169
Mamuka Gvilava Instruments for Modelling Black Sea River Basins: Research Proceedings for Guria Region of Georgia

Instruments for Modelling Black Sea River Basins: Research

  • Upload
    vutram

  • View
    244

  • Download
    9

Embed Size (px)

Citation preview

Page 1: Instruments for Modelling Black Sea River Basins: Research

Mamuka Gvilava Instruments for Modelling Black Sea River Basins:

Research Proceedings for Guria Region of Georgia

Page 2: Instruments for Modelling Black Sea River Basins: Research
Page 3: Instruments for Modelling Black Sea River Basins: Research

Integrated Land-use Management Modelling of Black Sea Estuaries ( ILMM-BSE ) Project

Implemented with the financial assistance of European Union in the framework of Black Sea Basin Joint Operational Program 2007-2013

Instruments for Modelling Black Sea River Basins: Research Proceedings for Guria Region of Georgia

ILMM-BSE Project ENPI Partner from Georgia International Association CIVITAS GEORGICA

Georgia 2015 November

Page 4: Instruments for Modelling Black Sea River Basins: Research

This Project is funded by the European Union http://europa.eu

EU Cross-Border Cooperation Black Sea Basin Joint Operational Programme 2007-2013 http://www.blacksea-cbc.net

Integrated Land-use Management Modelling of Black Sea Estuaries ( ILMM-BSE ) Project http://e-BlackSEa.net

The Project is implemented by the following Partners: ENPI Applicant: Bourgas Regional Tourism Association (Bulgaria) ENPI Partners: Bourgas Prof. Assen Zlatarov University (Bulgaria) Ukrainian Marine Environment Protection Association UkrMEPA (Ukraine) International Association Civitas Georgica (Georgia) IPA Lead Beneficiary: Hayrabolu Municipality (Turkey) IPA Partners: Namık Kemal University (Turkey) Turkish Marine Environment Protection Association TURMEPA (Turkey)

The contents of this publication is responsibility of authors engaged by ILMM-BSE Project and International Association Civitas Georgica and can in no way be taken to reflect the views of the European Union. ISBN: 978-9941-0-8381-5 For bibliographic purposes this publication may be cited as: Instruments for Modelling Black Sea River Basins: Research Proceedings for Guria Region of Georgia (2015), EU CBC Black Sea Basin JOP 2007-2013 funded Project Integrated Land-use Management Modelling of Black Sea Estuaries (ILMM-BSE), International Association CIVITAS GEORGICA, November 2015, Tbilisi, Georgia.

Page 5: Instruments for Modelling Black Sea River Basins: Research

v

CONTENTS

FOREWORD ..........................................................................................................................................vii

Three MoUs between Partner Universities, Local Authorities and CSOs ................................................... viii

Address of the Governor of Guria Region to ILMM-BSE Final Congress ....................................................... x

CHAPTER 1 WP4. P-S-R Indicators and Indices for Assessing Impacts Black Sea Coastal Areas ................. 11

BACKGROUND ............................................................................................................................................ 11

INTRODUCTION INTO INDICATORS AND INDICES ....................................................................................... 12

COASTAL ZONES ......................................................................................................................................... 15

Application of ICZM Progress Markers in Black Sea Region .................................................................... 16

Integral indices for coastal sustainability indicator sets ......................................................................... 18

Discussion ............................................................................................................................................... 20

RIVER BASINS / CATCHMETNS .................................................................................................................... 21

Flood Risk Sensitivity of Ergene River Basin ........................................................................................... 21

Catchment Erosion Model of Ergene River Basin ................................................................................... 24

DELTA, ESTUARINE AND MARINE AREAS .................................................................................................... 29

Developing Integrated GIS for Coastal Deltas and Associated Watersheds for Odessa Region .............. 29

Establishments of a Model Bank for Delta and Estuarine Areas of Odessa Region ................................ 32

Establishments of a Model Bank for Marine Areas of Odessa Region .................................................... 33

Modelling Black Sea River Mouths in Bulgaria under Climate Changes, See Level Rise & Disasters ....... 34

REFERENCES ............................................................................................................................................... 40

Page 6: Instruments for Modelling Black Sea River Basins: Research

vi

CHAPTER 2 Proceedings of Black Sea Workshop on Catchment Observations, Modelling, Management . 45

Address of the Black Sea Commission Permanent Secretariat ................................................................... 47

Address of the Black Sea Commission Member from Georgia ................................................................... 49

ILMM-BSE Project Implemented in Bulgaria, Turkey, Georgia and Ukraine ............................................... 51

Instruments for Modelling Black Sea River Basins: Application Case of Guria Region in Georgia .............. 57

Earth Observation Marketing Tools and Business Opportunities for Environmental Management ........... 63

The Importance of Marine Aerosols for Climate Change Assessments ...................................................... 69

BGSIP Workshop: an Earth Observation Capacity Building Resource for the Black Sea Area ..................... 79

ILMM-BSE: Case of Ergene River Basin in Western Turkey ........................................................................ 85

Nutrient Pollution of the Bulgarian Black Sea Coastal Waters – Problems and Prevention ....................... 89

CHAPTER 3 Proceedings of Students Scientific Workshop on Ecology of Black Sea River Basins............... 97

Address of the Rector of Batumi Shota Rustaveli State University ............................................................. 99

Emerald Network Habitats and Species of Kolkheti Lowland ................................................................... 101

Pollution Sources and Current Ecological State of Small Rivers of Adjara (Mejinistskali, Bartskhana) ..... 105

Ecotourism as the Key Factor for National Development......................................................................... 109

Current Data on Biodiversity of the River Natanebi Ichthyofauna and Water Pollution .......................... 113

Georgia-Turkey Transboundary Stripe Rare and Endangered Plants........................................................ 127

Use of Black Sea Coast Medical Flora against Some Chronic Diseases ..................................................... 135

Project of Global Importance: Sphagum as a Renewable Resource – Establishing a Sphagnum Farm ..... 137

Medicinal Plants of Adjaristskali Valley .................................................................................................... 143

Protected Areas of Kolkheti...................................................................................................................... 151

State of the Ecology of Kintrishi River ...................................................................................................... 155

Anthropogenic Impacts on Habitats of Kolkheti Lowland Shorelines ....................................................... 159

Relic Kolkhic Forests of Kolkheti Lowland ................................................................................................ 165

Page 7: Instruments for Modelling Black Sea River Basins: Research

vii

FOREWORD

Land is a scarce resource increasingly affected by the competition of mutually exclusive uses. Fertile land in rural areas becomes scarcer due to population growth, pollution, erosion and desertification, effects of climate change, urbanization etc. On the remaining land, local, national and international users with different socioeconomic status and power compete to achieve food security, economic growth, energy supply, nature conversation and other legitimate objectives.

Land use planning can help to find a balance among these competing and sometimes contradictory uses. Within the scope of European Integrated Land Use Management Modelling of Black Sea Estuaries (ILMM-BSE) project, land use change was modelled in Ergene basin and its delta in Turkey; Ropotamo and Veleka rivers’ basins and their deltas in Bulgaria; Danube, Dniester and Dnieper deltas in Ukraine, Guria region in Georgia for their commonalities, from the

view point of their current conditions and characteristics.

Although the primary objective of the project was to model land use change, land use planning application to support sustainable development within given areas or specifically to ensure the protection of ecosystem services, biodiversity and high conservation values, mitigation of climate change and adaptation to it and food security subjects were studied.

Additionally, impact assessment and management tools for sustainable land use, new institutional legislation for land-use planning authorities, strategies for public and stakeholders’ participation in the decision making process as well as the guidance for the development of decision-support systems were investigated. We indeed hope that network established during the project and culminated with triad of signed memoranda (see next page), will be successfully applied to solve common environmental problems.

Project Coordinator

Mrs. Sonya Enilova

Chairperson

Bourgas Regional Tourist Association

BULGARIA

Project Joint Research Coordinator

Prof. Dr. Fatih Konukcu

Academician

Namik Kemal University

TURKEY

Page 8: Instruments for Modelling Black Sea River Basins: Research

viii

Three MoUs between Partner Universities, Local Authorities and CSOs

Page 9: Instruments for Modelling Black Sea River Basins: Research

ix

FOREWORD

Integrated River Basin Management (IRBM), Integrated Coastal Zone Management (ICZM), other multistakeholder governance processes are gaining new impetus in Black Sea region, stimulated via recent signing by Georgia and others association agreements with the EU.

ILMM-BSE project comes timely in supporting the joint research coordination efforts and initiatives in four out of six Black Sea coastal countries, making emphasis on analyzing and modelling environmental impact of land uses and activities on riverine & estuarine ecology.

The Region of Guria and its main river basins (Supsa and Natanebi) were chosen as study areas in Georgia. ILMM-BSE thus followed-up the efforts supported by EuropeAid ECBSea, FP7 enviroGRIDS, PEGASO & IASON projects.

In addition to providing and testing a range of river catchment modelling and management tools, partially described in this publication, these efforts resulted in policy outcomes in Georgia and in the region, including joining

GEO – The Group on Earth Observations – by two remaining Black Sea countries (Georgia, Bulgaria) and by the Black Sea Commission Permanent Secretariat (at GEO X, XI and XII).

As a picture is worth a thousand words, this book starts with the deliverable produced by joint project partner efforts, illustrating with examples the value of indicators and integral indices within DPSRF context. This analytical framework is further implied when reporting the proceeding of two project workshops, held in Batumi, Georgia, contributed by both internationally renowned researchers, as well as the young Georgian scientists. But without great support of local partners from Guria, all this work would have not been feasible!

This colourful decision-making framework was apparently meant by Governor of Guria at the Project Final Congress (see next page), when citing greatest Georgian thinker in his speech, and whose very words we use as the epigram, explaining this publication.

Mr. Giorgi Meskhidze

President

International Association "Civitas Georgica"

GEORGIA

Dr. Mamuka Gvilava

Joint Research Coordinator for Civitas

ICZM National Focal Point

GEORGIA

Page 10: Instruments for Modelling Black Sea River Basins: Research

x

Address of the Governor of Guria Region to ILMM-BSE Final Congress

Koç Holding Conference Hall, Istanbul, Turkey, 05 November 2015

Distinguished Rectors and Mayors from Partner Countries, all Participants of the Final Congress,

In my capacity of the Governor of Guria Region of Georgia, let me thank our hosts and organisers for inviting to the Final Congress of the European Black Sea Cross-Border Cooperation Project in this wonderful location of Istanbul!

Guria Region is situated in the south-west part of Georgia, along the Black Sea coast. Its population is around 140 thousand.

Our region consists of four Municipalities: Lanchkhuti, Ozurgeti, Chokhatauri and the City of Ozurgeti. Since 2014 City Ozurgeti obtained the administrative status of the self-governing town.

I am very pleased, that as an outcome of this European project, the Mayor of Ozurgeti will sign the Memorandum of Understanding with counterpart Municipalities from other participating Black Sea countries.

When addressing the Second Black Sea Stakeholder Conference, organized by the European Commission earlier this year in Sofia (Bulgaria), we have stated that the Guria actively captures all opportunities of participation in European programmes and initiatives and that Black Sea Cross-Border Cooperation Program is particularly attractive European instrument for regional integration. Let me reiterate, that we indeed look forward to participation of our governmental and non-governmental organisations, educational institutions, small and medium size enterprises in regional cooperation through Black Sea Cross-Border Cooperation and other European support mechanisms.

Guria is ready to engage with counterpart Regions from the Black Sea countries, thus striving to integrate with European values, strengthening the cooperation between these Regions and enhancing international links and visibility of Guria.

It is worth highlighting, that administrative borders of the Guria Region essentially coincide with ecological boundaries of our watersheds. With improved sanitation and waste management practices, where we would strongly benefit from greater support and sharing of European experience, Guria could indeed improve the protection of river basins, coastal zones and marine environment, by following the approaches compatible with Water Framework Directive, Marine Strategy Framework Directive and newly adopted Maritime Spatial Planning Directive.

Approximation with these governance arrangements are strongly present in EU-Georgia Association Agreement, signed in late 2014. Guria could indeed be the excellent test bed for comprehensive implementation of European compatible regulations. Outputs of this particular European project I trust also brings us a bit closer to the development and the establishment of European instruments of civic participation, education and research in support of governance.

We are therefore welcoming international community, European and regional partners to cooperate with us with more energy, and we are committed to provide all necessary means at our hands to make this cooperation and support mutually beneficial. I would like to especially call on sponsors of CBC program in the next phase to strongly support the Regions of the Black Sea, and of course – the Guria Region in particular!

I am particularly pleased today that in addition to local authorities, the project participating civic organisations and universities are establishing partnership agreements. Such cooperation agreements can be a strong instrument for regional cooperation and for closing the gap between the civic movement, the science and the governance.

I am also pleased that the Georgian education establishment is represented here by the Batumi Shota Rustaveli State University and would like to use this opportunity and invite them to establish the similar Memorandum of Understanding with the Administration of the Governor of Guria Region!

Let me finish my address with excerpts from the 12th Century prominent Georgian poem The Knight in the Panther’s Skin, where, I trust, the great Shota Rustaveli speaks about the holly link between the nature and the governance:

"…He has us given the nature, infinite in its colours;

from Him is every monarch, and in His sole power…"

Concluding with these words, wish you all a very successful Final Congress. Thank you for the attention.

Mr. Gia Salukvadze

Governor of Guria Region, Georgia

Page 11: Instruments for Modelling Black Sea River Basins: Research

 

  11

”…ჩვენ, კაცთა, მოგვცა ქვეყანა, გვაქვს უთვალავი ფერითა, მისგან არს ყოვლი ხელმწიფე სახითა მის მიერითა...” 

შოთა რუსთაველი, "ვეფხისტყაოსანი" 

"…He has us given the nature, infinite in its colours;  from Him is every ruler, and in His sole power…"  Shota Rustaveli, The Knight in the Panther’s Skin 

 

 

CHAPTER 1 

WP4. P‐S‐R Indicators and Integrated Indices for Assessing Impacts of Catchment Land‐uses and Activities on Black Sea Coastal, Deltaic, Estuarine and Marine Areas 

Mamuka Gvilava (Civitas Georgica), Fatih Konukcu (NKU), Valentin Nenov (BTU), Andriy Volkov (UkrMEPA/ODEKU), Husein Yemendzhiev (BTU), Selcuk Albut (NKU) 

BACKGROUND 

ILMM‐BSE  group  of  activities  2.1‐2.4  are  designed  to  perform  research  work  packages WP1‐WP4  and generate  related  deliverables.  Particularly,  Work  Package  WP4  prescribes  the  (i)  Development  and evaluation of  criteria and  standards  for  implementation of  integrated  sustainable  land‐use planning and management;  (ii) Development of  indices and  index  for assessing  land‐use  impacts on delta ecology;  (iii) Erosion  and  desertification  risks  assessment  for  watersheds;  (iv)  Development  of  tools  for  predictions required  for  decision‐making;  (v)  Methodologies  for  qualitative  and  quantitative  accounting  of  the multifunctional  effects  of  land management  and  development  strategies with  regard  to  environmental protection, rural development, land use, landscape, tourism, recreation, agriculture and forestry activities; (vi)  Assessment  of  trans‐boundary  problems;  (vii)  Thresholds  of  sustainability;  (viii)  Guide  for  the development of decision‐support systems;  (ix) Strategies  for public and stakeholders’ participation  in  the decision  making  process;  (x)  Institutional  strengthening  for  land‐use  planning  authorities;  (xi)  New institutional  legislation for  land‐use planning authorities; (xii) Evaluation criteria for Natural Parks, Natural Assets,  and World Heritage  Sites  in  estuary watersheds;  (xiii) Development of  an  integrated  framework analysis; (xiv) Impact assessment and management tools for sustainable land use; (xv) Development of P‐S‐R of indicators for the use of decision makers. 

Above tasks need to be considered in integrated methodological framework for decision‐making, while this particular deliverable deals with specific aspect of the framework concerned with pressure‐state‐response type  indicators  (see  (xv)),  as  well  as  cumulative  indices/index  for  assessing  land‐use  impacts  in  river catchments and consequently on estuarine and delta ecology (see (ii)). These aspects essential would touch base for several aspects of the above listed components, such as (i), (v), (vii), (xiii) and (xiv). 

This chapter first provides short  introduction  into general  instrument of  indicators and cumulative  indices in support of the sustainable development, with special emphasis on river basins/catchments/watersheds, coastal zones, river deltas and estuarine systems and ultimately the marine environment of the Black Sea. Sets of progress  and  state of  the environment monitoring  indicators  and  related  cumulative  indices  are defined for above components, based on and similar to European methodologies available for the coastal zones. Examples from various case study areas under ILMM‐BSE domain are provided illustrating proposed approaches,  and  certain  recommendations  are  prescribed  how  best  to  replicate  these  approaches elsewhere in countries and localities of the Black Sea region. 

Page 12: Instruments for Modelling Black Sea River Basins: Research

12

INTRODUCTION INTO INDICATORS AND INDICES

There is a plethora of sources describing various aspects and methodologies related to decision making

instruments such as indicators and indices/index in multiple fields of applications.

Various sets of indicators are usually defined to measure specific symptomatic aspects of certain

phenomena of societal importance, so that these measurements are representative of wider more

complicated range of variable affecting or being affected by these phenomena. Rationale here is that due

to various restrictive factors (mostly related to constraints of available time, resources and expertise) not

all needed variables can be measured or inferred numerically, therefore a smaller subset of inherently

informative key variables are selected as indicators, those substantively representative of the wider sets of

variables.

Indicator variables can not be still reduced to comprehensible number of variables and further weighting

and cumulative aggregation is required for indicators to be useful for real life decision-making. These

constrains are largely due again to limiting factors such as squeezed timeframe available for decision-

making (time span for decision-making is inherently in short supply in democracies, defined at election

timeframes), as well as due to inability of human beings to consciously discriminate between too many

values derived even from selected key variables – indicators, moreover that at the fundamental level final

decision-making, whenever sufficient information for decision-making is available, is performed in three

outcomes: positive, negative or ‘in progress’. This defines the need to introduce indices (or even single

index), as a weighted scores or otherwise derived combination of calculations performed over selected

indicators.

As mentioned above, there is a large literature devoted to these subjects. For practical reasons it is

considered more valuable to direct reader to some encyclopaedic web resources, rather than diving into

rigorous scientific coverage of the field. Particularly useful are the following internet resources:

http://www.eoearth.org/view/article/151714 (Morse 2007). This reference provides examples of

development indicators and indices with practical explanations of various methodological aspects and

providing short description of textbook examples such as UNDP’s the Human Development Index (HDI), Corruption Perceptions Index (CPI) of the Transparency International and the Environmental Sustainability

Index (ESI) of the World Economic Forum. Latter can be represented into more informative pressure-state-

response (PSR) sub-components, capable of revealing finer details for both the developing (with weaker

response indicators) and developed (with stronger pressure and state indicators) countries.

http://www.eoearth.org/view/article/51cbee377896bb431f696317 by Bartelmus (2013) explains indicators

of sustainable development. Diagram from this resource, reproduced below, explains social, economic and

environmental triad, allocating various quantification and accounting tools invented for informed decision-

making, most comprehensive of which is the Drivers-Pressure-Sate-Response Framework (DPSRF), similar

to DPSIR (Drivers-Pressures-States-Impacts-Responses), regularly applied by the European Environmental

Agency (EEA) towards the European environment state and outlook reporting (see Figure 1 below,

reproduced from this reference).

Page 13: Instruments for Modelling Black Sea River Basins: Research

13

Figure 1. Various analytical instruments for measuring sustainable development

Aggregation of indicators into traffic light indices are introduced as well (red alert, yellow wait and see, and

green o.k.) in this reference. Excellent recent example of the county level index for land development

pressures for conterminous US is provided in Grekousis and Mountrakis, 2015 (see Figures 2 and 3 in that

reference), while nice example of direct population opinion sensing through crowdsourcing is provided at

the http://techpresident.com/news/24744/open-survey-data-transition-initiative-helps-interpret-state-new-york-city.

Before entering into our specific cases, it is worth mentioning that the availability of the proper Spatial Data

Infrastructure (shortly SDI), not necessarily comprehensively complete set, covering all potential variables

needed for the sustainable management of land and water resources, but of sufficient coverage and based

on sound principles for ultimate integration into indicators and indices used for meaningful decision-

making purposes, is the necessary aspect of these methodologies. Indeed, there are several best practice

examples of the application of SDI-based workflow into cumulative mapping of the environment

sustainability indices. Various methods and tools can be used for accomplishing such tasks, but three

attractive approaches are referred to below as an inspiration for combining modern SDI systems into

applications for deriving spatially explicit sustainability indices and indicators.

The first good example is the agricultural Land Evaluation and Site Assessment tool Enhanced with GIS

(ELESA), reported in Lee and Lee and Linebach (2008). The main advantage of this approach is the use of

the ESRI model builder for automating the weighted overlay of baseline SDI / GIS layers in a relatively short

reassessment time. This makes the approach acceptable for participatory planning and decision-making

applications because it can be optimized for use even during a stakeholder meeting or in the field. Despite

its agricultural origin, this tool can be adapted for watershed-based applications, as well as for processing

coastal management indicators (harmonization of indicator tools across river catchment basins and coastal

zones is advocated in the paper by Lehmann et al. 2009).

The second approach quoted here was reported by Steadman et al. (2004) and it is used by Minerals UK

(British Geological Survey) for establishing relationships between aggregates and environmental sensitivity

indices in the context of Strategic Impact Assessment (SIA). The approach is based on composite sensitivity

mapping of multiple thematic layers, ranging from conservation areas and cultural heritage to forestry and

Acronyms: DPSRF Driving-Force-Pressure- State-Response Framework FDES Framework for the Development Environment Statistics MFA Material Flow Accounts PSRF Pressure-State-Response Framework SAM Social Accounting Matrix SEEA System for integrated Environmental and Economic Accounting SNA System of National Accounts SSDS System of Social and Demographic Statistics

FDES (PSRF)

SSDS SAM

DPSRF

SNA

SEEA MFA

POPULATION

ENVIRONMENT

ECONOMY

Page 14: Instruments for Modelling Black Sea River Basins: Research

14

agriculture. In this approach, similar to the ELESA methodology, polygonal GIS features are converted into

grid layers with cells assigned a value of 0 or 1. Grid layers are then assigned weighting scores based on

expert or stakeholder judgements, and the composite grid layer is generated and converted into a

graduated colour map depicting environmental sensitivity.

The third ecological example is oil spill sensitivity mapping of intertidal areas, reported at coastwiki

webpage at http://pegasoproject.eu/wiki/Oil_sensitivity, based on the system developed by Van Bernem et

al. (2007). In this approach complex GIS computational framework is exploited to derive the integral values

of the oil sensitivity calculated by combining sensitivities of benthos and bird areas based on their spatial

and seasonal variability. For the benthos only one index value is determined while for the birds, the index

value depends on the breeding and/or migration period. The final sensitivity map is assembled seamlessly

into GIS system digital map for the utility of Havariekommando authorities for contingency preparedness

towards oil spills in the sensitive and valuable coastal environment of Wadden Sea. More information on

the sensitivity raster of the German North Sea is available in Van Bernem et al. (2007).

As is evident from above descriptions and examples, indicators and cumulative indices are used in almost

all societal aspects of governance. From ILMM-BSE perspective, we are more concerned with

environmental sustainability variables with respect to Black Sea estuaries, deltas, catchments draining into

and marine areas affected by land based sources and riverine inputs, in particular those related to land

cover change as well as pollution loads. Respective concepts are therefore introduced and explained below

based on three (rather four) example cases from four Black Sea countries, considered for such systems as

the (i) coastal zones (Georgia), (ii) river basins / catchments (Turkey, Ukraine), (iii) estuarine (Ukraine) and

delta (Bulgaria) and (iv) marine areas (Ukraine). These various cases are described in the quoted order

subsequently further below in this deliverable.

As a last introductory note, distinction is made between the state of the environment and performance

indicators, briefly described at http://www.eoearth.org/view/article/152625 by Jakobsen (2008) article

(retrieved from the same web resource) after explaining in some further detail environmental indicators

(like those defined by the World Economic Forum, EEF), while more about this aspect is discussed in the

first presentation below concerning the coastal zones, explaining European progress markers/indicators

tool (particularly as applied in the Black Sea region) further in this section. It seems fairly straightforward to

extend the similar tool towards monitoring the implementation progress in upstream catchments, recipient

estuaries / deltas and marine areas. As integrated management principles are almost identical for these

environmental domains, simple modification of the tool is possible by substituting concepts of Integrated

Coastal zone Management (ICZM) respectively towards Integrated River Basin Management (IRBM), Delta

and Estuarine Management Planning (DEMP) as well as the Marine Spatial Planning (MSP) and/or

Integrated Maritime Policy (IMP), accompanying them with slightly modified texts where found appropriate

and needed. Similar to Black Sea Commission’s ICZM Advisory Group (ICZM AG), Advisory Groups on Control of Pollution from Land Based Sources (LBS AG) as well as on the Pollution Monitoring and

Assessment (PMA AG) could provide regional umbrellas for assessing implementation progress governance

arrangements with regard to land based sources of pollution and their monitoring/assessments.

Finally, it is important to quote and consult with the recent monograph on marine indicators (UNEP, 2014),

compiled by UNEP for the Regional Seas in the context of international governance instruments such as the

Regional Seas conventions and action plans (including those adopted for the environmental protection of

the Black Sea). The quoted report is explaining in detail all sorts of sustainability indicators and their merits

within the DPSIR framework (see, for instance, Figures 1.1 and 1.2 from UNEP, 2014, and texts in-between).

Page 15: Instruments for Modelling Black Sea River Basins: Research

15

COASTAL ZONES

Sub-section outlines the experience of the Black Sea countries with the application of European Union (EU)

Integrated Coastal Zone Management (ICZM) progress markers/indicators and presents the basic

instructions used by country representatives to adapt the use of EU ICZM progress indicators to their

particular needs, while providing some technical explanations and tips in the application of this toolset.

Then, the sub-section introduces and describes the software instrument developed to simplify data entry

and modification processes. In addition to the ICZM progress indicators, the sub-section applies spectrum-

type visualisation to coastal issues in order to derive coastal sustainability indicators for a small pilot area

along the Georgian coast, in Guria Region. Recommendations on the further application and use of both

instruments are made, and certain considerations in building an interface between ICZM progress reporting

and aggregated mapping of coastal sustainability indicators are suggested. Presentation in this sub-section

closely follows the recent reference Gvilava et al. (2015). Most relevant provisions are utilised hereby,

therefore the reader is referred to quoted manuscript to learn further details.

In May 2002, the European Parliament and the Council approved Recommendation 2002/413/CE

Concerning the Implementation of Integrated Coastal Zone Management (ICZM) in Europe (EC 2002). The

major requirement of the Recommendation was to outline the steps for member states to develop national

strategies for ICZM. Given the cross-border nature of many coastal processes, coordination and

cooperation with neighbouring countries and in the regional seas context were encouraged. It was

requested that the experience gained in the implementation of ICZM be reported back to the commission

within 45 months.

To facilitate the implementation of the Recommendation, a European ICZM Expert Group was set up, which

in turn, recognizing the importance of monitoring and benchmarking for sustainable development at the

coast, created an Indicators and Data Working Group (WG-ID). The WG-ID proposed that member states

and candidate countries employ two sets of indicators (Martí et al. 2007):

(i) ICZM progress indicators – indicators that measure the progress of ICZM implementation; and

(ii) Coastal sustainability indicators – a core set of indicators and measurements for monitoring sustainable

development of coastal zones.

Used together, the two sets were meant to reveal the degree to which ICZM implementation can be

correlated to more sustainable coastal development.

The national strategies on ICZM, requested by the European Recommendation, were the test beds for the

application of the ICZM progress and coastal sustainability indicators. Within the requested timeframe,

dozens of countries prepared reports on the implementation of ICZM national strategies, including

experiences with the use of indicators.

The Recommendation (EC 2002, Chapter VI.3) requested the European Commission to evaluate its

implementation. The main sources of information for this evaluation were the first national reports; state-

of-the-coast assessment by European Environmental Agency (EEA 2006). The results were documented in

the formal evaluation report of the European Commission (COM 2007).

In the evaluation, particular attention was paid to the use of indicators by the member states in their

national strategies and reports, recognizing that ‘although progress has been achieved towards a common assessment framework … a methodology to link the efforts in ICZM to trends in sustainability is still lacking’.

Page 16: Instruments for Modelling Black Sea River Basins: Research

16

The results of the use of both types of indicators (ICZM progress and coastal sustainability) were well

documented by the WG-ID (2006). Their report highlights the importance of the cross-correlation of coastal

management efforts with the outcomes achieved in the sustainable development of coastal zones.

Antonidze (2010) also recommends a coherent system of indicators for an assessment of the state of Black

Sea coastal zones and implementation of ICZM.

The integration of management progress and sustainability indicators remains high on the agenda of the

European Commission, particularly in the context of a new Directive on Maritime Spatial Planning (MSP

2014) and the application of legally binding instruments, such as the Protocol on Integrated Coastal Zone

Management in the Mediterranean (Protocol 2008). This Protocol (2008), which was already ratified by the

European Commission, in its Article 27 calls on Parties, including European Community as a signatory and

ratifying Party, to ‘define coastal management indicators, taking into account existing ones and cooperate

in the use of such indicators’.

Evaluating progress in complex disciplines such as ICZM is indeed a challenging task. The colour-coded set

of indicators proposed a decade ago by the ICZM Expert Group of the European Commission (WG-ID 2005;

Pickaver et al. 2004) is a recognized instrument, used frequently for monitoring the progress made in ICZM

implementation. An attempt to apply a similar monitoring and reporting methodology was conducted in

the Black Sea region with support of the EuropeAid-funded ECBSea project (Environmental Collaboration

for the Black Sea), whereby six coastal countries, Bulgaria, Georgia, Romania, Russian Federation, Turkey

and Ukraine, reported on their ICZM progress under the auspices of the Black Sea Commission (BSC). The

results were published in the State of the Environment of the Black Sea report (BSC 2008). The Advisory

Group on the Development of Common Methodologies for ICZM to the Commission on the Protection of

the Black Sea Against Pollution (ICZM AG for short) has further fine-tuned progress reporting to their needs,

expanding it to include an indexed reference system with the corresponding arguments in textual format to

underpin upgrading or downgrading colour-coded markers.

This sub-section also describes the local level effort of introducing spatially explicit mapping for measuring

those indicators that can be expressed in spatial terms by following the approaches suggested in the report

of the ICZM Expert Group of the European Commission and published by the European Topic Centre on

Terrestrial Environment (ETC-TE 2004). The illustrative example provided in this sub-section is based on the

experience of the above mentioned ECBSea project in Georgia.

Preparation of the document entitled the Integrated Plan for Sustainable Development of Tskaltsminda

Coastal Community (ECBSea 2009) was backed by the establishment of a small-scale Geographical

Information System (GIS). A range of thematic and planning maps produced for this purpose show how the

land is used today, highlight where the ecologically valuable areas are located, and propose different zones

for the future by integrating ecological sensitivities with economic development agendas and identifying

options that would benefit both the local people and the coastal environment. These GIS layers allowed to

test the spatial planning and indicator mapping methodologies developed for BSC ICZM AG (Yarmak 2004).

Application of ICZM Progress Markers in Black Sea Region

ICZM progress indicators developed for the European Union (EU) context have been applied to monitor the

progress of ICZM implementation in the Black Sea region (Lucius 2008), including in Georgia, as reported by

Bakuradze and Gvilava (2008). After this initial attempt in 2008, the BSC ICZM AG decided at its annual

meeting in 2010 to develop a concise user manual, a Guideline for Completing ICZM Progress Indicators –

The Black Sea Region (draft version dated 2011.10.10).

Page 17: Instruments for Modelling Black Sea River Basins: Research

17

This guideline is entirely based on and closely follows the approaches suggested by Pickaver et al. (2004)

and WG-ID (2005), updated to meet the needs of Black Sea coastal countries in completing periodic self-

assessments. In line with the original methodology tested in European countries, the ICZM progress

indicator table is grouped into 4 phases comprising 31 actions. Any progress in the implementation of ICZM

is indicated by filling colour-coded marker tables. Moreover, the guideline includes a section with

instructions and technical tips on how to fill in the progress indicator table and another section containing

notes explaining the meaning of the ‘phases’ and ‘actions’, essentially repeating the provisions, as established at EU level (WG-ID 2005).

The guideline itself was proposed to be agreed upon (and amended from time to time) by the BSC ICZM AG

at its annual meetings, while reporting milestones for measuring progress with ICZM indicators were

proposed to correspond with ministerial meetings or international cooperative actions of Black Sea

countries within the framework of the Bucharest Convention. The reporting milestones to date include the

ministerial meetings convened for the adoption of Odessa Declaration (1993), signing of the Black Sea

Strategic Action Plan of 1996 (BS-SAP 1996) in Istanbul, adoption of the Sofia Declaration (2002) and signing

of the updated Black Sea Strategic Action Plan of 2009 (BS-SAP 2009).

Results of the ICZM progress assessments, covering approximately a 5-year period, are to be included in the

periodic reports on the implementation of the BS-SAP prepared by the Black Sea Commission and

submitted to the regular ministerial meetings. At the same time, operational update of the ICZM progress

indicators is meant to be performed annually and presented at ICZM AG meetings. Results of the

operational ICZM progress marker assessments should, therefore, be reported to the Black Sea Commission

on an annual basis as well.

The progress markers and respective endnoted textual arguments are addressed flexibly at four

administrative and spatial levels: international, national, sub-national and local. The international level

might include Black Sea regional, EU, regional seas or other applicable international scales. The sub-

national level might include coastal regions, large protected areas or similar units of sub-national

designation as determined by each country. Local level initiatives are to be considered in an ad hoc manner

as progress is monitored at local level and any initiatives at this stage of development are not accounted for

on a site-specific/geographic basis. However, in future, it is envisaged to integrate such initiatives with

spatially explicit progress indicators. The European Nomenclature of Territorial Units for Statistics (NUTS)1

and for Local Administrative Units (LAU)2 could indeed provide a common backbone for both types of

indicators.

It is considered the responsibility of the respective ICZM National Focal Points to complete and validate

with stakeholders the responses at national, sub-national and local levels. Progress at the international

level is to be observed and completed by the ICZM AG and endorsed at its annual meetings, reported to the

BSC annually and to ministerial meetings at least once in 5 years on average. The next reporting milestone

is a ministerial meeting, anticipated in 2015-2016.

The guidelines for filling the ICZM implementation progress markers contains full instructions for filling the

colour coded progress markers, as well as annotated description of all ICZM phases and actions as defined

in original sources quoted above and sample of the indicator table to fill in word processing format.

Moreover, software tool was developed to simplify indicator rating entry (see Figure 2). Repository of

developed toolset, scientific article describing it, as well as demonstration video are available as faceted

1 http://ec.europa.eu/eurostat/web/nuts/history 2 http://ec.europa.eu/eurostat/web/nuts/local-administrative-units

Page 18: Instruments for Modelling Black Sea River Basins: Research

18

search items at the following link hosted by European FP7 IASON and EOPower projects at

http://www.iason-fp7.eu/index.php/en/knowledge-base-eng/toolkits-eng_and

http://eopower.grid.unep.ch/drupal_IASON/?q=node/22.

Figure 2. Main window of ICZM progress indicator software tool (sample view)

Integral indices for coastal sustainability indicator sets

In addition to progress reporting, the application of spatial indicators is another useful approach for

assessing progress at all levels of ICZM implementation. While progress markers are needed to assess

governance efforts, the next logical step is to introduce spatially explicit mapping tools for measuring those

indicators, which can be expressed in spatial terms.

Indeed, as suggested by ETC-TE (2004), visualisation of the indicators in a mapped form is an informative

way of presenting information on coastal issues and can be used for measuring spatial manifestation of the

progress achieved or deficiencies encountered in managing coastal environments. With more free and

open source spatial data and information being made accessible though internet data clearinghouses, as

well as with the advancement of user-friendly GIS tools, it is tempting to explore the possibilities with the

development of methodologies for spatial colour-coded indicator maps in addition to tabular progress

indicator sets.

A simplified combination of the above described methodologies was applied to our pilot coastal area,

exploiting the GIS dataset generated while preparing the Integrated Plan for Sustainable Development of

Tskaltsminda Coastal Community. The GIS layers available for use included vulnerability zones for flora and

fauna, habitat types, land use and cadastral layers, as well as functional zoning (see maps enclosed with

ECBSea 2009). These layers, describing the physical environment, as well as the current use and proposed

Page 19: Instruments for Modelling Black Sea River Basins: Research

19

management regimes for the area, were first rasterised using a grid conversion tool, weighted based on

expert judgement and scored by specialists involved in GIS data generation. The results were combined into

a final layer that was interpreted as the indicator for the rate of coastal development pressures. The

adequacy of the end result was validated by expert judgement and by testing sensitivity against reasonable

values for weights applied to each parameter and layer. The process was automated in the model builder

environment; thus, reanalysis is easily feasible in case of a need to change the weight factors attributed.

The final step in the calculation and mapping of the results was to establish threshold values for the

combined indicator, where the level of land ‘development’ could be rated as high, medium or low. Instead of using a graduated single colour ramp, traffic light colours were applied to distinguish among the levels of

development indicator values as red, yellow and green, with their obvious qualitative meanings. Built-up

areas, such as houses and buildings, transportation and other impermeable surfaces and dirt roads were

coloured in black and gray, respectively. The overall contrast of the map colours was subdued to improve

the cartographic appeal of the result. Although there were essentially no data available in the water

domain, for mere illustration purposes so that adequate graphical interpretation can be achieved for both

land and water in the coastal zone, again, expert assessments and local anecdotal knowledge were used to

characterize water quality with relevant indicators in cyan (high), blue (medium) and pink (low) colours

(indicating water quality). An excellent example of rigorous treatment of various water quality indices

integrated into traffic light–visualized pressure indicator for the water domain of the coastal zone can be

found in Konovalov et al. (2013).

Figure 3. Colour-coded indicator map for Tskaltsminda local coastal community pilot area (PEGASO project Spatial Data Infrastructure (SDI) Coastal Atlas tool can be used for web dissemination at http://pegasosdi.uab.es/geoportal/index.php/guria-coastal-region-case)

Page 20: Instruments for Modelling Black Sea River Basins: Research

20

The final result of spatial indicator mapping for the Tskaltsminda coastal area in Guria Region of Georgia is

shown in Figure 3 above. The total areas occupied by each threshold value, which can easily be calculated

with GIS, could be treated as quantitative indicators, which can be monitored repetitively in time to

characterise the spatial development pressures at play in the given coastal area (Arobelidze 2010, personal

communication). Despite the fact that only a limited number of threshold values were used to codify the

pressure indicators (just three coding colours used for each environmental, land and water, domains, plus

built-up), the approach seems fairly compatible with experience from mire ecology, for instance, whereby

these very complex ecosystems are satisfactorily classified in only a limited number of subdivision

typologies (see quote from Joosten 1998).

Discussion

The application of progress indicators using software tool briefly described above is simple and robust for

interactive use by ICZM practitioners even in the presence of stakeholder forums invited for scrutinising

and validating the progress ratings. The toolset is believed to be of quite a generic nature for application

not only in the EU and Black Sea context, but to any regional sea, with potential even for replication from

ICZM into other policy contexts such as MSP and Integrated River Basin Management (IRBM), see further

below. Apart from data entry, the executable provides the user with much flexibility such as the option to

edit the texts defining the ICZM progress indicators, if so desired, as well as the possibility to attach the

visual identity attributes such as logos of the international, national, regional or local authorities wishing to

apply the tool. Editable attributes include entries to names of the regional sea, country, sub-national and

local coastal administrations, as well as entries of their preferred reporting milestones. A user can directly

manipulate records in the Microsoft Access database, while outputs can be generated in Microsoft Excel or

Adobe Portable Document Format for reporting the results. Both the executable and its source code are

shared openly, so that advanced users can adapt the tool to their particular needs and circumstances.

