induceddragca nbeachievedbysmalladaptivemodificationstoth ewingcross-sectionalprofile.Th eresultspresentedherearethexperimentalwindtunnelresultsobtainedtoctivelysuppressbuffetingbycontrollingtheshapeofth ewingcamberusingpiezoelectricactuators.Tw omethodologiesrepresentedan d compared.Oneusesth epiezoelectricactuatorsinth etraditionalway,placingthematth erootto generatebendingmomentstocompensatethemechanicalvibrationalongth espanofthewing.Th ethermethodonsistsofusingheiezoelectricsochievectiveirfoilamberhapecontrol,inordertocontrollift,sothatthechangeof liftca nbeusedtogeneratethesametypeofmomentsan dhopefullyresultintheus eoffewerpiezoactuatorsan dlessexpendedenergy.

    ExperimentalM o d elTh eplatewingmotionwascontrolledby six piezoceramicactuatorsbondedtothesurfaceatth ewingmountrootportionndtw ohapeontrolctuatorsea rth ewingtip.heiezowafersensorswerelocatedatth ewingmountrootan dth esignalwassenttodigitalsignalprocessorthroughilters.heontrolignalwasen toowermplifiers.Amplifiedignalrovehe piezoceramicctuatorsan dattenuatedvibrationtth ewingmount.Thisignalalsorovetheshapecontrolactuators.Acontrolla wwasdesigned basedonadiscretesystemmodel.

    Aphotographan dasketchofthetestmodelareshowninFigures9,0an d11 .Th edimensionsweredeterminedbasedonthewindtunnelsize,blowingairvelocityan dth elimitationsofthepiezoceramicctuators.tructurally,twasimedtavingairlylexiblewingwithow bendingan dtorsionmodefrequencies.Sixpiezoceramicsensorpatches38x25x0.2m m readheredtoth etopan dbottomofth eplateneartheroot.Th ectuators(ACX-QPN40N)ar edividedintw ogroups,th eonesthatproducebendingmomentsalongth espanofth ewing,tw opairsnearth eleadingedgean don enearthetrailingedge,al lneartherootinordertomaximiseth ebendingmoment.Th eothergroup,which

    4 4

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    46/62

    B

    9 J f t

    SH PE ONTROLTU TORS

    IIENSOHS1 "flips'

    *m

    VASI r ; . -

    Figure9.Wingwithpiezoactuators Figure10 .Wingwithpiezoactuatorsan dsensors

    Figure11 .Windtunneltestsetup

    4 5

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    47/62

    isesponsibleortheamberhapeontrol,socatednearth ewingtipnrdertoroducechangesinth ebendingmomentproducedbyth echangesinlift.TheoutputsignalofthePZ Tsensorswasmadeproportionaltoth everticaldisplacementof th emodel.Afiniteelementmodalanalysiswasperformedtogeneratenaturalfrequenciesan dmodeshapesneededtodetermineth eappropriateplacementofthepiezoelectricactuatingplatesfo rmaximumcontroluthorityan dtoesigntheontroller.heibrationmodehapesndfrequenciesreshowninFigure12.

    f2=19.5Hz f3=54.8Hz

    ps

    V

    Figure12 .W i n gFiniteelementmodelm o d a lfrequenciesand m o d eshapesusedinth econtrollerdesign.

    46

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    48/62

    ControllerDesi g nAblockdiagramofth econtrollerfeedbacksystemispresentedinFigure3.Theoutputanalog signalro mheZTensormountednheupportootwasoutedonnalog-to-digital converter whichhad asamplerateof10"4seconds.Th ePZ Tsensorsignalisproportionaltoan d inphasewiththedisplacementofthemodel.Th edigitizedsignalwasthensenttothecontrollawwhichwasimplementedonaMATLABan dSIMULINKenvironmentrunningunderarealtimeoperatingenvironment.Theanalog-to-digitalconvertswere32bi tunits.

    Th econtrolla wwasbasedonasimplefeedbackgainloop,i.e.th edigitalsignalwasmultiplied byaconstantvalue.Thegainedsignalwasnextsenttoaon eteptimeelay.Th etimedelayprovidesameansfo rchangingth ephaseofth efeedbacksignal.Th egained-an dphased-shiftedsignalwasconvertedbacktoananalogsignalby azero-order-holddigital-to-analogconverter.Th eonvertedignalwasoutedowoperationalmplifiers.heutputignalsromhe amplifierswereusedtodriveth epiezoelectricactuators.Th emaximumoutputvoltagefromth eamplifiersw as+/-00volts.Fo rth epresentstudyasamplingrateof1000samplespe rsecond wasused.Thisrelativelyhighratewaschosentoensurethatth ebuffetingwaveformwaswelldefined.