The application of the spatial indicator tools discussed in this sub-section was found to be feasible for

implementation in the Georgian and Black Sea context, acting as a useful instrument for measuring

development pressures both qualitatively and quantitatively. The spatial planning and indicator mapping

methodologies were thus applied to implement the approaches advocated for the Advisory Group to the

Black Sea Commission on the Development of Common Methodologies for ICZM (Yarmak 2004).

Exploring, refining and further developing the inherent methods for connecting the ICZM progress markers

(to monitor policy and management efforts) with spatially aggregated indices and indicators for monitoring

ICZM efforts and actual outcomes for the state of the coast could prove invaluable for European and

regional seas in the light of the need for monitoring progress with the recent entry into force of legally

binding instruments such as the Protocol on Integrated Coastal Zone Management in the Mediterranean

(http://www.pap-thecoastcentre.org/razno/PROTOCOL ENG IN FINAL FORMAT.pdf). Another purpose

would be to watch progress in the context of the newly adopted Directive (MSP 2014), concerned with

many countries and seas, including the Black Sea region.

Therefore, further work is indeed recommended to include the development and deployment of web-

based SDI tools with capabilities for nested visualisation of ICZM progress markers at all levels of

implementation (international, national, regional and local) and tight integration with coastal statistical

datasets. This would facilitate mapping of the state of the coastal zones at both large- and small-scale

resolutions, aggregated at the end into the colour-coded summary spatial indicators ranging in size from

national and sub-national to finest-area local units of administration and governance. Obviously, there can

be many possibilities for integrating and aggregating management progress markers and sustainability

Page 21: Instruments for Modelling Black Sea River Basins: Research

21

indicators at various scales and levels of governance and administration. Furthermore, the results would

depend largely on the allocation of weights, scores and indices, as well as cross-correlating state of the

coast indexes with management progress indicators. However, modern spatial data processing

infrastructure can in principle cope with recalculating and reinterpreting current and past ratings as more

knowledge and experience becomes available to stakeholders. This can be achieved without the need to

introduce changes into the underlying datasets. The process is ultimately related to human intervention

and interpretation of governance outcomes rather than challenges of a technical nature, but good technical

instrumentation can indeed be of help to practitioners.

Similarly, there seems no technical constraint for seamlessly extrapolating the spectrum colour coding of

coastal sustainability indicators seaward (into marine and maritime domain) and landward (upstream into

river basins and catchments). Actually, there are excellent application examples of Cumulative Impact

Mapping for the Western Mediterranean sub-region (http://pegasosdi.uab.es/geoportal/index.php/atlas-

pegaso-regional-products/atlas-cumulative-impact-mapping). The methods used to this end are elaborated

in Micheli et al. (2013). In fact, a simplistic argument in support of such an extension of the tool is the

theoretical possibility of defining a coastal zone in its widest ecosystem-based interpretation (i.e., including

full marine and catchment areas into the coastal zone).

Summarizing this sub-section, the progress indicators elaborated in the EU context were applied for

monitoring ICZM implementation progress in the Black Sea region, including Georgia. This instrument was

further fine-tuned as a monitoring tool for the Black Sea countries by incorporating the listing of short

explanatory notes to index each change with time in the status of progress markers. Specific software tool

was developed to automate and simplify entry, manipulation and reporting of the data. In line with the

original methodology, this tool can be applied easily for use at the international, national, sub-national and

local levels. Progress marker tool can effortlessly be extended into fields of MSP and IRBM as well. In

addition, the potential for connecting progress reporting with spatially explicit indicators that measure

sustainability outcomes through application of ICZM at the local level was explored on an example of small

coastal community in Guria Region of Georgia.

RIVER BASINS / CATCHMETNS

Flood Risk Sensitivity of Ergene River Basin

Introduction

Ergene River Basin has an important place in Turkey due to its geographical location, topography, geological

structure, soil properties and incorporating several different climates. The basin has been facing many

problems related to land and water resources management, among which flooding is a significant issue.

Flood events occurring often in the basin cause serious damages.

The objective of this case study is to detect the area of high flood risk in Ergene River Basin to prevent or

reduce its damages.

Methodology

Among multicriterion decision analysis methods, Analytical Hierarchy Process (AHP) was used to determine

the flood-sensitive region in Ergene River Basin. AHP is a process that uses hierarchical decomposition to

deal with complex information in multicriterion decision making. It consists of three steps: i) developing the

hierarchy of attributes related, ii) identifying the relative importance of the attributes and iii) scoring the

alternatives’ relative performance on each element of the hierarchy.

Page 22: Instruments for Modelling Black Sea River Basins: Research

22

There are many factors affecting river flow. Here, six criteria were used in the determining the risk of

flooding, namely runoff (Figure 4), elevation (Figure 5), slope (Figure 6), aspect (Figure 7), drainage density

(Figure 8) and size of sub basin (Figure 9). To obtain these criteria, an altitude map with 5m resolution, soil

map in the scale of 1/25000 and river layer map were used. Each criterion was formed into raster data with

10x10 resolution using the tool of GIS technology.

Figure 4. Runoff map of Ergene River Basin Figure 5. Digital elevation map of Ergene Basin

Figure 6. Slope map of Ergene River Basin Figure 7. Aspect map of Ergene River Basin

Figure 8. Drainage density map of Ergene Basin Figure 9. Size of subbasin map of Ergene Basin

Page 23: Instruments for Modelling Black Sea River Basins: Research

23

Results

Matrix of pairwise comparisons with the Analytic Hierarchy Process was created (Table 1). As a result of

pairwise comparisons, weight ratio of each criterion was calculated (Table 2). First this ratio was multiplied

by the pixel values of each criterion. Then, maps were overlaid one on top of the other and finally flood risk

map was formed (Figure 10). The results showed that junction points of Ergene River’s branches, low lying areas with small slope are at high risk of flooding while areas with high elevation and slope have less risk.

Figure 10. Flood risk map of Ergene River Basin

Table 1. Matrix of pairwise comparisons with the Analytic Hierarchy Process

COMPARISONS Runoff Elevation Slope Aspect Drainage density Size of subbasin

Runoff 1.0 3.0 3.0 4.0 3.0 2.0

Elevation 0.33 1.0 0.5 2.0 1.0 0.5

Slope 0.33 2.0 1.0 3.0 1.0 0.5

Aspect 0.25 0.5 0.33 1.0 0.5 0.33

Drainage density 0.33 1.0 1.0 2.0 1.0 0.5

Size of sub basin 0.5 2.0 2.0 3.0 2.0 1.0

Table 2. Calculated weight ratio of each criterion

CRITERION Runoff Elevation Slope Aspect Drainage density Size of subbasin

WEIGHT 0.35 0.11 0.15 0.06 0.12 0.21

Page 24: Instruments for Modelling Black Sea River Basins: Research

24

Catchment Erosion Model of Ergene River Basin

Introduction

In the scope of the Integrated Land-use Management Modelling of Black Sea Estuaries (ILMM-BSE) for

Ergene Basin USLE/RUSLE (Universal Soil Loss Equation / Revised Universal Soil Loss Equation) methods

have been selected due to their database suitability and also availability of integration to Geographic

Information Systems (GIS), Remote Sensing (RS ) and geo-statistics (spatial statistics). By this way, the

current and potential erosion hazard areas maps have been created for whole basin.

By using USLE/RUSLE method, amount of soil lost from the unit surface area in a unit time (A, tonnes ha-1

yr-1) can be calculated quantitatively with the help of soil, topography, using climate and vegetation

databases. In addition, after determining the micro-basin based 'sediment delivery ratio' (SDR), the rate of

quantitatively defined actual erosion amount (tonnes ha-1 yr-1) reaching to rivers in the related basin has

been calculated.

As a result, USLE/RUSLE model is analysed in a GIS environment by considering micro-basin size with the

approach of the rate of transmission of sediment to develop the potential erosion map, the actual erosion

map and layers to show the amount of sediment transport reaching to rivers.

In parallel with the development of science and technology, in any country, region or basin basis, wide

range of methods for assessment of the danger of soil erosion are exist depending on the climate, soil,

topography and vegetation features. There are many mathematical models based on several physical

parameters related to natural elements; day by day the number increases.

USLE approach (Wischmeier & Smith, 1978; Renard et al., 1997), is just one of the models used to estimate soil loss in national, regional or basin scale and also it has been used widely in Turkey in order to assess erosion hazards recently (Erdogan et al., 2007; Ozcan et al., 2008).

Materials and Methods

The digital databases officially available for the whole country and used in the project while applying

USLE/RUSLE methodology for the evaluation of soil erosion risk (cellular [raster] and vector databases) are

given below:

– Topographic Map (1:25.000) – Digital Elevation Model (1:25.000) – Forest Map (1:25.000) – Soil Map (1:25.000) – Land Use / Land Cover (CORINE, 2012) – Drainage Data (DSİ) – Catchment and Dam Data (DSİ) – River Sediment Data (E.İ.E.İ, 2006) – Turkey Rainfall Erosivity Data (Kaya, 2008; Erpul ve ark., 2009)

As shown above, for implementing USLE/RUSLE method across Turkey, soil, topography, climate and

vegetation databases prepared by various government agencies were used.

Page 25: Instruments for Modelling Black Sea River Basins: Research

25

Methodology

As a project method, USLE/RUSLE erosion prediction technology was used (Wischmeier and Smith, 1978;

Renard et al., 1997). The 'process flowchart' to express the equality and also the databases where the

equation parameters coming from were explained respectively. The equation of USLE method is as follows:

A = R · K · L · S · C · P [1]

A: average soil loss (ton ha-1 yr-1),

R: rainfall erosivity factor (= E·I30) (MJ mm ha-1 yr-1 hr-1),

K: soil erodibility factor (ton ha-1· ha MJ-1·h mm-1),

L and S: topographic (length-slope) factor,

C: crop and cover management factor,

P: prevention practices factor.

In equation [1], there is only the R and K variables have units, others are dimensionless. As a result, unit of

annual soil loss (A) "t ha-1 yr-1" is obtained with the multiplication of the R and K factors.

A1 = R · K · L · S [2]

In the equation above, A1 represents potential soil loss (tons ha-1 yr-1); and refers to any soil loss that can be

occurred when natural vegetation is destroyed.

A2 = R · K · L · S · C [3]

In equation [3], A2 represents actual soil loss (tons ha-1 yr-1); and indicates the soil losses that may occur

under the existing vegetation and product management in any terrain. At this stage, USLE approach (Eq.

[3]) provides comparative analysis of amount of soil loss from the unit area in the unit time (A2, tonnes ha-1

yr-1) and the amount of permissible soil loss (T, tonnes ha-1 yr-1). Additionally, it can be used as an important

tool in the task of planning for soil, topography, water and plant resources in a sustainable way.

A3 = R · K · L · S · C · P [4]

In equation [4], A3 represents soil losses that may occur under soil protected land management systems

(tonnes ha-1 yr-1).

A4 = R · K · L · S · C · P · (STO) [5]

In equation [5], A4 Sediment Delivery Ratio (Yearly Soil loss) compared with EİEİ measurements for different station on the basis of micro catchments.

Rainfall Erosivity Factor (USLE/RUSLE-R)

Rainfall erosivity factor values were obtained by applying geo-statistical methods on point data gathered

from rainfall stations within the scope of the master thesis conducted by Kaya (2008) as a part of the

project “Determination of Rainfall Energy and Intensity at the National Scale by Using Long-term

Meteorological Data” (TUBITAK Project Number: CAYDAG-107Y155) (Erpul et al., 2009). Coordinates of

specified equality variables and sampling points and also USLE/RUSLE-R data were added into the ArcView

10.1 to create model map, performing calculations specified in the above referenced work (Figure 11).

Page 26: Instruments for Modelling Black Sea River Basins: Research

26

Soil Erodibility Factor (USLE/RUSLE-K)

In order to determine the sensitivity of soil to erosion in Turkey, General Soil Map and Digital Soil Database

(Anonymous, 1982) were used. Soil features belonging to Great Soil Groups were rearranged for

USLE/RUSLE-K values and converted to a layer in GIS media. According to expert knowledge, along with

intermediate qualifications, lower and upper limits previously named as 'too low and too high values' were

converted into numerical values by means of Table 3 (Figure 12).

Table 3. USLE/RUSLE Soil Erosion Sensitivity Numerical Value

Sensitivity Value Very High High Medium Low Very Low USLE/RUSLE-K (t ha hour ha-1 MJ-1 mm-1)

> 0.092 0.066-0.092 0.033-0.066 0.017-0.033 < 0.017

The upper limits for the very low, low, medium and high classes of USLE/RUSLE-K were taken respectively

as 0.017, 0.033, 0.066 and 0.092. On the other hand, for very high-class, the K value was taken as 0.105.

Figure 11. R Factor Map for Ergene Catchment Figure 12. K Factor Map for Ergene Catchment

Topographic Length- and Slope-Factor (USLE/RUSLE-LS)

In the project, USLE/RUSLE-LS variable was obtained by using "Digital Elevation Model" (DEM) and the

calculation ability of "Hydrological Flow Accumulation, ArcView 10.1”. Additionally, mathematical equation

was developed in GIS (Moore and Burch 1986a, 1986b) and in this way, USLE/RUSLE-LS value was not only

obtained by the steepness or length of slope, but also taking into account the expected flow on the soil

surface. So the slopes of the study area were calculated using DEM and slope length was taken as 15 m,

constant value for each pixel (Ogawa et al, 1997) (Figure 13).

Crop and Cover Management Factor (USLE/RUSLE-C)

In the scope of ILMM-BSE project, database produced in CORINE 2012 (Coordination of Information on the

Environment) for Ergene Basin were used to obtain USLE/RUSLE-C value.

CORINE Project is one of the important land management project under the European Global Monitoring

for the Environment and Security (GMES) program. By using the satellite images of 2006 and 2012, the

changes in land use have been detected with the help of GIS and RS to produce current land use maps in

2012. By this way, monitoring for environmental protection by looking at the changes in land cover would

Page 27: Instruments for Modelling Black Sea River Basins: Research

27

be supplied according to the criteria of European Environment Agency. In the project CORINE Land Cover

(CLC) in 2012, computer-assisted visual interpretation of satellite imagery approach has been used as a

mapping methodology and also benefited from images produced by SPOT-4 and IRS-P6 satellite.

USLE/RUSLE-C levels (EEA, 2000) defined in CORINE land cover (2000) were used in this project for

vegetation cover and product management. Artificial areas (1), agricultural areas (2), forestry and semi-

natural areas (3), wetlands (4) and a total of 33 values of land cover types specified for the water bodies are

given in Table 4. C factor values for salt marsh, artificial areas and water structures were defined as "0" in

Table 4, and it means that soil loss does not occur from them. C values of agricultural areas ranges between

0.04 and 0.451, C values of semi-natural areas and forestry ranges between 0 and 0.36 (Figure 14).

Figure 13. LS Factor Map for Ergene Catchment Figure 14. C Factor Map for Ergene Catchment

Table 4. Completed CORINE Land Cover 2000 USLE/RUSLE-C Factors (EEA, 2000)

Code CORINE Land Cover C Factor 1 Artificial Surfaces 2 Agricultural Areas 2111 Non-irrigated arable land 0.4

2112 Non-irrigated arable land, green houses 0.4

2121 Irrigated arable land 0.2

2122 Irrigated arable land, green houses 0.2

213 Rice Fields 0.1

221 Vineyards 0.451

2221 Fruit trees and berry plantations, non-irrigated 0.296

2222 Fruit trees and berry plantations, irrigated 0.296

223 Olive Groves 0.296

231 Pastures 0.04

2421 Complex cultivation, non-irrigated 0.335

2422 Complex cultivation, irrigated 0.335

243 Land principally occupied by agriculture with significant areas of natural vegetation 0.04

3 Forests and Semi-Natural Areas 311 Broad leaved forest 0.003

312 Coniferous forest 0.001

Page 28: Instruments for Modelling Black Sea River Basins: Research

28

313 Mixed forest 0.002

321 Shrub and/or herbaceous vegetation associations 0.005

323 Sclerophyllous vegetation 0.04

324 Transitional woodland shrub 0.04

331 Beaches, dunes and sand plains 0.36

3321 Bare rocks 0.36

3322 Bare rocks with very high salt content 0.36

333 Sparsely vegetated areas 0.36

334 Burnt Areas 0.36

335 Glaciers and perpetual snow 0

4 Wetlands 411 Inland marshes 0.001

421 Salt marshes 0.001

422 Salines 0

5 Water Bodies 0

Prevention Practices Factor (USLE/RUSLE-P)

In Ergene Basin, in the framework of this project conducted in sub-basins and micro-basins scale,

calculations were done assuming no soil or water conservation practices was taken except the reservoirs

existing in the basin. Areal data of the catchment of reservoirs taken officially from DSI (General Directorate

of State Hydraulic Works) was used to determine the USLE/RUSLE-P variable (Eq. [6]).

P = Sa / Sh [6]

In the equation [6], Sb represents the total area of the sub or micro watersheds with a dam at the outlet

(km2) and Sh represents the total basin area (km2). When information is updated reclamation works carried

out by various government agencies, may be added to the database P factor values for these basins.

Sediment Delivery Ratio (SDR)

In this study, USLE/RUSLE method was used to estimate the amount of soil loss (tons ha-1 yr-1) reaching the

outlet in the unit time from the unit area due to surface and rill erosion. The results of this method and also

hydrological DEM data were used to get SDR values (Figure 15).

Results and Discussion

Potential Soil Loss Map. As already stated, when natural vegetation is destroyed by any reason, it is

corresponding to the land cover loss. This map calculated from overlaying R, K, LS mapping units with GIS

software for Ergene catchment.

Actual Soil Loss (USLE/RUSLE-A2). This map calculated from overlaying of (R, K, LS ve C mapping units), with

GIS Software for Ergene River Catchment. These maps, show us soil loss might occur under product

management existing vegetation in watershed land.

Quantities of Sediment Reaching to the River Basin Systems (USLE/RUSLE-A4). The map for quantities of

sediment reaching to the river basin systems determined from 'Sediment Delivery Ratio' (SDR) in micro-

basin based is given in Figure 16. This map was obtained by using climate, soil, topography, vegetation

Page 29: Instruments for Modelling Black Sea River Basins: Research

29

variables and also SDR layer given in Figure 15. Sediment Delivery Ratio (yearly soil loss) compared with EİEİ measurements for different station on the basis of micro catchments.

Figure 15. Ergene Sediment Delivery Ratio Map Figure 16. Sediment Reaching River Ergene Map

DELTA, ESTUARINE AND MARINE AREAS

Developing Integrated GIS for Coastal Deltas and Associated Watersheds for Odessa Region

Increasing of the information volume in all fields of human activity and actualization of environmental

issues nowadays become very important factor for understanding of the relationship between them. That is

also connected to development of society and to the needs of using modern information technologies in

the field of environmental management.

This research is rather important for the reason that informational systems aren’t well described in environmental science. But they are vital tool which can be used for designing decision support systems for

environmental management.

According to the Law of Ukraine "Basic Principles of Information Society Development in Ukraine in 2007-

2015" (Закон, 2007), the introduction of new information and communication technologies (ICT) in all

aspects and activities for state and local governments is one of the main priorities for state policy. That is

very important to create national, local and regional information systems in the field of environmental

protection that is also vital for sustainable use of natural resources, providing of public access to

environmental data and information which concerns the results of regional environmental audits and

environmental monitoring.

At the same time, in the main document that defines the environmental policy of Ukraine till 2020 (Закон,

2010), the emphasis is given to the informational component in the context of conservation and

improvement of the environment. One of the strategic goals of this document is to increase environmental

awareness, which is achieved by the establishment of a national environmental information system. Also

national information system should ensure an access to environmental information and include the

national system which gathers data of natural resources and registers of pollutants emission. The

appropriate Strategic Plans can help to improve the state system of environmental monitoring (SEM) and

the reference system of informational support of decision-making for the environmental issues.

The documents mentioned above emphasize the importance and relevance of ICT for the environmental

management as a universal tool for solving problems of conservation and improvement of the

Page 30: Instruments for Modelling Black Sea River Basins: Research

30

environment, and at the same time determines the dominant role of information as one of the most

important resource of nowadays. State requirements which relate to information support of decision-

making (environmentally safe) implement the national environmental strategy, environmental policy, and

external requirements for compliance with international environmental commitments - these are necessary

conditions for formation and improvement of environmental management information systems

(Касьяненко и др., 2009).

The goal of any activity is its result, which is represented as the final product or an aggregate of relevant

conclusions and decisions. In the decision making process the most important component is the

information, which is directed to the general idea of conservation of the environment and provides

different ways of improving of the environmental conditions and assess the possible positive and negative

consequences of the decision. The structural elements of the management system for all levels of decision

making should be always available as information databases (Касьяненко и др., 2009). Decision making

process in the area of natural resources should be focused on understanding the concept of information in

that sphere. By definition which is formulated by Reimers (1992) Information in Nature Management is a

set of data which includes quantitative, qualitative and dynamic (past, present and future) aspects of

natural resources and systems, and also their relations with existing forms of economics and culture of

mankind. According to the Ukrainian Law "About information" (Закон, 1992), the environmental

information includes data concerning the components of the environment, including genetically modified

organisms and the interaction among them; factors which affect or may affect the components of the

environment (substances, energy, noise and radiation, and activities or measures, including administrative

agreements concerning environment, policies, legislation, plans and programs etc.); health and safety, life

conditions, cultural sites and buildings to the extent that they affect or may affect the conditions of

environmental components. That is also very important to identify those aspects that environmental data

depends on the person authorized to take appropriate action. Based on this informational support for

environmental issues we can keep process of gathering, assessment and analyzing primary environmental

data to make certain administrative decisions. This process should base on up-to-date data and provide

complex decisions. It is necessary that we should keep all details at each level of the assessment process

and understand the basic mechanisms of designing the proper informational platform, based on

information management software and various information systems which provide decision making

processes which are fully dependent on quality management (Касьяненко и др., 2009).

Levels of primary assessment and analysis are implemented by using special tools, software and hardware

to provide homogeneous, arranged and ranked data and other mathematical and statistical operations

which allow submitting the final product. This approach can be implemented using geographic information

systems (GIS), which became particularly popular in recent years as they allow to design data banks

combining spatial & attribute information and also capable to arrange analytical functions and capabilities.

Utilizing of GIS simplifies main goal: to design the required information platform for decision making.

The rapid development of ICT allows to collect and process big amount of data and also to give a

comprehensive assessment of the data and its usage in decision making. These problems have been

successfully solved by GIS software that besides the accumulation and displaying of spatially distributed

data allows integration of data for the area in question and effectively use this data to solve scientific and

applied problems related to the analysis, inventory, forecasting, expertise and management of the

environment (Сивак, 2007). It is necessary to mention that information platform is a set of prepared data

which has more convenient structure for analysis of cartographic material, designing various reports, smart

Page 31: Instruments for Modelling Black Sea River Basins: Research

31

tables, graphics etc. It is a fundamentally convenient product which is presented as database and can be

used as a high level combination of diverse information.

In general, geographic information systems (GIS) - an integrated set of hardware, software and media,

providing input, storage, processing, analysis and display (presentation) of spatial coordinate data

(Світличний, 2004). GIS structure can be represented as the following blocks (Figure 17). Analytic abilities

of GIS are presented in Figure 18.

Figure 17. Basic components of GIS Figure 18. GIS analytical mechanisms

Not only the person or team can make decisions. Today certain decisions can be made automatically

without direct human participation, the decisions can be given according some scenarios which are based

on characteristics of certain processes and phenomena which are appropriate to experience of decision-

making in the past. Type of a company or organization does not play a significant role on the decision-

making process that allows summarizing the general scheme of the process. General scheme of

environmental projects and solutions is shown in Figure 19.

In the context of this research it is also very important to consider the process of the informational support

for any applied activities (Figure 20) (Балджи и др., 2008). The primary goal is to figure out the main tasks

and designing the database structure. The last step in gathering the information should be developing the

approach to utilizing it for applied issues.

Figure 19. General structure of decisions making Figure 20. Structure of decision support systems

Case study for the establishment of the model bank based on above developed principles for land and sea

areas of the Odessa Region are presented further below.

Page 32: Instruments for Modelling Black Sea River Basins: Research

32

Establishments of a Model Bank for Delta and Estuarine Areas of Odessa Region

This research provided an opportunity for implementation of the principles mentioned above that allows to

develop GIS which describes environmental conditions of water bodies of Odessa Region and areas nearby.

The initial data was taken from official statistical recourses of Odessa region. The data describe the level of

technogenic load on the environment of Odessa region.

There were designed the maps which describe spatial distribution of the technogenic load which is caused

by air, water pollution and also solid industrial wastes pollution (Figure 21-23).

The overall picture of the distribution of technogenic load on the environment in Odessa Region based on

the results of clustering analysis (described further below) is illustrated on Figure 24.

Figure 21. Spatial distribution of technogenic load on the air of Odessa Region

Figure 22. Spatial distribution of technogenic load on the water bodies of Odessa Region

Figure 23. Spatial distribution of technogenic load region caused by solid industrial wastes

Figure 24. Cluster analysis results for Odessa Region

Page 33: Instruments for Modelling Black Sea River Basins: Research

33

Application of GIS also provides the possibility to use the methods of multivariate statistical analysis to

obtain the integral indexes and combine many layers of cartographic material. In this research we used

cluster analysis. Fundamentals of cluster analysis are shown below (Figure 25).

1. At the beginning 'CLUSTER PLUS' creates first cluster centre c1, с1 = х1.

2. Next centre is the vector c2 which has the biggest distance to c1, с2 = хj2, i.e.

3. When 'CLUSTER PLUS' creates k cluster centres C(k) = {c1,..., ck} the next (k+1) centre is хjk+1 which has the

biggest distance to the closest cluster centre c1,..., ck, i. e.

4. 'CLUSTER PLUS' stops creating new clusters when the condition is ‘true’: Q(k+1) / Q(k) , (0,1)

Figure 25. Clustering scheme (two dimensions)

Establishments of a Model Bank for Marine Areas of Odessa Region

In addition to delta and estuarine areas presented above, a database was supplemented by layers, which

are responsible for spatial distribution of pollution for the nearby coast of the Black Sea. Map of the spatial

distribution of water pollution index is shown in Figures 26 and 27.

Figure 26. Overlay analysis of water pollution index Figure 27. WPI spatial distribution

Development of appropriate data banks allows the formation of the information systems that provide an

opportunity to resolve the problem quickly find the necessary information for a wide range of users. Also

presented approach to information allows one to develop decision support systems, aimed at identifying

optimal environmental policy in the region.

Page 34: Instruments for Modelling Black Sea River Basins: Research

34

As conclusion we can figure out next features:

– Zoning gives an overview of environmental conditions of the area in question and can be used as an

online reference/help system;

– The research results are the basis for priorities in selection of management strategies for areas in

question;

– This approach is a part of decision support systems concerning of development of the Odessa Region

for the long term.

Modelling Black Sea River Mouths in Bulgaria under Climate Changes, See Level Rise & Disasters

Foods are among the most dangerous natural phenomena causing severe damage to various branches of

the economy and in many cases lead to casualties. Flooding occurs when areas that are not normally under

water are inundated due to rising river levels and/or the level of groundwater due to rainfall and/or

snowmelt, due to breaking of embankments, the dam breaks, temporary blockage of the river bed etc.

(Nikolova and Nedkov, 2012). The risk of flooding is determined by the frequency (probability) of their

occurrence and exposure of the affected areas in terms of potential damage they may suffer. Damages in

turn depend on the degree of hazard of the corresponding flood, as well as the vulnerability of exposed

people and objects. Exposure to floods is assessed on one hand through flood hazard zoning and on the

other it is an important factor for vulnerability assessment. There are different systems (economic, social,

ecological etc.) that can be exposed to flood hazard in particular area. Furthermore their exposure is

different according to the flood risk zones where they belong to. Vulnerability depends on the degree of

flood hazard as well, but it also depends on many other factors such as the urbanization and buildings

density, the type of threatened infrastructure, population characteristics such as density, age structure,

mobility and health status, presence or absence of protective equipment in hazardous areas and early

warning systems etc.

The study area in this research includes basins of the rivers in South East Bulgaria which drain into Black sea

south of Burgas. It includes the river basins of Ropotamo, Dyavolska, Karaagach, Veleka, Rezovska, Silistar

as well as some small basins drained directly to the Black sea. It comprises an area of 184611 ha. The

biggest basins in the area are Veleka (79192 ha) and Ropotamo (24645 ha) therefore these two basins were

chosen as a main focus in this research. This area corresponds to the Project Unit XV South-Burgas rivers,

Veleka and Rezovska in the National Plan of Flood Risk Management. According to the preliminary flood

risk assessment in Black Sea region for water management (2012) there 135 floods registered for the

period 1979-2010 and almost half of them (64) are in the Basin of Veleka River.

The main objective of this work is to identify the flood vulnerability zones in the area of Veleka and

Ropotamo river valleys. The realization of this objective was accomplished through the following tasks:

– Check and analysis of data availability;

– Delineation of the floodplains in Veleka and Ropotamo river valleys;

– Identification of the land use within the floodplains;

– Flood vulnerability analyses of Veleka and Ropotamo floodplains.

Page 35: Instruments for Modelling Black Sea River Basins: Research

35

Materials and methods

The necessary data for identification of flood vulnerability area include topographic maps, land cover data,

data for hydrological objects in the area, topography data, infrastructure data, and information for flood

events in the area. The analysis of data availability revealed that the objectives of the study could be

achieved by using 1:25000 topographic maps, 50 m DEM, and land cover data from CORINE project.

The area of Veleka river basin is located within 19 topographic map sheets at scale 1:25000, while

Ropotamo river basin covers 7 map sheets. All topographic maps have been scanned and georeferenced in

coordinate system UTM WGS1984 zone 35N. The river basins have been outlined using ArcGIS Hydrology

tools. The procedure includes generation of flow direction and flow accumulation grids, and model of river

flows which is used to define the outlets of the catchments (Tarboton, 1991).

The hydrological objects were digitized from the topographic maps using the Heads-up digitizing method

and the results were in form of vector GIS layers of rivers, water bodies and channels. The floodplains of

Veleka and Ropotamo rivers were delineated using two steps algorithm. At the first step 50 m DEM have

been used to derive slopes in the basins. Then, the slope layer was reclassified and flat surfaces were

extracted. The areas around the rivers were identified by intersection with rivers GIS layer. Thus the

potential floodplains were identified. At the second stage the results from the previous procedure were

compared with the topographic maps and the contours of the floodplain were checked and corrected. The

results from this procedure are vector polygon GIS layers that contain the floodplain area of Ropotamo and

Veleka rivers.

Land cover data were extracted from CORINE database which is available for three time series – 1990, 2000

and 2006. The latest version of CORINE 2006 was used in the present study. The aim of the CORINE

program of the European Union is to compile information on the state of the environment with regard to

certain topics which have priority for all member states of the community (EEA 1994). CORINE includes 44

land cover classes altogether grouped in a three-level nomenclature into 1) artificial surfaces, 2) agricultural

areas, 3) forests and seminatural areas, 4) wetlands and 5) water bodies. These classes represent all land

cover types in Europe and they are clearly defined in the nomenclature provided by the project. The

CORINE data for Veleka and Ropotamo river basins were extracted from the main database and

transformed into separate vector polygon layers. Then, an overlay analysis was performed between the

floodplain and CORINE layers in order to identify the land cover classes within the floodplain. The results of

this procedure are vector polygon layers that contain all land cover classes within the floodplains of Veleka

and Ropotamo rivers.

The floodplains delineated from topographic maps represent the area exposed to floods. They are used as a

basis to assess the flood vulnerability in the studied areas. Each land cover class was assessed in order to

define its vulnerability against floods. Then, they were categorized using three-level scale including the

following classes: 1) High vulnerability; 2) Middle vulnerability; 3) Low vulnerability; 4) No vulnerability.

Land cover classes with high vulnerability are from the first level of the CORINE classification especially class

112 Discontinues urban fabric. The potential losses in such areas include all kinds of damages that could be

caused by flood e.g. destroyed buildings, cut transport network and communication, casualties etc. Middle

vulnerability is assigned to arable lands which may also badly suffer from flood that can destroy plants,

remove or inundate soil etc. Low vulnerability is assigned to other agriculture areas including pastures,

vineyards, agriculture with natural vegetation etc. Very low or no vulnerability was assigned to natural land

cover classes such as forest, natural grasslands, water bodies etc.

Page 36: Instruments for Modelling Black Sea River Basins: Research

36

Flood vulnerability areas in Veleka river basin

Veleka river has its sources in Turkish territory of Strandzha Mountain. It is 147 km long and its basin covers

99500 ha, while in the Bulgarian part of the basin is 79192 ha. The river valley in its upper part has typical

mountainous character with narrow bottom and limited disconnected floodplain. The river banks are

covered predominantly by forests and there are no urban or agriculture areas, therefore there is no flood

risk and this part was not included in the analysis.

The floodplain of Veleka river (Figure 27) has an area of 2286.9 ha. The greatest part of it is occupied by

agricultural lands which comprise about 77% of the whole area. Most of them are represented by the

mixed class 243 Land principally occupied by agriculture with significant areas of natural vegetation (Table

5). Arable lands occupy 514 ha (22.5%) which are located mainly in the lower part of the river valley around

the largest floodplain areas near Kosti, Brodilovo and Sinemorets. Small patches of Complex cultivated

patterns (59 ha), Vineyards (16.5 ha) and Pastures (6.1 ha) are also presented in the Veleka floodplain. The

natural and seminatural land cover classes are presented by Broad-leaved forests with 392.3 ha (17.2%),

Transitional woodland-shrub with 85.1 ha and small patches of Mixed forests with 11.9 ha (0.5%). The

artificial surfaces cover limited areas but they are the most vulnerable to floods therefore should be

studied more precisely. Discontinuous urban fabric class covers 18 ha (0.8%), which are located in two

villages. Brodilovo has 9.6 ha located within the floodplain which is about 15% of the whole village while

Kosti has 8.3 ha which is about 10% of it area. There is also Sport and leisure facility class located in the

mouth of the river with 9 ha, which is used mainly for summer tourism. There are also limited urban lands

around Kachul locality which are represented by some small buildings and yards used mainly for recreation.

Table 5. Distribution of CORINE Land Cover classes within Veleka floodplain

CORINE class Area (ha) % 243 Agriculture with natural vegetation 1174.2 51.3%

211 Non-irrigated arable land 514.6 22.5%

311 Broad-leaved forest 392.3 17.2%

324 Transitional woodland-shrub 85.1 3.7%

242 Complex cultivation patterns 59.3 2.6%

112 Discontinuous urban fabric 18.0 0.8%

221 Vineyards 16.5 0.7%

313 Mixed forest 11.9 0.5%

142 Sport and leisure facilities 9.0 0.4%

231 Pastures 6.1 0.3%

Page 37: Instruments for Modelling Black Sea River Basins: Research

37

Figure 27. Map of Veleka floodplain

The flood vulnerability analysis in Veleka river shows that the areas of high vulnerability cover 1.2% of the

floodplain area (Table 6). They are located in the lower part of the river valley (Figure 28) where floodplain

is wider and most suitable for agriculture. They represent the above mentioned villages and recreation

areas. The areas of middle vulnerability cover about quarter of the floodplain (25.1%) which are localized in

four areas. The first one is situated in the floodplain downstream of Brodilovo and covers about 415 ha

(Figure 5). This is the large agriculture area comprising almost 80% of all arable lands. The second one is

around the village of Kosti and covers 110 ha. They are presented by both arable land and complex

cultivation pattern classes. The third one is located south from Gramatikovo village and covers about 23 ha

of arable land. The fourth one is located north from Stoilovo village and covers about 21 ha of arable land.

The zone of low vulnerability covers almost half of the floodplain area. It is presented mainly by small

agricultural lands surrounded by natural vegetation and some small patches of pastures and vineyards

which are located all over the floodplain. The areas of no vulnerability cover 21.4 ha and represented

mainly by broad-leaved forests. They are located mainly in the upper part of the valley and around the

mouth of the river where large patches of riparian vegetation are present.

Table 6. Distribution of Veleka floodplain land cover according to their flood vulnerability

Vulnerability Area (ha) % High 27.0 1.2%

Middle 573.9 25.1%

Low 1196.7 52.3%

No 489.3 21.4%

Page 38: Instruments for Modelling Black Sea River Basins: Research

38

Figure 28. Flood vulnerability of the lower part of Veleka river valley

Flood vulnerability areas in Ropotamo river basin

Ropotamo river has its sources in the northeastern slopes of Bosna ridge. It flows through narrow and deep

valley to northwest until Novo Panicharevo village. After this village the river turns to the east through wide

plain valley and flows into Black Sea forming large marsh and liman (Figure 29). It is 48.5 km long and its

basin comprises 24645 ha. Its main tributary is Rosenska river, which flows from Medni Rid ridge into south

until its infuse to Ropotamo river. The river valley in its upper part about 10 km from the sources has

narrow bottom and limited disconnected floodplain. The river banks are covered predominantly by forests

and there are no urban or agriculture areas, therefore there is no flood risk and this part was not included

in the analysis.

The floodplain of Ropotamo river has an area of 1466.7 ha. The greatest part of it is occupied by agricultural

lands which comprise about 67% of the whole area. Most of them are represented by class 243 Non-

irrigated arable lands (Table 7). They are located mainly in the lower part of the river valley to the east of

Yasna Polyana village. Land principally occupied by agriculture with significant areas of natural vegetation

have 436 ha (29.8%). Small patches of Complex cultivated patterns (2.4 ha) and Pastures (13.8 ha) are also

resented in the Ropotamo floodplain.

The artificial surfaces cover limited areas but they are the most vulnerable to floods therefore should be

studied more precisely. Discontinuous urban fabric class covers 19.2 ha (1.3%), which are located in two

villages. Novo Panicharevo has 18.1 ha located within the floodplain which is about 25% of the whole

village while Rosen has 1.1 ha. The natural and seminatural land cover classes are presented by Broad-

leaved forests with 221.7 ha (15.1%), Transitional woodland-shrub with 80.9 ha and small patches of Mixed

forests with 1.3 ha (0.5%). There are also Beaches and dunes that cover 4.2 ha, Water bodies with 33.3 ha

and Water courses with 85 ha which are located in the mouth of Ropotamo river.

Page 39: Instruments for Modelling Black Sea River Basins: Research

39

Table 7. Distribution of CORINE Land Cover classes within Ropotamo floodplain

Figure 29. Map of Ropotamo floodplain

The flood vulnerability analysis in Ropotamo river shows that the zones of high vulnerability cover 1.3% of

the floodplain area (Table 8). They are located mainly in the middle part of the river valley where floodplain

is wider and most suitable for agriculture. Most of them are located in the village of Novo Panicharevo

which can be identified as the most important object of flood management in Ropotamo basin.

Table 8. Distribution of Ropotamo floodplain land cover according to their flood vulnerability

CORINE class Area (ha) % 211 Non-irrigated arable land 532.2 36.3%

243 Agriculture with natural vegetation 436.5 29.8%

311 Broad-leaved forest 221.7 15.1%

511 Water courses 85.0 5.8%

324 Transitional woodland-shrub 80.9 5.5%

411 Inland marshes 36.2 2.5%

512 Water bodies 33.3 2.3%

112 Discontinuous urban fabric 19.2 1.3%

231 Pastures 13.8 0.9%

331 Beaches, dunes, sands 4.2 0.3%

242 Complex cultivation patterns 2.4 0.2%

313 Mixed forest 1.3 0.1%

Vulnerability Area (ha) % High 19.2 1.3%

Middle 532.2 36.3%

Low 452.7 30.9%

No 462.6 31.5%

Page 40: Instruments for Modelling Black Sea River Basins: Research

40

The zone of middle vulnerability cover about one third of the floodplain (25.1%) which are localized in three

areas. The first one is situated in the floodplain downstream of the infuse of Rosenska tributary and covers

of about 414 ha (Figure 30). This is the larges agriculture area comprising almost 80% of all arable lands.

The second one is upstream of Rosenska river and covers 38 ha. The third one is located to the east of Novo

Panicharevo village and covers about 78 ha of arable land. The zone of low vulnerability cover almost one

third of the floodplain area. It is presented mainly by small agricultural lands surrounded by natural

vegetation and some small patches of pastures and vineyards which are located all over the floodplain. The

areas of no vulnerability cover 462.6 ha and represented mainly by broad-leaved forests. They are located

mainly in the upper part of the valley and around the mouth of the river where large area of riparian

vegetation is located.

Figure 30. Flood vulnerability of the lower part of Ropotamo river valley

This subsection above describes the use of spatially explicit colour coded indicators/indices for flood

vulnerability characterisation. Quite similar approaches for essentially different environmental systems are

described in the next section (proceedings of ILMM-BSE Wrokshop-3 in Batumi, Georgia) in paper by Nenov

and Simeonova, concerned with the investigation of ecological status for the nutrients of the water bodies

along the Bulgarian Black Sea coastal waters, indexed/characterised according to the requirements of the

EU Water Framework Directive.

REFERENCES

Antonidze E (2010) ICZM in the Black Sea Region: Experience and Perspectives. Journal of Coastal

Conservation, Volume 14, Issue 4, December 2010, pp. 265-272. http://dx.doi.org/10.1007/s11852-009-

0067-6 (URL access on 2015.01.14 archived at http://www.webcitation.org/6VZRSzOJQ)

Page 41: Instruments for Modelling Black Sea River Basins: Research

41

Bakuradze T and Gvilava M (2008) ICZM in Georgia – from National to Regional. The Proceedings of the MED

and Black Sea ICM 08 – Second International Conference/Workshop on the State-of-the-Art of ICZM in the

Mediterranean & the Black Sea, October 14–18, 2008, Akyaka, Turkey.

https://sites.google.com/site/iczmgeo/Home/20090225_Bakuradze_Gvilava_ICM08.pdf (URL access on

2014.06.06 archived at http://www.webcitation.org/6Q7jUG6Tj)

Bartelmus, P. (2013). Indicators of sustainable development.

(Retrieved from http://www.eoearth.org/view/article/51cbee377896bb431f696317)

BSC (2008) State of the Environment of the Black Sea (2001–2006/7). Edited by Oguz. Publications of the

Commission on the Protection of the Black Sea Against Pollution (BSC), 2008, Istanbul, Turkey

BS-SAP (1996) Strategic Action Plan for the Rehabilitation and Protection of the Black Sea. Adopted

in Istanbul, Turkey, 30-31 October 1996. http://www.blacksea-commission.org/_bssap1996.asp (URL access

on 2014.11.13 archived at http://www.webcitation.org/6U3KChUUk)

BS-SAP (2009) Strategic Action Plan for the Environmental Protection and Rehabilitation of the Black Sea.

Adopted in Sofia, Bulgaria, 17 April 2009. http://www.blacksea-commission.org/_bssap2009.asp (URL

access on 2014.11.13 archived at http://www.webcitation.org/6U3JkxRpx)

COM (2007) Report to the European Parliament and the Council: An evaluation of ICZM in Europe.

Communication from the Commission. Brussels, 7.6.2007 http://eur-lex.europa.eu/legal-

content/EN/TXT/PDF/?uri=CELEX:52007DC0308&from=EN (URL access on 2015.01.14 archived at

http://www.webcitation.org/6VZRopU2s)

EC (2002) Recommendation of the European Parliament and of the Council of 30 May 2002 Concerning the

Implementation of ICZM in Europe (2002/413/EC) http://eur-lex.europa.eu/legal-

content/EN/TXT/PDF/?uri=CELEX:32002H0413&from=EN (URL access on 2015.01.14 archived at

http://www.webcitation.org/6VZRxh512)

ECBSea (2009) Integrated Plan for Sustainable Development of Tskaltsminda Coastal Community, Georgia.

EuropeAid-funded Project Environmental Collaboration for the Black Sea (ECBSea). ISBN: 978-9941-0-1361-

4. April 2009. https://sites.google.com/site/iczmgeo/Home/20090422_Tskaltsminda_SD_Plan_ENG.pdf

(URL access on 2014.07.27 archived at http://www.webcitation.org/6RNaH4GWj)

EEA (2006) The Changing Faces of Europe’s Coastal Areas. EEA Report No. 6/2006. http://reports.eea.europa.eu/eea_report_2006_6/en (URL access on 2015.01.14 archived at

http://www.webcitation.org/6VZS68swS)

EEA (1994) Corine Land Cover report – Part 2: Nomenclature. http://www.eea.europa.eu/publica-

tions/COR0-part2 (Date: 11.05.2009).

ETC-TE (2004) Measuring Sustainable Development on the Coast, A Report to the EU Grekousis G,

Mountrakis G (2015) Sustainable Development under Population Pressure: Lessons from Developed Land

Consumption in the Conterminous U.S. PLoS ONE 10(3): e0119675.

http://dx.doi.org/10.1371/journal.pone.0119675

Gvilava, M., Bakuradze T. and Gigineishvili, A. (2015), "Easy to use tools for ICZM progress reporting and

coastal indicators", Journal of Coastal Conservation, Published online 08 March 2014, ISSN: 1400-0350

Page 42: Instruments for Modelling Black Sea River Basins: Research

42

(Print) 1874-7841 (Online). The final publication is available at Springer via

http://dx.doi.org/10.1007/s11852-015-0375-y (see also http://www.webcitation.org/6XUgAGPSN)

ICZM Expert Group by the Working Group on Indicators and Data led by the ETC-TE. European Topic Centre

on Terrestrial Environment (ETC-TE), 2004.

http://ec.europa.eu/environment/iczm/pdf/report_dev_coast.pdf (URL access on 2014.07.27 archived at

http://www.webcitation.org/6RNbcGza1)

Jakobsen, S. (2008). Environmental indicators.

(Retrieved from http://www.eoearth.org/view/article/152625)

Joosten H (1998) Mire Classification for Conservation: The Dialectics of Difference. IMCG Meeting and

Workshop on Mire Terminology and Classification Issues. Greifswald, Germany. Quote: ‘A classification is more useful if it can be easily remembered, and if the appropriate type for a specimen can be determined

easily by inspection. A typology having fewer categories is more easily remembered, and is thus more

available for use. The optimum level of subdivision is from 2 to 6 classes at each new level’.

Konovalov S, Vladymyrov V, Dolotov V, Sergeyeva O, Goryachkin Y, Moiseenko O, Alyomov S, Orekhova N

and Zharova L (2013) Environmental Assessment Tools in the PEGASO Case – Sevastopol Bay. The Proceedings

of EMECS 10 – MEDCOAST 2013 Joint Conference, 30.10–03.11.2013, Marmaris, Turkey.

Lee BD and Linebach CD (2008) Modeling Better Decisions: Land Evaluation and Site Assessment Enhanced

with GIS. ESRI, ArcUser Online, Summer, 2008. http://www.esri.com/news/arcuser/1008/lesa1of2.html

(URL access on 2014.07.27 archived at http://www.webcitation.org/6RNgTEezi, part 1) and

http://www.esri.com/news/arcuser/1008/lesa2of2.html (part 2 URL access on 2014.07.27 archived at

http://www.webcitation.org/6RNgUDIem, part 2)

Lehmann A, Ray N, Kideys A, Weller P and Gvilava M (2009) Connecting the EnviroGRIDS Black Sea

Catchment Observation System to Integrated Coastal Zone Management. The Proceedings of the

MEDCOAST 2009, 9th International Conference on the Mediterranean Coastal Environment, 10–14

November 2009, Sochi, Russian Federation.

Lucius I (2008) How Valuable is the EU ICZM Experience for the Black Sea? The Proceedings of the MED and

Black Sea ICM 08 – Second International Conference/Workshop on the State-of-the-Art of ICZM in the

Mediterranean & the Black Sea, October 14–18, 2008, Akyaka, Turkey.

https://sites.google.com/site/iczmgeo/Home/Lucius_ICM08.pdf (URL access on 2014.07.29 archived at

http://www.webcitation.org/6RQe21IUZ)

Martí X, Lescrauwaet A-K, Borg M and Valls M (Ed.) (2007) Indicators Guidelines: To Adopt an Indicators-

based Approach to Evaluate Coastal Sustainable Development. Department of the Environment and

Housing. Government of Catalonia. http://www.vliz.be/imisdocs/publications/121281.pdf (URL access on

2014.11.16 archived at http://www.webcitation.org/6U7qCNhHn)

Micheli F, Halpern BS, Walbridge S, Ciriaco S and Ferretti F, et al. (2013) Cumulative Human Impacts on

Mediterranean and Black Sea Marine Ecosystems: Assessing Current Pressures and Opportunities. PLoS

ONE 8(12): e79889. doi:10.1371/journal.pone.0079889.

http://www.plosone.org/article/fetchObject.action?uri=info%3Adoi%2F10.1371%2Fjournal.pone.0079889

&representation=PDF (URL access on 2014.11.15 archived at http://www.webcitation.org/6U6RC0s7z)

Page 43: Instruments for Modelling Black Sea River Basins: Research

43

Morse, S. (2007). Development indicators and indices.

(Retrieved from http://www.eoearth.org/view/article/151714)

MSP (2014) Directive 2014/89/EU of the European Parliament and of the Council of 23 July 2014

establishing a framework for maritime spatial planning. 28.8.2014, Official Journal of the European Union,

L257/135. (URL access on 2015.01.13 archived at http://www.webcitation.org/6VY81GWSj) http://eur-

lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014L0089&from=EN

Nikolova, M., and Nedkov, S. (2102) Flood Risk. GIS modeling of Environmental Changes for Flood Risk

Assessment. TerArt, 247 pp.

Odessa Declaration (1993) Odessa Ministerial Declaration on the Protection of the Black Sea, Odessa,

Ukraine, 7 April 1993. http://www.blacksea-commission.org/_odessa1993.asp (URL access on 2014.11.13

archived at http://www.webcitation.org/6U3IqHv9k)

Pickaver AH, Gilbert C and Breton F (2004) An Indicator Set to Measure the Progress in the Implementation

of Integrated Coastal Zone Management in Europe. Ocean & Coastal Management, Volume 47, Issues 9-10,

2004, pp. 449–462. http://ec.europa.eu/ourcoast/download.cfm?fileID=1283 (URL access on 2014.06.06

archived at http://www.webcitation.org/6Q7hvakTw)

Preliminary Flood Risk Assessment in Black Sea region for Water Management. Basin directorate for water

management in Black Sea Region, Varna, 2012.

Protocol (2008) Protocol on Integrated Coastal Zone Management in the Mediterranean. Done at Madrid,

Spain, 21 January 2008. http://eur-lex.europa.eu/legal-

content/EN/TXT/PDF/?uri=CELEX:22009A0204(01)&from=EN (URL access on 2015.01.14 archived at

http://www.webcitation.org/6VZRDhu1m)

Santoro F, Lescrauwaet A-K, Taylor J and Breton F (eds) (2014) Integrated Regional Assessments in Support

of ICZM in the Mediterranean and Black Sea Basins. Paris, Intergovernmental Oceanographic Commission of

UNESCO, 2014. pp. 84 (IOC Technical Series, 111; IOC/2014/TS/111.) (English only)

http://www.vliz.be/imisdocs/publications/260580.pdf (URL access on 2014.11.16 archived at

http://www.webcitation.org/6U7oJZ5Pe)

Smith, K. (1992) Environmental Hazards: Assessing Risk and Reducing Disasters, Routledge, NY pp. 46-52.,

pp. 220-240.The Global Water System Project, Report N 1.

Sofia Declaration (2002) Sofia Ministerial Declaration on the Protection of the Black Sea, Sofia, Bulgaria, 14

June 2002. http://www.blacksea-commission.org/_sofia2002.asp (URL access on 2014.11.13 archived at

http://www.webcitation.org/6U3JJmMu2)

Steadman EJ, Mitchell P, Highley DE, Harrison DJ, Linley KA, Macfarlane M and McEvoy F (2004) Strategic

Environmental Assessment (SEA) and Future Aggregates Extraction in the East Midlands Region. BGS

Commissioned Report. http://www.bgs.ac.uk/downloads/start.cfm?id=1317 (URL access on 2014.07.27

archived at http://www.webcitation.org/6RNhWAFcx)

Tarboton D. G., R. L. Bras, I. Rodriguez-Iturbe (1991) On the Extraction of Channel Networks from Digital

Elevation Data. Hydrological Processes. 5: 81-100.

The Planning System and Flood Risk Management, Guidelines for Planning Authorities, 2009. OPW, Dublin,

pp. 12-17.

Page 44: Instruments for Modelling Black Sea River Basins: Research

44

UNEP (2014), David Johnson, Angela Benn and Maria Adelaide Ferreira. Measuring Success: Indicators for

the Regional Seas Conventions and Action Plans. UNEP Regional Seas Report and Studies No. 194. ISBN:

978-92-807-3421-8. http://apps.unep.org/publications/index.php?option=com_pub&task=download&file=-

Measuring_success__indicators.pdf

Van Bernem, K.-H., Doerffer, R., Grohnert, A., Heymann, K., Kleeberg, U., Krasemann, H., Reichert, J.,

Reichert, M. & Schiller, H. (2007). Sensitivitätsraster Deutsche Nordseeküste II - Aktualisierung und

Erstellung eines operationellen Modells zur Vorsorgeplanung bei der Ölbekämpfung - Projektbericht im

Auftrag des Havariekommandos. Geesthacht: GKSS

WG-ID (2005) Measuring Progress in the Implementation of ICZM – Guidance Notes for Completing the

Progress Indicator. Working Group on Indicators and Data, 2005.

http://ec.europa.eu/environment/iczm/pdf/iczm_guidance_notes.pdf (URL access on 2014.06.06 archived

at http://www.webcitation.org/6Q7hNw7jd)

WG-ID (2006) Report on the use of the ICZM indicators. Working Group Indicators and Data (WG-ID), 2006.

http://ec.europa.eu/environment/iczm/pdf/report_wgid.pdf (URL access on 2014.11.16 archived at

http://www.webcitation.org/6U7paqFx5)

Yarmak LP (2004) Functional Zoning for the Territory of Gelendzhik Resort. ICZM Pilot Project, EuropeAid

Technical Assistance to the Black Sea Environmental Programme, ICZM RAC, Krasnodar, Russian Federation,

2004.

Балджи М.Д., Харічков С.К. (2008) Основи діагностики комплексного природокористування: регіональнийвимір [Текст]: монографія/ М.Д. Балджи, С.К. Харічков Одеса: ІПРЕЕДНАН України, 2008.

144 с. Бібліогр.: С. 134 141.

Касьяненко В.О., Руденко В.О. (2009) Розвиток інформаційних систем управління екологічними процесами // Вісник СумДУ. Серія Економіка. 2009. № 1. С. 35-43.

Про основні засади розвиткуінформаційногосуспільства в Україні на 2007—2015 роки: Закон України

від 09.01.2007 р. № 537-V // ВідомостіВерховної Ради України. 2007. № 12. С. 102.

Про Основні засади (стратегію) державноїекологічноїполітикиУкраїнинаперіод до 2020 року: Закон України від 21.12.2010 р.N 2818-VI // ВідомостіВерховної Ради України. 2011. № 26. С. 1284.

Реймерс Н. (1992) Ф. Природопользование. Словарь-справочник. М.: «Мысль», 1990. 639 с. Про інформацію: Закон України від 02.10.1992 р.№ 2657-XII // Відомості Верховної Ради України. –1992. № 48. С. 650.

Про інформацію: Закон України від 02.10.1992 р.№ 2657-XII // Відомості Верховної Ради України. –1992. – № 48. – С. 650.

Зацерковний В.И., Сімакін Ю.С., Сергієнко В.В. (2011) Застосування геоінформаційних технологій в системі управління регіоном // Чернігівськийнауковийчасопис. 2011. № 2(2). С. 95-101.

Сивак О. Застосування (2007) ГІС у регіональному проектуванні // Вісник Київського національного університету ім. Т. Шевченка. 2007. № 54. С. 55-56.

Світличний О. (2004) Геоінформаційні системи в екології (конспект лекцій). Одеса: ОДЕКУ, 2004. 768 с.

Page 45: Instruments for Modelling Black Sea River Basins: Research

45

CHAPTER 2

Proceedings of the Black Sea Regional Workshop on Catchment Observations, Modelling and Management (30-31 October 2014, Batumi, Georgia)

Page 46: Instruments for Modelling Black Sea River Basins: Research

46

Page 47: Instruments for Modelling Black Sea River Basins: Research

47

Address of the Black Sea Commission Permanent Secretariat

Distinguished colleagues and friends, dear participants of the Black Sea Day

Workshop,

In my capacity of Executive Director of the Black Sea Commission’ Permanent Secretariat, let me thank you for joining the Black Sea celebrations in Georgia, in

this wonderful city of Batumi! I do regret that I cannot join you today and wish

you a successful meeting!

I would like to mention that the Black Sea Day is one of the most outstanding and

important events of the Black Sea Commission recalling us the day then the first

Strategic Action Plan for the Rehabilitation and Protection of the Black Sea was

signed by all riparian countries of the Black Sea on the 31st of October back in

1996 in Istanbul. It continues to be our good tradition every year and let me

extend the warmest congratulations to each and every one of us, to every person

dealing with the preservation of the Black Sea, our precious common heritage.

By means of having such events in different coastal regions of the Black Sea we

try to attract the attention of scientists, politicians, decision-makers and just a

wider public to our day-by-day activities related to the protection of the Black

Sea. I hope your meeting will bring us to some new solutions and help to better

coordinate our efforts in the future.

I would like to thank my Georgian colleagues for organizing this event and mark

their continuous dedication and efforts to improve the environment of the Black

Sea and support of our activities.

Thank you very much for your kind attention and once again, heartily

congratulations to all of us!

Prof. Dr. Halil Ibrahim Sur, Executive Director

The Black Sea Commission

Permanent Secretariat

Page 48: Instruments for Modelling Black Sea River Basins: Research

48

Page 49: Instruments for Modelling Black Sea River Basins: Research

49

Address of the Black Sea Commission Member from Georgia

Ladies and Gentlemen, distinguished guests,

Welcome to Batumi and 18th celebration of international Black Sea Day. Cooperation which started between Black Sea countries by signing the Bucharest Convention and Odessa Declaration deepened on 31st of October 1996, when first Black Sea Strategic Action Plan was endorsed. International Black Sea Day commemorates this date.

All six coastal states celebrate this day to raise public awareness for the protection of Black Sea environment and ongoing cooperation. We are indeed pleased and humbled to be greeted by the Black Sea Commission Permanent Secretariat Executive Director on this memorable event here in Batumi.

The Convention on the Protection of the Black Sea Against Pollution is the first International Environmental Agreement which Georgia signed as an independent country. Therefore the Convention and its following policy documents like the Black Sea Strategic Action Plan remain very important for Georgia. Several environmental specialists and other stakeholders gained first experience in negotiations of international agreements. We would like to underline in this regard the important role of the international community, GEF, UN organizations, EU and other key supporters in the development of this process. Many thanks to them.

Because of the economic and political crisis of that time, Georgia was unable to implement provisions of the Convention. From that time, Georgia attempts to develop stronger legal frameworks. As part of the environmental policy reform process, the legal framework on the environment and some other Black Sea relevant laws have been developed or updated. Black Sea issues were included in a separate chapter of the new National Environmental Action Plan. This chapter is based on priorities and findings of the Regional BS SAP.

The beautiful city of Batumi is an example of the outputs of this regional policy on environmental protection of the resources of the Black Sea. Quite recently, in 2012, a new system of sewage and water supply was completed in this city. Certainly the Government of Georgia is committed in recognizing environmental protection as one of the top priorities and is thriving to achieve much more for the protection of the Black Sea and its coastal zones.

This year, the international Black Sea Day celebration here in Georgia is organized in collaboration and in synergy with two European projects with quite different sources of funding – IASON – a so called 'uptake' type project supported by the European research 7th Framework Program (FP7) – that is aiming at building

Page 50: Instruments for Modelling Black Sea River Basins: Research

50

capacity on Earth Observation in the Black Sea and Mediterranean basins and catchments. IASON present its main results in relationship with international agreements on data sharing such as GEO/GEOSS at a global level, and INSPIRE at the European level. Some of the 'uptake' projects IASON is trying to peruse in the Black Sea region are FP7 enviroGRIDS and PEGASO. Until 2014 among the six Black Sea countries, only Georgia and Bulgaria still were not members of Group on Earth Observations – GEO. It is indeed great pleasure to report, that thanks to efforts of enviroGRIDS and its continuation momentum under IASON Georgia accomplish these tasks and joined GEO as 90th of its member. It is also noteworthy that at least two countries in the Black Sea and Caucasus Region were indeed encouraged to take this step and at forthcoming GEO Plenary Armenia and Bulgaria are expected to be welcomed as member of this global network.

Another European project sponsoring this collaborative celebration of the Black Sea Day in Georgia is ILMM-BSE – and initiative to apply toolsets of land use modelling in the catchments draining to estuaries and marine waters of the Black Sea. It is also noteworthy that Cross-Border Cooperation Program for the Black Sea is administered by Romania – the European country adjoining the Black Sea. It is not surprising to expect that this project will try to deliver more at the regional and the local grassroots level.

These Projects are indeed relevant vehicles for strengthening the application and implementation of European instruments such as the Water Framework Directive, while helping the dissemination of good environmental and policy practice eastward. This is particularly important for Georgian environmental governance agenda in the context of the Association Agreements, established with the 28 Countries of the European Union.

A key lesson that we learned from our Regional and European cooperation for the protection of the Black Sea is that the network is stronger than its individual parts. Cooperation between countries, sharing the problems and best practices for their solving is a way how coastal states should act. We have difficult problems to face, and we will get through them if we face them together.

Thank you.

Nino Tskhadadze, The Black Sea Commission Member from Georgia

Ministry of Environment and Natural Resources

Protection of Georgia

Page 51: Instruments for Modelling Black Sea River Basins: Research

51

Integrated Land-Use Management Modelling of Black Sea Estuaries Project Implemented in Bulgaria, Turkey, Georgia and Ukraine

Sonya Enilova, Project Coordinator, Bourgas Region Tourism Association, [email protected]

Integrated Land-use Management Modelling of Black Sea Estuaries (ILMM-BSE) Project is financed by the Second call of the Joint Operational Programme 'Black Sea Basin 2007 – 2013' under Priority 2, Measure 2.1. Its duration is 30 months and the total budget is € 1 344 782.42, of which 90% is EU funding. Partners in the project are – Applicant is Bourgas Regional Tourism Association (BRTA), Bulgaria; ENPI Partners are Bourgas Prof. Assen Zlatarov University, Bulgaria, Ukrainian Marine Environment Protection Association, Ukraine, International Association Civitas Georgica, Georgia; IPA Financial Beneficiary is Hayrabolu Municipality (HBM), Turkey, IPA Partners are Turkish Marine Environment Protection Association, Turkey and Namık Kemal University, Turkey.

ILMM-BSE Project Final Congress in Istanbul, Turkey, November 2015

The overall objective of the project is to develop, enhance, and evaluate, impact assessment and management tools for the sustainable land use of the watershed areas of coastal river mouths. The specific objectives are to create an integrated database system involving all relevant European research and application practices; to foster communication and collaboration on land management, in target deltas; to develop land-use models for target river mouths; to induce a cooperative institutional structure; to create cooperation and networking among scientists, land developers and decision makers in Black Sea basin; to develop an environmental education program. The target groups are academicians, researchers and experts of local universities and research institutions. The final beneficiaries are representatives and members of local NGOs, representatives and officials of local authorities and administrations. The project Integrated Land-use Management Modelling of Black Sea Estuaries (ILMM-BSE) is implemented by partners from four countries – Bulgaria, Turkey, Ukraine and Georgia. The area of project covers Ergene basin and its delta in Turkey; Ropotamo and Veleka rivers'

Page 52: Instruments for Modelling Black Sea River Basins: Research

52

basins and their river mouths in Bulgaria; Danube, Dniester and Dnieper river mouths in Ukraine, Guria region in Georgia. They have been selected as target river mouths, for the implementation of the activities of the action, for their commonalities, from the view point of their current conditions and characteristics. As a consequence of their high levels of biological productivity and their main topographical features, these coastal areas play an important and unique ecological role between the coastal zone and wetlands ecosystems, providing a collection of habitat types for many species maintaining high levels of biological diversity. Because of their location as an interface between the terrestrial and marine environments, and between mountains and coastal zones, they are subject to both continental and marine influences. Since early times, human settlement of these lands and utilization of their highly productive natural resources have created rural and urban landscapes reflecting cultures centred on trade, largely oriented towards the use of these special ecological systems. On the other hand, they are subjected to human exploitation – through fisheries, aquaculture and tourism, coupled with associated urban, industrial, forestry or agricultural development – inducing changes that affect their ecology. Accordingly, the development of an integrated framework analysis of these river mouths’ lands take into account not only continental effects emanating from mountains on the one side and marine effects from coastal zones on the other side, but also cultural heritage assets inherited from ancient periods presenting apposition to the foreseeable effects of modern development.

First congress in Burgas, Bulgaria, in November 2013 Second congress in Odessa, Ukraine in September 2014

The concept of sustainable management of sensitive areas such as mountains, coastal zones as well as post-industrialised zones is neither well understood nor yet effectively applied. In consequence, various environmental problems are faced in these areas, including target territories of river mouths in participating countries, and these problems directly affect the utility of such areas and their surroundings, leading to important value loss in tourism, forestry, agriculture, fishery and the aquatic products sectors. Even if no protective measures are to be taken where no such adverse effects have hitherto been observed, similar effects may inevitable result as a consequence of rapid growth, rural development and other unsustainable development strategies. More than 30 percent of the areas of special protection designated under European Union directives for conservation are coastal. Many countries have developed a considerable body of protective legislation, which recognises of their value. In other words, the spatial-temporal variations in the ecosystems of the components of the territories of deltas should be evaluated within a very large, multi-dimensional, dynamic and complex framework. Once the need for sustainable management of sensitive areas has been identified, an integrated land-use management plan that will provide spatial and temporal guidance need to

Page 53: Instruments for Modelling Black Sea River Basins: Research

53

be developed. Integrated means to achieve such goals and tasks need to be incorporated into as many existing programmes and entities that affect the system. The ideal result should be that each of the socio-economic entities, including individual citizens, considers their impacts and demands on these areas and their limited capacity to provide for these demands on a daily operational basis. In this regard, the joint action will undertake such an approach which is yet to be applied throughout the territories of European deltas, particularly when Associated Member Country’s policies are considered.

PCU Meeting in Batumi, Georgia in 2014 Workshop in Batumi, Georgia in 2014

During the project all partners, beneficiaries and target groups met in Burgas In 2013 during the first congress of the project “Integrated Land-use management modelling of Black Sea Estuaries” (ILMM-BSE). The event was hosted by Burgas State University “Prof. Dr Assen Zlatarov”. The second congress was hosted by UKRMEPA in Odessa in 2014 and the third final congress of the project is in Istanbul, Turkey in November 2015 and is hosted by TURMEPA. Project partners from Turkey, Ukraine, Georgia and Bulgaria represented their organisations as well as the land-use management models in their countries. Academicians, researchers and experts from departments related to eco-system protection, biodiversity, environmental protection and land-use modelling, from local universities, NGOs, administrations and research institutions participated in the events.

Project Team Meeting in Odessa, Ukraine in February 2015

The formation and all meetings of partners in the Steering Committee, Project Coordination Unit, Financial Coordination Unit and Joint Research Unit are organised and hosted by Bourgas Regional Tourism Association. During three regular Steering Committee meetings, the outputs of the joint action and any difficulties encountered during implementation are discussed, decisions on the details of

Page 54: Instruments for Modelling Black Sea River Basins: Research

54

implementing the project are made. During these meetings, participants produce additional material, complementing the project studies objectives.

Meeting in Tekirdag, Turkey in 2014 Training in Guria, Georgia in 2014

It is the responsibility of the Project Coordination Unit (PCU), to record all type of records emanating from various meetings, to present them for evaluations and reporting, by related experts and to distribute them in a transparent way. The PCU operates and continuously updates the website and the IMS, while directing and forwarding all questions and requests coming to these platforms to related working packages. Although creation of the database, GIS software and IMS was outsourced, the PCU coordinates the establishment of the structure and the framework of the system and all work packages and units of the project that produce and provide the requisite information for inclusion. A number of reports together with e-bulletins and press releases are published during the course of project by PCU and publications are posted on the website so that they can be easily downloaded by anybody. The PCU supplies all instruments to secure co-ordination between joint research activities. Virtual workshops and meetings on the IMS are used for co-ordination, in addition to report exchanges, under the supervision of the PCU, with the support of the DMC (Data Management Coordinator).

Environmental data and information training combined with beach cleanup event in Guria, Georgia in 2014

Financial Coordination Unit (FCU) is dealing with EU Commission issues, such as reporting, auditing, accounting, etc., in addition to recording the working days of researchers and payments made to them. The FCU undertakes the administrative management of the consortium for the successful completion of the programme. Joint Research Unit (JRU) supervises the implementation and coordination of joint research activities in each of the partnering countries and management of database, website and the IMS. The JRU supports the PCU in (i) carrying out all four work packages, within the context of

Page 55: Instruments for Modelling Black Sea River Basins: Research

55

joint research programme, (ii) coordination and management of database, website and information management system. The JRU is also active in (i) spreading excellence and the dissemination of information and knowledge to public, (ii) organising public hearing meetings and prepared documents for public release, (iii) quality editing and publishing of reports, papers, etc., (iv) archiving all documents and materials produced by meetings, (v) coordination of organising congresses, workshops, training courses and executive / steering committees meetings, (vi) disseminating the results of all such meetings.

Training in Odessa, Ukraine Training course in Burgas, Bulgaria, organized by Burgas University 'Prof. Dr Assen Zlatarov'

The third group of activities in the project ILMM-BSE – spreading excellence, is more inter-related with training activities, where one component in formal educational format, delivered at partnering universities, towards students. In this respect, an environmental education program was implemented in parallel in all partnering countries. This is formal education of young people in order for them to understand the central role of the natural environment and their future welfare. An environmental education program is developed by TURMEPA to ensure long-term sustainability of a participatory process.

Training course in Namik Kemal University, Turkey Workshop in Istanbul, Turkey in 2015

Training courses in Bulgaria were organised by the ENPI Partner University 'Prof. Dr Assen Zlatarov' - Burgas, training courses in Ukraine were organised by the ENPI Partner UKRMEPA, training courses in Georgia were organised by the ENPI Partner CIVITAS GEORGICA and training courses in Turkey were organised by the IPA Partner Namik Kemal University. During the project there were five workshops organized in different partner countries. The main aim

Page 56: Instruments for Modelling Black Sea River Basins: Research

56

of the workshops was to discuss the joint research programme, which creates the required platform for researchers to meet each other and focus, discuss and evaluate working programme strategies and methodologies, in order to ensure that project targets are achieved, within required timeframe.

Visit of the mouth of Veleka River in Bulgaria with experts of local administration in Tsarevo Municipality

Public hearing in Georgia

After completing the review and evaluation of existing research and literature review, these events formed a platform for discussions for multifunctional approaches and needs for new tools and models for sustainable land-use planning and management, where representatives of work packages presented their views, all results and outputs of the studies were discussed and analyzed in detail and the shared conclusions obtained and disseminated, for the enhancement and development of new tools and models. The workshops were attended by all project partners as well as by representatives of all related institutions.

Public hearings in six Black sea municipalities in Burgas District, Bulgaria

Public hearings and press conferences were organized in all partner countries Bulgaria, Georgia, Ukraine and Turkey. All project activities and results were shared with the audience.

As a result of the implementation of project activities the following results were achieved: sharing knowledge, ensuring the lasting integration of information and data, networking experts and stakeholders throughout Black Sea basin, expanding the use of scientific tools to

promote sustainability in the use of territories of coastal river mouths and spread excellence

worldwide.

Page 57: Instruments for Modelling Black Sea River Basins: Research

57

Instruments for Modelling Black Sea River Basins: Application Case of Guria Region in Georgia

Mamuka Gvilava a, *, Giorgi Meskhidze b

a ILMM-BSE Joint Research Coordinator for Civitas, ICZM National Focal Point for Georgia b President, International Association Civitas Georgica, Georgia

*Main author: [email protected] , +995 (599) 546616

Abstract Various tools and instruments, such as land cover change detection and hydrological modelling were employed to quantify changes in one of the Black Sea coastal regions of Georgia. These instruments, developed within several European supported projects (including Integrated Land Use Management Modelling of Black Sea Estuaries (ILMM-BSE)), were consistently applied to Guria Region. Local and global datasets allowed to build and to observe sustainable coastal development indicators, such as population (1989-2002) and land cover (2000-2010) changes, presenting them in a spatially explicit manner. DPRSF framework was employed to characterise governance and response action needs to address sustainability challenges in the catchments. Introduction Guria Region, with population around 140 thousand, is located along the Black Sea coast of Georgia spreading approx. 21.5 km from River Natanebi mouth to Supsa River mouth and further north to the edge of the port city of Poti. The region is composed of three administrative districts including Ozurgeti, Lanchkhuti and Chokhatauri Municipalities – three most important settlements of the region, which are all non-coastal and located in the mountain foothill hinterland. Four small settlements are located along the Guria coast, from north to south: Grigoleti and Tskaltsminda (Lanchkhuti Municipality), Ureki and Shekvetili (Ozurgeti Municipality). Ozurgeti is the administrative centre of Guria. Figure 1 depicts Guria Region against the backdrop of the proposed boundaries for the coastal zone of Georgia.3

Figure. 1. Guria & Georgia Coastal Zone Figure 2. Datasets available for modelling 2 main catchments of Guria

3 http://sites.google.com/site/iczmgeo/Home/20050412-e-draft-ICZM-Law-GEORGIA.pdf

sites.google.com/site/iczmgeo/Home/20100322_Draft_ICZM_Strategy_Georgia_Eng.pdf

Page 58: Instruments for Modelling Black Sea River Basins: Research

58

Catchments of two main rivers, Supsa and Natanebi (with tributaries) essentially constitute the territory of the entire region, which is positive factor in terms of needs of the integrated management of catchment, coastal and maritime issues. Hydrological modelling of these two river basins therefore would provide important instrument to regional authorities to better deal with complex processes of land based sources of pollution, and monitor impacts of changes in land cover and land use in the catchment areas. Figure 2 above displays basins of these two key river systems (including their tributaries) discharging to the Black Sea in Georgian case area: Supsa (north) and Natanebi (south). Map shows topography, land cover and soils in river basins. Administrative boundaries of Guria Region are shown in red colour as well. Layers are overlaid against MODIS true colour image. These images show datasets, available for hydrological modelling of the river basins of the Guria Region. All these and other datasets not mentioned in this work are deployed on the Web-GIS portal developed under the EU Black Sea CBC Integrated Land Use Management Modelling of Black Sea Estuaries (ILMM-BSE) project. In synergy with enviroGRIDS (http://envirogrids.net) and PEGASO (http://pegasoproject.eu), as well as their uptake IASON (http://iason-fp7.eu) efforts, utilising instruments developed under these earlier projects, hydrological modelling and sustainable development indicator tools are applied to Guria Region and its main rivers, complemented by land cover change dynamics analyzed with ILMM-BSE methodology (http://e-BlackSea.net Web-GIS). This paper summarizes work done under ILMM-BSE project utilising the toolsets developed under these projects. Population dynamics and land cover change in Guria Region Coastal sustainability indicators (developed by PEGASO) are not yet fully feasible to apply for Guria Region, but some basic datasets were identified, best example of which is the population dynamics, as illustrated on Figures 3 and 4, where national census statistics was complemented by remote sensing (such as Landsat and NPP night lights) to visualise urban and rural dynamics, characterised mostly by the contraction of population. This indicator (and urban lights imagery) also illustrate, that coastal zone is indeed attracting lower density urban sprawl.

Figure 3. Population density of Guria Region according to national census (source: GeoStat, 2002)

Figure 4. Population change according to 1989 & 2002 census against backdrop of NPP night lights & Landsat

Another indicator was applied to illustrate and quantify changes in natural capital through land cover dynamics. For that purpose an opportunity was tapped with the newly opened access to 30 m global land cover dataset with 10 classes, available for years 2000 and 2010 (see GLC30,

Page 59: Instruments for Modelling Black Sea River Basins: Research

59

2000; GLC30, 2010 and Jun Chen, 2014). Land cover change dynamics for six main land classes present in Guria Region are displayed on Figures 5, 6 and summarised in Table 1. Colour coding for main land cover types – artificial surfaces (developed), cultivated lands (semi-developed) and other natural land cover types (undeveloped), are in line with the traffic light methodology proposed in Chapter 1 and can serve as natural capital preservation indicator for Guria region.

Figure 5. Global 30 m Land Cover for Guria (2000) Figure 6. Global 30 m Land Cover for Guria (2010)

Table 1. Land use change of Guria Region between 2000 and 2010

Land Use 2000 2010 Land cover change (%) Area (%) Area (Hectare) Area (%) Area (Hectare)

Artificial surfaces 0.72 1,485 0.75 1,535 0.02

Cultivated lands 30.35 62,159 30.68 62,851 0.34

Forests 61.45 125,862 61.07 125,095 -0.37

Grasslands 6.86 14,052 6.80 13,923 -0.06

Wetlands 0.04 80 0.09 189 0.05

Water bodies 0.58 1,191 0.60 1,234 0.02

Source: http://www.globallandcover.org (GLC30, 2010); personal communication Chen Jun, NGCC (GLC30, 2000)

Hydrological modelling Main rivers of Guria Region are Supsa (length – 108 km, catchment area – 1130 km2, average multiannual discharge – 46 m3/s), its tributaries Gubazeuli (47 km, 371 km2, 13.7 m3/s) and Bakhvistskali (42 km, 156 km2, 8.25 m3/s), as well as Natanebi (60 km, 657 km2, 33.5 m3/s) and its tributary Bzhuzhi (32 km, 259 km2, 14.3 m3/s). Natanebi river mouth is discharging into the Black Sea just 12 km south of Supsa river mouth. There used to be 8 hydrological gauge stations operated at all main rivers at various time intervals before 1992, but now only 1 hydrological and 1 meteorological posts are operation at Supsa near Chokhatauri (personal communication, Vakhtang Geladze, ILMM-BSE training on catchment hydrological modelling, 26 April 2014, Ureki, Georgia). The open source Soil and Water Assessment Tool (ArcSWAT, see Arnold et al. 1998) was applied to set-up the hydrological model for Guria Region’s main river basins of Supsa and Natanebi. Global 30 m resolution land cover (GNCC), 30 m Global DEM, and FAO soils cover data (complemented with the national soils in 1/500,000 scale), combined with globally available climate datasets in ArcSWAT input format (see http://globalweather.tamu.edu) allowed to set-up and run the hydrological model for these catchments, but lack of hydrological discharge data for main river basins of Supsa and Natanebi (only one operating gauge station without open access to data) did not allow to calibrate and validate water quantity model.

Page 60: Instruments for Modelling Black Sea River Basins: Research

60

To compensate for the lack of discharge data, a thought experiment is proposed herby on how to apply remote sensing to address in situ discharge data scarcity. Indeed, recent advancements make it increasingly possible to calibrate river discharge data based on satellite observations of microwave measurements, using a global hydrology model (Brakenridge G.R., et al., 2012). Using methodology similar to one described in this reference, it is possible to fit discharge time series data with the extracted microwave signal measurements, acquired through the web portal http://www.gdacs.org/flooddetection. Figure 7 illustrates successful fitting of microwave measurements with the in situ discharge data for Rioni river case (enviroGRIDS, 2012).