    Filtroacelerometro

    I onstantFigure13 .chematicofth econtrollerdesignM A T LA B / SI M U LI N K

    4 7

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    49/62

    TestResultsTh eexperimentalset-upisbasedonaDSPstateofth ear tlaboratoryfacilitycreatedfo rtestingan dalidatingheheoreticalmodelsndpplicationofctiveontrolmethodologies.he objectiveofthistestistomproveth eampingcharacteristicsofthetructurendverifythemethodofanalysis.Th egaincontrolmethodisusedfo rthevibrationcontrolinth etestbeingthefollowingcontrolla wapplied:=Kga(nGfilterac c

    WereU istheLaplacetransformofinputu,Kgai nisthemultiplicativegainvalue,GfiUerisatransferfunctionfo rlow-passfilter,Yaccisth eLaplacetransformationoftheoutputyaCcofthesensor.hedditionoftheirst-orderow-passiltersnabledtomproveheualityofthesensorsignal.Varioussensortypeswereconsideredfo rapplicationinthephysicalmodel.Th esensorstested includeastraingagebridge,appliednearthewingrootwhereth estructuralloadsarelarge;an d anaccelerometer,placednearthewingtipwherethedisplacementsar elarge.Agoodlinearityin theesponsesequirednditlsomportantthatthehaserelationshipetweenth earioussensorsisofgoodquality.Inordertofilterth elo wan dhighfrequencycontentsofth eresponsesignals,theyweresubjected,atalaterstage,toalo wpassfilteringwithacu tofffrequencyof50 Hz .nFigure4,itca nbeee nacomparisonofthesignalcomingfromth edifferentsensors,withan d withoutfilteringbeingapplied,duringforcedvibrationtests.

    During th efreevibrationtestsusingth ecentralrootpiezoelectricsensor,th etimeforth ewingtostoposcillatingafterbeingforcedtoa2Hzregimewasreducedfrom40 secondsinopenloopto 2econdswhenheoo pwaslosed.nheam eonditions,utsingowhewingip accelerometerasasensor,th etimefo rthewingtostoposcillatingwasreducedfrom40 secondsinopenloopto4secondswhentheloopwasclosed.

    48

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    50/62

    Opticaldisplacement ||1

    StrainGage+chargeamplifierMicro-Measurements

    DytranPowerUnit+Endevco IsotronAccelerometer

    SensorTec.Piezoelectric

    I0.00

    SSft*K**W #S5

    -' .' . T 1 V ^

    Figure14. ^s ri'i^'SensorIdentification

    -i( i i

    ,7

    controlauthorityLE>T E 4 pwardverticalgust t

    Trailing InducedAngleof Attach 'T y

    Figure15 .Wingreactiontoanupwardverticalgust

    49

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    51/62

    Thisimplees tav e oo dndicationofth eypeofsensortose ,hemountofpowerrequiredtoachieveacceptabledampingan dth emaximumamountofdampingproduced bytheactuatorsndtheontrolystem.tca nbenferredthatthepiezoelectricensorpresentedth ebestqualityinthemeasuredsignal.Th eschematicsfo rth ebuffetcontroltestareth esameasfo rth efreevibrationcontroltest,th eonlydifference,isthatthewingpanelwasplacedinsideawindtunnel.Thesystemhasasingleoutputan dadoubleinput,on efo rth egroupofactuatorsthatperformbendingand anotherfo rth eshapecontrol(Figure15).Fo rheresenttudyhewindunnelwasmodifiedoha tigidlatew aslacedthe upstreamndofthees tection.hewakero mthisbstaclewasusedtoeneratebuffetingflow.heositionofthisbjectouldeasilydjustedohatheesultingwakewouldimpingeonth emodelmounteddownstream.Th econfigurationfinallyselectedwasth eon ethatproducedth eargestbuffetesponseofth emodel.herefore,llofth euffetresponseatapresentedhereinwereobtainedfo rth eobstacleinthesamelocationan dorientation.Testswerecarriedutwithnl yheluminiumlatensidehewindunnel,nrderoeterminehe speedsatwhichth ebuffetwouldoccur(aspeedof5.5m /swasconsideredoptimal). Withthecontrolla wgainset tothedesiredvalueth etunnelspeed wasincreasedtoan d thenheld constantatapr eelectedvalue.Buffetresponsemeasurementsweremadeatavelocityof5.5m/s.Theoutputsignalfromth ePZTsensorwaschannelledtoatransferfunctionanalyserthatwasusedtocalculateth eauto-correlationfunctionoftheresponsesignal.Whenth econtrollawsareapplied,th eaverageamplitudeduetobuffetingdecreasedha sitca nbeseeninTable1 .