Figure 7. Manual fitting of discharge time series (daily, monthly) with microwave satellite measurement data

Due to satisfactory visual fit of the in site measured and microwave satellite observation data, it is speculated, that instead of the use of global hydrological model to derive absolute values for river discharge time series from satellite observations, one could combine microwave satellite data (available in relative values), with absolute figures obtained via at-many-stations hydraulic geometry river width based methodology, described in Gleason and Smith (2014), in order to recalculate relative values of satellite measurement time series into absolute values for river discharge. Sentinel-2 satellite 10m resolution bands4 are expected to allow for such calculations for narrow width rivers such as Supsa and Natanebi, sensing their discharge data remotely. Responses in action As demonstrated above, using various available global and local datasets and the range of tools and instruments, modelling and quantification of land use/land cover and hydrological changes in the Black Sea catchments is feasible in case of Guria and other coastal regions of Georgia. Research work conducted within ILMM-BSE and other European projects enabled the capacity development to handle these complicated instruments in collaboration with Black Sea partners. Purpose of this concluding part of the paper is to characterise governance and management responses ongoing or needed to address many of the societal and environmental challenges ultimately affecting the Black Sea environment. Generalised Drive-Pressure-State-Response-

4 https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial

Page 61: Instruments for Modelling Black Sea River Basins: Research

61

Framework (DPRSF) for the specific case of land use change in the Black Sea river catchments of Georgia (considering the particular case of Guria Region) is depicted on Figure 8.

Figure 8. DPRSF for addressing land use / land cover change impacts in river catchments

Following further is the current status of necessary actions needed to address the governance and management challenges: Local land-use planning

– Spatial planning legislation in largely in place on national level – Municipal planning in process – Inter-municipal approaches being established and tested

Land conservation and habitat restoration – National parks and reserves in place – Mechanisms are inadequate to conserve habitats and resources outside protected areas

Integrated coastal zone management – Draft legislation and strategy exist – Political will needed to implement

Integrated river basin management – Baseline data on pilot area exists (Guria case) – Georgia-EU association agreement (Roadmaps under implementation) – Common approach for the Black Sea Region

Conclusions Population is contracting and land cover dynamics is moderate in the Black Sea river basins of the coastal Guria Region, but inadequacy of environmental regulations and weak enforcement impose increasing pressures on natural, social and economic subsystems. Introduction of integrated governance instruments such as ICZM and IRBM are necessity if requirements of EU-Georgia Association Agreement are to be implemented with success.

Page 62: Instruments for Modelling Black Sea River Basins: Research

62

Acknowledgements The authors would like to acknowledge the European Cross-Border Cooperation Black Sea Basin Joint Operational Programme 2007-2013 that supported the Integrated Land Use Management Modelling of Black Sea Estuaries (ILMM-BSE) project. Support by Chen Jun (GNCC) with access to GLC30 data for the year 2000 is sincerely acknowledged. Main author would also like to acknowledge EU FP7 enviroGRIDS, PEGASO and IASON projects for support and tools provided. Assistance by Tinatin Janelidze of GeoGraphic with land cover change quantification and by Vakhtang Geladze of (NEA) with hydrological baseline characterisation is kindly appreciated.

References Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams. 1998. Large area hydrologic

modeling and assessment: Part I. Model development. J. American Water Resources Assoc. 34:73-89 (ArcSWAT is available at http://swat.tamu.edu/software/arcswat).

Brakenridge G.R., et al. (2012) Calibration of satellite measurements of river discharge using a global hydrology model. Journal of Hydrology, Volume 475, 19 December 2012, Pages 123-136. http://floodobservatory.colorado.edu/Publications/JourHydrology2012.pdf.

http://floodobservatory.colorado.edu/Publications/Chapman2012_poster_Cohen_et_al_2.pdf. http://floodobservatory.colorado.edu/CriticalAreas/forweb.pdf

EnviroGRIDS (2012), Remote Sensing Services, Deliverable D2.11, University of Geneva, 2012. http://envirogrids.net/index.php?option=com_jdownloads&Itemid=13&view=finish&cid=139&catid=11

Gleason, C.J., Smith, L.C. (2014) Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry. Proceedings of the National Academies of Science, vol. 111, no. 13, 4788–4791, http://dx.doi.org/10.1073/pnas.1317606111.

Jun Chen et al. (2014) Global Land Cover Mapping at 30 m Resolution: a POK-based Operational

Approach. ISPRS Journal of P&RS, http://dx.doi.org/10.1016/j.isprsjprs.2014.09.002. NGCC (2000) 30 m Global Land Cover 2000. National Geomatics Center of China (NGCC),

http://www.globallandcover.org, doi:10.11769/GlobeLand30.2000.db. NGCC (2010) 30 m Global Land Cover 2010. National Geomatics Center of China (NGCC),

http://www.globallandcover.org, doi:10.11769/GlobeLand30.2010.db.

Page 63: Instruments for Modelling Black Sea River Basins: Research

63

Earth Observation Marketing Tools and Business Opportunities for Environmental Management

Mark Noort a,*

a HCP international *Main author: [email protected], +31 (0) 629536467

Abstract There is a need for marketing of earth observation applications for environmental management. To address this more effectively, an impact assessment framework was developed that assesses the benefits and 'points still to be addressed' of possible solutions in three stages: step-by-step benefit framework, impact indicators and business environment. Based on an analysis of the environmental drivers, environmental challenges and policy priorities a number of business opportunities for earth observation applications are identified.

Introduction There is a need for marketing and promotion earth observation for environmental applications.

Partly, this is because the introduction of new (and innovative) technology takes some extra effort (Moore; 1991) and marketing and promotion derived from a carefully formulated customer value proposition is useful in itself (Barnes, Blake, Pinder; 2009). Additional marketing and promotion is needed because earth applications for environmental management deal with externalities that are not captured by current economic models. To target efforts better, a three stage impact assessment framework was developed (Noort; 2014), of which the first

stage consists of a step-by-step assessment of how the benefits of the earth observation application can be captured best (Figure 1).

Figure 1. Step-by-step assessment of the benefits of earth observation applications.

Page 64: Instruments for Modelling Black Sea River Basins: Research

64

Figure 2 gives an overview of where general environmental applications find a place in this framework. The information and analysis presented below is based on the marketing toolkits for environmental management, climate change and marine resources and environment that were developed in the framework of the EC FP7 GEONetCab, EOPOWER and IASON projects (Noort; 2014).

Figure 2. Where earth observation application categories for environmental management fit in the framework

The environmental setting Earth observation applications do not operate in a vacuum and are most beneficial when they form part of an effective and efficient organisational process. In relation to environmental management it is therefore important to look at a number of factors that influence

environmental decision making, such as drivers, challenges and policy priorities. Environmental drivers are, for example:

– Economic growth; – Population growth; – Overexploitation of resources, such as in agriculture and fisheries; – Lack of awareness, knowledge and consensus about what affects the environment and

what the consequences are.

Environmental challenges are, depending on viewpoint and perception: – Freshwater scarcity, climate change, habitat change, invasive species, overexploitation

of oceans, nutrient overloading (UNEP; 2010); – Cross-cutting issues, food – biodiversity and land issues, freshwater and marine issues,

climate change issues, energy – technology and waste issues (UNEP; 2012); – Depletion of natural capital, climate change, biodiversity loss, emissions and waste

generation, pollution (EEA; 2010);

Page 65: Instruments for Modelling Black Sea River Basins: Research

65

– Climate change, energy efficiency and renewable energy sources, management of ecosystems and biodiversity, forest loss, desertification and land degradation, water resources (de Ville, Kingham; 2011).

This leads to the following policy priorities: – Better implementation and further strengthening of current environmental priorities;

– Dedicated management of natural capital and ecosystem services; – Coherent integration of environmental considerations across the many sectoral policy

domains; – Transformation to a green economy; – Compliance with international treaties environmental regulations.

Earth observation can support achieving these policy priorities, as will be shown in the next

section. Studies are available for some countries and international organisations that show the relevance of earth observation (CSA; 2012 and Secades et al.; 2014). Earth observation for environmental management Earth observation can particular contribute in the following areas:

– Terrestrial, freshwater, marine and coastal ecosystems identification and monitoring;

– Assessment of bio-geophysical variables;

– Support to (national) park management; – Biodiversity monitoring and modelling; – Environmental accounting (including carbon accounts).

Earth observation is an excellent instrument for mapping and monitoring of land cover, land use, changes, classification and historical trends. It is a valuable tool for assessing the status of ecosystem goods and services, provided by the regulation, habitat, production, and information

functions of ecosystems. Evaluating ecosystem services in support of sustainable ecosystem management requires the use of (spatial) models. Some general models are available, such as the World Wildlife Fund (WWF) InVEST tool (Sharp et al.; 2015). For specific applications, new models will have to be developed. Earth observation facilitates measurement and assessment of individual bio-geophysical variables, such as vegetation, soil, radiation, water cycle and essential climate variables (ECVs). Bio-geophysical parameters provide the backbone for analysis and decision-making in

environmental management. Earth observation helps managers of national parks and protected areas improve park management. It provides valuable information on plant health, habitats, changes and relations between different factors that cannot be derived, or only at high cost, by in-situ analysis. Earth observation is instrumental in delineating optimum national park borders and environmental corridors. Earth observation helps predicting the impact of habitat loss and fragmentation on biodiversity

elements and ecosystems processes. It facilitates the inclusion of individual species or

functional types in ecosystem modelling and models (linked to carbon). Earth observation contributes to modelling of landscape dynamics, using geospatial data, to generate maps of suitable habitat over time for input into meta-population models.

Earth observation provides the basis for monitoring, reporting and verification for environmental accounting. The use of earth observation increases the precision of

quantification of carbon stocks and ecosystem type classification, result in more precise proxies for payment for ecosystem services (PES) schemes.

Page 66: Instruments for Modelling Black Sea River Basins: Research

66

Business opportunities To capitalise on the advantages listed above it is necessary to implement a more detailed assessment of the feasibility of each earth observation solution (in relation to other solutions). This is done by applying the indicators presented in table 1 (as second stage of the impact

assessment) and by a closer analysis of the business environment.

Table 1. Impact assessment indicators for earth observation applications

The rating of business environment is the third stage of the impact assessment and looks at circumstances that can differ by country or region, such as:

– The willingness to pay (by clients);

– The opportunities for embedding earth observation applications (in organizational processes);

– Openness (transparency and ease of doing business, access to markets);

– Institutions (is the institutional environment conducive to doing business, acceptance of new solutions?).

Page 67: Instruments for Modelling Black Sea River Basins: Research

67

With respect to environmental management, the way public sector information is dealt with is particularly relevant (Sawyer, de Vries; 2012). In summary, the main business opportunities for earth observation are in the fields of mapping and monitoring of ecosystems and biodiversity, protected area management, measurement

reporting and verification for environmental accounting. The main issues to be dealt with for particular applications are cost, data access, capacity and the business model. The use of support tools for earth observation marketing, such as success stories (what has already been implemented successfully elsewhere), demonstrators and roadshows (awareness raising) will increase the chance of success (Noort; 2013).

Conclusions Earth observation applications do not sell themselves, additional marketing is needed. This applies in particular to the field of environmental management, where not all the benefits can be captured in conventional economic models. Earth observation is valuable instrument for supporting environmental decision and policy making. The main business opportunities are in the fields of mapping and monitoring of

ecosystems and biodiversity, protected area management, measurement reporting and

verification for environmental accounting. The three stage impact assessment (step-by-step framework, impact indicators, rating the business environment) helps in the identification of business opportunities and targeting of marketing efforts. Acknowledgements The European Commission through its 7th Framework Programme supported the development of the impact assessment framework and marketing tools for earth observation as part of the GEONetCab, EOPOWER and IASON projects. References Barnes C., Blake H. and Pinder D. (2009) Creating and delivering your value proposition –

managing customer experience for profit.

Canada Space Agency (2012) Space utilization earth observation – Space applications linked to government priorities / departments.

Europe Environmental Agency (2010) The European environment – state and outlook. Moore G.A. (1991) Crossing the chasm – marketing and selling high-tech products to

mainstream customers. Noort M. (2014) Methodological framework for impact assessment of earth observation for

environmental applications. EOPOWER.

Noort M. (2014) Marketing toolkit: earth observation for environmental management.

EOPOWER. Noort M. (2014) Marketing toolkit: earth observation for climate change. EOPOWER. Noort M. (2014) Marketing toolkit: earth observation for marine resources and environment.

EOPOWER. Noort M. (2013) Marketing earth observation products and services, part #2. GEONetCab.

Sawyer G. and Vries M. de (2012) About GMES and data: geese and golden eggs - A study on the economic benefits of a free and open data policy for Sentinel satellite data.

Page 68: Instruments for Modelling Black Sea River Basins: Research

68

Secades C., O'Connor B., Brown C. and Walpole M. (2014) Earth observation for biodiversity monitoring: a review of current approaches and future opportunities for tracking progress towards the Aichi biodiversity targets. Secretariat of the Convention on Biological Diversity, Montréal, Canada. Technical Series No. 72.

Sharp R., et al. (2015) InVEST +VERSION+ User’s Guide. The Natural Capital Project. The Nature Conservancy and World Wildlife Fund.

UNEP (2012) 21 issues for the 21st century: result of the UNEP foresight process on emerging environmental issues.

UNEP et al. (2010) TEEB - The economics of ecosystems and biodiversity for business. Ville, G. de, and Kingham, R.A. (2011). Recent trends in EU external action in the fields of

climate, environment, development and security. IES.

Page 69: Instruments for Modelling Black Sea River Basins: Research

69

The Importance of Marine Aerosols for Climate Change Assessments

Nicholas Meskhidze a,* a Associate Professor at North Carolina State University

*Main author: [email protected], http://www4.ncsu.edu/~nmeskhi/Homepage.html

Introduction Everything, from an individual person to Earth as a whole, emits energy. In science, this energy is referred to as radiation. As Earth absorbs incoming sunlight, it warms up. In order for the planet to remain in thermodynamic equilibrium, the equal amount of energy received from the Sun must be emitted into space. The Earth's climate system constantly adjusts in a way that tends toward maintaining this balance between the energy that reaches the Earth from the Sun and the energy that goes from Earth back out to space. If the amount of energy emitted by the Earth is less than the incoming solar radiation, the temperature of the Earth will increase until a new thermodynamic balance is established. Such temperature increase has important ramifications for the Earth’s climate. Two components make up the Earth's outgoing energy: longwave (or thermal infrared radiation) that the Earth's surface and atmosphere emit; and shortwave (with wavelengths in the visible, near-ultraviolet, and near-infrared spectra) that the land, ocean, clouds, and particles (suspended in the air) reflect back to space. The balance between incoming sunlight and outgoing energy determines the planet's temperature and, ultimately, climate. Both natural and human-induced processes affect this balance, also known as the Earth's radiation budget. In what follows, I will discuss how aerosols play an important role in the Earth’s radiation budget.

The Impact of Aerosols on Climate An aerosol is fine solid particle or liquid droplet suspended in the air, produced by either natural processes or human activity. Aerosols in the atmosphere degrade air quality, adversely affect human health, reduce visibility and influence the Earth’s climate. But, of particular interest here is the role of aerosols on the Earth’s climate balance. Aerosols either reflect or absorb energy, depending on their size, chemical composition and altitude. The haze layer that is commonly seen in the summertime is one example of an aerosol that primarily reflects (scatters) sunlight. Soot emitted by diesel engines, as well as mineral dust suspended in the air, are some examples of aerosols that absorb sunlight. These absorption and scattering of incoming radiation are called direct aerosol radiative forcing and they act in a direct way to change the balance between incoming and outgoing energy. Aerosols can also affect the Earth's radiation budget indirectly by modifying the characteristics of clouds, which also play a major role in the Earth’s radiation budget. The study of clouds - where they occur and their characteristics – is the key to the understanding of climate change. Low, thick clouds primarily reflect solar radiation and cool the surface of the Earth. High and thin clouds primarily transmit incoming solar radiation; at the same time, they trap some of the outgoing infrared radiation emitted by the Earth and radiate it back downward, thereby warming the surface of the Earth. Cloud particles almost always form around aerosols such as natural sea spray particles or human-made sulfate particles. The presence of additional aerosols can change the cloud particle size and the ability of the cloud to precipitate. Such changes ultimately affect the way clouds radiate energy and the length of time they stay intact. These effects are called indirect aerosol radiative forcing.

Page 70: Instruments for Modelling Black Sea River Basins: Research

70

As discussed above, aerosols have both natural and anthropogenic sources. In general, both of these sources can influence the climate directly, through absorption or scattering of radiation, or indirectly, through the changes to the reflectivity or lifetime of clouds. Considering that natural source of aerosols, such as sea spray, dust, volcanic eruptions, forest fires, etc. have been around for thousands of years, the phrase “climate effect” is typically reserved only for man-made aerosols. Therefore, it is a common practice to estimate aerosol effects on climate based on the differences between model simulations of present-day and of preindustrial aerosol emissions. In order to normalize all model predictions to the same background (starting) conditions, scientists agreed to use year 1750 as a proxy for the preindustrial conditions. The climate prediction calculations are conducted using complex 3-D Global Climate Models (GCMs). According to Intergovernmental Panel on Climate Change (IPCC) – a scientific body under the sponsorship of the United Nations (UN) that reviews and assesses the most recent scientific, technical and socio-economic information produced worldwide relevant to the understanding of climate change – aerosol direct effects (absorption or scattering of radiation) and indirect effects (changes to the reflectivity or lifetime of clouds) represent the largest source of uncertainty in current understanding of global radiative forcing [IPCC, 2013]. Figure 1 shows that unlike human-produced greenhouse gases, aerosols tend to have negative radiative forcing (i.e., cool the Earth); however, the uncertainty (shown by the error bars) remains very large.

Figure 1. Radiative forcing estimates in 2011 relative to 1750 and aggregated uncertainties for the main drivers of climate change. Values are global average radiative forcing, partitioned according to the emitted compounds or processes that result in a combination of drivers. The best estimates of the net radiative forcing are shown as black diamonds with corresponding uncertainty intervals; the numerical values are provided on the right of the figure, together with the confidence level in the net forcing (VH – very high, H – high, M – medium, L – low, VL – very low). Figure adapted from IPCC, 2013: Summary for Policymakers.

Page 71: Instruments for Modelling Black Sea River Basins: Research

71

Sea Spray Aerosols Although natural aerosols do not affect climate directly, recent studies have shown that accurate representation of natural background aerosols, such as ones over the marine regions, is critical for better assessment of anthropogenic aerosol effects [Gantt et al., 2011; Carslaw et al., 2013]. The impact of sea spray aerosols on global climate remains one of the most uncertain components of the aerosol–radiation–climate problem, but has received less attention than the impacts of terrestrial and anthropogenic aerosols. The last decade has produced a large body of information regarding the sources and composition of marine aerosols, resulting in a reassessment of the complex role that sea spray particles play in climate and various geophysical phenomena. As sea spray aerosol contributes substantially to the preindustrial, natural background which provides the baseline on top of which anthropogenic forcing should be quantified, and because the ocean covers over 70% of the Earth’s surface, the representation of sea spray aerosol in climate models strongly influences the predicted impact on climate of anthropogenic aerosols via direct and indirect effects. In addition, climate change affects atmospheric parameters, such as wind speed that has controlling effect on the production of sea spray aerosol. An international group of experts who convened at a marine aerosol workshop held in Raleigh, NC suggested that there is a great need for comprehensive observational data on marine aerosols that can be used for improvement/evaluations of climate models [Meskhidze et al., 2013]. Seawater-derived aerosol, themselves, can be separated in two broad classes: primary, i.e., derived from the mechanical process of bubble bursting, and secondary, derived through gas phase oxidation of dimethylsulfide and marine biogenic volatile organic compounds produced by oceanic biota or through photosensitized reactions involving the sea-surface microlayer. In the past, sea-salt was recognized as a major component of marine primary aerosols (i.e., sea spray); however, recent studies have shown that ocean-derived organic matter can contribute a considerable fraction to sub-micron primary marine aerosol mass [Gantt and Meskhidze, 2012]. Sea surface temperature and salinity were also suggested to influence sea spray emission [Mårtensson et al., 2003]. Ocean-derived secondary aerosols, which are the outcome of gas-to-particle conversion processes, typically enhance concentrations of very small particles. Despite some controversy, today scientists agree that number of seawater-derived particles in the atmosphere is typically high above biologically active regions. Marine Aerosols in the Black Sea region and their Effect on the Climate One of such marine regions that are capable of producing large amounts of aerosol (both through primary and secondary mechanisms) is the Black Sea. The Black Sea is a sea between Southeastern Europe and Western Asia. It is bounded by Europe, Anatolia and the Caucasus, and drains through the Mediterranean into the Atlantic Ocean, via the Aegean Sea and various straits. The Black Sea has an area of 436,400 km2 (168,500 sq mi), a maximum depth of 2,212 m (7,257 ft), and a volume of 547,000 km3 (131,000 cu mi). Despite its importance, production of marine aerosols from the Black Sea and their effect on the climate remain poorly characterized.

Page 72: Instruments for Modelling Black Sea River Basins: Research

72

Enriched by nutrients carried in by the surrounding rivers, the waters of the Black Sea can maintain high biological productivity and are fertile territory for the growth of phytoplankton (Figure 2). Phytoplankton are the “primary producers” of the seas and oceans. These plant-like,

microscopic algae and bacteria use chlorophyll to make their own food from carbon dioxide (CO2), sunlight and dissolved nutrients. Many of Europe’s largest rivers dump fresh water into the Black Sea. The sea’s only source of salty water, on the other hand, is the narrow Bosporus Strait, which connects it to the Mediterranean Sea through the Sea of Marmara. The salty water is denser than the fresh water, and so it sinks to the bottom, leaving a layer of relatively fresh water on top. The density barrier between salt and fresh water is great enough that the two layers do not mix. As a result, when fresh water enters the sea from rivers, it only mixes with the relatively fresh water in the top 150 meters of the sea. This means that fertilizers and runoff carried in the river water remain concentrated in the top of the sea where they nourish the phytoplankton that grow on or near the surface. This also means that the Black Sea ecosystem is quite vulnerable to increased pollution from the surrounding rivers. The main phytoplankton groups present in the Black Sea are dinoflagellates, diatoms, coccolithophores and cyanobacteria. Generally, the annual cycle of phytoplankton development comprises significant diatom and dinoflagellate-dominated spring production, followed by a weaker mixed assemblage of community development below the seasonal thermocline during summer months and a surface-intensified autumn production. This pattern of productivity is also augmented by an Emiliania huxleyi bloom during the late spring and summer months. This natural-color image captured by the Moderate Resolution Imaging Spectroradiometer (MODIS) (see description in Box 1) on NASA’s Aqua satellite shows the Black Sea on June 20, 2012. Milky, light blue and turquoise-colored water in the middle and the eastern half of the sea is likely rich with blooming phytoplankton that trace the flow of water currents. Closer to the coast, the colors include more brown and green, perhaps a brew of sediment and organic matter washing out from rivers and streams, though it may also be a sign of phytoplankton. Puffs of spring clouds linger over parts of the coastline.

Figure 2. Phytoplankton Blooms in the Black Sea. NASA image by Jeff Schmaltz,

LANCE/EOSDIS Rapid Response. Caption by Michael Carlowicz.

Page 73: Instruments for Modelling Black Sea River Basins: Research

73

BOX 1. The Earth Observing System (EOS) is a program of NASA comprising a series of artificial satellite missions and scientific

instruments in Earth orbit designed for long-term global observations of the land surface, biosphere, atmosphere, and oceans of the Earth. The first satellite component of the

program was launched in 1997. The program is centerpiece of NASA's Earth Science Enterprise. Focused on measurements identified as important by U.S. and international scientists, EOS

satellites gazing down on our

planet from the unique vantage point of space enable research into how Earth's lands, oceans, air, ice, and life function together as a complex environmental system.

Along with in situ field measurements, laboratory experiments, and regional and global modeling, satellites help us to better understand the cause-and-effect relationships among Earth's lands, oceans and atmosphere. Improved understanding of the Earth’s biogeochemical interaction will enable us to make better predictions of future climate conditions. MODIS Aqua satellite was launched on May 4,

2002. It measures radiances in 36 spectral bands from 0.4 to 14.24 μm and has a swath width of 2330 km. Aqua provides global

coverage every two

days from a polar-orbiting, sun-synchronous

platform at an altitude of 705 km.

Aqua is in an ascending orbit with an equatorial crossing of 1:30 pm local solar time. The spatial resolution at nadir has the following ranges: 250m (2 channels), 500m (5 channels), and 1 km

Page 74: Instruments for Modelling Black Sea River Basins: Research

74

(29 channels). The aerosol retrieval makes use of the first seven of these channels (0.47–2.13μ m) while additional wavelengths in other parts of the spectrum are used to identify cloud properties and ocean products [Esaias et al., 1998; Platnick et al., 2003; Remer et al., 2005]. All Aqua atmosphere products are archived into two categories: pixel-level retrievals (referred to as Level–2 products) and global gridded statistics at a latitude and longitude resolution of 1

(Level–3 products). The Level-3 products are temporally aggregated into daily, eight-day, and monthly files containing a comprehensive set of statistics and probability distributions (marginal and joint). Aqua ocean data consist of 36 Ocean Color and 4 sea surface temperature (SST) science parameters. There are an additional 38 parameters, such as wind speed, surface pressure, brightness temperatures, etc., that are used for quality control (QC). At Level 2, the 40 Ocean science parameters are grouped into 3 Ocean Color data types and one SST data type.

At Level 3, each of the 40 parameters is space-binned and time-averaged to a separate HDF-EOS grid file. Thus each Level 3 ocean parameter is available in daily, 8-day, monthly and yearly average, and at 4.63 km, 36 km and 1° spatial resolution. Each parameter's mean map has associated quality and statistics files where information for each pixel can be found [Esaias et al., 1998]. Less than 73 seconds behind Aqua flies Cloud-Aerosol Lidar and Infrared Pathfinder Satellite

Observations (CALIPSO) platform. The CALIPSO mission, launched on 28 April 2006, has been

able to provide the scientific community with vertically resolved measurements of both aerosol and cloud optical properties like depolarization ratio (a measure of particle sphericity), aerosol optical depth, and ice/water phase since June 2006. The CALIPSO payload includes a high-powered digital camera, an infrared radiometer, and the two-wavelength (532 and 1064 nm) near-nadir, polarization sensitive elastic backscatter lidar CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization). The level 1 data algorithms are responsible for the geolocation and

range determination of the satellite and produce profiles of attenuated backscatter coefficients. Data in this work were obtained from the 5 km level 2 operational products, version 3.01. Level 2 products have undergone various processing algorithms from the Selective Iterated BoundarY Locator (SIBYL), the Scene Classification Algorithm (SCA), and the Hybrid Extinction Retrieval Algorithm (HERA). First, SIBYL identifies layers, then the SCA identifies the type of feature (i.e., aerosol or cloud) and the subtype (i.e., aerosol type, ice/water phase), and finally the HERA generates extinction profiles for the feature. The theoretical basis of algorithm

can be found online at www-calipso.larc.nasa.gov/resources/project_documentation.php. The CALIPSO 5 km aerosol layer data include many operational products. Among them are the integrated attenuated backscatter and its uncertainty at 532 nm, the layer features such as number found in the column, their top and bottom altitudes and the feature classification flags.

[Images are courtesy of NASA]

Challenges related to the study of marine aerosol production The evaluation of background aerosols over the marine regions has been proven difficult both logistically (ship cost, etc.) and mechanically (marine aerosols frequently exist at very low

concentrations posing a measurement challenges for sensors). Retrieval of marine aerosols through passive remote sensing (e.g., MODIS Aqua sensor) has proven difficult, as aerosols are

often comprised of different natural (marine aerosol, dust) and anthropogenic components and are often located at different altitudes in a vertical column. Presence of clouds could further

Page 75: Instruments for Modelling Black Sea River Basins: Research

75

complicate the matter. CALIPSO sensor (see Box 1) is unique in its ability to concurrently retrieve aerosol chemical speciation and extinction profiles, and ocean sub-surface information. Such products are ideally suited for studying marine aerosols and could lead to new or significantly improved representation of marine aerosol radiative effects. Global 3-D extinction climatologies and dedicated case studies using CALIPSO clean marine aerosol products have

been successfully used for constraining aerosol radiative forcing over the oceans. However, to determine the aerosol subtypes (i.e., separate marine aerosol from other types of aerosol over the oceans), the CALIPSO algorithm uses volume depolarization ratio, integrated attenuated backscatter, the earth surface types (land/ocean), and altitude information. From a purely mathematical point of view, the separation of aerosol extinction and backscatter profiles from a single lidar measurement is intractable due to having one measurement and two unknowns.

To overcome this problem and obtain aerosol optical depth (AOD, that can be viewed as a proxy for aerosols suspended in the air), the CALIOP algorithm relies on a prescribed lidar ratio. The lidar ratio is an intrinsic aerosol property, i.e., a property that does not depend on the number density of the aerosol but rather on physical and chemical properties such as size

distribution, shape and composition. The lidar ratio at 532 nm of 20 6 sr (steradian) was selected by NASA scientists to represent marine aerosols. However, marine aerosol size

distribution and chemical composition can change significantly with ocean surface wind speed

(U10), temperature, salinity and chemical composition of surface seawater. For this reason, large disagreement exists in the literature regarding the value of maritime aerosol lidar ratio spanning the range from 17 to 39 sr (at 532 nm wavelength). Such uncertainty and the inability of the CALIOP-sensor to account for the possible variability in marine aerosol lidar ratio values over different parts of the open ocean causes over a factor of two uncertainty in the CALIOP-retrieved marine AOD values. Recently, my group has developed a new method to calculate lidar ratios of marine aerosol over cloud-free oceans using two independent sources: AOD from Synergized Optical Depth of Aerosols (SODA) and the integrated attenuated backscatter from CALIOP [Dawson et al., 2015]. The method itself is rather complex and is outside the scope of this article. However, I will say that this new method removes the dependence of the prescribed lidar ratio while still utilizing the active sensors to retrieve an AOD, thereby providing a means for independent evaluation of the lidar ratio. For example, instead of using one number for the lidar ratio (as it was done previously), Figure 3 created using our new method for calculating marine aerosol lidar ratio shows that the calculated aerosol lidar ratios decrease from ~22 sr for U10 > 15ms−1 to ~32 sr for 0 <U10 < 4 ms−1. Such changes in the lidar ratio are expected to have a corresponding effect on the marine AOD.

Figure 3. Probability density function of clean marine aerosol

lidar ratio for selected AMSR-E wind speed regimes. The μ parameter shows the mean of each distribution.

Page 76: Instruments for Modelling Black Sea River Basins: Research

76

Figure 5. Image of cloud streets over the Black Sea captured by MODIS

sensor on Aqua satellite on January 8, 2015. NASA Earth Observatory image

courtesy Jeff Schmaltz. LANCE/EOSDIS MODIS Rapid Response eam, GSFC.

In addition to the wind speed, our initial data analysis suggests that the lidar ratio of marine aerosols can be sensitive to seawater biological productivity. Figure 4 shows CALIPSO aerosol extinction retrievals over the Black Sea. To highlight the contrast, in addition to biologically productive Black Sea in low right corner we show part of the low productivity (oligotrophic) Mediterranean Sea. Our studies in different parts of the oceans show that the retrievals with anomalous depolarization ratio (δ > 10%) seem to correlate with surface Chlorophyll-a concentration ([Chl-a]) detected by MODIS Aqua satellite. The finding, if confirmed by comprehensive analysis over different special location and time seasons would point to hypothesized air-sea interaction linking biological production and clean marine aerosol optical properties. Future Research directions/possible collaborative initiatives One can argue that for the clear-sky (no cloud) conditions like one shown on Figure 2, the climatic effects of marine aerosols likely to remain small. However, what happens when the domain is covered by the clouds like ones shown on Figure 5 captured by MODIS Aqua satellite on January 8, 2015? Figure 5 shows cloud streets, long parallel bands of cumulus clouds that form when cold air blows over warmer waters and a warmer air layer (temperature inversion) rests over the top of both. The comparatively warm water gives up heat and moisture to the cold air above, and columns of heated air called thermals naturally rise through the atmosphere. The temperature inversion acts like a lid. When the rising thermals hit it, they roll over and loop back on themselves, creating parallel cylinders of rotating air. As this happens, the moisture cools and condenses into flat-bottomed, fluffy-topped cumulus clouds that line up parallel to the direction of the prevailing winds. As the air rises, it also brings marine aerosols, affecting microphysical properties of overlying clouds.

Figure 4. 532 nm aerosol extinction for Level 2, 5km CALIPSO profile

data on top of the 8-day surface Chlorophyll-a concentration

composite from MODIS Aqua (Sept. 06-13, 2015). Each CALIPSO profile

that passes over the Black Sea region is shown.

Page 77: Instruments for Modelling Black Sea River Basins: Research

77

Ecosystem change – caused by discharges from rivers, industry, agricultural pollution and domestic sewage – affect the biological productivity of the Black Sea. Given current assessments of the world’s future economic prospects, such changes will only intensify in future. Changes in seawater physicochemical and biological properties will undoubtedly cause the subsequent modifications in marine aerosol production, distribution and chemical composition influencing seasonal weather patterns and long-term climate variability of this region. Scientists in Georgia, in collaboration with the scientist in the US/Europe, can develop better research strategies to study the changes in marine aerosol production and their influence on seasonal weather patterns and long-term climate variability. This kind of collaborative research will enable Georgian scientists to utilize new measurements and remote sensing techniques, and using the Black Sea as a case study come up with some interesting breakthroughs in marine biology-aerosol-cloud-climate interaction field. Such research can also offer a more holistic picture of the Black Sea/Caucasus. References Carslaw, K. S., L. A. Lee, C. L. Reddington, K. J. Pringle, A. Rap, P. M. Forster, G. W. Mann, D. V.

Spracklen, M. T. Woodhouse, L. A. Regayre, and J. R. Pierce (2013a), Large contribution of natural aerosols to uncertainty in indirect forcing, Nature, 503, 67–71, doi:

10.1038/nature12674. Dawson, K.W., N. Meskhidze, D. Josset, and S. Gassó (2015), A new study of sea spray optical

properties from multi-sensor spaceborne observations, Atmos. Chem. Phys., 15, 3241 - 3255, doi:10.5194/acpd-15-3241-2015.

Echalar, F., P. Artaxo, J.V. Martins, M. Yamasoe, F. Gerab, W. Maenhaut, and B. Holben (1998), Long-term monitoring of atmospheric aerosols in the Amazon Basin: Source identification and apportionment, J. Geophys Res., 103(D24), 31849–31864, doi:

10.1029/98JD01749. Gantt, B. and N. Meskhidze (2012),The physical and chemical characteristics of marine organic

aerosols: a review, Atmos. Chem. Phys., 13, 3979-3996, 2013 doi:10.5194/acp-13-3979-2013, doi:10.5194/acp-13-3979-2013.

Gantt, B., J. Xu, N. Meskhidze, Y. Zhang, A. Nenes, S. J. Ghan, X. Liu, R. Easter, and R. Zaveri (2012), Global distribution and climate forcing of marine organic aerosol – Part 2:

Effects on cloud properties and radiative forcing, Atmos. Chem. Phys., 12, 6555–6563, doi:10.5194/acp-12-6555-2012.

IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Mårtensson, E. M., E. D. Nilsson, G. de Leeuw, L. H. Cohen, and H. -. Hansson (2003), Laboratory

simulations and parameterization of the primary marine aerosol production, J. Geophys. Res., 108, 4297, doi:10.1029/2002JD002263, doi: 10.1029/2002JD002263.

Meskhidze, N., M. D. Petters, K. Tsigaridis, T. Bates, C. O'Dowd, J. Reid, E. R. Lewis, B. Gantt, et

al. (2013), Production mechanisms, number concentration, size distribution, chemical composition, and optical properties of sea spray aerosols, Atmos. Sci. Lett., 14, 207-

213, doi:10.1002/asl2.441.

Page 78: Instruments for Modelling Black Sea River Basins: Research

78

Platnick, S., M.D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey (2003), The MODIS cloud products: Algorithms and examples from Terra, IEEE Trans. Geosci. Remote Sens., 41(2), 459–473, doi:10.1109/TGRS.2002.808301, 2003.

Remer, L. A., Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. Holben (2005), The MODIS aerosol

algorithm, products, and validation, J. Atmos. Sci., 62(4), 947–973, doi:10.1175/JAS3385.1.

Page 79: Instruments for Modelling Black Sea River Basins: Research

79

The Bringing GEOSS Services into Practice (BGSIP) Workshop: an Earth Observation Capacity Building Resource for the Black Sea Area

Lacroix Pierre a, b, *, Guigoz Yaniss a, b

a University of Geneva, Institute for Environmental Sciences, EnviroSPACE Lab., Uni Carl-Vogt, CH-1211 Geneva 4, Switzerland

b Global Resource Information Database (GRID) – Geneva, International Environment House, 11 chemin des Anémones, CH-1219 Châtelaine, Switzerland

* Main author: [email protected]

Abstract The ‘Bringing GEOSS services into practice’ workshop aims at teaching how to configure, use and deploy a set of open source software to set up a spatial data infrastructure. The workshop focuses on how to publish and share data and metadata using OGC and ISO standards and how to register services into the Global Earth Observation System of Systems (GEOSS). The related material is totally free, based on open source solutions, available in English and partly available

in six other languages. Since its creation in 2010 the workshop has been presented to more

than 500 people in the Black Sea area and beyond. In particular, it has been given during the Black Sea Day 2014, in Batumi, Georgia, organized jointly by European FP7 IASON (http://iason-fp7.eu) and CBC Black Sea ILMM-BSE (http://e-BlackSea.net) projects. Introduction Data discovery, access and integration are essential for conducting successful environmental research. To increase the capacity to access Earth Observation (EO) data the Group on Earth

Observations (GEO) (GEO, 2014) is leading the development of the Global Earth Observation System of Systems (GEOSS) (GEO secretariat, 2005), a voluntary effort that connects producers and users of EO data and resources. GEO actively promotes capacity building and education activities in order to reach a large adoption, acceptation and commitment on data sharing. More specifically, the GEO secretariat defined a capacity building strategy (GEO secretariat, 2006) and set up a specific task on capacity building T02 that has the following objectives:

– “Enhancing coordination of national and international capacity-building efforts to produce and use EO and information;

– Increasing the demand for day-to-day EO and information across societal benefit areas (SBAs);

– Building national capacity in developing countries by enabling human, technical and institutional capacity for coordinating, accessing, using and sharing environmental data, information and services;

– Developing cross-border education and training across societal benefit areas showing the short- and long-term benefits of Earth observation; and

– Developing synergies, encourage cross-fertilization and address common challenges across capacity building initiatives.”

The ‘Bringing GEOSS services into practice’ (BGSIP) workshop (Giuliani et al., 2014) adopts this approach by proposing an integrated set of teaching material and software to facilitate the

publication and use of environmental data through standardized discovery, view, download, and processing services. Trainees learn how to publish and share data and metadata using OGC (OGC, 2013) and ISO (ISO, 2015) standards, how to register services into GEOSS and how to set

Page 80: Instruments for Modelling Black Sea River Basins: Research

80

up a spatial data infrastructure (SDI) (Nebert, 2005). Beyond the primary goal of building technical capacity the ultimate objectives of BGSIP are to: (1) raise awareness on data sharing principles; (2) build capacity at different levels (people, institutions, infrastructure) to bring these principles into practice; and (3) build new synergies between national and regional actors for the benefit of national/regional “data flow”. Methods The workshop is based on free and open source software and the related material consists in: (1) a PDF tutorial; (2) a virtual machine containing all the necessary software and data; (3) a PowerPoint presentation in 7 languages, including English and Russian. All the material can be freely downloaded from a dedicated website (http://www.geossintopractice.org) and comes

along with further information (e.g. frequently asked questions, a story map and teaching videos). In order to keep track of people downloading it for measuring as much as possible the impact of the workshop, people are required to answer a few easy questions before being able to download the workshop material. These questions request the person’s name, email address, country, company name and type, position role and primary objective for downloading the material.