    50

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    52/62

    Tablel-Experimentalresults

    Piezodamping Piezodamping& shapecontrolAmplitude Frequency Amplitude FrequencyControlla woff 58 5mm 1H z 620mm 1HzControlla won 39 5mm 0.9Hz 32 5mm 0.66HzImprovement 32% 10 % 47.5% 34%

    Anppreciableuffetingeductionasee nbtained,speciallywhensingirfoilhapecontrol,whichombinedwithth eoo tctuatorswerebleoecreaseheverageuffetingamplituderom2%to7.5%.heirfoilhapeontrollsoecreasedth erequencyofthevibrationby 34%.Th eairfoilshapecontrolhaspresentedafeasibleengineeringdesignsolutionwhereheiezoelectrichapeontrolctuatorsrese doreateavorablehangesnift characteristics.

    PreliminaryConcluding RemarksTh eonceptan dmethodofexperimentaleroelasticibrationuppressionusingpiezoceramic actuatorsan dsensorstoimpartchangesindampingan daerodynamiccharacteristicstoth ewinghavebeenpresented.Anppreciablebuffetingreductionwasbtained,speciallywhenusingirfoilhapeontrol,whichcombinedwithth erootactuatorswereabletodecreaseth eaverageamplitudeinbuffetingfrom32 %to47.5%.Theairfoilshapecontrolalsodecreasedth efrequencyofthevibrationby

    5 1

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    53/62

    34%.Futurewind-tunneltestplanswillfocusonusingacompositewingmodelasatestbedfo ractivePZTsensing,actuationan dshapecontrol.Toesolveheiminishingontroluthorityoftheiezoceramicctuatorssirpeedsincreased,theairfoilshapecontrolha spresentedafeasiblesolutionwhereth epiezoactuatorsareused tocreateafavourablevariationinliftcharacteristics.

    52

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    54/62

    H P TER 6

    ON LUSIONS ND FURTHER WORKTh edaptivetructuresesignonceptsroposedresentngineeringeasibleolutionsoproblemsequiringctiveibrationuppressionndhapeontrolnircrafttructures.he objectiveinadaptivecompositestructuresistohaveastructurethatiscapableofrespondingto th environmentviacontrollgorithms.uc hstructureswouldno tonlyperformth eunctionsprogrammedintoitbutalsoaimtomaintainstructuralintegrityan dself-preservation.

    Theerformanceflutteruppressionsingiezoelectricctuationsemonstratedyincreasingth eratiooftheAmaxoth ecriticaldynamicpressureAcr.Th eoptimalcontroldesignisbasedonthelinearequationsofmotionwhereastheimulationsar ebasedonth enonlinearequationsofmotion.heumericalimulationsho wthatthen-planeorcesnducedbythepiezoelectricactuatorsareno tverysignificantenoughinordertoconsiderablyaffecttheflutterenvelope.Itwasobservedthattheperformanceofth epiezoelectricactuatorsindynamicbendingactuationod esonsiderablyuperioromparedoheassivectuationod e177% improvementcomparedto42% inth epassivemode).Th eonceptan dmethodofexperimentalaeroelasticvibrationuppressionusingpiezoceramicactuatorsan dsensorstoimpartchangesindampingan daerodynamiccharacteristicstoth ewinghavebeenpresented.Anppreciablebuffetingreductionwasbtained,speciallywhenusingairfoilshapecontrol,whichcombinedwiththerootactuatorswereabletodecreaseth eaverageamplitudenuffetingrom2%o7.5%.heirfoilhapeontrollsoecreasedhe frequencyof th evibrationby 34%.Futurewind-tunneltestplanswillfocusonusingacomposite wingmodelstestbedoractiveZTensing,ctuationndhapeontrol.oesolvehe diminishingcontrolauthorityofthepiezoceramicactuatorsasairspeedisincreased,theairfoilshapeontrolaspresentedafeasibleolutionwhereth epiezoctuatorsreusedtoreatefavourablevariationinliftcharacteristics.