The programme of the workshop is structured in a sequence of questions that aim at teaching

the attendees how to use the whole chain of geospatial data from production to dissemination (Table 1). It is focused on OGC and ISO standards, e.g. Web Map Service (WMS) (Open Geospatial Consortium, 2006) for publishing maps, Web Feature Service (WFS) (Open Geospatial Consortium, 2005) and Web Coverage Service (WCS) (Open Geospatial Consortium, 2006) for accessing data, Web Processing Service (WPS) (Open Geospatial Consortium, 2007) for processing data and ISO 19115 (ISO, 2014)/19139 (ISO, 2007) for documenting data.

Table 1: Structure of the BGSIP workshop

Chapter Title

1 Concepts on SDI

2 How to store geospatial data?

3 How to publish geospatial data?

4 How to document and search geospatial data?

5 How to process geospatial data?

6 How to view geospatial data?

7 How to download geospatial data?

8 How to analyze geospatial data?

9 How to share geospatial data?

As language might be a barrier, the workshop presentation exists in 7 different languages: Arabic, Croatian, English, French, Russian, Serbian and Spanish. As the workshop has been

developed in a train-the-trainers approach, this multilingual presentation helps local trainers to modify and enrich it to build capacity in their own region or institution with the most suitable language.

Page 81: Instruments for Modelling Black Sea River Basins: Research

81

Results More than 500 people ranging from teachers or students to policy makers, scientists and people working in the private or public sector have been trained so far in ten countries (see the workshop’s agenda at http://www.unige.ch/tigers/fr/enseignements/geossinpractice/agenda), leading to dozens of download of the workshop material by workshop’s attendees. The workshop has been presented in various formats depending on the audience and the time available:

– General presentations with live demonstrations (no hands-on) in case of international events (e.g., as a side event during the GEO-X conference

(http://www.earthobservations.org/me_se.php?id=7)); – Theoretical presentations combined with hands-on exercises as was the case for the

2014 International Black Sea Day (Bourgas Regional Tourism Association, 2014) in Batumi (Figure 1). On that occasion the workshop was given in English during half a day to about 50 persons, targeting policy makers, researchers and stakeholders from the Black Sea area countries (Gvilava, 2014). Attendees came with their own laptops to follow the hands-on session.

Figure 1: BGSIP hands-on training workshop, Batumi, 30th October 2015

– One-week block in the case of courses at University of Geneva. These courses are given once a year since 2013 to about 20 students who are further asked to put their knowledge into practice by developing and publishing a web application.

– Workshop combined with project-specific activities such as integration of geospatial data into the SDI of the hosting institution (e.g. the ClimVar project:

http://www.globalclimateforum.org/index.php?id=127).

These examples show that the workshop addressed very different audiences. Still, it remains quite technical and requires some SDI expertise from participants. Besides, the hardware was

also a challenge in some cases due to laptops of the attendees: old versions of Windows not working with the workshop’s virtual machine, slow computers, keyboards using non Latin letters. Finally, the heterogeneous rhythm of progression of participants was also problematic.

To tackle these issues other formats of the workshop are planned, less technical and/or more thematic (e.g., in the field of disasters management, raw material or hydrology).

Page 82: Instruments for Modelling Black Sea River Basins: Research

82

Despite these problems the workshop has contributed to raise people’s awareness on geospatial data sharing principles. Participants that might have been slowed down by technical issues during the workshop can now practice on their own as all the material is available for free. Furthermore the fact that the workshop material has been downloaded about 1’000 times (see Figure 2) demonstrates that it has definitely contributed to raise awareness on geospatial data issues in the Black Sea area and beyond.

Figure 2: Cumulative number of downloads of the workshop material (March 2014 to October 2015)

Inclusion of the “Bringing GEOSS Services into Practice” workshop in a multi-project event, as was the case for the Batumi workshop, presents the advantage of building new synergies around the Earth Observation thematic between people from different horizons. In the Batumi workshop, awareness was raised on EO issues and technical aspects for several key regional actors (cf. participants list of (Gvilava, 2014)), which might have created new regional synergies and regional networks.

Finally, a questionnaire was sent to all the workshop’s past attendees. The expected feedback of this questionnaire relates to how they have put into practice the knowledge acquired with the workshop in their own institution. The results showed that a high percentage of the workshop’s past attendees have trained (or are planning to train) their colleagues. It also shows

that one third of the respondents have built up a SDI based on the knowledge acquired. It is therefore possible to assert that the workshop had impacts individual, institutional and technical levels, making it a successful capacity building resource. Conclusions In line with introductory objectives, awareness has been raised on Earth Observation and data sharing principles for the benefit of the countries and regions where the workshop is

presented. This is particularly true for Georgia where a long implication of national

Page 83: Instruments for Modelling Black Sea River Basins: Research

83

environmental key actors in several international projects including Earth Observation capacity building component such as the BGSIP workshop took place. These trainees have now the possibility to become trainers themselves in their own organization, country or region to build capacity. Coupling capacity building workshops to regional events such as the Black Sea Day can foster national/regional collaborations and new

synergies through convenience of thematic actors around a common thematic. The BGSIP workshop, promoted by the GEO secretariat, contributes to lower entry barriers to Earth Observation and data sharing solutions for both data users and providers. This is key to facilitate the development of local/regional technical skills, for the benefit of the whole Black Sea area.

Acknowledgements The authors would like to acknowledge the European Commission ‘‘Seventh Framework Program’’ that funded EOPOWER (Grant Agreement no. 603500), IASON (Grant Agreement no. 603534), and enviroGRIDS (Grant Agreement no. 227640) projects. References Bourgas Regional Tourism Association (2014). Third Workshop of the ILMM-BSE project and

International Black Sea Day Celebration in Batumi, Georgia on 30 -31 October 2014. GEO (2014). "The Group on Earth Observations overview." (Retrieved from

http://www.earthobservations.org/index.php). GEO secretariat (2005). GEOSS 10-Year Implementation Plan: Table of Work Plan Targets: 1-22. GEO secretariat (2006). GEO Capacity building strategy: 13. Giuliani, G. et al. (2014) "Bringing GEOSS Services into Practice. GIS Open Source Workshop

Material." 189. https://itunes.apple.com/us/book/bringing-geoss-services-into/id806182409

Gvilava, M. (2014). IASON D3.4: Workshop II report and material. ISO (2007). ISO/TS 19139:2007: Geographic information -- Metadata -- XML schema

implementation. ISO (2014). ISO 19115-1:2014: Geographic information -- Metadata -- Part 1: Fundamentals. ISO (2015). "the International Organization for Standardization." (Retrieved from

http://www.iso.org/iso/home.html). Nebert, D. D. (2005). Developing Spatial Data Infrastructure: The SDI Cookbook. OGC. "The Open Geospatial Consortium." (Retrieved from http://www.opengeospatial.org). Open Geospatial Consortium (2005). Web Feature Service Implementation Specification. Open Geospatial Consortium (2006). OpenGIS Web Map Server Implementation Specification. Open Geospatial Consortium (2006). Web Coverage Service (WCS) Implementation

Specification.

Open Geospatial Consortium (2007). OpenGIS Web Processing Service.

Page 84: Instruments for Modelling Black Sea River Basins: Research

84

Page 85: Instruments for Modelling Black Sea River Basins: Research

85

Integrated Land Use Management Modelling of Black Sea Estuaries: Case of Ergene River Basin in Western Turkey

Fatih Konukcu a, *, Selcuk Albut a, Bahadir Alturk b, Huzur Deveci b

a Prof. Dr., Namik Kemal University, Faculty of Agriculture, Biosystem Engineering Department, TR59030 Tekirdag-TURKEY

b Lecturer Namik Kemal University, Vocational School of Technical Sciences, TR59030 Tekirdag-TURKEY

*Main author: [email protected], +90 (282) 250 2261

Abstract Land use planning is a useful tool to find a balance among the competing and sometimes contradictory uses in order to achieve food security, economic growth, energy supply, nature conversation and other objectives. In this study, modelling land use change of Ergene River Basin in Western Turkey between the years of 1990 and 2012 was the primary objective, however, general data and elevation, soil, forest, protected areas maps of the Basin were also produced within the scope of ILMM-BSE Project (Integrated Land Use Management Modelling of Black Sea Estuaries) funded by EU and Turkish Ministry of EU Affairs. As a results, while the artificial area (including settlement area and industrial zone) and water bodies due to new reservoirs construction increased by 39.4 and 47.9%, respectively, wetlands and agricultural areas decreased dramatically.

Introduction Land is a scarce resource increasingly affected by the competition of mutually exclusive uses. Fertile land in rural areas becomes scarcer due to population growth, pollution, erosion and desertification, effects of climate change, urbanization etc. On the remaining land, local, national and international users with different socioeconomic status and power compete to achieve food security, economic growth, energy supply, nature conversation and other objectives. Land use planning can help to find a balance among these competing and sometimes contradictory uses (Wehrmann, 2010). In this study, modelling land use change of Ergene River Basin in Western Turkey between the years of 1990 and 2012 was the primary objective, however, general data and elevation, soil, forest, protected areas, erosion maps of the Basin were also produced. Methods Ergene River Basin, located in the European part of Turkey, is one of the 25 river basins in Turkey. Ergene River, 283 km in length, sourced in Istranca Mountain ranges close to the Bulgarian border, joins into the Maritsa River and Discharge into the Aegean Sea in the Saroz Golf. The basin area is about 11 000 km2 and the total population in the basin is 1 150 000. The climate of the basin is under the influence of the terrestrial climate with hot and dry summers and cold winters in the northern part while it is dominated by the Mediterranean climate with hot and dry summers and mild and rainy winters in the southern part. The annual average precipitation, temperature and relative humidity are about 600 mm, 13°C and 70%, respectively (Action Plan, 2008). Major surface water resources are constituted of Maritsa and Ergene Rivers and their tributaries, which include 67 sub watersheds. The principle tributaries of Ergene River are Corlu Creek, Suluca Creek, Luleburgaz Creek, Babaeski (Seytan) Creek, Teke Creek,

Page 86: Instruments for Modelling Black Sea River Basins: Research

86

Hayrabolu Creek and main stream (Ergene Action Plan, 2008). Total, surface and underground water potential of the basin, respectively, are 1.73 billon m3, 1.33 billion m3 and 0.4, billon m3. The hydrology map of the basin is presented in Figure1.

Figure 1. Hydrologic map of Ergene River Basin

In the modelling of land use changes, CORINE land cover maps (Figure 2) and ArcGIS based model developed within the scope of ILMM-BSE Project. 'ILMM-BSE - Integrated Land Use Management Modelling of Black Sea Estuaries' Project is financed by the Second call of the Joint Operational Programme “Black Sea Basin 2007 – 2013” (http://e-blacksea.com).

Figure 2. CORINE land cover maps.

Page 87: Instruments for Modelling Black Sea River Basins: Research

87

Results The land use changes between 1990 and 2000, between 2000 and 2006, between 2006 and 2012 are shown in Figure 3, whereas the land use changes between 1990 and 2012 is summarised in Table 1.

Figure 3. Land use change maps of Ergene River Basin between 1990 and 2000, between 2000 and 2006,

between 2006 and 2012.

While the artificial area (including settlement area and industrial zone) and water bodies due to new reservoirs construction increased by 39.4 and 47.9%, respectively, wetlands and agricultural areas decreased dramatically. Maps of the Ergene River Basin for general data and elevation, soil, forest, protected areas, are given in Figure 4.

Page 88: Instruments for Modelling Black Sea River Basins: Research

88

Table 1. Land use change of Ergene River basin between 1990 and 2012.

Land Use 1990 2012 Land use change (%) Area (%) Area (Hectare) Area (%) Area (Hectare)

Artificial area 2.4 34764.26 3.3 48460.67 +39.4

Agricultural Area 79.7 1154121.93 78.8 1141081.66 -1.1

Forests and semi natural areas 17.1 246875.37 16.9 244509.39 -1.0

Wetlands 0.3 5053.15 0.2 3432.98 -32.1

Water bodies 0.5 6948.36 0.7 10275.21 +47.9

Figure 4. Maps of the Ergene River Basin for general data and elevation, soil, forest, protected areas

Conclusions Dramatic changes in agricultural areas to industrial area has been threatening not only natural resources but also food security since the basin has the most productive arable land of Turkey. Acknowledgements 'ILMM-BSE - Integrated Land Use Management Modelling of Black Sea Estuaries' Project is funded by EU and Turkish Ministry of EU Affairs. The contents of this publication are the sole responsibility of the authors and can in no way reflect the views of the European Union.

References Wehrmann B, (2010).Land Use Planning Concept, Tools and Applications. Deutsche Gesellschaft

für Internationale Zusammenarbeit (GIZ) GmbH Division Agriculture, Fisheries and Food Sector Project Land Policy and Land Management Eschborn/Germany.

Action Plan to Protect Maritza-Ergene River Basin (2008). Turkish Ministry of Environment and Forestry, General Directorate of Environmental management.

Page 89: Instruments for Modelling Black Sea River Basins: Research

89

Nutrient Pollution of the Bulgarian Black Sea Coastal Waters – Problems and Prevention

Valentin Nenov a, Anna Simeonova b

a Department of Water Treatment, Burgas University, 1 Y. Yakimov str., 8010, Burgas, e-mail: [email protected]

b Department of Navigation, Transport Management and Protection of Waterways, Technical University - Varna, 1 Studentska str., 9010 Varna, Bulgaria, e-mail: [email protected]

Abstract In the present study were assessed the sources of nutrient pollution, nutrient status and the

impact on the Bulgarian Black Sea coastal waters. Analyses of the nutrient contamination from point emitters were carried out – WWTPs, sewerage systems, rivers runoff and their influence on the ecological status of the coastal waters for the period 2011-2013 was determined. The problems with the diffuse nutrients discharges were discussed. The following tendencies were outlined: point emitters could be assessed as significant source of nutrient pollution, failing to

meet the emission standards; the river discharges could not be considered as crucial for the

nutrients enrichment of the coastal waters; the diffuse sources control and assessment remain one of the main problem concerning nutrient contamination. Introduction The Bulgarian Black Sea coastal waters (BBSCW) have a great economic, social & ecologic value. The poor quality of the coastal waters has a negative influence on the marine ecosystems, on tourism and the whole coastal economy. Therefore prevention of further deterioration of the

BBSCW and their sustainable use is a priority of the Bulgarian water policy which can be achieved by effective management of the ecological and technological risks [14]. One of the key instruments of the BBSCW management is the implementation of the river basin management plan (RBMP) of the Black Sea River Basin District (BSRBD) [2], following the requirements of the Water Framework Directive 2000/60 EEC (WFD) [6] which first planning cycle was completed. Major problems of the coastal water management which need to be resolved during the next

planning cycle of the Black Sea RBMP are: reduction of pollution caused by untreated sewage water and waste water treatment plants; nutrient loads; toxic chemicals; illegal dumps; flooding prevention; protection of biodiversity; intrusion of invasive species; abrasion, etc. Nutrient pollution is still one of the main pollution problems of the Bulgarian coastal waters and has a range of negative effects on coastal system one of which is the eutrophication [18]. According to the requirements of Directive 91/271/ЕEС concerning urban wastewater treatment [7] and Order of the Minister of Environment and Water No. 970/28.07.2003, the

BBSCW have been determined as sensitive area since 2003, threatened by eutrophication, and a number of legal restrictions on nutrient loads were imposed. During the last year a reduction

of the nutrient levels have been observed but there are still measures to be resolved during the next planning cycle of the Black Sea RBMP. In the present study are assessed the nutrient status, sources of pollution and their impact on

the BBSCW as well as the weaknesses in the fulfilment of measures for nutrients reduction.

Page 90: Instruments for Modelling Black Sea River Basins: Research

90

Methods The Bulgarian Black Sea coastal waters are delineated in the one-mile coastal zone with total area 1434 km2. The length of the sea coast is 378 km. According to the requirements of the WFD 2000/60 – 13 water bodies were differentiated along the BBSCW (Table 1), part of the BSRBD, and are managed by the Black Sea Basin Directorate (BSBD), responsible at River Basin

District level [2].

Table 1. Water bodies along the Bulgarian Black Sea coastal area

№ NAME OF THE WATER BODY TYPE CODE OF WB

1. from Durankulak to Shabla CW3 BG2BS000C001

2. from Nos Shabla to Kamen bryag CW2 BG2BS000C002

3. from Kamen bryag to Kaliakra CW1 BG2BS000C003

4. from Nos Kaliakra to resort “Albena” CW5 BG2BS000C004

5. Varna Bay CW5 BG2BS000C005

6. from Nos Ilindg to point with coord. 27°53'43"/ 42°58'17" CW4 BG2BS000C006

7. from point 27°53'43"/ 42°58'17" to Nos Emine CW4 BG2BS000C007

8. Burgas Bay < 30m CW6 BG2BS000C008

9. Protected area “Koketrays” CW4 BG2BS000C009

10. Burgas Bay > 30m CW6 BG2BS000C010

11. from Nos Akin to Nos Korakya CW4 BG2BS000C011

12. from Nos Korakya to river Rezovska mouth CW3 BG2BS000C012

13. from resort “Albena” to Nos Ilindg CW5 BG2BS000C013

Results Eutrophication is a process of changing the water body status by nutrient enrichment and has a

wide range of negative effects on coastal systems [9]. Nutrients usually boost the primary productivity of the marine ecosystems that forms the base of the aquatic food web [1]. Human activities profoundly influence the global cycling of nutrients, especially movement of nutrients to estuaries and other coastal waters [14, 15]. The main sources of nutrient loads in the BBSCW are point discharges – sewerage systems, waste water treatment plants (WWTPs),

rivers runoff and diffuse discharges from agriculture and livestock runoff, stormwater and urban runoff, leakage from wastes disposals along the coast, etc.

Point sources The point emitters of wastewater flows can sometimes be the major source of nutrients to the

coastal waters [5]. Large amount of eutrophication matter come into the coastal waters due to the row sewage water from different agglomerations as well as due to the lack of biological

treatment in the WWTPs.

Page 91: Instruments for Modelling Black Sea River Basins: Research

91

Along the Bulgarian Black Sea coast are functioning 8 WWTPs and six sewerage systems which effluents are discharged directly into the coastal waters [12, 13]. The wastewater treatment technology of 7 of the WWTPs includes only pre-treatment and aerobic biological treatment. Only one of the WWTPs – Balchik WWPT – Dobrich municipality applied nitrogen and phosphorus removal technology. The annual reports of the BSBD and the Regional Inspections

of Environment and Water (RIEW) [3, 12, 13] show that the nutrient discharges into the coastal waters from the seven WWTPs, which didn’t apply N and P removal, were above the limits imposed in their individual Wastewater Discharge Permit (WWDP) [11]. Three of the WWTPs – Albena (Dobritch), Zlatni Pyasatsi (Varna) and Elenite (Nessebar) are trying to solve the problem by construction of deep underwater discharge but the rest doesn’t take any actions. Other point sources of nutrient inputs into the BBSCW are the rivers flowing directly into the

coastal waters, especially the river mouths [16, 17]. The Bulgarian rivers are recipient of different pollution sources from the catchment area such as small tributaries, wastewater discharges, heavy rains, urban runoff, wastes disposals, erosion, infiltration from agricultural areas, ground waters etc. The rivers flowing directly into the BBSCW are numbering 17. According to the data collected during the last years there were no deviations of the values of the physico-chemical indices monitored during the last years [4].

According to the classification system for assessment of the ecological status of the physico-

chemical quality elements (supporting the biological quality elements) [6, 10] most of the rivers at the area of inflow to the coastal waters during 2014 show good or very good status with reference to nutrient [4]. This means that the average values of N and P were with low concentrations under the threshold limits. Only at the Drashtela and Karaach river mouths (southern Black Sea coast) was registered moderate status. According to the results the river discharges could not be considered as crucial for the nutrients enrichment of the coastal

waters. Diffuse sources The diffuse sources of pollution show the highest percentage in the Black Sea RBD [8]. Agriculture and land use are one of the largest sources of P, N. Nutrients from these sources can reach the water either by direct leaching or runoff from farm fields. Some N and P are leached directly from agricultural fields to groundwater and surface waters. Due to the climate

changes extremely polluted storm water runoff form urban and rural areas enters into the coastal waters, enriching nutrients contamination. It has to be noted that monitoring data on phosphorus and nitrogen are lacking in many cases. It is reported that there is no methodology for the assessment of the diffuse sources along the Bulgarian Black Sea coast and it has been based on expert judgement and no numeric criteria were reported [8]. For that reason realistic risk assessment of the nutrient inputs and their influence on the coastal waters status could not be accomplished.

Nutrients impact on coastal waters The main objective of the WFD 2000/60 and the BSRBMP first cycle is all water bodies along the BBSCW to reach good status till 2015 [2, 6]. The ecological status of the nutrients,

phytoplankton and macroalgae in the 13 water bodies along the BBSCW for three years period (2011-2013) is presented in Tables 2 and 3, taking into consideration the last annual report of

BSBD for 2013 [3]. Usually the most influenced biological quality elements by the nutrient inputs are the phytoplankton and macroalgae.

Page 92: Instruments for Modelling Black Sea River Basins: Research

92

Table 2. Ecological status for the physico-chemical quality elements of the water bodies along the Bulgarian Black

Sea coastal waters, according to the requirements of the WF Directive, 2011-2013

No Water body 2011 2012 2013

NO3, mg/l

PO4, mg/l

Total

N,P

NO3, mg/l

PO4, mg/l

Total

N,P

NO3, mg/l

PO4, mg/l

Total

N,P

1. BG2BS000C001 M M M M M M G M M

2. BG2BS000C002 M M M G V.G G V.G V.G V.G

3. BG2BS000C003 M M M G V.G G V.G V.G V.G

4. BG2BS000C004 M - M V.G M M V.G V.G V.G

5. BG2BS000C005 M - M V.G M M V.G V.G V.G.

6. BG2BS000C006 M - M G M M V.G G G

7. BG2BS000C007 M - M V.G M M V.G V.G V.G

8. BG2BS000C008 M - M V.G M M V.G V.G V.G

9. BG2BS000C009 M - M V.G V.G V.G. V.G V.G V.G

10 BG2BS000C010 M - M V.G M M G V.G G

11 BG2BS000C011 M - M V.G M M V.G G G

12 BG2BS000C012 M - M V.G M M G V.G G

13 BG2BS000C013 - M M V.G M M V.G G G

Legend M - Moderate G - Good V.G – Very Good

The data showed very high levels of nutrients - N and P during 2011 and moderate status regarding all water bodies, according to the principal ”one out - all out”. Similar situation was observed during 2012 with reference to the total N, P status despite the reduction of N-NO3. Considerable improvement during 2013 for both N-NO3 and P-PO4 and the total nutrient status was recorded. Only the water body BG2BS000C001 from Durankulak to Shabla didn’t reach an improvement during the whole period.

With reference to the biological quality elements – the status of phytoplankton was worse than the macrophyte almost through the whole period. A little improvement of the total status of phytoplankton and macrophyte was observed during 2013. The trend of the investigated

biological quality elements was similar to the trend of the nutrients status observed. This exhibited close relation between nutrients loads and the status of the phytoplankton communities and macrophyte. The worst was the situation again in the water body

BG2BS000C001 as well as in BG2BS000C005 – Varna Bay. As a whole 11 of the water bodies were not in compliance with the requirements of the WFD for good ecological status.

Page 93: Instruments for Modelling Black Sea River Basins: Research

93

Table 3. Ecological status for the biological quality elements of the water bodies along the Bulgarian Black Sea

coastal waters, according to the requirements of the WF Directive, 2011-2013

No Water body 2011 2012 2013

Phyto-

plank-

ton

Macro-

phyte

Total

Phyto-

plank-

ton

Macro-

phyte

Total

Phyto-

plank-

ton

Macro-

phyte

Total

1. BG2BS000C001 M V.B V.B M B B M V.B V.B

2. BG2BS000C002 M G M M G M M V.G M

3. BG2BS000C003 M G M M G M G V.G G

4. BG2BS000C004 M M M M G M G G G

5. BG2BS000C005 M V.B V.B M B B M M B

6. BG2BS000C006 M - M M - M M - M

7. BG2BS000C007 M V.B V.B G V.G G M G M

8. BG2BS000C008 M M M M G M M G M

9. BG2BS000C009 M - M M - M G - M

10 BG2BS000C010 M - M M - M G - M

11 BG2BS000C011 M M M M V.G M M V.G M

12 BG2BS000C012 M V.G M M V.G M M V.G M

13 BG2BS000C013 M B B M M M G M M

Legend V.B- Very Bad B- Bad M – Moderate G - Good V.G – Very Good

Management and prevention Legislation. The coastal water management of the Bulgarian Black Sea follows strictly the EU environmental policy which has been developed in order to monitor, conserve and protect the marine environment. There are more than 200 EU directives, regulations and many other forms of legislation in the area of environmental policy. One of the EU Directives implemented in the

Bulgarian legislation which play an important role in the coastal water management and

especially for the nutrients reduction are the Urban Wastewater Treatment Directive (91/271/EEC) which dictated the level of sewage treatment; the Nitrates Directive (91/676/EEC) aimed at controlling diffuse pollution especially from agriculture and its adverse effects of

eutrophication. Other directives aimed at Risk Assessment and Risk Management are the Integrated Pollution Prevention and Control Directive (2008/1/EC, and the Environmental Impact Assessment Directive (EIA) (85/337/EEC). More recently this has continued with the

passing of the Flood Risk Management Directive (2007/60/EC) which aims to reduce and manage the risks that floods pose to the human health and environment.

Page 94: Instruments for Modelling Black Sea River Basins: Research

94

The main Bulgarian legal act which regulates the management of the coastal zone is the Bulgarian Law for Spatial Planning of the Black Sea Coast. In 2012 some important amendments related to the coastal zone have been adopted, namely, requirements to the municipal spatial and land-use plans to include regulations and conservation measures for the coastal water area as well.

River Basin Management Plan (RBMP). One of the key instruments for the coastal water management is the RBMP for the Black Sea River Basin District, adopted in 2010 by the Order of the Minister of Environment and Waters (No. 294/22.03.2010). The Plan is the main inter-sectoral strategic tool for water management in Bulgaria. It includes a set of measures (Programme of Measures) for water protection and restoration, most of which are related to the activities still to be implemented in the coastal zone thus setting the frame for integrated

coastal zone management in Bulgaria. 2015 is the year when a project of updated RBMP for the period 2016-2021 must be accomplished. References 1. Borysova, O., Kondakov, A., Paleari, S., Rautalahti-Miettinen, E., Stolberg, F. and D. Daler,

2005. Eutrophication in the Black Sea region; Impact assessment and Causal chain

analysis. University of Kalmar, Kalmar, Sweden, pp. 1-60.

2. BSBD, Plan for water management in the Black Sea River Basin District, 2010-2015г., 2010, pp. 1-361, http://www.bsbd.org.

3. BSBD, Annual retort of the assessment of the water status in BSRBD for 2013, 2014, pp. 1-92, http://www.bsbd.org.

4. BSBD, Bulletin of the water quality in the Black Sea River Basin District for 2014, 2015, pp. 1-28, http://www.bsbd.org/UserFiles/File/2015/I_XII_buletin_2014.pdf.

5. Dineva S., Water Discharges into the Bulgarian Black Sea, International Symposium on Outfall Systems, May 15-18, 2011, Mar del Plata, Argentina, pp. 1-9.

6. EEC, Directive 2000/60/EC of the European Parliament and of the Council of 32 October 2000 establishing a framework for Community action in the field of water policy, Official Journal of the EU, 2000, OJ L 327/1/22.12. 2000, 2000, pp. 1-71.

7. EEC, Council Directive 91/271/EEC of 21 May 1991 concerning urban waste-water treatment Official Journal L 135, 30/05/1991 pp. 0040-0052.

8. EU Commission, Commission staff working document - member state Bulgaria, Report from the commission to the European Parliament and the Council on the implementation of the Water Framework Directive (2000/60/EC) River Basin Management Plans, Brussels, SWD, 2012, pp. 1-53.

9. Howarth R. et al., Nutrient Pollution of Coastal Rivers, Bays, and Seas, Issues in Ecology, 7, 2000, pp. 1-17.

10. MOEW, National Regulation No.Н-4 / 14.09.2012 for characterization of surface waters,

2013, pp. 54, http://www.moew.government.bg.

11. MOEW, National Regulation No.6/2000 for emission threshold limits of harmful and toxic substances in the waste waters, 2000, pp. 55, http://www.moew.government.bg.

12. RIEW-Burgas, Report of the environmental status in 2014, 2015, pp. 1-234,

http://www.riosvbs.eu. 13. RIEW–Varna, Regional report of the environmental status in 2014, 2015, pp. 1-169,

http://www.riosv-varna.org.

Page 95: Instruments for Modelling Black Sea River Basins: Research

95

14. Simeonova A., 2010, Ecological aspects related to the Black Sea sustainable utilization in the context of the European water conservation policy, Journal of the Technical University – Varna, Vol. I, pp.164-169 (in Bulgarian).

15. Simeonova A. K, Chuturkova R.Z, Todorov P.I., Pollution of Shokarski stormwater canal and its influence on the quality of the Varna Black Sea coastal area, Bulgaria, International

conference “Air and water components of the environment”, 23-24 march, Cluj Napoca, Romania, Aerul şi Apa: Componente ale Mediului Journal, 2012, pp. 41-48.

16. Simeonova A., R. Chuturkova, V. Bojilova, J. Bekyarova, 2011, Quality of Varna Black Sea bathing water near the river Kamchiya mouth, Journal of Balkan Ecology, vol. 14, No. 3, pp. 295-300.

17. Simeonova A., J. Bekyarova, R. Chuturkova, 2010, Investigations of the river Kamchiya

impact over the Varna Black sea coastal status, Journal of Ecological engineering and environmental protection, No.1, pp. 25-30 (in Bulgarian).

18. Todorova V., Kosnulova T., Long term changes and recent state of Macrozoobenthic communities along the Bulgarian Black Sea coast Mediterranean Marine Science Vol. 1/1, 2000, pp. 123-131.

Page 96: Instruments for Modelling Black Sea River Basins: Research

96

Page 97: Instruments for Modelling Black Sea River Basins: Research

97

CHAPTER 3

Proceedings of Students Scientific Workshop on Ecology of Black Sea River Basins (Batumi Shota Rustaveli State University, 05 October 2015, Batumi, Georgia)

Page 98: Instruments for Modelling Black Sea River Basins: Research

98

Page 99: Instruments for Modelling Black Sea River Basins: Research

99

Address of the Rector of Batumi Shota Rustaveli State University

ბათუმის შოთა რუსთაველის სახელმწიფო უნივერსიტეტის რექტორის მიმართვა

მოგესალმებით სტუდენტთა სამეცნიერო კონფერენციის მონაწილეებს.

ბათუმის შოთა რუსთაველის სახელმწიფო უნივერსიტეტი ოქტომბერში თავის 80 წლის იუბილეს

აღნიშნავს. ამ სადღესასწაულო თარიღთან დაკავშირებით მრავალი ღონისძიება გვაქვს დაგეგმილი.

ამ ღონისძიებებს შორისაა ჩვენი დღევანდელი კონფერენცია, რომელიც „შავი ზღვის მდინარეთა

აუზების ეკოლოგიის“ მნიშვნელოვან საკითხებს ეძღვნება.

სასიამოვნოა, რომ კონფერენციაში ბათუმის შოთა რუსთაველის სახელმწიფო უნივერსიტეტის

საბუნებისმეტყველო და ჯანდაცვის ფაკულტეტის და ბათუმის ბოტანიკური ბაღის ახალგაზრდა

მეცნიერებთან ერთად თბილისის და ილიას სახელმწიფო უნივერსიტეტების ბაკალავრიატის,

მაგისტრატურის და დოქტორანტურის საფეხურის სტუდენტებიც მონაწილეობენ.

კონფერენციის ორგანიზება ხორციელდება ევროკავშირის პროექტის „მიწათსარგებლობის

ინტეგრირებული მოდელირება და მართვა შავი ზღვის ესტუარებისათვის” მხარდაჭერით.

მადლობას მოვახსენებთ პროექტის პარტნიორს საქართველოდან საერთაშორისო ასოციაცია „კივიტას

გეორგიკას” ამ ერთობლივი იდეის რეალიზებისთვის.

ჩვენი უნივერსიტეტისთვის უაღრესად მნიშვნელოვანია თანამშრომლობა ევროკავშირის შავი ზღვის

ერთობლივ საოპერაციო პროგრამასთან, რომლის გაგრძელებაც ევროკომისიის მიერ აქტიურად

იგეგმება 2015-2020 პერიოდისათვის.

იმედი გვაქვს, რომ ჩვენი უნივერსიტეტის საბუნებისმეტყველო და სხვა დარგების გამოცდილი და

ახალგაზრდა სპეციალისტები ამ პროგრამის ფარგლებში შეძლებენ ჩაერთონ რეგიონალურ

პროექტებში სხვადასხვა პარტნიორებთან ერთად შავი ზღვის ქვეყნებიდან.

მნიშვნელოვანია კონფერენციის თემატიკა, რადგან იგი ემსახურება ჩვენი მდინარეების და შავი ზღვის

ეკოლოგიური მდგომარეობის გაუმჯობესებას. უნივერსიტეტის სამეცნიერო პოტენციალი მზადაა

თავის წვლილი შეიტანოს შავი ზღვის გარემოს დაცვის ძალისხმევაში საერთაშორისო და ადგილობრივ

დონეზე.

სტუდენტთა სამეცნიერო კონფერენციის ორგანიზება ჩვენი უნივერსიტეტის ფიტოპათოლოგიისა და

ბიომრავალფეროვნების ინსტიტუტის კოლხეთის ტორფნარებისა და წყლის ეკოსისტემების

კონსერვაციის განყოფილებამ ითავა და წარმატებით გაართვა თავი.

„კივიტას გეორგიკასთან“ ერთად ჩვენს მიერ უზრუნველყოფილ იქნა თანამედროვე მოთხოვნების

ჩამოყალიბება სტუდენტების მიერ თეზისების მოსამზადებლად. იმედია, რომ თქვენ არა მხოლოდ

გაართვით თავი თეზისების წარმოდგენას მაღალ ტექნიკურ დონეზე, არამედ შექმენით საინტერესო

სამეცნიერო პროდუქციაც.

„კივიტას გეორგიკა“ გვპირდება, რომ უახლოეს მომავალში კრებული სახით გამოსცემს თქვენს

ნაშრომებს ქართულ და ინგლისურ ენებზე.

ზოგიერთი თქვენთაგანისთვის ეს ალბათ პირველი სამეცნიერო პუბლიკაცია იქნება. ყველა

მომხსენებელს და თანაავტორს ორგანიზატორების მხრიდან გადმოგეცემათ სერტიფიკატები

წარმატებული მონაწილეობისათვის.

გისურვებთ კონფერენციის ნაყოფიერ მუშაობას და წარმატებებს მომავალ სამეცნიერო საქმიანობებში.

პროფ. მერაბ ხალვაში

რექტორი

Page 100: Instruments for Modelling Black Sea River Basins: Research

100

Page 101: Instruments for Modelling Black Sea River Basins: Research

101

Emerald Network Habitats and Species of Kolkheti Lowland

Bulbuli Bolkvadze Batumi Shota Rustaveli State University

Email: [email protected]

Abstract Emerald Network habitats of Kolkheti Black Sea shoreline comprise the following: freshwater ponds and coastal sand dunes. Freshwater ponds represent significant habitat for the following globally IUCN Red List species: Trapa colchica (threatened species), Trapa natans (threatened species), Salvinia natans (LC), Marsilea quadrifolia (LC). These habitats are classified as

threatened by the IUCN Red list. Especially important are sand dunes, and respectively dune vegetation cover. But these habitats and respectively its species are under strong anthropogenic pressure, leading to their degradation and disappearance. Reasons are the implementation of infrastructure projects, such as ports, marine terminals, low level of public awareness, and lack of legislation safeguarding coastal habitats. All this necessitates the measures to be taken for in-situ and ex-situ conservation of coastal habitats.

კოლხეთის დაბლობის ”ზურმუხტის ქსელის” ჰაბიტატები და სახეობები

ბულბული ბოლქვაძე

ბათუმის შოთა რუსთაველის სახელმწიფო უნივერსიტეტი

ელექტრონული ფოსტა: [email protected]

რეზიუმე კოლხეთის სანაპირო ზოლის „ზურმუხტის ქსელის“ ჰაბიტატებია: მტკნარწყლიანი ტბორები

და სანაპირო ქვიშიანი დიუნები. მტკნარწყლიანი ტბორები მნიშვნელოვან ჰაბიტატს

წარმოადგენს მსოფლიო წითელი ნუსხის IUCN სახეობებისათვის: Trapa colchica (threatened

species), Trapa natans (threatened species), Salvinia natans (LC), Marsilea quadrifolia (LC). ჰაბიტატები

მსოფლიო წითელი ნუსხის IUCN Red List მიერ შეფასებულია, საფრთხის ქვეშ მყოფი

ჰაბიტატები. განსაკუთრებულია სანაპირო ქვიშიანი დიუნები, და შესაბამისად დიუნური

მცენარეული საფარი. მაგრამ ეს ჰაბიტატები და შესაბამისად სახეობები უდიდეს

ანთროპოგენურ ზემოქმედებას განიცდიან, რაც მათ დეგრადაციასა და გაქრობას იწვევს.

ძლიერ ზემოქმედებას იწვევს ისეთი ინფრასტრუქტურული პროექტების და მშენებლობების

განხორციელება როგორიცაა: საზღვაო პორტები, ტერმინალები. ძალიან დაბალია

გარემოსდაცვითი შეგნება მოსახლეობაში. საქართველოს გარემოსდაცვით კანონმდებლობაში

ჰაბიტატების დაცვის შესახებ კანონი არ არსებობს. აუცილებელია ჰაბიტატებისა და

სახეობათა in-situ და ex-situ კონსერვაციული ღონისძიებები.

შესავალი საქართველო 1994 წლიდან მოყოლებული მრავალი გარემოსდაცვითი კონვენციის

წევრი ქვეყანა გახდა, როგორიცაა: ბიომრავალფეროვნების დაცვის ჩარჩო კონვენცია,

რამსარის კონვენცია, CITES კონვენცია, კონვენცია მიგრირებადი ცხოველების დაცვის

შესახებ, შავი ზღვის ძუძუმწოვრების დაცვის კონვენცია, ორჰუსის კონვენცია, ბერნის

კონვენცია (ევროპის ველური ბუნებისა და ბუნებრივი ჰაბიტატების დაცვის

კონვენციას) და სხვა. ეს კონვენციები არაა საკმარისი ველური ბუნების დაცვისათვის,

Page 102: Instruments for Modelling Black Sea River Basins: Research

102

ვინაიდან უდიდესია ადამიანის ფაქტორი, რაც ჰაბიტატებისა და სახეობათა კიდევ

უფრო მეტ განადგურებას იწვევს. ზურმუხტის ქსელი (Emerald Network) იგივეა, რაც

ნატურა 2000, მაგრამ ეს მოიცავს რამდენიმე ქვეყანას: თურქეთი, ნორვეგია, ფინეთი,

შვედეთი. საქართველოს გარემოსა და ბუნებრივი რესურსების დაცვის სამინისტრომ

2007 წელს ხელი მოაწერა დოკუმენტს ზურმუხტის ქსელის ჰაბიტატებისა და

სახეობათა დაცვის შესახებ. გამომდინარე აქედან საქართველომ აიღო ვალდებულება

დაიცვას ველური სახით შემორჩენილი ამ დოკუმენტის სიაში მყოფი ჰაბიტატები და

სახეობები და შესაბამისად აღადგინოს ისინი.

მეთოდი კვლევის მეთოდია ჰაბიტატების კვლევის DAFOR მეთოდი, ხოლო სახეობათა

აღრიცხვა მოცემულ ჰაბიტატში ხდებოდა ტრანსექტების და კვადრატების მეთოდით, Domin-Krajina შკალის გამოყენებით [2,3].

შედეგები კოლხეთის დაბლობზე Marsilea quadrifolia-ს გავრცელების ერთადერთი

ადგილსამყოფელია მხოლოდ.

Salvinia natans გავრცელების ჰაბიტატი გავრცელებულია:

ანაკლიაში - მცირე ზომის მტკნარწყლიანი ტბორები გაცილებით მეტი რაოდენობის

იყო. ამ ტბორების უმეტესობა ანაკლიის თავისუფალი ზონის განვითარებას შეეწირა.

მათგან მხოლოდ ორი პატარა (5 მ x 5მ) ტბორია შემორჩენილი.

მდ. ცივი - არხებში ძალზე მცირე პოპულაციური რიცხოვნებაა და აქ ცალკეული

ეგზემპლარები გვხვდება.

ჭურია - ყულევის ტერმინალის სამხრეთით გზის პირას მტკნარწყლიანი არხები;

იმნათის ტორფნარის მიმდებარე მტკნარწყლიან არხებსა და ტბორებში გვხვდება

ცალკეული ეგზემპლარები წყლის კაკალთან ერთად.

Salvinia natans მუდმივი თანმხლები სახეობებია: Trapa natans და Hydrocharis morsus- ranae.

შედეგები და რეკომენდაციები Marsilea quadrifolia-ს ტბორის in-situ კონსერვაციის აუცილებლობის შესახებ

მოცემულია პროექტში: სანაპიროს მდგრადი განვითარების ინტეგრირებული გეგმა

წყალწმინდის თემისათვის (ევროკავშირის მიერ დაფინანსებული პროექტი:

„თანამშრომლობა შავი ზღვის გარემოს დაცვისათვის“), სადაც მოცემულია

რეკომენდაცია ამ ჰაბიტატის კონსერვაციის აუცილებლობის შესახებ. 2005 წლამდე

რამდენიმე ტბორი იყო გონიოში, რაც ინფრასტრუქტურულ პროექტებს შეეწირა. სალვინიას გავრცელების ჰაბიტატები კოლხეთის ეროვნული პარკის ტერიტორიის

ფარგლებშია. 2014 წელს კოლხეთის განვითარების ფონდის მიერ ყულევის

ტერმინალის მიმდებარე ტერიტორიაზე არსებული ფლორისტული სახეობების

შეფასების და ბოტანიკური ობიექტების კონსერვაციის გეგმის შემუშავების

ფარგლებში მომზადდა რეკომენდაცია ყულევის ტერმინალის სამხრეთით მდებარე

მტკნარწყლიანი არხების (სალვინიას დომინანტობით) in-situ კონსერვაციის

აუცილებლობის შესახებ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

Page 103: Instruments for Modelling Black Sea River Basins: Research

103

ნახაზი 1. Salvinia natans ნახაზი 2. ანთროპოგენური ფაქტორი

ლიტერატურა 1. K. Smith, V. Barrios, W. Darwall, C. Numa (Editors), 2015, The Status and distribution of

freshwater biodiversity in the eastern Mediterranean, IUCN Red List., 129 p; 2. W. Darwall, S. Carrizo, C. Numa, V. Barrios, J. Freyhot, K. Smith, 2015. Freshwater key

biodiversity areas in the Mediterranean Basin Hotspot, IUCN Red List, 86 p; 3. Matchutadze I., B. Bolkvadze, J. jakeli, M. Tsinaridze, (2014), Kolkheti refugee-habitat and

biodiversity conservation, wise use, World Biodiversity Congress, Sri-Lanka, abstracts book, pp 78-79.

4. Matchutadze, B. Bolkvadze, T. Bakuradze, M. Gvilava, D. Baratashvili, 2013, Coastal Sand Dunes and Freshwater Ponds in Kolkheti – Threats and Needs for Conservation, Nova Publisher, ISBN: 978-1-62808-092-6, Chapter 8.

5. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of

wild fauna and flora, O.J. L206, 22.07.92. 6. CORINE Biotopes - Technical Handbook, volume 1, p. 73-109, Corine/Biotopes/89-2.2, 19

May 1988. 7. CORINE Biotopes manual, Habitats of the European Community. EUR 12587/3, Office for

Official Publications of the European Communities, 1991. 8. EUR27. 2007 The Interpretation Manual of European Union Habitats. European Commission

DG Environment.

9. Relation between the Directive 92/43/EEC Annex I habitats and the CORINE habitat list 1991 (EUR 12587/3).

10. G. Nakhutsrishvili. 1999. The vegetation of Georgia (Caucasus). - Braun-Blanquetia 15:1-74. 11. M. Barbour, J. Burk, W. Pitts, M. Schwartz, 1999, Terrestrial Plant Ecology, 3rd Edition 373 p. 12. G. Nakhutsrishvili, I. Matchutadze, 2014, Floristically assessment and creation of

biodiversity monitoring program for flora surrounding of Kulevi terminal, 55 p.

Page 104: Instruments for Modelling Black Sea River Basins: Research

104

Page 105: Instruments for Modelling Black Sea River Basins: Research

105

Pollution Sources and Current Ecological State of Small Rivers of Adjara (R. Mejinistskali and R. Bartskhana)

Mariam Gagoeva ([email protected]) and Rusudan Bezhanidze

Faculty of Natural Sciences and Health, 4th Grade Students of Ecology Speciality Batumi Shota Rustaveli State University, 3 Ninoshvili Street, Batumi, Georgia

Scientific Supervisor: Assist. Prof. Guguli Dumbadze

Abstract Ecological condition of the small rivers of Adjara – Mejinistskali and Bartskhana is certainly not favourable. Anthropogenic factors impacting the rivers through pollution are apparent. The

following factors contributing to point and non-point sources of pollution were established: population, agriculture, catering objects, construction sites, car washing, small private cattle and chicken farms, and alike. In difference with sources polluting Mejinistskali River, Bartskhana River is in addition being polluted by 'Batumi Oil Terminal' Ltd. Few years ago significant source of pollution was edible oil producing company 'Batumi Oil', but this company

does not operate nowadays.

Hydro-chemical analysis of the rivers revealed high level of pollution with ammonium nitrogen, exceeding the maximal permissible limit.

აჭარის მცირე მდინარეთა (მეჯინისწყალი და ბარცხანა) დამაბინძურებელი წყაროები და თანამედროვე ეკოლოგიური

მდგომარეობა

მარიამ გაგოევა ([email protected]), რუსუდან ბეჟანიძე

ბათუმის შოთა რუსთაველის სახელმწიფო უნივერსიტეტი

საბუნებისმეტყველო მეცნიერებათა და ჯანდაცვის ფაკულტეტის

ეკოლოგიის სპეციალობის IV კურსის სტუდენტები

სამეცნიერო ხელმძღვანელი: ასისტ. პროფ. გუგული დუმბაძე

რეზიუმე აჭარის მცირე მდინარეების – მეჯინისწყლისა და ბარცხანას ეკოლოგიური

მდგომარეობა არც ისე სახარბიელოა. ნათლად ჩანს, ანთროპოგენური ფაქტორის

გავლენა მდინარეთა გაჭუჭყიანებაზე. გამოვლენილი იქნა დაბინძურების

წერტილოვანი და არაწერტილოვანი წყაროები: მოსახლეობა, სოფლის მეურნეობა,

საზოგადოებრივი კვებისა და სამშენებლო ობიექტები, ავტოსამრეცხაოები,

მეცხოველეობისა და მეფრინველეობის კერძო მცირე სადგომები და სხვა. მდ.

მეჯინისწყლის დაბინძურების წყაროებისაგან განსხვავებით, მდ. ბარცხანას ასევე

აბინძურებს შპს „ბათუმის ნავთობტერმინალი“. რამდენიმე წლის წინ ქიმიური

დაბინძურების მნიშვნელოვანი წყარო იყო ზეთის საწარმო შპს „ბათუმი ოილი“, რაც

დღეისათვის გაჩერებულია.

მდინარეთა ჰიდროქიმიური ანალიზის შედეგად გამოვლინდა ამონიუმის აზოტის

კონცენტრაციის ჭარბი რაოდენობა ზღვრულად დასაშვებ კონცენტრაციასთან

შედარებით.

Page 106: Instruments for Modelling Black Sea River Basins: Research

106

კვლევის აქტუალობა ყველასათვის ცნობილია, რომ დღეისათვის შავი ზღვა ძლიერი ანთროპოგენული

დატვირთვის ქვეშ იმყოფება. მის დამბინძურებელ წყაროებს შორის ერთ-ერთი

ყველაზე მნიშვნელოვანია მასში შემავალი მდინარეების მიერ ზღვაში დიდი

რაოდენობით მყარი ნარჩენებისა და სხვადასხვა წარმოშობის თხევადი

ნივთიერებების მოხვედრა, როგორიცაა: ბიოგენური ნივთიერებები, ნავთობი და მისი

პროდუქტები, პესტიციდები, ფენოლები, ფისები და ა. შ.).

აქედან გამომდინარე, მდინარეთა აუზების არსებული მდგომარეობის კვლევა და

ანალიზი, დაბინძურებისაგან დაცვა, გაფრთხილება თავისთავად ზღვის

გაფრთხილებასა და დაცვას ნიშნავს და მეტად მნიშვნელოვანია.

კვლევის მიზანი შავ ზღვაში ჩამდინარე, ქალაქ ბათუმში გამავალი, მცირე მდინარეების –

მეჯინისწყლისა და ბარცხანას დამაბინძურებელი წყაროებისა და დაბინძურების

ხარისხის კვლევა და ანალიზი.

დაკვირვება წარმოებდა 2014 წლის სახელმწიფო გრანტების კონკურსის ”კვლევები

მოსწავლეთა მონაწილეობით“ გამარჯვებული პროექტის SC/66/9-240/14 „გარემოს

ქიმიური და რადიაციული დაბინძურება ქალაქ ბათუმში“ ფარგლებში.

კვლევის ობიექტი კვლევის ობიექტი აჭარის მცირე მდინარეებია. მეჯინისწყალი სათავეს იღებს

კახაბრის დაბლობზე, გაედინება დაახლოებით 9 კმ-ზე და ერთვის ზღვას

აეროპორტსა და ქალაქ ბათუმს შორის. ინტენსიური წვიმების დროს ახასიათებს

ადიდება.

მდინარე ბარცხანა იწყება ახალშენის საკრებულოს ტერიტორიაზე, ახალშენის

მაღლობის ჩრდილო-დასავლეთის ფერდობზე, მისი სიგრძე 8.6 კმ-ია. გააჩნია

შენაკადები: ახალშენის წყალი, ალიშის ღელე, ფერიის წყალი და სხვა პატარა

ღელეების სახით.

კვლევის მეთოდიკა კვლევა ჩატარდა მარშრუტული მეთოდით, მდ. ბარცხანასა და მეჯინისწყლის

დამაბინძურებელ წყაროების აღრიცხვის მიზნით, უშუალო დაკვირვებით, ხოლო

მასში დამაბინძურებელ ქიმიურ ნივთიერებათა კონცენტრაციების დადგენის მიზნით

ჩატარდა წყლის სინჯების ჰიდროქიმიური ანალიზი.

კვლევის შედეგები დაკვირვებით გამოვლინდა მდინარე მეჯინისწყლის დამაბინძურებელი წყაროები:

მოსახლეობა, სოფლის მეურნეობა, საზოგადოებრივი კვებისა და სამშენებლო

ობიექტები, ავტოსამრეცხაოები, მეცხოველეობისა და მეფრინველეობის კერძო მცირე

სადგომები.

მდ. მეჯინისწყლის დაბინძურების წყაროებისაგან განსხვავებით, მდ. ბარცხანას

აბინძურებს შპს „ბათუმის ნავთობტერმინალი“, ასევე, რამდენიმე წლის წინ ქიმიური

Page 107: Instruments for Modelling Black Sea River Basins: Research

107

დაბინძურების მნიშვნელოვანი წყარო იყო ზეთის საწარმო შპს „ბათუმი ოილი“, რაც

დღეისათვის გაჩერებულია.

მდინარე მეჯინისწყალი ბინძურდება: მყარი მუნიციპალური ნარჩენებით,

მოსახლეობისაგან ჩამდინარე წყალითა და ფეკალური მასებით, პესტიციდებით,

მეცხოველეობისა და მეფრინველეობის ექსკრემენტებით, არაორგანული სასუქებით,

ციტრუსოვანთა ნაყოფით, სამშენებლო ნარჩენებითა და სხვა. მდ. ბარცხანას

შემთხვევაში ამ დამაბინძურებლებს ემატება სამრეწველო თხევადი ნარჩენები,

ნავთობი და ნავთობპროდუქტები.

ამრიგად, მდინარეების – მეჯინისწყლისა და ბარცხანას ეკოლოგიური მდგომარეობა

არც ისე სახარბიელოა. გამოვლენილი იქნა დაბინძურების წერტილოვანი და

არაწერტილოვანი წყაროები, ნათლად ჩანს, ანთროპოგენური ფაქტორის გავლენა

მდინარეთა გაჭუჭყიანებაზე. მყარი მუნიციპალური ნარჩენებით დაბინძურება უკვე

იწყება მდინარეთა ნაპირებზე მოსახლეობის დასახლებასთან ერთად, ის

თანდათანობით ძლიერდება მდინარეთა ნაპირებზე, ზღვის შესართავთან

გადანაცვლებისას, ნათლად ჩანს ევთროფიკაცია.

მდინარეების ბარცხანასა და მეჯინისწყალის ჰიდროქიმიური ანალიზის შედეგად

გამოვლინდა ამონიუმის აზოტის კონცენტრაციის ჭარბი რაოდენობა ზღვრულად

დასაშვებ კონცენტრაციასთან შედარებით. კერძოდ, მდ. ბარცხანაში – 0.511 მგ/ლ

(ზდკ-ზე 1.3-ჯერ მეტი), ხოლო მდ. მეჯინისწყალში – 0.863 მგ/ლ (2.2 ზდკ). საკვლევ

პერიოდში დანარჩენი განსაზღვრული კომპონენტების კონცენტრაციები

მდინარეებში ნორმის ფარგლებში იყო.

საჭიროა ერთობლივი ძალისხმევა, საზოგადოების თვითშეგნების, ეკოლოგიური

ცოდნის დონის ამაღლება, სახელმწიფოს ზრუნვა, რათა დავიცვათ და

გავუფრთხილდეთ ჩვენს სიმდიდრეს – მტკნარ წყალს, გავუფრთხილდეთ ზღვას,

თავისთავად, სუფთა მდინარე ხომ სუფთა ზღვას ნიშნავს.

Page 108: Instruments for Modelling Black Sea River Basins: Research

108

Page 109: Instruments for Modelling Black Sea River Basins: Research

109

Ecotourism as the Key Factor for National Development

Nino Jijavadze Batumi Botanical Garden

Email: [email protected]

Abstract Wilderness nature in Kolkheti region provides ample opportunities to develop ecotourism as the important component of tourism. Factors contributing are the following. Diversity of habitats: the sea, coastal dunes, coastal freshwater ponds, living sphagnum peatlands, forests, fields, lakes and river mouths. Diversity of species: mammals – 51 species, birds – 300 species,

reptiles/amphibians – 28 species, fish – 40 species, vegetation 1848 species. Habitats are those of Emerald Network and NATURE-2000. With the aim of conservation and wise use the following protected areas are established in Kolkheti: Kintrishi Protected Landscape, Kobuleti Protected Areas, Mtirala National Park, Machakhela Trans-boundary Protected Area. Nature monuments are also of global importance: Goderdzi fossilized forest, stoneman-column (Kvakatsa-Sveti), high conservation value forests of regional importance. Values of protected areas are: educational, natural-museum, natural-scientific, historical-cultural, fitness-

recreational, religious, ethical, ecological, nature protection, in-situ conservation.

ეკოტურიზმი, როგორც ქვეყნის განვითარების მთავარი ფაქტორი

ნინო ჯიჯავაძე

ბათუმის ბოტანიკური ბაღი

ელექტრონული ფოსტა: [email protected]

რეზიუმე კოლხეთში რეგიონში არსებული ველური ბუნება საუკეთესო საშუალებას იძლევა

ტურიზმის ისეთი უმნიშვნელოვანესი დარგის განვითარებისათვის, როგორიცაა

ეკოტურიზმი. ასეთია: ჰაბიტატების მრავალფეროვნება: ზღვა, სანაპირო დიუნები,

სანაპირო მტკნარწყლიანი ტბორები, ცოცხალი სფაგნუმიანი ტორფნარები, ტყეები,

მეორადი მდელოები, ტბები და მდინარეთა შესართავები, მდელოები. სახეობათა

მრავალფეროვნება: ძუძუმწოვრები – 51 სახეობა, ფრინველები – 300 სახეობა,

რეპტილიები/ამფიბიები – 28 სახეობა, თევზები – 40 სახეობა, მცენარეები – 1848

სახეობა. ზურმუხტის ქსელისა და NATURE-2000 ის სახეობები და ჰაბიტატები.

ბიომრავალფეროვნების კონსერვაციისა და გონივრული გამოყენების მიზნით

კოლხეთში ჩამოყალიბებულია შემდეგი დაცული ტერიტორიები: კინტრიშის

დაცული ლანდშაფტი, ქობულეთის დაცული ტერიტორიები, მტირალას ეროვნული

პარკი, მაჭახელას ტრანსსასაზღვრო დაცული ტერიტორია. გლობალური

ღირებულების ბუნების ცოცხალი ძეგლები: გოდერძის ნამარხი ტყე, ქვაკაცა-სვეტი,

რეგიონული ღირებულების: მაღალკონსერვაციული ღირებულების ტყის კორომები.

დაცული ტერიტორიების ღირებულებანი: აღმზრდელობითი; ბუნებრივ-

სამუზეუმო;, ბუნებრივ-სამეცნიერო, ისტორიულ-კულტურული, საგანმანათლებლო,

Page 110: Instruments for Modelling Black Sea River Basins: Research

110

გამაჯანსაღებელ-რეკრეაციული, რელიგიური, ეთიკური, ესთეტიკური, ეკოლოგიური

(გარემოსდაცვითი), სანაკრძალე, in situ კონსერვაცია.

შესავალი საქართველოს დაცული ტერიტორიების კატეგორიები მოყვანილია ცხრილში 1.

ცხრილი 1. საქართველოს დაცული ტერიტორიების კატეგორიები

დაცული ტერიტორია მიზანი კატეგორია (IUCN)

სახელმწიფო ნაკრძალი მკაცრი დაცვა, საგანმანათლებლო და

არამანიპულაციური კვლევები სპეციალური ნებართვით I

ეროვნული პარკი ეკოსისტემების კონსერვაცია, განათლება, ტურიზმის

განვითარება II

ბუნების ძეგლი ბუნების თავისებურებების კონსერვაცია (მცირე ზომის

განსაკუთრებული ტერიტორიის დაცვა) III

აღკვეთილი ბუნების დაცვა და შენარჩუნება აქტიური მართვის გზით IV

დაცული ლანდშაფტი ლანდშაფტის და/ან ზღვის აკვატორიის კონსერვაცია და

ტურიზმის განვითარება V

მრავალმხრივი

გამოყენების ტერიტორია ბუნებრივი რესურსების მდგრადი გამოყენება VI

დაცული ტერიტორიების კატეგორიების კრიტერიუმები:

– ტერიტორიის ზომა;

– ბუნებრივობა;

– იშვიათობა/უნიკალურობა;

– ტიპიურობა;

– სათუთოობა;

– ისტორიულობა.

საქართველოს დაცული ტერიტორიების საერთო ფართობია 368 941 ჰა, რაც

საქართველოს მთლიანი ფართობის დაახლოებით 7%-ს შეადგენს, რომელიც

გაერთიანებულია დაცული ტერიტორიების ადმინისტრაციების ქსელში და მართავს

საქართველოს გარემოსა და ბუნებრივი რესურსების დაცვისა სამინისტროს დაცული

ტერიტორიების სააგენტო.

სურათი 1. საგანანმანათლებლო ტურიზმი სურათი 2. ფრინველებზე დაკვირვება

Page 111: Instruments for Modelling Black Sea River Basins: Research

111

შედეგი კოლხეთის “ცოცხალი სფაგნუმიანი ტორფნარები და რელიქტური კოლხური ტყეები”

მსოფლიოს უნიკალური ჰაბიტატებით და სახეობებით წარდგენილია UNESCO-ში

როგორც მსოფლიო ბუნებრივი მემკვიდრეობის უბანი. ეს კიდევ უფრო შეუწყობს

ხელს ტურიზმის განვითარებას. ეკოტურიზმი – როგორც ქვეყნის ეკონომიკის

განვითარების მნიშვნელოვანი ფაქტორი. საუკეთესო ვარიანტია ეკოტურიზმის

ისეთი სახეების განვითარებისათვის, როგორიცაა: საცხენოსნო, სალაშქრო,

კულტურული ტურები, დასვენება დაცულ ტერიტორიაზე, სამეცნიერო ტურიზმი,

საგანმანათლებლო ტურები, ფრინველებზე დაკვირვება, სამოყვარულო თევზჭერა,

სანაოსნო ტურები – კატერითა და პანტონებით გასეირნება, ტურები

ფოტომოყვარულთათვის, აგროტურიზმი.

სურათი 3. სამეცნიერო ტურიზმი

დასკვნები დაცული ტერიტორიების მიმდებარედ აუცილებელია ბუფერული, ტრადიციული და

ტურისტული ზონების დაარსება, დაცულ ტერიტორიებზე და მის დამხმარე ზონაში,

ეფექტურად მართვად ტურიზმს, შესაბამისი ტურისტული ინფრასტრუქტურის

ჩამოყალიბებას მნიშვნელოვანი როლი შეუძლია შეასრულოს შემდეგი პროცესების

განვითარებაში:

– მოსახლეობის დასაქმება და სოციალურ-ეკონომიკური მდგომარეობის

გაუმჯობესება;

– მცირე და საშუალო ბიზნესის განვითარება;

– ბიომრავალფეროვნების დაცვის ხელშეწყობა.

ლიტერატურა მაჭუტაძე ი. 2005. კოლხეთის ტორფნარები, 40 გვ.

მაჭუტაძე ი. 2008. რელიქტური კოლხური ტყე: “წარსული, აწმყო, მომავალი”. 40 გვ.

მაჭუტაძე ი. 2009. კოლხეთის დაბლობის ცოცხალი სფაგნუმიანი ტორფნარების

მცენარეული საფარი, 133 გვ.

Page 112: Instruments for Modelling Black Sea River Basins: Research

112

Matchutadze I., Goradze I., Tsinaridze M., E. Jakeli, 2010, Inventory of High Conservative Value Forests (among them old) in Adjara Mountainous Forest Eco-Systems, Turkish-Japanese International conference, Vol. 1. Trabzon, pp. 17-33.

Matchutadze I., Kurkhuli T., Tsinaridze M., 2010, Why is the Relict Forest of Kolkheti lowland so Valuable and Significant? Turkish-Japanese International conference, Vol. 3. Trabzon,

pp. 55-60.

დაცული ტერიტორიების სააგენტოს ვებ გვერდი: http://apa.gov.ge.

Page 113: Instruments for Modelling Black Sea River Basins: Research

113

Current Data on Biodiversity of the River Natanebi Ichthyofauna and Water Pollution

Tatia Kuljanishvili a,*, Marine Bozhadze a, Giorgi Epitashvili a, Bella Japoshvili a

a MSc student, Ilia State University, Institute of Zoology a Assistant researcher, Ilia State University, Institute of Zoology

a MSc, Ilia State University, Institute of Zoology a PhD, Ilia State University, Institute of Zoology

* Corresponding author: [email protected], +995 (598) 913988

Abstract Biological diversity, as for water ecosystems, as for terrestrial habitat depends on freshwater resources. Biodiversity of inland waters is critically important to eradicate poverty and to achieve different goals, fishery supports food for millions of humans. Study of river ichthyofauna, control of water quality and analysis of chemical parameters is essential to maintain freshwater ecosystems . In this paper we report the results of a study of

ichthyofauna in the river Natanebi and chemical analysis of water parameters, based on the

materials collected on 3 deferent seasons, in 2012. Introduction Presently more than 30000 different fish species are described, 40% of this number are identified as freshwater species. To take into account the size of freshwater and marine habitat, freshwater fish species thousand times exceed to saltwater species. Climate regulation, mitigation of floods, water purification and recycling of nutrients and waste materials depends

on the water ecosystems. Biodiversity of Inland waters is essential to develop millennium plans and aims (millenniumassessment.org; Japoshvili, 2012). The river Natanebi is known to be an important spawning area for Black Sea salmonids and sturgeons (Ninua & Guchmanidze, 2013). Nowadays the river is under the anthropogenic pressure, the main threats for important trade fish species. In Natanebi municipality there are three gravel excavation quarries (Losaberidze, 2013). Gravel excavations cause degradation of

whole river channel, an exhaustion of river surface and reducing spawning areas for anadromous fish species (Packer et al., 2005). Chemical and physical parameters such as water temperature, conductivity, dissolved oxygen and mineralization has very big impact for normal being of fishes (Yudkin, 1970). Pollution and habitat change causes a change of chemical parameters of water. At present, up-to-date information on river ecosystem biodiversity is largely unknown for most of the rivers in Georgia, except a few works (Japoshvili et al., 2013; Ninua, Japoshvili and

Botchorishvili, 2013; Ninua and Guchmanidze, 2013). In 1975 the Natanebi river ichthyofauna was studied by P. Kheladze (Kheladze, 1976). Our aim was to study ichthyofauna of river

Natanebi and compare it with literature data, which is not updated during the four decades. Methods The samples were collected during 2012 (June, August and November) in order to describe fish

fauna end to detect water pollution level. Fish specimens were obtained from three different sites with different anthropogenic pressure. The first site was near the upstream of the river (undisturbed area), the second near to a village with a fish farm and grazing area (central

Page 114: Instruments for Modelling Black Sea River Basins: Research

114

basin), and the third near to gravel excavation site and dams (downstream). We preferred the first site as a reference site to compare it with two others (Subramanian & Sivaramakrishnan, 2007). For fish sampling hand net and fishing rod were used. Samples were fixed in 70% ethanol. Identification of fish specimen was performed in the field, and also in the laboratory using the identification key. Morphological study was done with measuring characters like:

total length; standard length; head length; eye diameter; body depth; caudal peduncle depth. Simultaneously with collecting fish specimens water samples were collected, altogether 27 water samples were obtained. For each samples 21 water parameters were analyzed.. Water temperature; pH; turbidity; conductivity; dissolved oxygen was defined in the field. Therefore multifunctional measuring device EXTECH – ExStik EC 500 and ExStik DO600 were used. The rests of parameters were defined in laboratory: ammonium ion; nitrites; nitrates; chlorides;

sulfates; hydro-carbonates; calcium; magnesium; sodium; potassium; iron; hardness; mineralization; permanganate oxidation; bi-chromatic oxidation; BOD5; TOC. To analyze main water ions one litre water specimens was taken from each point and before the transportation at the laboratory they were saved in frozen container. To determine the main ions, such as Na+, K+, Ca2+, Mg2+, Cl-, SO4

2-, HCO3-, ISO standard methods were used (Benashvili, 2012).

Results During the study 12 fish species were obtained (147 individuals). Those were: Colchic bitterling (Rodeus sericeus amarus (=Rhodeus colchicus)); colchic minnow (Phoxinus colchicus); colchic nase (Chondrostoma colchicum); Caucasian river goby (Gobius cephalarges constructor (=Neogobius (Ponticola) constructor)); spined loach (Cobitis taenia); south minnow (Alburnoides bipunctatus fasciatus (=Alburnoides fasciatus)); Caucasian gudgeon (Gobio gobio lepidolaemus (=Gobio lepidolaemus caucasica)); stone morocco (Pseudorasbora parva); colchic barb (Barbus tauricus); Batumi shamaya (Chalcalburnus chalcoides derjugini); trout (Salmo fario (=Salmo trutta fario)) and chub (Leuciscus cephalus (=Squalius cephalus)) (Picture 1. a, b, c).

a b c Picture 1. a. Spined loach (Cobitis taenia), b. Colchic bitterling (Rhodeus colchicus), c. Colchic barb (Barbus tauricus).

In our materials most abundant was Caucasian river goby, followed by colchic bitterling, south

minnow and caucasian gudgeon; then stone morocco, Batumi shamaya, colchic minnow, colchic nase, chub and spined loach. Very few amount of trout and colchic barb were caught. Morphometric measurements of different fish species is given in table 1.

Page 115: Instruments for Modelling Black Sea River Basins: Research

115

Table 1. Mean morphometric characters of caught fish

Spice\Measurement

Total

length

(mm)

Standard

length

(mm)

Head

length

(mm)

Eye

diameter

(mm)

Body depth

(mm)

Caudal

perduncle

depth (mm)

Rhodeus colchicus 55.05 45.25 10.56 2.97 17.79 5.94

Phoxinus colchicus 60.76 50.2 11.75 2.72 12.3 5.92

Chondrostoma colchicum 61.09 49.61 12.5 3.23 12.4 5.46

Neogobius constructor 76.21 63.62 17.86 3.37 12.75 6.18

Cobitis taenia 77.64 68.26 12.7 2.3 11.41 7.03

Alburnoides fasciatus 84.56 70.26 15.14 3.81 20.17 7.92

Gobio caucasicus 30.59 26.12 6.76 1.82 5.59 2.71

Pseudorasbora parva 67.92 56.62 13.53 2.82 14.15 6.44

Barbus tauricus 210.32 180.79 32.11 4.78 42.72 18.21

Chalcalburnus chalcoides 161.78 134.66 24.58 6.62 31.07 12.01

Salmo trutta fario 179.97 150.76 41.57 7.79 39.12 15.96

Squalius cephalus 212.72 175.92 45.92 7.70 43.05 18.31

Two new species has been found in our materials, those were: stone morocco (Pseudorasbora parva) and colchic minnow (Phoxinus colchicus). Fish species, such as northern pike (Esox lucius); colchic khramulya (Capoeta sieboldi)); vimba bream (Vimba vimba tenella (=Vimba vimba)); common carp (Cyprinus carpio); catfish (Silurus glanis); mosquito fish (Gambusia affinis holbrooki (=Gambusia holbrooki)); golden gray mullet (Mugil auratus (=Liza aurata)); river perch (Perca fluviatilis) and monkey goby (Gobius fluviatilis (=Neogobius fluviatilis)) were not detected in our materials, but mentioned in Kheladze’s paper. Additional study and materials are needed to prove, that above mentioned fish species disappeared from Natanebi River. However it is obvious, that their quantity has decreased significantly, as they are absent in our catch data.

Common bitterling mentioned in Kheladze’s paper was described incorrectly. Bitterling which inhabits in Natanebi River, was described as a new species – colchic bitterling (Rhodeus colchicus) by Bogutskaya and Komlev in 2001.

Water chemical analysis showed, that water mineralization is low (80-103 mg/l), dissolved oxygen is within the accepted range (6-8.1 mg/l), permanganate and bi-chromatic oxidation is high, but it doesn’t exceeds limited permissible norms. Natanebi river water is sodium-

hydrocarbon type.

Page 116: Instruments for Modelling Black Sea River Basins: Research

116

Table 2. R. Natanebi water chemical parameters

Season April June November

Parameter\Site I II III I II III I II III

Water temperature oC 12 16 22 14.5 20.5 21 6 14 9

pH 7.9 7.9 7.7 6.9 7.1 7.8 8.3 6.9 6.9

Turbidity cm 24 24 24 30 30 30 17 17 17

conductivity 120,2 120 122,5 156,2 149,9 150,2 147,8 140,5 149,2

Dissolved oxygen mg/l 8 8,2 8,1 6,4 6,4 7,2 6 6,1 6,5

(NH4+) mg/l 0,2 0,2 0,2 0,2 0,2 0,2 0,15 0,15 0,15

(NO2-) mg/l 0,1 0,1 0,15 0,001 0,001 0,001 0,001 0,001 0,001

(NO3-) mg/l 0,2 0,2 0,2 0,2 0,2 0,2 0,1 0,1 0,1

(Cl-) mg/l 8,2 8 8,1 8,2 8,1 8,1 8 8 8,1

(SO42-) mg/l 10 11 12 10 12 11 5,5 6 6

(HCO3-) mg/l 40,2 40 40 61,24 61 61 61 61 48,8

(Ca2+) mg/l 8,4 8,4 8,4 9,4 9,4 9,4 9,1 8,9 8,8

(Mg2+) mg/l 2,6 2,6 2,6 2,16 2,36 2,36 2,76 2,76 2,76

( Na+, K+) mg/l 10,58 10,58 10,58 10,4 10 10,3 10 10 10

hardness 0,65 0,65 0,65 0,65 0,66 0,66 0,68 0,68 0,67

(Fe+2

,+3

) mg/l 0,2 0,2 0,21 0,2 0,2 0,1 0,15 0,1 0,1

Mineralization mg/l 79,78 79,58 81,68 101,4 102,86 102,16 96,36 96,66 84,46

Permanganatic-ox mg/l 2,4 2,5 2,3 3,2 3,68 3,84 2,4 2,8 2,8

Bichromatic ox (COD) mg/l 10 10,2 10 15 19 21 12,1 12,2 12

(BOD5) mg/l 1,1 2,1 2,2 1,2 2,1 2,4 1 2,1 2,5

TOC mg/l 3,75 4,69 5,02 5,63 7,13 7,88 3,45 4,5 4,5

Conclusions Our study indicates, that the ichthyofauna of river Natanebi changed considerably during the

last forty years. . Chemical analysis of water has shown that the second site is the most polluted

Page 117: Instruments for Modelling Black Sea River Basins: Research

117

[15 mg/l, 19 mg/l, 21 mg/l,], where village and grazing area is located. Downstream of river is less polluted which may be a result of water filtration capacity. To detect the changes in fish species composition along the river channel and to show how it relates to pollution intensity in Natanebi River, additional work is needed. Also monitoring program should be applied in order to detect long term trend of freshwater ecosystem changes

in the river. Acknowledgements We would like to thank Levam Mumladze, Zhanetta Shubitidze and Giorgi Nozadze for their help during the expeditions. The work was supported under the project of Institute of Zoology “Biodiversity of Guria Region”. References Benashvili N. (2012). “Issues of Georgian black sea sector ecogeochemistry”, Dissertation for

doctor of ecology, St. Andrew the First-Called Georgian University Of the Patriarchate of Georgia, 164 p.

Losaberidze. D., Kandelaki K., Abuladze M., Kapanadze N., Tchitchinadze D., Chitadze M., Tordinava T., Chkheidze P. and Mazmishvili G. (2013). Sentences about Telavi, Mtskheta, Gori, Akhaltsikhe, Zugdidi, Ambrolauri, Ozurgeti and Tsalenjikha Municipalities administration-territorial optimization. 199 p.

Ninua N. & Guchmanidze A. (2013). Sturgeons of Georgia, Georgian National Museum. 120 p. Ninua N., Japoshvili B. and Botchorishvili V. (2013). Fishes of Georgia. Tsigni+Eri. 180 p. Kheladze P. (1976) the study of riv. Natanebi ichtiofauna. Proceedings of the State University,

vol. #178, pp 183-189. Japoshvili B. (2012) NBSAP #10 Thematic Direction: Biodiversity of Georgian Inland Waters

Situation Analysis. Report. Ministry of Environment and Natural Resources Protection of Georgia, 75 p.

Packer D. B., Griffin K. and McGlynn K. E. (2005) National Marine Fisheries Service National Gravel Extraction Guidance. U.S. Dep. Commerce, NOAA Tech. Memo. NMFS-F/SPO-70, 27 p.

Subramanian K. A., Sivaramakrishnan K. G. (2007) Aquatic Insects for Biomonitoring Freshwater Ecosystems - A Methodology Manual, Ashoka Trust for Research in Ecology and Environment (ATREE), 31 p.

Judkin I. I. (1970) Ichthyology. Publishing house “Pishevaya promishlennost”. 380 p. http://www.millenniumassessment.org (18.09.2015) Millennium Ecosystem Assessment.

Page 118: Instruments for Modelling Black Sea River Basins: Research

118

Page 119: Instruments for Modelling Black Sea River Basins: Research

119

უახლესი მონაცემები მდინარე ნატანების იქთიოფაუნის ბიომრავალფეროვნების და წყლის ქიმიური დაბინძურების შესახებ

თათია ყულჯანიშვილი a,*, მარინა ბოჟაძე a, გიორგი ეპიტაშვილი a, ბელა ჯაფოშვილი a

a მაგისტრანტი, ილიას სახელმწიფო უნივერსიტეტი, ზოოლოგიის ინსტიტუტი a მკვლევარი, ილიას სახელმწიფო უნივერსიტეტი, ზოოლოგიის ინსტიტუტი a მაგისტრი, ილიას სახელმწიფო უნივერსიტეტი, ზოოლოგიის ინსტიტუტი

a ბიოლოგიის მეცნიერებათა კანდიდატი, ილიას სახელმწიფო უნივერსიტეტი,

ზოოლოგიის ინსტიტუტი

*მთავარი ავტორი: [email protected], +995 (598) 913988

რეზიუმე დედამიწაზე არსებული მტკნარი წყლის რესურსი უზრუნველყოფს ბიოლოგიურ

მრავალფეროვნებას არამხოლოდ წყალში, არამედ მასზე დამოკიდებულ ხმელეთის

ჰაბიტატშიც. შიდა წყლების ბიომრავალფეროვნება კრიტიკულად მნიშვნელოვანია

სიღარიბის აღმოსაფხვრელად და სხვადასხვა მიზნების მისაღწევად, პირდაპირი

გამოყენება ანუ მეთევზეობა საკვებით უზრუნველყოფს მილიონობით ადამიანს.

სწორედ ამიტომ, მდინარეების იქთიოფაუნის კვლევა, წყლის ხარისხის კონტროლი

და ქიმიური პარამეტრების მონიტორინგი საჭირო და არსებითია. წარმოდგენილ

ნაშრომში მოცემულია მდინარე ნატანების თევზების სახეობრივი შემადგენლობის

ცვლილება და წყლის ქიმიური პარამეტრების ანალიზი 2012 წელს სამ სეზონზე

მოპოვებული მასალების საფუძველზე.

შესავალი დღეისათვის აღწერილი 30 000-ზე მეტი თევზის სახეობიდან 40% მტკნარი წყლის

ბინადარია. თუ გავითვალისწინებთ საზღვაო-მტკნარი წყლების შეფარდებას ნათელი

ხდება, რომ ჰაბიტატ დამოკიდებული მტკნარი წყლის სახეობათა მრავალფეროვნება

1000-ჯერ უფრო მაღალია. შიდა წყლების ბიომრავალფეროვნება კრიტიკულად

მნიშვნელოვანია სიღარიბის აღმოსაფხვრელად და ადამიანთა განვითარების

მიზნების მისაღწევად, პირდაპირი გამოყენება ანუ მეთევზეობა საკვებით

უზრუნველყოფს მილიონობით ადამიანს. ამასთანავე, ფართო ეკოსისტემური

მომსახურება თავის თავში გულისხმობს კლიმატის რეგულაციას, წყალდიდობების

მიტიგაციას, წყლის გასუფთავებას, საკვები ნივთიერებების და ნაგვის გადამუშავებას.

ათასწლეულის განვითარების გეგმის მიზნებისა და ამოცანების დიდი ნაწილის

მიღწევაში შიდა წყლების ბიომრავალფეროვნებას მნიშვნელოვანი ადგილი უჭირავს

(millenniumassessment.org, ჯაფოშვილი, 2012).