    53

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    55/62

    Furtherworkisunderwayntw oronts:heirstistonhanceth eMARTTRUCTURES simulationprogramtoarryuttimeomainimulationsofth epanellutterphenomenand nonlinearcontrolstrategiesuc hasfeedbacklinearizationtechniquear ebeingincorporatedfo rth eactivepanelfluttercontrolproblem.Onthexperimentalide,moreomplexan dthree-dimensionalmodelseinguilttotudyheerformanceofth eiezoelectricctuatorsnd sensorsinthewind-tunnel.

    54

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    56/62

    1 ..Boydan dD.C.agoudas,Thermomechanicalresponseofshapememorycomposites..Intell.Mater.Sys.Struct,5,333-346,(1993)2.J.ullivan,nalysisfropertiesfiberompositesithhapeemorylloy

    constituents,roceedingsofth eecondnternationalConferencenntelligentMaterials,pp.1194-1209,(1994)

    3..iang,ndC.A.Rogers,One-dimensionalhermomechanicalonstitutiveelationsor shapememorymaterials,J.Intell.Mater.Sys.Struct,1 ,207-234,(1990)

    4..C .Fengan dD.Z.Li ,Dynamicsofamechanicalsystemwithashapememoryalloybar.J.Intell.Mater.Sys.Struct,7,399-410,(1996).

    5..J .raessernd.A .ozzarelli, roposedhree-dimensionalonstitutiveodelor shapememoryalloys,J.Intell.Mater.Sys.Struct,5,78-89,(1994).

    6..Baz,K .m annd.McCoy,Activeibrationontrolofflexibleeamssinghapememoryalloys.J.Soundan dVibration,140,437-456,(1990).

    7..Ikegami,D.G.Wilson,J.R.Andersonan dG.Julien,Activevibrationcontrolusingnitinolan d piezoelectricceramics.J.Intell.Mater.Sys.Struct,1 ,189-206,(1990)

    8.J.Maclean,.J .attersonndM.S.Misra,Modelingf hapeemoryntegratedactuatorfo rvibrationcontroloflargespacestructures.J.Intell.Mater.Sys.Struct,2,72-94,(1990)

    9..E .lark,iantagnetostrictionaterialsro mryogenicemperaturest50C.Proceedingsof th eSPIE,Vol.543,pp .374-381,992.

    10 .T.Honda,K.I.Araian dM.Yamaguchi,Fabricationofactuatorsusingmagnetostrictivethinfilms,ProceedingsofIEEE,MicroElectro-MechanicalSys,Japan,,pp .51-56,1994.

    55

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    57/62

    11 .J.Bian dM .A.Anjanappa,Activevibrationdampingusingmagnetostrictiveminiactuators, SmartStructuresan d Materials,N.W .Hagood(ed),SPIEVol.2190,pp .71-181,1994.

    12 .A.ulemanndV.B.enkayya, impleinitelementormulationor aminatedcompositeplatewithpiezoelectriclayers,J.Intell.Mater.Sys.Struct.,6,776-782(1995).

    13 .T.Baileynd.E .Hubbard,Distributedpiezoelectricolymerctiveibrationontrolofcantilever beams,AIAAJournal,25 ,606-610(1985).

    14 .E.F.rawleynd.euis,sefpiezoelectricctuatorsslementsfntelligentstructures,AIAAJournal,25,1373-1385,(1987).

    15 .M .eibowitznd.R .inson,ntelligentComposites,CMReport1-54,enteror CompositeMaterials,CollegeofEngineering,University ofDelaware,991.

    16 .B.T.WangndC.A.Rogers,aminatelateheoryorpatiallyistributednducedtrainactuators,JournalofCompositeMaterials,25 ,433-452(1991).

    17.C.L.Hornan dN.hankar,Aullycoupledconstitutivemodelorelectrostrictiveeramicmaterials,J.Intell.Mater.Sys.Struct.,5,795-801(1994)

    18 .E.rasad,heevelopmentofpiezoelectricndelectrostrictiveensorsndctuatorsor incorporationintosmartstructures,SensorTechnologyLtd.,CSAStear-9Report,997.

    19 .Y.C.Fung,Ontw odimensionalpanelflutter.JournaloftheAstronauticalSciences,25 ,45 -160(1958).

    20 .R.L.Bisplinghoff an dH.Ashley,PrinciplesofAeroelasticity.Wiley,New York(1962)21 .E.H.Dowell,anellutter:reviewoftheeroelastictabilityofplatesndshells.AIAA

    Journal,8,385-399(1970)22 .M.D.Olson,Somefluttersolutionsusingfiniteelements.AIAAJournal,8,747-752(1970)

    56

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    58/62

    23 .G.ander,.onndM.eradin,initelementnalysisofupersonicanellutter.InternationalJournalfo rNumericalMethodsinEngineering,7(3),379-394(1973)

    24 .T.Y.an gnd.H .ung,initelementanellutternhree-dimensionalupersonicunsteadypotentialflow.AIAAJournal,15(12),1677-1683(1977).

    25 .C.Mei,Ainitelementpproachoronlinearanellutter.AIAAournal, 15(8),1107-1110(1977)

    26 .R.M.V.Pidapartian dH.TYang,upersonicflutteranalysisofcompositeplatesan dshells.AIAAJournal,31(6),1109-1117(1993).

    27 .J.N.Rosettosnd.ong,initelementnalysisofvibrationndlutterofcantileveranisotropiclates.mericanocietyfMechanicalngineers,aper4-WA/APM-15 (1974).

    28 .R.S.Srinivasanan dB.J.C.Babu,Freevibrationan dflutterof laminatedquadrilateralplates.JournalofComputersan dStructures,27(2),297-304(1987).

    29 .K.J.Lin,D.J.Luan dJ.Q.Tarn,Flutteranalysisofcatileveredcompositeplatesinsubsonicflow.AIAAJournal,27*8),1102-1109(1989).

    30 .J.W.Sawyer,Flutteran dbucklingofgenerallaminatedplates.JournalofAircraft,14(4),387-393(1977).

    31 .GA.Oyibo,lutteroforthotropicpanelsnupersoniclo wusingffineransformations. AIAAJournal,21(3),282-289(1983).

    32.1.eendM.H.Cho,upersoniclutternalysisofclampedymmetricompositeanelsusingsheardeformablefiniteelements,AIAAJournal,29(5),782-783(1991)

    33 .D.G.iaw,Nonlinearsupersonicflutteroflaminatedcompositeplatesunderthermalloads.Computersan dStructures,65(5),733-740(1997).

    57

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    59/62

    34 .D.M.eend.ee ,ibrationnalysisfnisotropiclatesithccentrictiffener,Computersan dStructures,57 ,99-105(1995).

    35 .R.C.hou,X ueD.Y.ndM eiC,initelementim eomain-modalormulationor nonlinearflutterofcompositepanels.AIAAJournal,32(10),2044-2052(1994).

    36 .K .SRaoan dG.V.Rao,Largemplitudeupersoniclutterofpanelswithendselasticallyrestrainedagainstrotation.Computersan dStructures,11 ,97-201(1980).

    37 .B.S.armaan dT.K.Varadan,Nonlinearpanelflutterbyth efiniteelementmethod.AIAAJournal,26(5),566-574(1988).

    38 .C.E.Grayan dC.Mei,Largeamplitudefiniteelementflutteranalysisofcompositepanelsinhypersonicflow,AIAAJournal,31 ,1090-1099(1993)

    39 .C.M eian dD.J.Weidman,Nonlinearpanelflutter-afiniteelementapproach.ASME,New York,AMD-Vol.26 ,39-165(1977).

    40 .C.M eian dT.Y.Yang,Freevibrationsoffiniteelementplatessubjectedtocomplexmiddle-planeforcesystems.JournalofSoundan dVibration,23(2),145-156(1972).

    41 .T.Y.Yangan dA.D.Han,Flutterofthermallybuckledfiniteelementpanels.AIAAJournal,14,975-977(1976).

    42.1.R.DixonndC.Mei,initelementnalysisoflargemplitudeanellutterofthinlaminates.AIAAJournal,31(4),701-107(1993)

    43 .D.G.ia wnd.T.Y.ang,eliabilityndonlinearupersoniclutterfncertainlaminatedplates.AIAAJournal,31(12),2304-2311(1993).