მდინარე ნატანები შავი ზღვის ორაგულის და ზუთხისნაირების საქვირითე ერთ-

ერთი მნიშვნელოვანი მდინარეა (ნინუა და გუჩმანიძე, 2013), თუმცა თანამედროვე

პერიოდში მდინარე ძლიერი ანთროპოგენური სტრესის ქვეშაა, რაც მნიშვნელოვან

საფრთხეს უქმნის ძვირფასი სარეწაო თევზების აღწარმოებას და ზოგადად

არსებობას. ნატანების მუნიციპალიტეტში მოიპოვებენ საშენ მასალას (ხრეში). აქ

ფუნქციონირებს 3 კარიერი (ლოსაბერიძე, 2013). ქვიშა-ხრეშის მოპოვება იმ

Page 120: Instruments for Modelling Black Sea River Basins: Research

120

ადგილებიდანაც კი ხდება, სადაც საბჭოურ პერიოდშიც აკრძალული იყო. ამ

ყოველივემ გამოიწვია მდინარე ნატანების კალაპოტის ცვლილება და

მოსახლეობისაგან საყანე ფართობების მიტაცება (alion.ge). დღის განმავლობაში

მუშებს დაახლოებით 250 კუბური მეტრი ხრეში გააქვთ (gurianews.com).

ძლიერი ანთროპოგენური ზეგავლენა, მდინარის კალაპოტის შეცვლა და საყანე

მიწების მიტაცება თავისთავად ქმნის თევზებისთვის არასასურველ საბინადრო

პირობებს. ასეთი დეგრადაცია იწვევს არხის მთლიან გამოფიტვას, აშიშვლებს

მდინარის სუბსტრატს, რომელიც ხრეშის ქვეშაა, ამცირებს ანადრომული თევზების

საქვირითე ადგილებს და სხვა ცხოველებისათვის შესაფერის ჰაბიტატს (Packer et al.,

2005). წყლიანობის, მორფომეტრიის, ჰიდროქიმიური მაჩვენებლების და

ტემპერატურის ცვლილებებს მივყავართ ძვირფასი მტკნარი წყლის თევზების

პოპულაციის დეგრადაციისკენ (Пипоян, 2010). წყლის ქიმიურ და ფიზიკურ

პარამეტრებს, როგორებიცაა: წყლის ტემპერატურა, ელექტროგამტარობა, მასში

გახსნილი ჟანგბადი და მარილიანობა, დიდი მნიშვნელობა აქვს თევზების ნორმალურ

ცხოველქმედებაში (Юдкин, 1970). დაბინძურება და ჰაბიტატის ცვლილება იწვევს

წყლის ქიმიური პარამეტრების ცვლილებას, რაც თავის მხრივ გავლენას ახდენს

თევზებზე.

დღესდღეობით საქართველოში ბევრი მდინარისთვის წყლის ეკოსისტემის

ბიომრავალფეროვნებასთან დაკავშირებით განახლებული ინფორმაცია არ არსებობს,

თუ არ ჩავთვლით ერთეულ ნაშრომებს (ჯაფოშვილი და სხვ. 2013; ნინუა, ჯაფოშვილი

და ბოჭორიშვილი, 2013; ნინუა და გუჩმანიძე, 2013 ). მდინარე ნატანების იქთიოფაუნა

გამოკვლეული იქნა პ. ხელაძის მიერ 1975 წელს (ხელაძე, 1976). სწორედ ამიტომ

წარმოდგენილ ნაშრომში ჩვენ მიზნად დავისახეთ შეგვესწავლა მდინარე ნატანების

იქთიოფაუნა, შეგვედარებინა ის ლიტერატურულ წყაროებთან, რომელიც უკვე ოთხი

ათეული წელია არ განახლებულა, გაგვეანალიზებინა წყლის მნიშვნელოვანი

ქიმიური პარამეტრები.

მეთოდოლოგია მასალა შეგროვდა 2012 წელს, ივნისში, აგვისტოსა და ნოემბერში, იმისათვის, რომ

აღგვეწერა თევზების ფაუნა და დაგვედგინა დაბინძურების დონე. თევზები

მოპოვებულ იქნა სამი განსხვავებული ანთროპოგენული ზემოქმედების ადგილიდან

(საიტიდან). პირველი საიტი შერჩეულ იქნა მდინარის ზედა დინებასთან ახლოს,

რომელზედაც ანთროპოგენულ ზემოქმედებას ადგილი არ ქონდა. მეორე საიტი –

მდინარის ცენტრალური ნაწილი – მდებარეობდა სოფელთან ახლოს, სადაც

განთავსებულია სათევზაო მეურნეობა და არის საძოვრები, ხოლო მესამე – მდინარის

ქვედა დინება, კაშხლის და ხრეშის ამოღების ადგილას. პირველი საიტი მივიჩნიეთ

საკონტროლო საიტად, რომელიც შემდგომში შევადარეთ დანარჩენ ორ საიტს

(Subramanian & Sivaramakrishnan, 2007). თევზის დასაჭერად გამოყენებულ იქნა ანკესი

და ხელის ბადე. ნიმუშების დაფიქსირება ხდებოდა 70%-იან ეთანოლში. სახეობის

იდენტიფიკაცია ძირითადად ხდებოდა საველე პირობებში, ხოლო ზოგიერთის

ლაბორატორიაში, სარკვევის გამოყენებით. ჩატარდა მოპოვებული სხვადასხვა

სახეობის თევზის მორფომეტრიული კვლევა. გაზომილი იქნა ყველა ინდივიდის

მთლიანი სიგრძე; სარეწაო სიგრძე; თავის სიგრძე; თვალის დიამეტრი; სხეულის

მაქსიმალური და მინიმალური სიმაღლე. იქთიოლოგიური სინჯების მოპოვების

Page 121: Instruments for Modelling Black Sea River Basins: Research

121

პარალელურად, აღებულ იქნა წყლის სინჯები, 27 ნიმუში. თითოეული ნიმუშისათვის

გაანალიზებული და განსაზღვრული იქნა 21 ქიმიური პარამეტრი. ადგილზე მოხდა

შემდეგი პარამეტრის გაზომვა: წყლის ტემპერატურა; pH; სიმღვრივე; ელგამტარობა;

წყალში გახსნილი ჟანგბადი, რისთვისაც გამოყენებულ იქნა მულტიფუნქციური

საზომი EXTECH – ExStik EC 500 და ExStik DO600. დანარჩენი პარამეტრები განისაზღვრა

ლაბორატორიაში: ამონიუმის იონი; ნიტრიტები; ნიტრატები; ქლორიდები;

სულფატები; ჰიდროკარბონატები; კალციუმი; მაგნიუმი; ნატრიუმი, კალიუმი; რკინა;

სიხისტე; მინერალიზაცია; პერმანგანატული ჟანგვადობა; ბიქრომატული ჟანგვადობა;

ჟანგბადის ბიოქიმიური მოხმარება (ჟ.ბ.მ.) და TOC. მდინარის წყლის ძირითადი

იონების ანალიზისათვის თითოეულ წერტილზე, სეზონების მიხედვით, აღებული

იქნა 1 ლ. მოცულობის ნიმუშები, რომლებიც ლაბორატორიაში ტრანსპორტირებამდე

ინახებოდა სპეციალურ ყინულიან კონტეინერებში. ძირითადი იონების Na+, K+, Ca2+,

Mg2+, Cl-, SO42-, HCO3

- შემცველობის განსაზღვრისათვის გამოყენებული იყო ISO–ს

სტანდარტული მეთოდები: Ca2+, Mg2+-ის განსაზღვრა მოხდა ტიტრიმეტრული

მეთოდი EDTA-ს გამოყენებით (ბენაშვილი, 2012), ინდიკატორებად გამოყენებულ იქნა

ერიოქრომ-შავი და მურექსიდი. ჰიდროკარბონატისა და კარბონატის იონების

განსასაზღვრად გამოყენებულ იქნა ტიტრიმეტრული მეთოდი. ქლორიდების

განსაზღვრისათვის – მორის მეთოდი (ბენაშვილი, 2012).

შედეგები ჩვენი კვლევის პერიოდში სულ მოპოვებულ იქნა 12 სახეობის 147 ინდივიდი, ესენია:

კოლხური ტაფელა (Rodeus sericeus amarus (=Rhodeus colchicus)); კოლხური კვირჩხლა

(Phoxinus colchicus); კოლხური ტობი (Chondrostoma colchicum); მდინარის კავკასიური

ღორჯო (Gobius cephalarges constructor (=Neogobius (Ponticola) constructor));

ჩვეულებრივი გველანა (Cobitis taenia); სამხრეთული მარდულა, ფრიტა (Alburnodise bipunctatus fasciatus (=Alburnoides fasciatus)); კავკასიური ციმორი (Gobio gobio lepidolaemus (=Gobio lepidolaemus caucasica)); ფსევდორაზბორა (Pseudorasbora parva);

კოლხური წვერა (Barbus tauricus); ბათუმის შამაია (Chalcalburnus chalcoides derjugini); კალმახი (Salmo fario (=Salmo trutta fario)) და კავკასიური ქაშაპი (Leuciscus cephalus (=Squalius cephalus)) (სურათი 1. ა, ბ, გ).

ა ბ გ

სურათი 1. ა. ჩვეულებრივი გველანა (Cobitis taenia), ბ. კოლხური ტაფელა (Rhodeus colchicus),

გ. კოლხური წვერა (Barbus tauricus).

ჩვენს ჭერებში ყველაზე დიდი რაოდენობით წარმოდგენილი იყო მდინარის

კავკასიური ღორჯო, მას მოსდევდა კოლხური ტაფელა, ფრიტა და ციმორი; ჭერილში

შემდეგ ადგილზე, თითქმის თანაბარი პროცენტული შემცველობით, წარმოდგენილი

Page 122: Instruments for Modelling Black Sea River Basins: Research

122

იყო ფსევდორაზბორა, ბათუმის შამაია, კოლხური კვირჩხლა, კოლხური ტობი,

კავკასიური ქაშაპი და ჩვეულებრივი გველანა. ყველაზე მცირე რაოდენობით

ერთეული ინდივიდები შეგვხდა კალმახი და კოლხური წვერა. მოპოვებული

თევზების სხეულის განაზომების მონაცემები მოცემულია ცხრილი 1-ში.

ცხრილი 1. განაზომების საშუალო მონაცემები თითოეული სახეობისთვის

სახეობა\განაზომი

მთლიანი

სიგრძე

(მმ)

სარეწაო

სიგრძე

(მმ)

თავის

სიგრძე

(მმ)

თვალის

დიამეტრი

(მმ)

მაქსიმალური

სიმაღლე (მმ)

მინიმალური

სიმაღლე (მმ)

Rhodeus colchicus 55.05 45.25 10.56 2.97 17.79 5.94

Phoxinus colchicus 60.76 50.2 11.75 2.72 12.3 5.92

Chondrostoma colchicum 61.09 49.61 12.5 3.23 12.4 5.46

Neogobius constructor 76.21 63.62 17.86 3.37 12.75 6.18

Cobitis taenia 77.64 68.26 12.7 2.3 11.41 7.03

Alburnoides fasciatus 84.56 70.26 15.14 3.81 20.17 7.92

Gobio caucasicus 30.59 26.12 6.76 1.82 5.59 2.71

Pseudorasbora parva 67.92 56.62 13.53 2.82 14.15 6.44

Barbus tauricus 210.32 180.79 32.11 4.78 42.72 18.21

Chalcalburnus chalcoides 161.78 134.66 24.58 6.62 31.07 12.01

Salmo trutta fario 179.97 150.76 41.57 7.79 39.12 15.96

Squalius cephalus 212.72 175.92 45.92 7.70 43.05 18.31

მდინარე ნატანებზე 1975 წელს ჩატარებულ კვლევებში, რომლებიც მიმდინარეობდა

გაზაფხულის, ზაფხულის, შემოდგომასა და ნაწილობრივ ზამთრის განმავლობაში

შეგროვებული იქნა 19 სახეობის თევზი (ხელაძე, 1976).

ჩვენი კვლევების და ხელაძის მონაცემების შედარების შედეგად გამოიკვეთა ახალი

სახეობები, როგორებიცაა ფსევდორაზბორა (Pseudorasbora parva) და კოლხური

კვირჩხლა (Phoxinus colchicus), რომლებიც 1975 წელს ჩატარებულ ჭერებში არ

დაფიქსირებულა. ასევე აღმოჩნდა ისეთი სახეობები, რომლებიც წარსულში

დაფიქსირდა და ჩვენ ჭერილში აღარ შეგვხვდა, ესენია: ქარიყლაპია (Esox lucius);

კოლხური ხრამული (Varicorhinus sieboldi (=Capoeta sieboldi)); ვიმბა (Vimba vimba tenella

(=Vimba vimba)); კობრი, გოჭა (Cyprinus carpio); ჩვეულებრივი ლოქო (Silurus glanis);

ჩვეულებრივი გამბუზია (Gambusia affinis holbrooki (=Gambusia holbrooki)); სინგილი

(Mugil auratus (=Liza aurata)); მდინარის ქორჭილა (Perca fluviatilis) და მექვიშია ღორჯო

(Gobius fluviatilis (=Neogobius fluviatilis)). ეს არ იძლევა იმის მტკიცების საფუძველს, რომ

ყველა ეს სახეობა უკვე აღარ ბინადრობს ნატანებში, ამის დასადასტურებლად

საჭიროა დამატებითი კვლევების წარმოება და მასალის მოპოვება, თუმცა ამ ეტაპზე

Page 123: Instruments for Modelling Black Sea River Basins: Research

123

შეიძლება ითქვას რომ მათი რაოდენობა საგრძნობლად არის შემცირებული, რასაც

ადასტურებს მათი არარსებობა ჩვენს მასალაში.

რაც შეეხება ჩვეულებრივ ტაფელას, რომელიც მოცემული იყო ხელაძის ნაშრომში,

აღმოჩნდა, რომ ტაფელას ეს ფორმა არასწორად იყო გარკვეული. მდინარე ნატანებში

ბინადარი ტაფელა 2001 წელს, ბოგუცკაიასა და კომლევის მიერ აღწერილ იქნა

როგორც მეცნიერებისთვის ახალი სახეობა და მას ეწოდა კოლხური ტაფელა (Rhodeus colchicus Bogutskaya & Komlev, 2001).

წყლის ქიმიური ანალიზის შედეგებმა აჩვენა, რომ წყლის მინერალიზაცია დაბალია

(80-103 მგ/ლ), გახსნილი ჟანგბადის შემცველობა ნორმის ფარგლებშია (6-8.1 მგ/ლ),

ჟანგვადობა, როგორც პერმანგანატული, ასევე ბიქრომატული, შედარებით მაღალია

მეორე ნიმუშის წყლებში, რაც გამოწვეულია ამ პუნქტის ადგილმდებარეობით,

თუმცა, ზღვრულად დასაშვებ კონცენტრაციებს მაინც არ აღემატება. ძირითადი

იონების ანალიზიდან ჩანს, რომ წყალი ნატრიუმ-ჰიდროკარბონატული ტიპისაა.

არსებობს მონაცემები, რომლის თანახმადაც ნატანების წყალი არის კალციუმ-

ჰიდროკარბონატული (ბენაშვილი, 2012), რაც ზოგადად მცირედ მინერალიზებული

მდინარეებისთვისაა დამახასიათებელი, თუმცა, წყალმცირობის დროს კალციუმის

იონებს ჭარბობს ნატრიუმის იონების კონცენტრაცია, რაც გამოწვეულია ზღვის წყლის

შერევით.

ცხრილი 2. წყლის ქიმიური ანალიზის შედეგები

სეზონი აპრილი ივნისი ნოემბერი

პარამეტრი\საიტი I II III I II III I II III

წყლის ტემპერატურა oC 12 16 22 14.5 20.5 21 6 14 9

pH 7.9 7.9 7.7 6.9 7.1 7.8 8.3 6.9 6.9

სიმღვრივე სმ 24 24 24 30 30 30 17 17 17

ელგამტარობა მშ/სმ 120,2 120 122,5 156,2 149,9 150,2 147,8 140,5 149,2

წყალში გახსნილი ჟანგბადი

მგ/ლ 8 8,2 8,1 6,4 6,4 7,2 6 6,1 6,5

ამონიუმი (NH4+) მგ/ლ 0,2 0,2 0,2 0,2 0,2 0,2 0,15 0,15 0,15

ნიტრიტები (NO2-) მგ/ლ 0,1 0,1 0,15 0,001 0,001 0,001 0,001 0,001 0,001

ნიტრატები (NO3-) მგ/ლ 0,2 0,2 0,2 0,2 0,2 0,2 0,1 0,1 0,1

ქლორიდები (Cl-) მგ/ლ 8,2 8 8,1 8,2 8,1 8,1 8 8 8,1

სულფატები (SO42-) მგ/ლ 10 11 12 10 12 11 5,5 6 6

ჰიდროკარბონატები (HCO3-)

მგ/ლ 40,2 40 40 61,24 61 61 61 61 48,8

Page 124: Instruments for Modelling Black Sea River Basins: Research

124

კალციუმი (Ca2+) მგ/ლ 8,4 8,4 8,4 9,4 9,4 9,4 9,1 8,9 8,8

მაგნიუმი (Mg2+) მგ/ლ 2,6 2,6 2,6 2,16 2,36 2,36 2,76 2,76 2,76

ნატრიუმი, კალიუმი ( Na+, K+)

მგ/ლ 10,58 10,58 10,58 10,4 10 10,3 10 10 10

სიხისტე მგ-ეკვ/ლ 0,65 0,65 0,65 0,65 0,66 0,66 0,68 0,68 0,67

რკინა (Fe+2,+3) მგ/ლ 0,2 0,2 0,21 0,2 0,2 0,1 0,15 0,1 0,1

მინერალიზაცია მგ/ლ 79,78 79,58 81,68 101,4 102,86 102,16 96,36 96,66 84,46

პერმანგანატული ჟანგვადობა

მგ/ლ 2,4 2,5 2,3 3,2 3,68 3,84 2,4 2,8 2,8

ბიოქრომატული ჟანგვადობა

(COD) მგ/ლ 10 10,2 10 15 19 21 12,1 12,2 12

ჟ.ბ.მ (BOD5) მგ/ლ 1,1 2,1 2,2 1,2 2,1 2,4 1 2,1 2,5

TOC მგ/ლ 3,75 4,69 5,02 5,63 7,13 7,88 3,45 4,5 4,5

დასკვნები კვლევამ აჩვენა, რომ მდინარე ნატანებში იქტიოფაუნის შემადგენლობა შეცვლილია

და მასში ძალიან იშვიათად ან საერთოდ არ გვხვდება ის სარეწაო მნიშვნელობის

ძვირფასი თევზები, რომლებიც ადრე გვხვდებოდნენ. ქიმიური ანალიზის შედეგებმა

აჩვენა რომ მდინარის ყველაზე დაბინძურებული უბანი, სამივე სეზონზე არის

სოფელთან ახლოს [15 მგ/ლ, 19 მგ/ლ, 21 მგ/ლ], სადაც განლაგებულია სათევზაო

მეურნეობა და ესაზღვრება საძოვარი, შედარებით ნაკლებადაა დაბინძურებული

მდინარის ქვედა დინება, ხოლო ზედა დინების მონაცემები არის ფონური.

იმისათვის რომ დავადგინოთ იქთიოფაუნის ზუსტი შემადგენლობა და ვაჩვენოთ თუ

როგორ გავლენას ახდენს დაბინძურება მდინარე ნატანებში მცხოვრებ ფორმებზე

საჭიროა კვლევის გაგრძელება, მეტი სინჯის მოპოვება/გაანალიზება და ხანგრძლივი

მონიტორინგი.

მადლობა

მადლობას ვუხდით ლევან მუმლაძეს, ჟანეტა შუბითიძეს და გიორგი ნოზაძეს მათ

მიერ გაწეული დახმარებისთის ველზე და მასალის შეგროვებისთვის. კვლევა

შესრულდა ზოოლოგიის ინსტიტუტის პროექტის „გურიის რეგიონის

ბიომრავალფეროვნება“ ფარგლებში.

ლიტერატურა ბენაშვილი ნ. (2012) ”შავი ზღვის საქართველოს სექტორის ეკოგეოქიმიის საკითხები”,

ეკოლოგიის დოქტორის ხარისხის მოსაპოვებლად წარმოდგენილი

სადისერტაციო ნაშრომი, საქართველოს საპატრიარქოს წმინდა ანდრია

პირველწოდებულის სახელობის ქართული უნივერსიტეტი, 164 გვ.

Page 125: Instruments for Modelling Black Sea River Basins: Research

125

ლოსაბერიძე დ., კანდელაკი კ., აბულაძე მ., კაპანაძე ნ., ჭიჭინაძე დ., ჩიტაძე მ.,

თორდინავა თ., ჩხეიძე პ. და მაზმიშვილი გ. (2013) წინადადებები თელავის,

მცხეთის გორის, ახალციხის, ზუგდიდის, ამბროლაურის, ოზურგეთისა და

წალენჯიხის მუნიციპალიტეტების ადმინისტრაციულ-ტერიტორიული

ოპტიმიზაციის შესახებ. 199 გვ.

ნინუა ნ. და გუჩმანიძე ა. (2013) საქართველოს ზუთხისნაირნი. საქართველოს

ეროვნული მუზეუმი. 120 გვ.

ნინუა ნ., ჯაფოშვილი ბ. და ბოჭორიშვილი ვ. (2013) საქართველოს თევზები.

წიგნი+ერი. 180 გვ.

ხელაძე პ. (1976) მდ. ნატანების იქთიოფაუნის შესწავლისთვის. თბილისის შრომის

წითელი ორდენოსანი სახელმწიფო უნივერსიტეტის შრომები, ტომი #178, გგ

183-189.

ჯაფოშვილი ბ. (2012) NBSAP-ის #10 თემატური მიმართულება: „საქართველოს შიდა

წყლების ბიომრავალფეროვნება“ სიტუაციის ანალიზი. ანგარიში.

საქართველოს გარემოსა და ბუნებრივი რესურსების დაცვის სამინისტრო. 75

გვ.

Packer D. B., Griffin K. and McGlynn K. E. (2005) National Marine Fisheries Service National

Gravel Extraction Guidance. U.S. Dep. Commerce, NOAA Tech. Memo. NMFS-F/SPO-70, 27 p.

Subramanian K. A., Sivaramakrishnan K. G. (2007) Aquatic Insects for Biomonitoring Freshwater Ecosystems – A Methodology Manual, Ashoka Trust for Research in Ecology and Environment (ATREE), 31 p.

Пипоян С. Х. (2010) Особенности Формирования Ихтиофауны Водохранилищ Армнении. Annals of Agrarian Science. Vol. 8 No.4 Pg74-77

Юдкин И. И. (1970) Ихтиология. Пищевая Промышленность, 380 ст. http://www.gurianews.com/_/left_wide/18797_74_ka/mosaxleoba_qviSis_karieris_generlebis

_winaaRmdeg.html (10.09.2015) მეგრელიშვილი ჟ. ”მოსახლეობა ”ქვიშის

კარიერის გენერლების” წინააღმდეგ”, გურია News.

http://www.alion.ge/public/117--.html (10.09.2015) გაზეთი ალიონი. ”ალიონი. მდ.

ნატანებზე ხიდი აღდგება”, ალიონი.

http://www.millenniumassessment.org (18.09.2015) Millennium Ecosystem Assessment.

Page 126: Instruments for Modelling Black Sea River Basins: Research

126

Page 127: Instruments for Modelling Black Sea River Basins: Research

127

Georgia-Turkey Transboundary Stripe Rare and Endangered Plants

Elza Makaradze, Natela Varshanidze Researcher at Batumi Shota Rustaveli State University

Main author: [email protected], +995 593 66 30 30

Abstract In this work there is explained Adjara-Turkey transboundary stripe plants, which are protected in “Georgia Red List” (2006): Buxus colchica; Castanea sativa; Celtis australis; Juglans regia; Laurus nobilis.; Osmanthus decorus; Pterocarya pterocarpa; Quercus hartwissiana; Staphylea colchica; Ulmus glabra, and Georgian” Redbook (1982) are protected 16 species bioecology:

Adianthum capillis veneris, Marsilea quadrifolia, Helleborus caucasicus, Euphorbia paralias, Nymphaea colchica, Ficaria grandiflora Robert (F.popovii A.Khokhr.) Epimedium colchicum, Hippophae rhamnoides, Trapa colchica, Trapa Maleevi, Glaucium flavum, Cyclamen adzharicum, Galanthus rizechensis; G. Woronowii, Leucojum aestivum, Jris lazica. Scientific research species, to identify their endangered category is used IUCN recommendations. Scientific research 26 species are united into 20 families and 18 genera. Rare species are with high numbers in Amarilidaceae 23 species, Fagaceae, Trapaceae 2-2 species, IUCN endangered

CR category has 12 species, EN 8 species, VU 6 species. Introduction Adjara floristical region is known with its geographical location and subtropical climate, and it is main important touristic-recreational region in Caucasus. Adjara is also famous with its plant biodiversity and is one of the best ecoregion in Caucasus, which gives us good opportunities to

develop tourism. In Georgia-Turkey transboundary stripe, there are unique biological diversity and touristic-recreational resources, to protect the nature and develop tourism is one of the main reason. To do this with success, it is necessary to establish modern, effective protected areas system. Nowadays, in Adjara-Turkey transboundary area are protected 10 species of wild arboretrum plants: Buxus colchica; Castanea sativa; Celtis australis; Juglans regia; Laurus nobilis.; Osmanthus decorus; Pterocarya pterocarpa; Quercus hartwissiana; Staphylea colchica; Ulmus glabra. Georgian “Redbook” (1982) are protected 15 species: Adianthum capillis veneris, Marsilea quadrifolia, Helleborus caucasicus, Euphorbia paralias, Nymphaea colchica, Epimedium colchicum, Hippophae rhamnoides, Trapa colchica, Trapa Maleevi, Glaucium flavum, Cyclamen adzharicum, Galanthus rizechensis; G. Woronowii, Leucojum aestivum, Jris lazica. They represent ancient flora of Colchis, some of them are relic and endemic. They grow in humid, warm conditions, and they repeat ancient period’s rhythm, grow in forest or marshland, and they try to avoid sunshine. Among them there are a lot of arborous, medical, scented, feed

or dye plants. Biotope is changed by anthropogenic factor, which cause decrease of population. That’s why it is so important to study their bioecology.

Research methods The research had taken place with traditional expedition. The expedition-excursion method –

collecting plants, and identification was with helping of “Key of Plant Identification of Georgia” and “The flora of Georgia” (Ketskhoveli, Kharadze, Gagnidze). Taxonomy of species is exactly

from modern nomenclature (Gagnidze, 2005). We calculated populations area for giving them a

Page 128: Instruments for Modelling Black Sea River Basins: Research

128

rare status 10x10 km2, endangered categories correlation 1-2 CR Critically; 3-9 EN (Endangered);10-49 VU (Vulnerable.) Results In Adjara-Turkey transboundary zone, there are “Georgia Red List” (2006) and Georgia “Redbook” (1982) protected plants, see their taxonomy, systematic and bioecology in Table 1.

Table 1. Adjara-Turkey transboundary zone rare and endangered species

Species Family IUCN Biotope

Latin name Georgian name 1 2 3 4 5

1. Buxus colchica კოლხური ბზა BUXACEAE CR Subforest

2 Castanea sativa წაბლი FAGACEAE CR Deciduous forest

3. Juglans regia კაკალი, ნიგვზის ხე IUGLANDACEAE VU Deciduous forest

4. Celtis australis; სამხრეთის აკაკი CELTACEAE CR Subforest

5. Laurus nobilis. კეთილშობილი დაფნა LAURACEAE EN Evergreen forest

6. Pterocarya pterocarpa ლაფანი IUGLANDACEAE CR Deciduous forest

7 Osmanthus decorus წყავმაზა OLEACEAE VU Subforest

8 Quercus dshorochensis ჭოროხის მუხა FAGACEAE VU Deciduous forest

9. Staphylea colchica კოლხური ჯონჯოლი STAPHYLEACEAE VU Subforest

10. Ulmus glabra შიშველი თელადუმა ULMACEAE CR Deciduous forest

11. Adianthum capillis veneris ვენერას თმა ADIANTACEAE CR Moist rock

12. Marsilea quadrifolia ოთხფოთოლა მარსილია MARSILEACEAE CR Reeded clubrush lake

13. Helleborus caucasicus კავკასიური ხარისძირა HELLEBORACEAE EN Forest slope

14. Euphorbia paralias ზღვისპირის რძიანა EUPHORBIACEAE CR Seaside sandy

15. Cyclamen adzharicum Pobed აჭარული ყოჩივარდა PRIMULACEAE VU Seafront hill

16. Nymphaea colchica კოლხური დუმფარა NYMPHAEACEAE CR Pool

17. Epimedium colchicum კოლხური ჩიტიწვივა BERBERIDACEAE EN Colchic subforest

18. Hippophae rhamnoides ქაცვი RHAMNACEAE EN Riverside sandy

19. Trapa colchica კოლხური წყლის კაკალი TRAPACEAE CR Pool

20. T. Maleevi მალეევის წყლის კაკალი TRAPACEAE CR Pool

21.Ficaria grandiflora Robert (F.popovii A.Khokhr.)

დიდყვავილა ჩაწყობილა

ბაია

RANUNCULACEAE VU Lowland

22 Glaucium flavum ყვითელი ყაყაჩურა PAPAVERACEAE EN Seafront sandy

23. Galanthus rizechensis Stern რიზეს თეთრყვავილა AMARYLLIDACEAE CR Seafront slope

24. G. Woronowii ვორონოვის თეთრყვავილა AMARYLLIDACEAE EN Seafront slope

25. Leucojum aestivum ცხენისკბილა AMARYLLIDACEAE EN Seafront marshes

26. Jris lazica ჭანური ზამბახი IRIDACEAE EN Dry seafront marshes

As we see from schedule 1, in Adjara-Turkey transboundary zone there are 26 plants species. The lifeform spectrum looks like: 5 species wooden trees, 4 species of bush, 17 species herbaceous are united into 20 families and 18 genera. A high number of the rare species are

Amarilidaceae 23 species, Fagaceae, Trapaceae 2-2 species. Conclusions The 26 plants which are grown in Adjara-Turkey transboundary stripe are divided from lifeform spectrum: 5 species wooden tree, 4 species shrubs, 17 species perennial herbaceous plants are united into 20 families and 18 genera. Rich families with rare species are Amarilidaceae 23

species, Fagaceae, Trapaceae 2-2 species. IUCN endangered CR category have 12 species EN 8

species, VU 6 species.

Page 129: Instruments for Modelling Black Sea River Basins: Research

129

Gratitude We are very thankful to organisers, which worked a lot and gave us the great chance to take part in the workshop. Reference გაგნიძე რ., დავითაძე მ. (2000). ადგილობრივი ფლორა “აჭარა”, ბათუმი, 271 გვ.

დავითაძე მ. (2002.). აჭარის ადვენტური ფლორის ბიომორფოლოგიური ანალიზი,

გამომცემლობა, ”ბათუმის უნივერსიტეტი”, ბათუმი.

კეცხოველი ნ., ხარაძე ა., გაგნიძე რ., ”საქართველოს ფლორა”, ტ.1-13, თბილისი.

საქართველოს მცენარეების სარკვევი, (1964, 1969). მეცნიერება, 1971-2003.

Дмитриева А.А. Определитель растений Аджарии.«Мецниереба», т.1, Тбилиси, 327 ст.,

1990. Manvelidze Z. K., Memiadze N. M., Kharazishvili D. and Varshanidze N., Diversity of floral area

of Adjara (List of wildgrown plants species), Annals of Agrarian Science, 2008, vol. 6, no 2, pp. 93-164.

Page 130: Instruments for Modelling Black Sea River Basins: Research

130

Page 131: Instruments for Modelling Black Sea River Basins: Research

131

აჭარა-თურქეთის ტრანსსასაზღვრო ზოლის იშვიათი და ქრობადი სახეობები

ელზა მაკარაძე, ნათელა ვარშანიძე

ბათუმის შოთა რუსთაველის სახელწიფო უნივერსიტეტის საბუნებისმეტყველო

მეცნიერებათა და ჯანდაცვის ფაკულტეტის დოქტორანტი

ელზა მაკარაძე [email protected] +995 593 66 30 30

რეზიუმე ნაშრომში განხილულია აჭარა-თურქეთის ტრანსსასაზღვრო არეალში

გავრცელებული საქართველოს “წითელი ნუსხით” (2006) დაცული სახეობების Buxus colchica; Castanea sativa; Celtis australis; Juglans regia; Laurus nobilis.; Osmanthus decorus;

Pterocarya pterocarpa; Quercus hartwissiana; Staphylea colchica; Ulmus glabra, და

საქართველოს “წითელი წიგნით“ (1982) დაცული 16 სახეობის: Adianthum capillis veneris, Marsilea quadrifolia, Helleborus caucasicus, Euphorbia paralias, Nymphaea colchica, Ficaria grandiflora Robert (F.popovii A.Khokhr.) Epimedium colchicum, Hippophae rhamnoides, Trapa colchica, Trapa Maleevi, Glaucium flavum, Cyclamen adzharicum, Galanthus rizechensis; G. Woronowii, Leucojum aestivum, Jris lazica, ბიოეკოლოგია, საკვლევი სახეობების

გადაშენების საფრთხის სიდიდის კატეგორიების დასადგენად გამოყენებულია

ბუნების დაცვის საერთაშორისო კავშირის (IUCN) რეკომენდაციები. საკვლევი 26

სახეობა განაწილებულია 20 ოჯახში და 18 გვარში. იშვიათი სახეობებით მდიდარი

ოჯახებია: Amarilidaceae 23 სახეობა, Fagaceae, Trapaceae 2-2 სახეობები. IUCN საფრთხის

CR კატეგორია მინიჭებული აქვს 12 სახეობას EN 8 სახეობას, VU 6 სახეობას.

შესავალი აჭარის ფლორისტული რაიონი თავისი გეოგრაფიული მდებარეობითა და

სუბტროპიკული ჰავით მნიშვნელოვანი ტურისტულ-რეკრეაციული რაიონია მთელ

კავკასიაში, აჭარა ასევე გამოირჩევა მცენარეული საფარის სახეობრივი

მრავალფეროვნებით. იგი ყველაზე მდიდარი ფლორისტული რაიონია მთელს

კავკასიის ეკორეგიონში, რაც კარგ საფუძველს იძლევა ტურიზმის

განვითარებისათვის. საქართველო-თურქეთის ტრანსსასაზღვრო არეში, უნიკალური

ბიოლოგიური მრავალფეროვნებისა და ტურისტულ-რეკრეაციული რესურსების

გათვალისწინებით, ბუნების ტერიტორიული დაცვა და შესაბამისად აქ

გავრცელებული მცენარეთა იშვიათი სახეობების დაცვა ერთ-ერთ უმთავრეს

პრიორიტეტად უნდა ჩაითვალოს. დღეისათვის აჭარა-თურქეთის ტრანსსასაზღვრო

არეალში დაცულია აჭარის ფლორისტულ რაიონში ველურად მოზარდი 10 მერქნიანი

სახეობა: Buxus colchica; Castanea sativa; Celtis australis; Juglans regia; Laurus nobilis.;

Osmanthus decorus; Pterocarya pterocarpa; Quercus hartwissiana; Staphylea colchica; Ulmus glabra. ხოლო საქართველოს “წითელი წიგნით“ (1982) დაცულია 15 სახეობა:

Adianthum capillis veneris, Marsilea quadrifolia, Helleborus caucasicus, Euphorbia paralias, Nymphaea colchica, Epimedium colchicum, Hippophae rhamnoides, Trapa colchica, Trapa Maleevi, Glaucium flavum, Cyclamen adzharicum, Galanthus rizechensis; G. Woronowii, Leucojum aestivum, Jris lazica. ისინი კოლხეთის ფლორის უძველესი წარმომადგენლები

არიან, ზოგიერთი სახეობა რელიქტი და ენდემია. აჭარის ნოტიო, თბილ პირობებში

Page 132: Instruments for Modelling Black Sea River Basins: Research

132

წინა გეოლოგიურ ეპოქაში გამომუშავებულ განვითარების რიტმს იმეორებენ,

ტყეებში ან ჭაობებში იზრდებიან, ხე-მცენარეების კალთებს ეფარებიან და მზის

სხივების პირდაპირ ზემოქმედებას გაურბიან. მათ შორის ბევრი მერქნის მომცემი,

სამკურნალო, არომატული, დეკორატიული, საკვები, ან საღებავი მცენარეებია,

ანთროპოგენური ფაქტორებით ეცვლებათ ბიოტოპი, რაც პოპულაციათა შემცირებას

და გაქრობას გამოიწვევს. ამდენად საჭიროა ამ სახეობათა გამრავლება, კულტურაში

დანერგვა და დაცვა. რისთვისაც მნიშვნელოვანია მათი ბიოეკოლოგიის შესწავლა.

მეთოდოლოგია საველე კვლევები განვახორციელეთ ტრადიციული მარშრუტული, ექსპედიციის

მეთოდით. ჰერბარიუმის შეგროვება და მისი კამერული დამუშავება, რკვევა-

იდენტიფიცირება განვახორციელეთ აჭარის, საქართველოს მცენარეთა სარკვევების

და “საქართველოს ფლორის” დახმარებით (კეცხოველი, ხარაძე, გაგნიძე, 1971-2003;

საქართველოს მცენარეების სარკვევი, 1964, 1969; Дмитриева, 1959, 1990 I, II).

იშვიათობის სტატუსის დადგენის მიზნით გამოვთვალეთ პოპულაციების

გავრცელების სიხშირე – 10x10 კმ2 UTM-ბადის კვადრატების რიცხვის და გადაშენების

საფრთხის კატეგორიების შემდეგი თანაფარდობით: 1-2 – გადაშენების კრიტიკულ

საფრთხეში მყოფი – CR (Critically); 3-9 – გადაშენების საფრთხეში მყოფი – EN

(Endangered); 10-49 – მოწყვლადი – VU (Vulnerable).

შედეგები აჭარა-თურქეთის ტრანსსასაზღვრო ზონაში საქართველოს “წითელი ნუსხით” (2006)

და საქართველოს “წითელი წიგნით“ (1982) დაცული სახეობების ტაქსონომია,

სისტემატიკა და ბიოეკოლოგია მოცემულია ცხრილში 1.

ცხრილი 1. აჭარა-თურქეთის ტრანსსასაზღვრო ზონის იშვიათი და ქრობადი სახეობები

სახეობის დასახელება ოჯახი IUCN ბიოტოპი ლათინური ქართული

1 2 3 4 5

1. Buxus colchica კოლხური ბზა BUXACEAE CR ქვეტყე

2 Castanea sativa წაბლი FAGACEAE CR ფოთლოვანი ტყე

3. Juglans regia კაკალი, ნიგვზის ხე IUGLANDACEAE VU ფოთლოვანი ტყე

4. Celtis australis; სამხრეთის აკაკი CELTACEAE CR ქვეტყე

5. Laurus nobilis. კეთილშობილი დაფნა LAURACEAE EN მარადმწვანე ქვეტყე

6. Pterocarya pterocarpa ლაფანი IUGLANDACEAE CR ფოთლოვანი ტყე

7 Osmanthus decorus წყავმაზა OLEACEAE VU ქვეტყე

8 Quercus dshorochensis ჭოროხის მუხა FAGACEAE VU ფოთლოვანი ტყე

9. Staphylea colchica კოლხური ჯონჯოლი STAPHYLEACEAE VU ქვეტყე

10. Ulmus glabra შიშველი თელადუმა ULMACEAE CR ფოთლოვანი ტყე

11. Adianthum capillis veneris ვენერას თმა ADIANTACEAE CR ტენიანი კლდე

12. Marsilea quadrifolia ოთხფოთოლა მარსილია MARSILEACEAE CR ლელიან-ლაქაშიანი

ტბა

13. Helleborus caucasicus კავკასიური ხარისძირა HELLEBORACEAE EN ტყის ფერდობები

14. Euphorbia paralias ზღვისპირის რძიანა EUPHORBIACEAE CR ზღვისპირა ქვიშნარი

15. Cyclamen adzharicum Pobed აჭარული ყოჩივარდა PRIMULACEAE VU ზღვისპირა გორაკ-

ბორცვები

16. Nymphaea colchica კოლხური დუმფარა NYMPHAEACEAE CR ტბორი

17. Epimedium colchicum კოლხური ჩიტიწვივა BERBERIDACEAE EN კოლხური ქვეტყე

Page 133: Instruments for Modelling Black Sea River Basins: Research

133

18. Hippophae rhamnoides ქაცვი RHAMNACEAE EN მდინარისპირა

ქვიშნარი

19. Trapa colchica, კოლხური წყლის კაკალი TRAPACEAE CR ტბორი

20. T. Maleevi მალეევის წყლის კაკალი TRAPACEAE CR ტბორი

21.Ficaria grandiflora Robert (F.popovii A.Khokhr.)