    44 .D.G.iaw,upersoniclutterofaminatedhinlateswithhermalffects,ournalfAircraft,30,105-111(1993)

    58

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    60/62

    45 .D.Y.X uean dC.Mei,Finiteelementnonlinearpanellutterwitharbitrarytemperaturesinsupersonicflow.AIAAJournal,31(1),154-162(1993).

    46 .R.C.cottan dT.A.Weisshaar,Controllingpanelflutterusingadaptivematerials.JournalofAircraft,31 ,213-222(1994).

    47 .P.Hajelaan dR.Glowasky,Applicationfopiezoelectricelementsinsupersonicpanelsfluttersuppression,AIAAPaper91-2191(1991).

    48 .R.C.hou,C.M eindHuang-K.,uppressionofnonlinearanelluttertupersonicspeedsan delevated temperatures,AIAAJournal,34(2),347-354(1996)

    49 .D.Y.X uendC.Mei,Atudyofthepplicationofshapememorylloysnpanelluttercontrol.roceedingsofthethnternationalConferencenRecentAdvancesntructuralDynamics,412-422(1994).

    50 .H.S.zo und.I.seng,istributediezoelectricensor/actuatoresignorynamicmeasurement/controlfistributedarameterystems: iezoelectricinitelementapproach,JournalofSoundan d Vibration,138,17-34(1990)

    51 .S.K.Ha,C.Keilersan dF.Chang,Finiteelementanalysisofcompositestructurescontainingdistributedpiezoceramicsensorsan dactuators,AIAAJournal,30 ,772-780(1992).

    52.C.K.eendF.C.Moon,aminatedpiezopolymerplatesortorsionnd bendingensorsan dactuators,J.ofth eAcousticalSocietyofAmerica,85(6),2432-2439(1989).

    53 .E.F.Crawleyan dK.B.Lazarus,Inducedstrainactuationofisotropican danisotropicplates,AIAAJournal,29(6),944-951(1991).

    54.B.T.Wangan dCA.Rogers.,Laminatedplatetheoryfo rspatiallydistributedinducedstrainactuators,JournalofCompositeMaterials,25 ,433-452(1991).

    59

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    61/62

    55 .K.Y.am ,X.Q.en gan dJ.N.Reddy,Afiniteelementmodelorpiezoelectriccomposite laminates,SmartMaterialsan dStructures,6,583-591(1997)

    56 .K .Chandrashekharaan dA.N.Agarwal,Activecontroloflaminatedcompositeplatesusingpiezoelectricevices:initelementpproach,.ntell.Mater.ys .truct.,,96-508(1993).

    57 .H.S.Tzouan dR.Ye ,Analysisofpiezoelasticstructureswithlaminatedpiezoelectrictriangleshellelements,AIAAJournal,34,110-115(1996).

    58 .C.C.Lin,C.Hsuan dH.Huang,Finiteelementanalysisondeflectioncontrolofplateswithpiezoelectricactuators,CompositeStructures,35 ,423-433(1996).

    59 .A.Chattopadhyayan dC.E.eeley,Ahigherordertheoryfo rmodelingcompositelaminateswithinducedstrainactuators,Composites,28B,243-252(1997)

    60.J.N.Reddyan dJ.A.Mitchell,Refinednonlineartheoriesoflaminatedcompositetructureswithpiezoelectriclaminae,Journalof th eIndianAcademyofSciences,20 ,721-747(1995).

    61.K.D.onnalagadda,.R .auchertnd.E .landford,igher-orderisplacementformulationfo rapiezothermoelasticlaminate,MechanicsofElectromagneticMaterialsan d Structures,ASME,AMD-161/MD-42,145-156(1993).

    62.R.ammering,hepplicationf initehelllementorompositesontainingpiezoelectricpolymersinvibrationcontrol,Computersan dStructures.41,1101-1109(1991)

    63.S.R.Thirupathian dN.G.Naganathan,Acompositehellinitelementfo rthenalysisofsmartstructures,SmartMater.Struct.,SPIEVol.1916,424-438,(1993).

    64.V.V.aradan,.H .imnd.K .aradan,losedoo pinitelementodelingfactive/passiveampingntructuralibrationontrol,martMater.truct.,,85-694,(1996).

    60

  • 8/13/2019 INTEGRATED CONCEPTUAL DESIGN OF JOINED-WING

    62/62