დიდყვავილა ჩაწყობილა

ბაია

RANUNCULACEAE VU დაბლობები

22 Glaucium flavum ყვითელი ყაყაჩურა PAPAVERACEAE EN ზღვისპირა

ქვიშნარები

23. Galanthus rizechensis Stern რიზეს თეთრყვავილა AMARYLLIDACEAE CR ზღვისპირა

ფერდობები

24. G. Woronowii ვორონოვის

თეთრყვავილა

AMARYLLIDACEAE EN ზღვისპირა

ფერდობები

25. Leucojum aestivum ცხენისკბილა AMARYLLIDACEAE EN ზღვისპირა ჭაობები

26. Jris lazica ჭანური ზამბახი IRIDACEAE EN მშრალი ზღვისპირა

ფერდობები

როგორც 1-ლი ცხრილიდან ჩანს აჭარა თურქეთის ტრანსსასაზღვრო ზონაში

გავრცელებულია 26 სახეობის მცენარე, სასიცოცხლო ფორმების მიხედვით 5 სახეობა

ხე-მცენარეა, 4 სახეობა ხე ან დაბალი ბუჩქია, 17 სახეობა მრავალწლოვანი ბალახოვანი

მცენარეა. 20 ოჯახში და 18 გვარში. იშვიათი სახეობებით მდიდარი ოჯახებია:

Amarilidaceae 23 სახეობა, Fagaceae, Trapaceae 2-2 სახეობები.

დასკვნები აჭარა თურქეთის ტრანსსასაზღვრო ზონაში გავრცელებულია 26 სახეობის მცენარე,

სასიცოცხლო ფორმების მიხედვით 5 სახეობა ხე-მცენარეა, 4 სახეობა ხე ან დაბალი

ბუჩქია, 17 სახეობა მრავალწლოვანი ბალახოვანი მცენარეა. 20 ოჯახში და 18 გვარში.

იშვიათი სახეობებით მდიდარი ოჯახებია: Amarilidaceae 23 სახეობა, Fagaceae,

Trapaceae 2-2 სახეობები. IUCN საფრთხის CR კატეგორია მინიჭებული აქვს 12 სახეობას,

EN 8 სახეობა, VU 6 სახეობა.

მადლიერება ღრმა მადლიერებას გამოვხატავთ ორგანიზატორების მიმართ გაწეული შრომისთვის,

თანადგომისათვის, კონფერენციის ორგანიზებისათვის.

ლიტერატურა გაგნიძე რ., დავითაძე მ. (2000). ადგილობრივი ფლორა “აჭარა”, ბათუმი, 271 გვ.

დავითაძე მ. (2002.). აჭარის ადვენტური ფლორის ბიომორფოლოგიური ანალიზი,

გამომცემლობა, ”ბათუმის უნივერსიტეტი”, ბათუმი.

კეცხოველი ნ., ხარაძე ა., გაგნიძე რ., ”საქართველოს ფლორა”, ტ. 1-13, თბილისი.

საქართველოს მცენარეების სარკვევი, (1964, 1969). მეცნიერება, 1971-2003.

Дмитриева А. А. Определитель растений Аджарии. «Мецниереба», т.1, Тбилиси, 327 ст., 1990.

Manvelidze Z. K., Memiadze N. M., Kharazishvili D. and Varshanidze N., Diversity of floral area of Adjara (List of wildgrown plants species), Annals of Agrarian Science, 2008, vol. 6, no 2, pp. 93-164.

Page 134: Instruments for Modelling Black Sea River Basins: Research

134

Page 135: Instruments for Modelling Black Sea River Basins: Research

135

Use of Black Sea Coast Medical Flora against Some Chronic Diseases

Kristine Makharadze Biology Student

Faculty of Natural Sciences and Health Batumi Shota Rustaveli State University Main author: [email protected]

The nature has a huge source of material wealth. In case to survive, human use everything from the nature. The nature is polluted and there are ecological problems, obviously human organism has toxins from environment, which have a huge affects to their health. That’s why it is very important to clean organism and for this are good medical plants and the tincture which they make. The tincture is well-known from the past and is recommended from national medicine as a treatment for different kind of diseases. Especially it is important to use medical plants as the treatment for chronic diseases. The aim of my topic is exactly medical plants which are used against to chronic diseases and which have area near the Black Sea, we want to study bioecology and their place in medicine. It is very important to study that many people do not know medical plants great value, the methods how to prepare and use the tincture. Adjara

is very important floristic region. Now I want to discuss some species such as: dandelion, cress, camomile, colchic plush, wasp, horsetail and so on. The subject of study were plants which are spread near the Black Sea, and which are possible to use for the treatment for chronic diseases such as chronic colitis, cholangitis, diarrhea, eczema, ulcers, gastritis, constipation and so on.

შავი ზღვის სანაპიროს ფლორის სამკურნალო მცენარეები ზოგიერთი ქრონიკული დაავადებების წინააღმდეგ

ქრისტინე მახარაძე

ბიოლოგიის სტუდენტი

საბუნებისმეტყველო მეცნიერებათა და ჯანდაცვის ფაკულტეტი

ბათუმის შოთა რუსთაველის სახელმწიფო უნივერსიტეტი

ელექტრონული ფოსტა: [email protected]

ბუნებას უდიდესი ღირებულება აქვს, როგორც მატერიალური დოვლათის

პირველწყაროს. საარსებოდ ადამიანი ბუნებიდან იღებს ყველაფერს. გარემოს

დაბინძურებისა და გართულებული ეკოლოგიური პირობების გამო, ბუნებრივია,

ადამიანის ორგანიზმში ბიოსფეროს ზემოქმედებით გარკვეული რაოდენობით

ხვდება ტოქსიკური ნივთიერებები, რაც უარყოფით გავლენას ახდენს

ჯანმრთელობაზე. ამიტომ დიდი მნიშვნელობა ენიჭება ორგანიზმის გაწმენდას,

ამისთვის ყველაზე კარგია სამკურნალო მცენარეების და მათგან მიღებული ნაყენების

გამოყენება, რაც ცნობილია უძველესი დროიდან და რეკომენდებულია ხალხურ

მედიცინაში სხვადასხვა დაავადებების სამკურნალოდ და პროფილაქტიკისთვის.

განსაკუთრებით მნიშვნელოვანია მცენარეების გამოყენება ქრონიკული

დაავადებების სამკურნალოდ. ჩვენი ნაშრომის მიზანია სწორედ ქრონიკული

დაავადებების წინააღმდეგ გამოყენებული შავი ზღვის სანაპიროზე გავრცელებული

Page 136: Instruments for Modelling Black Sea River Basins: Research

136

სამკურნალო მცენარეების ბიოეკოლოგიის განხილვა და მედიცინაში მათი

გამოყენების მეთოდების გაცნობა. გასათვალისწინებელია ის ფაქტიც, რომ

მომხმარებელთა უმრავლესობა ჯერ კიდევ არ არის გაცნობიერებული სამკურნალო

მცენარეების თვისებების, მათი მომზადების და მოხმარების სწორი მეთოდების

შესახებ. აჭარის სანაპირო ზოლი გამოირჩევა ფლორისტული მრავალფეროვნებით.

ამჯერად მხოლოდ ზოგიერთ მათგანზე გავამახვილებთ ყურადღებას. ესენია:

ბაბუაწვერა, ბოსტნის წალიკა, გვირილა, კოლხური სურო, კრაზანა, ოშოშა,

ქრისტესისხლა, შვიტა, ჩვეულებრივი ასისთავა, წითელი სამყურა და ხარისშუბლა.

კვლევის ობიექტს წარმოადგენდა შავი ზღვის სანაპიროზე გავრცელებულ

მცენარეები, რომელთა გამოყენება შესაძლებელია ზოგიერთი ქრონიკული

დაავადების სამკურნალოდ, კერძოდ:

– მწვავე და ქრონიკული კოლიტი,

– ნაღვლისა და სანაღვლე გზების ქრონიკული დაავადებები,

– კუჭნაწლავის ქრონიკული აშლილობა (დიარეა),

– ქრონიკული ეგზემის, წყლულების, გასტრიტის დროს,

– ქრონიკული შეკრულობის,

– ქრონიკული რევმატული ანთებების,

– ქრონიკული ბრონქიტის

მცენარეთა როლი ბუნებასა და ადამიანის ცხოვრებაში განუსაზღვრელია კიდევ

ერთხელ დავრწმუნდებით. ამიტომ აუცილებელია სამკურნალო მცენარეების

სასარგებლო თვისებებისა და მათი გამოყენების სწორი მეთოდების ცოდნა.

Page 137: Instruments for Modelling Black Sea River Basins: Research

137

Ecologically and Economically Feasible Project of Global Importance: Sphagum as a Renewable Resource – Establishing a Sphagnum Farm

Manuchar Mamuladze ([email protected]), Merab Tsinaridze, Natela Tetemadze, Alexandre

Tsertsvadze, Nino Jijavadze, Ketevan Memarne, Izolda Matchutadze Batumi Shota Rustaveli State University

Abstract Sphagnum peat is irreplaceable growing habitat for cultivating orchids and green salads and demand for it in the Europe is very high. Due to warm, mild, ideally humid climate of Kolkheti refugium, sphagnum here is characterised with highest rate growth of 32 cm per annum! This

rate is the highest globally. Scientific research carried out in Kobuleti and Grigoleti demonstrate that Kolkheti can indeed host the ecologically and economically feasible project of global importance: Sphagnum as a Renewable Resource – Establishing a Sphagnum Farm. Such a project is promising economic development prospects to the region.

ეკოლოგიურად და ეკონომიკურად მომგებიანი პროექტის, მსოფლიო ფენომენის: „სფაგნუმი, როგორც განახლებადი რესურსი – სფაგნუმის პლანტაციის შექმნა“

მანუჩარ მამულაძე ([email protected]), მერაბ ცინარიძე, ნათელა ტეტემაძე,

ალექსანდრე ცერცვაძე, ნინო ჯიჯავაძე, ქეთევან მემარნე, იზოლდა მაჭუტაძე

ბათუმის შოთა რუსთაველის სახელმწიფო უნივერსიტეტი

რეზიუმე სფაგნუმის ტორფი შეუცვლელ ჰაბიტატს წარმოადგენს ჯადვარებისა და მწვანე

სალათის კულტივირებისათვის და მასზე ევროპაში ძალიან მაღალი მოთხოვნაა.

კოლხეთის რეფუგიუმის თბილი, რბილი, იდეალური ნოტიო კლიმატიდან

გამომდინარე სფაგნუმის სახეობები ზრდის ყველაზე მაღალი ტემპით ხასიათდებიან

ჩვენში, 32 სმ წელიწადში! ეს ყველაზე მაღალი მაჩვენებელია სფაგნუმის ზრდისა

მსოფლიოში. ქობულეთსა და გრიგოლეთში ჩატარებული მეცნიერული კვლევები

საფუძველს იძლევა რომ კოლხეთი გახდეს მსოფლიო ფენომენის – ეკოლოგიურად და

ეკონომიკურად მომგებიანი პროექტის „სფაგნუმის მოშენებისა და მისი პლანტაციის

შექმნისათვის”, რაც შესაბამისად რეგიონს დიდ მოგებას მოუტანს.

შესავალი კოლხეთის დაბლობის პერკოლაციური ტიპის ტორფნარებიდან (ისპანი 2 და იმნათი)

სტრატიგრაფიული ჭრილებიდან აღებული 14C რადიონუკლეიდური დათარიღებით

ირკვევა, რომ 4 მ სისქის სფაგნუმის ტორფის ჩამოყალიბებას 1000 წელიწადი

დასჭირდა, ე. ი. წელიწადში ხდება 4 მმ ტორფის აკუმულაცია. იმნათში კი ტორფის

ზედა 6 მ სისქის ფენის (სფაგნუმისა და სფაგნუმიან შერეული ტორფისა) ანალიზით

კი წელიწადში 3 მმ, ანაკლიასა და ნაბადაში წელიწადში 1.2 მმ (Nejschtadt 1965). ეს

მაჩვენებლები მაღალია ბორეალური და ზომიერი სარტყლის ტორფნარებთან

შედარებით. მაშასადამე, მსოფლიოში კოლხეთის ტორფნარები ყველაზე მაღალი

Page 138: Instruments for Modelling Black Sea River Basins: Research

138

აკუმულაციის უნარით ხასიათდებიან. ასევე მაღალია ზრდის ტემპი სფაგნუმის

სახეობებისა კოლხეთში.

კვლევის მეთოდი ბუნებრივი ზრდის რიტმის განსაზღვრისათვის ოქტომბერში მოინიშნა ,,ისპანი 2“ - ის

ტორფნარზე გავრცელებული სფაგნუმის ოთხივე სახეობა: Sphagnum imbricatum, Sphagnum papilosum, Sphagnum rubellum, Sphagnum palustre. ყოველთვიურად

წარმოებდა გაზომვები. რეგენერაციის უნარის განსაზღვრისათვის რეგენერაციის

ფართობებზე წლის დასაწყისში მოიჭრა სფაგნუმი და მოინიშნა პოლიეთილენის

ხამუთით. გაზომვები აქაც ყოველთვიურად ხდებოდა. აღდგენის უნარის განსაზღვრისათვის მოეწყო მოშენების ფართობი. მოშენებისათვის

გამოიყენებოდა ორი სახეობის სფაგნუმი: Sphagnum palustre და Sphagnum papillosum.

სურ. 1. Sphagnum imbricatum & Sphagnum papillossu სურ. 2. ხამუთით მონიშნული სფაგნუმი

შედეგები პროექტის ეკოლოგიური ღირებულება კოლხეთის დაბლობზე, წლების წინ მელიორაციული პროცესებისა და ტორფის

მოპოვების გამო დაირღვა კოლხეთის ტორფნარებისათვის დამახასიათებელი,

განსაკუთრებული ჰიდროლოგიური რეჟიმი, დაირღვა სფაგნუმიანი ტორფნარის

წყალშემაკავებელი ფუნქცია. ეს ადგილები სასოფლო-სამეურნეო დანიშნულების

მიზნით არასოდეს გამოუყენებიათ. დეგრადირებული ტორფნარები გაყვანილი

სადრენაჟე არხების გამო თავად იქცნენ დაჭუჭყიანების წყაროდ, გაიზარდა

ნახშირორჟანგის ემისია ატმოსფეროში. დრენირებულ და ტორფნარი ტყის გაჩეხვის

შედეგად ჩამოყალიბდა მეორადი მდელოები, სადაც ინვაზიური სახეობები

მომრავლდა. ჩამოყალიბდა დაბალი ხარისხის საძოვრები. სადრენაჟედ გაყვანილმა

არხებმა გამოიწვია ის, რომ დაირღვა ეკოსისტემის შემქმნელი სახეობის სფაგნუმის

დამახასიათებელი უნიკალური თვისება წყლის შეწოვისა. ძლიერი კოკისპირული

წვიმებისას იტბორება მიმდებარე ტერიტორიები და თვით ქობულეთიც. წარსულმა

გეოლოგიური ეპოქამ, მას შემდეგ, რაც ახალშავზღვური ტერასა ჩამოყალიბდა,

ისპანის ტორფნარები და საერთოდ კოლხეთის ყველა ტორფნარი ზღვის დონეზე

დაბლაა. ტორფის სტრატიგრაფიულმა ჭრილებმა გვიჩვენა, რომ ზოგიერთი უბნები

ზღვის დონე 1.7 მეტრით დაბლა მდებარეობენ. სწორედ ამიტომაა, რომ სასოფლო-

Page 139: Instruments for Modelling Black Sea River Basins: Research

139

სამეურნეო დანიშნულების მიზნით გამოუსადეგარი გახდა დრენირებული

ტორფნარები, ვინაიდან ხშირად იტბორებოდა. თანაც კოლხეთის ტორფნარები

სფაგნუმიანია, სრულიად გაუხრწნელია და გამოუსადეგარია როგორც სასუქი.

2x2S.pap

2X2S. pal

1X1 S. pal

1x1 S.pap

40 სმ 30 სმ30 სმ

3 მ

k2

სურ. 3. რეგენერაციის ფართობი სურ. 4. სფაგნუმის მოშენების ფართობი

ტორფნარები ნახშირდაბის საბადოა და ერთგვარ გამაგრილებელ მოწყობილობებს

წარმოადგენენ დედამიწაზე. უდიდესია მათი წვლილი ლოკალური, რეგიონული და

გლობალური კლიმატის რეგულაციაში. „ტორფი, ტორფნარი და კლომატი“ ასეთი

სახით შევიდა ის 2012 წელს კლიმატის ცვლილების ჩარჩო კონვენციაში და არა

როგორც “ტორფი, როგორც სასუქი“.

ერთ დროს საუკუნის წინ დრენირებული და ამ პროექტის ფარგლებში აღდგენილი

ტორფნარი ადგილები სფაგნუმის თვისებიდან გამომდინარე, რომ მას მის წონასთან

შედარებით 25 ჯერ მეტი წყლის შეწოვის უნარი გააჩნია, კიდევ უფრო დაიცავს

მიმდებარე ტერიტორიებს დატბორვისაგან.

პროექტის სოციალ-ეკონომიკური ღირებულება სფაგნუმის პლანტაციის შექმნით დასაქმდება ადგილობრივი მოსახლეობა, იქნება

შემოსავალი, რაც ეკონომიკურ სარგებელს მოუტანს რეგიონს. განვითარდება

მეყვავილეობის ისეთი დარგები, როგორიცაა ერთწლიანი ყვავილოვნები ქალაქების

გამწვანებისათვის.

ცოცხალი სფაგნუმი – ტორფის ხავსი იგივე თვისებებით გამოირჩევა როგორც თვით

ტორფი და წარმოადგენს უალტერნატივო სუბსტრატს ორქიდეებისათვის.

გამომდინარე იქედან, რომ მთელს ევროპაში ამოწურულია ტორფის მარაგი და

ტორფი აღდგენას არ ექვემდებარება, ტორფზე მოთხოვნა გაზრდილია. სფაგნუმის

მოსავლის აღების შემდეგ დაფასოებული სახით გაიყიდება ევროპაში.

Page 140: Instruments for Modelling Black Sea River Basins: Research

140

პროექტის მეცნიერული ღირებულება შეიქმნება კიდევ ერთი წყარო მნიშვნელოვანი მეცნიერული კვლევების (სამაგისტრო,

საბაკალავრო და სადოქტორო) ჩატარებისათვის.

პროექტის სამკურნალო ღირებულება ანტისეპტიკური, ანთების საწინააღმდეგო. მნიშვნელოვანია სამკურნალო ტალახი

ტორფიანი პელოიდები, რომელსაც სამკურნალო (ანტისეპტიკური), ფარმაცევტული

ღირებულების.

პროექტის კონსერვაციული ღირებულება ამ ღონისძიებით კიდევ უფრო მკაცრად იქნება დაცული მსოფლიოში უნიკალური

ისპანის ტორფნარები, ქობულეთის დაცული ტერიტორიები. აღდგენილი

სფაგნუმიანი ტორფნარი ჰაბიტატი შეასრულებს ბუფერულ როლს დაცული

ტერიტორიებისათვის

პროექტის ღირებულება როგორც დეგრადირებული ჰაბიტატების აღდგენისა და კლიმატის ცვლილების შემარბილებელი მიზნით საფუძველი ჩაეყრება ჰაბიტატების აღდგენის პროექტებს, რომელშიც თვით

მოსახლეობა ჩაერთვება. ტორფნარები, გამომდინარე იქედან, რომ მათში

ნახშირბადის დიდი რაოდენობაა და გამაგრილებელ მოწყობილობებს წარმოადგენს,

დიდ როლს თამაშობენ გლობალური, რეგიონული და ლოკალური კლიმატის

რეგულაციაში. ხელი შეეწყობა კლიმატის რეგულაციას, ვინაიდან დარღვეული

ტორფნარი სათბური გაზების ემისიის წყაროს წარმოადგენს.

ლიტერატურა საქართველოს მეცნიერებათა აკადემია, ბათუმის ბოტანიკური ბაღი. ბათუმი 2003 წ. ი.

მაჭუტაძე – ჭოროხის დელტის ძირითადი ფიტოცენოზები. 158 გვ.

მაჭუტაძე ი. – “კოლხეთის ტორფნარები”. 2002 წ.

მაჭუტაძე ი. – კოლხეთის დაბლობის ცოცხალი სფაგნუმიანი ტორფნარის

მცენარეული საფარი. ბათუმი 2008 წ. გვ 32.

მურმან დავითაძე – აჭარის ადვენტური ფლორის ბიომორფოლოგიური ანალიზი.

ბათუმი – 2002. გვ. 214.

დავითაძე მ. – ყვავილი თოვლში “გამომცემლობა აჭარა”. ბათუმი 2003 წ. გვ. 235.

გაგნიძე რ., დავითაძე მ. – ადგილობრივი ფლორა. “ გამომცემლობა აჭარა” ბათუმი

2000 წ. გვ. 274.

რევაზ გაგნიძე – მცენარეთა გეოგრაფია, თბილისი 1996. (203 გვ).

რევაზ გაგნიძე, 2005., საქართველოს ფლორის კონსპექტი ნომენკლატურული ნუსხა,

თბილისი., 247 გვ.

Mamuladze, M. Tsinaridze, 2009, IMCG in Georgia, IMCG Newsletter, N 47, pp. 12-14. http://www.imcg.net.

მამულაძე მ., 2011, აჭარა, მდგრადი განვითარება, „სფაგნუმი, როგორც განახლებადი

რესურსი“, რუსთაველის უნივერსიტეტის სტუდენტური კონფერენცია, გვ.

57–60.

Page 141: Instruments for Modelling Black Sea River Basins: Research

141

Kaffke, A., Couwenberg, J., Joosten, H., Matchutadze, I. & Schulz, J. 2000. Ispani II: the world’s first percolation bog. In: Quèbec 2000 Millennium Wetland Event, Program with Abstracts, p. 487.

Matchutadze I., Kaffke A., 2002, Calluna vulgaris (Linnaeus) Hull, the first record for Georgia.

Kaffke A., Matchutadze I., Couvenberg J., Joosten H. 2002., Early 20th century Russian peat

scientists as possible vectors for the establishment of Calluna vulgaris in Georgian

sphagnum bogs, Souseura-Finnish peatland Society, Helsinki pp. 61-66.

Goradze R., Matchutadze I., Goradze I., 2002, Georgia, Directory of Azov-Black Sea Coastal

Wetlands, Wetlands International. Kyiv. pp. 46-75.

Matchutadze I., Skhiladze N., 2003., Mires of Kolkheti lowland, International conference of wetlands conservation, Biodiversity and Wise Use, Armenia, Sevan

Joosten H., Kaffke A., Matchutadze I., 2003, Kolkheti wetlands ecosystem IMCG Newsletter, pp. 19-23.

Page 142: Instruments for Modelling Black Sea River Basins: Research

142

Page 143: Instruments for Modelling Black Sea River Basins: Research

143

Medicinal Plants of Adjaristskali Valley

Nino Manvelidze, Natella Varshanidze, Nazi Turmanidze Batumi Shota Rustaveli State University, Faculty of Natural Sciences and Health

Main author: Nino Manvelidze [email protected], +995 514 34 00 04

Summary The paper deals with spread of medical plant diversity, systematic structure, and medicine for use in the river. Adjaristskali valley. An estimated, 142 species of medicinal plants are

widespread in the river Adjaristskali in different biotopes (ვარშანიძე 2011, 2013, 2014), (Varshanidze 2011, 2013, 2014), they are distributed in 56 families and 112 genus. Medicinal

species occur in the families: Asteraceae — 14 species, Lamiaceae — 14, Rosaceae — 12, Hypericaeae — 6, Polypodiaceae — 6, Scrophulariaceae — 3, Fabaceae — 4, Fagaceae — 4, Solanaceae — 4. Polygonaceae — 4. Introduction Today, the medical practice has been successfully used for preparations made from medicinal

plants, their advantage over synthetic drugs reflected in the fact that they do not cause side effects, allergies, chronic toxicity, and do not demonstrate any teratogenic, mutagenic effect, which is typical of synthetic drugs. Today, a third of the medicines are produced from medicinal plants. Therefore, the study of medicinal plants in modern biology is one of the urgent problems. Methodology Field studies carried out the traditional route, the expedition method. Medicinal Plant Research conducted the poll of local residents. Herbarium collection and the processing, treatment,

implemented in Adjara, with the help of Georgia plant identification guides, and the "Flora"

(კეცხოველი, ხარაძე, გაგნიძე, 1971-2003; საქართველოს მცენარეების სარკვევი, 1964,

1969; Дмитриева, 1990 I, II). (Ketskhoveli., Kharadze., Gagnidze, 1971-2003; of plant identification guides, Guidebooks of Georgian Plants 1964, 1969; Дмитриева, 1990 I, II).

Results Our studies of the river. Adjaristskali valley 142 species of medicinal plants are widespread in various biotopes. They are distributed in 56 families and 112 genus. Most numerous families are as follows: Asteraceae — 14 species, Lamiaceae — 14, Rosaceae — 12, Hypericaeae — 6, Polypodiaceae — 6, Scrophulariaceae — 4, Fabaceae — 4, Fagaceae — 4, Solanaceae — 4. Polygonaceae — 4. Here Acharistskali valley medicinal plant systematic structure, according to

the tax as Cherepanov (Czerepanov, 1995).

PTERIDOPHYTA Equisetaceae: Equisetum arvense L., E. majus Gars. Hypolepidaceae: Pteridium aquilinum (L.) Kuhn. Polypodiaceae: Asplenium trichomonas L. Asplenium septentrionale (L.) Hof.,

Dryopteris filix-mas (L.) Schott, D. austriaca (Jacq.) Woynar, D. oreades

Fomin. Polypodium vulgare L. Pteridaceae: Pteris cretica L.

Page 144: Instruments for Modelling Black Sea River Basins: Research

144

GYMNOSPERMAE Pinaceae: Abies nordmanniana (Stev.) Spach, Picea orientalis (L.) Link., Pinus kochiana Klotzsch ex C. Koch

ANGIOSPERMAE Dicotyledonae Apiaceae: Carum cavri L., Cervaria caucasica (Bieb.) M. Pimen. Sanicula europaea L., Apocynaceae: Vinca minor L. Araliaceae: Hedera colchica (C. Koch.) C.

Koch., H. helix L. Asclepiadaceae: Periploca graeca L. Asteraceae: Achillea millefolium L., Arctium lappa L., Artemisia vulgaris L., A. absinthium L., Bidens tripartita L., Cichorium intybus L., Cicerbita pontica

(Boiss.) Grossh., D Dichrocephala bicolor (Roth) Schlecht., Matricaria chamomilla L., Pyrethrum parthenifolium Willd., Pyrethrum roseum (Adam) Bieb. Solidago virgaurea L., Taraxacum officinale Wigg., Tussilago farfara L. Berberidaceae: Berberis vulgaris L.

Betulaceae: Alnus barbata C.A.Mey. Buxaceae: Buxus colchica Pojark. Cannabaceae: Humulus lupulus L. Caryophyllaceae: Herniaria glabra L., Saponaria officinalis L. Corylaceae: Corylus avellana L. Crassulaceae:Hylotelephium caucasicum

(Grossh.) H. Ohba, S. stoloniferum S. G. Gmel. Cruciferae: Capsella bursa-pastoris (L.) Medik. Ebenaceae: Diospyros lotus L. Ericaceae: Rhododendron ponticum L., Vaccinium arctostaphylos L.

Fabaceae: Galega officinalis L., Melilotus officinalis (L.) Pall., Ononis arvensis L.,Trifolium pratense L. Fagaceae: Castanea sativa Mill. Fagus orientalis Lipsky., Quercus dshorochensis C. Koch., Q. hartwissiana Stev.

Gentianaceae: Centaurium erythraea Rafn., Gentiana cruciata L.

Hypericaeae: Hypericum androsaemum L., H. grossheimii Kem.-Nat., H.orientale., H.perforatum L., H.polygonifolium Rupr., H. xylosteifolium (Spach) N. Robson. Juglandaceae: Juglans regia L.

Lamiaceae: Calamintha grandiflora (L). Moench., C.nepeta (L.) Savi, C. Officinalis Moench., Clinopodium umbrosum (Bieb.) C. Koch., C. Vulgare L., Glechoma hederacea L., Lamium album L., Leonurus quinquelobatus Gilib., Melissa officinalis L.,

Mentha longifolia (L.) Huds., Mentha pulegium L. Origanum vulgare L., Stachys officinalis (L.) Trevis. Trachistemon orientalis (L.) G. Don fil. Lauraceae: Laurus nobilis L. Malvaceae: Althaea officinalis L., Malva sylvestris L.

Oleaceae: Fraxinus excelsior L Papaveraceae: Chelidonium majus L., Glaucium flavum Grantz Plantaginaceae: Plantago lanceolata L., P. major L. Polygonaceae: Poligonum aviculare L.,

Persicaria hydropiper (L.) Spach, P. maculata (Rafin.) A.&D. Love, Rumex crispus L. Primulaceae: Cyclamen adzharicum Pobed., Lysimachia verticillaris Spreng. Primula sibthorpii Hoffmgg. Punicaceae: Punica granatum L.

Ranunculaceae: Helleborus caucasicus A. Br., Clematis vitalba L. Rhamnaceae: Frangula alnus Mill., Rhamnus microcarpa Boiss. Rosaceae:Cydonia oblonga Mill., Geum urbanum L., Fragaria vesca L., Laurocerasus officinalis M. Roem., Malus orientalis Uglitzk., Potentilla erecta (L.) Raeusch., Poterium polyganum W. Et K.Rosa canina L., R. Pomifera Herrm. Rubus caesius L., R. buschii Grossh. ex Sinjkova, Sorbus boissieri Schneid. Rubiaceae:Asperula odorata L. Salicaceae: Salix alba L., S. caprea L.

Page 145: Instruments for Modelling Black Sea River Basins: Research

145

Sambucaceae: Sambucus ebulus L., S. nigra L. Scrophulariaceae:Digitalis ferruginea L., D. purpurea L., Verbascum thapsus L., Veronica officinalis L.

Solanaceae: Datura stramonium L., Hyoscyamus niger L., Solanum nigrum L. Tiliaceae: Tilia begoniifolia Stev. Urticaceae: Urtica dioica L. Viburnaceae: Viburnum opulus L. Violaceae: Viola arvensis Murr.

Viscaceae: Viscum album L. Vitaceae: Vitis vinifera L.

Zygophyllaceae. Tribulus terrestris L. MONOCOTYLEDONAE Alliaceae: Allium ursnum L. Ruscus ponticus Woronow., Ruscus colchicus P. F.

Yeo. Amaryllidaceae: Galanthus woronowii Losinsk., Leucojum aestivum L. Asparagaceae: Asparagus litoralis Stev. Convallariaceae:Convallaria majalis L., Cyperaceae: Cyperus badius Desf. Juncaceae: Juncus bufonius L. Poaceace: Elytrigia repens (L.) Nevski

Conclusions Our study has identified: 1. In the various biotopes of river Adjaristskali spread 142 species of medicinal plants;

2. They are distributed in 56 families and 112 genus; 3. Most numerous families are as follows: Asteraceae — 14 species, Lamiaceae — 14, Rosaceae — 12, Hypericaeae — 6, Polypodiaceae — 6, Scrophulariaceae — 4, Fabaceae — 4, Fagaceae—4, Solanaceae — 4. Polygonaceae — 4. References Varshanidze N. Turmanidze N. (2011). Taxonomic diversity of Adjarian medicinal plants.

International Conference on Biodiversity Conservation in Georgia, Tbilisi. 110-114 pp. Varshanidze N. (2013). Medicinal plant species diversity in Adjara. Varshanidze N. Asanidze N. Turmanidze N. (2014) Medicinal plant species diversity in Adjara

and bio-ecology. (Monograph.). Tbilisi. “Universal” 268 pp. Ketskhoveli N., Kharadze A., Gagnidze R. (1971-2003). Flora of Georgia, 1-13, Tbilisi, Science. The plant identification guides of Georgia (1964) V. 1 Tbilisi. Science. 458 pp. The plant identification guides of Georgia (1969) V 1. Tbilisi. Science. 440 pp.

Дмитриева А.А. Определитель растений Аджарии. Тбилиси, „Мецниереба”, т. I, 1990. 327 стр.

Дмитриева А.А. Определитель растений Аджарии. Тбилиси, „Мецниереба”, т. I, 1990.; т. II, 1990. 278 стр.

Czerepanov S. (1995). Vascular plants of Russia and Adjacent states (the former USSR). Cambridge University press, 516 pp.

Page 146: Instruments for Modelling Black Sea River Basins: Research

146

Page 147: Instruments for Modelling Black Sea River Basins: Research

147

აჭარისწყლის ხეობის სამკურნალო მცენარეები

ნინო მანველიძე, ნათელა ვარშანიძე, ნაზი თურმანიძე

ბათუმის შოთა რუსთაველის სახელწიფო უნივერსიტეტი

საბუნებისმეტყველო მეცნიერებათა და ჯანდაცვის ფაკულტეტი

მთავარი ავტორი: [email protected], +995 514 34 00 04

რეზიუმე ნაშრომში განხილულია მდ. აჭარისწყლის ხეობაში გავრცელებული სამკურნალო

მცენარეების მრავალფეროვნება, სისტემატიკური სტრუქტურა, და მედიცინაში

გამოყენების თავისებურებანი. დადგენილია, მდ. აჭარისწყლის სხვადასხვა ბიოტოპში

გავრცელებულია 142 სახეობის სამკურნალო მცენარე (ვარშანიძე 2011, 2013, 2014), ისინი განაწილებულია 56 ოჯახში და 112 გვარში. სამკურნალო სახეობათა

სიმრავლით გამოირჩევა ოჯახები: Asteraceae — 14 სახეობა, Lamiaceae — 14, Rosaceae — 12, Hypericaeae — 6, Polypodiaceae — 6, Scrophulariaceae — 3, Fabaceae — 4, Fagaceae — 4, Solanaceae — 4. Polygonaceae — 4.

შესავალი სადღეისოდ სამედიცინო პრაქტიკაში წარმატებით გამოიყენებიან სამკურნალო

მცენარეებისაგან დამზადებული პრეპარატები, მათი უპირატესობა სინთეზურ

პრეპარატებთან შედარებით გამოიხატება იმაში, რომ ისინი არ იწვევენ გვერდით

მოქმედებებს, ალერგიებს, ქრონიკულ ტოქსიკოზებს და არ ავლენენ ტერატოგენულ,

მუტაგენურ და კანცეროგენულ მოქმედებას, რაც დამახასიათებელია სინთეზური

პრეპარატებისათვის. დღეს არსებულ სამკურნალო პრეპარატთა მესამედი

მცენარეებისაგან მზადდება. ამიტომ სამკურნალო მცენარეების შესწავლა

თანამედროვე ბიოლოგიის ერთ–ერთი აქტუალური პრობლემაა.

მეთოდოლოგია საველე კვლევები განვახორციელეთ ტრადიციული მარშრუტული, ექსპედიციის

მეთოდით. სამკურნალო მცენარეთა შესწავლა ვაწარმოეთ ადგილობრივი

მოსახლეობის გამოკითხვით. ჰერბარიუმის შეგროვება და მისი კამერული

დამუშავება, რკვევა-იდენტიფიცირება განვახორციელეთ აჭარის, საქართველოს

მცენარეთა სარკვევების და “საქართველოს ფლორის” დახმარებით (კეცხოველი.,

ხარაძე., გაგნიძე, 1971-2003; საქართველოს მცენარეების სარკვევი, 1964, 1969;

Дмитриева, 1990 I, II).

შედეგები ჩვენი გამოკვლევებით აჭარისწყლის ხეობის სხვადასხვა ბიოტოპში გავრცელებულია

142 სახეობის სამკურნალო მცენარე. ისინი განაწილებულია 56 ოჯახში და 112 გვარში.

ყველაზე მრავალრიცხოვნად წარმოდგენილია შემდეგი ოჯახები : Asteraceae — 14 სახეობა, Lamiaceae — 14, Rosaceae — 12, Hypericaeae — 6, Polypodiaceae — 6, Scrophulariaceae — 4, Fabaceae — 4, Fagaceae — 4, Solanaceae — 4. Polygonaceae — 4.

მოგვყავს აჭარისწყლის ხეობის სამკურნალო მცენარეთა სისტემატიკური

სტრუქტურა, ტაქსონები მოცემულია ჩერეპანოვის (Czerepanov 1995) მიხედვით.

Page 148: Instruments for Modelling Black Sea River Basins: Research

148

PTERIDOPHYTA Equisetaceae: Equisetum arvense L., E. majus Gars. Hypolepidaceae: Pteridium aquilinum (L.) Kuhn. Polypodiaceae: Asplenium trichomonas L. Asplenium septentrionale (L.) Hof., Dryopteris filix-mas (L.) Schott, D. austriaca (Jacq.) Woynar, D. oreades Fomin. Polypodium vulgare L. Pteridaceae: Pteris cretica L.

GYMNOSPERMAE Pinaceae: Abies nordmanniana (Stev.) Spach, Picea orientalis (L.) Link., Pinus kochiana Klotzsch ex C. Koch

ANGIOSPERMAE Dicotyledonae Apiaceae: Carum cavri L., Cervaria caucasica (Bieb.) M. Pimen. Sanicula europaea L., Apocynaceae: Vinca minor L. Araliaceae: Hedera colchica (C. Koch.) C. Koch., H. helix L.

Asclepiadaceae: Periploca graeca L. Asteraceae: Achillea millefolium L., Arctium lappa L., Artemisia vulgaris L., A. absinthium L., Bidens tripartita L., Cichorium intybus L., Cicerbita pontica (Boiss.) Grossh., D Dichrocephala bicolor (Roth) Schlecht., Matricaria chamomilla L.,

Pyrethrum parthenifolium Willd., Pyrethrum roseum (Adam) Bieb. Solidago virgaurea L., Taraxacum officinale Wigg., Tussilago farfara L. Berberidaceae: Berberis vulgaris L. Betulaceae: Alnus barbata C.A.Mey. Buxaceae: Buxus colchica Pojark.

Cannabaceae: Humulus lupulus L.

Caryophyllaceae: Herniaria glabra L., Saponaria officinalis L. Corylaceae: Corylus avellana L.

Crassulaceae:Hylotelephium caucasicum (Grossh.) H. Ohba, S. stoloniferum S. G.

Gmel.

Cruciferae: Capsella bursa-pastoris (L.) Medik. Ebenaceae: Diospyros lotus L. Ericaceae: Rhododendron ponticum L., Vaccinium arctostaphylos L.

Fabaceae: Galega officinalis L., Melilotus officinalis (L.) Pall., Ononis arvensis L.,Trifolium pratense L. Fagaceae: Castanea sativa Mill. Fagus orientalis Lipsky., Quercus dshorochensis C. Koch., Q. hartwissiana Stev.

Gentianaceae: Centaurium erythraea Rafn., Gentiana cruciata L. Hypericaeae: Hypericum androsaemum L., H. grossheimii Kem.-Nat., H.orientale., H.perforatum L., H.polygonifolium Rupr., H. xylosteifolium (Spach) N. Robson.

Juglandaceae: Juglans regia L.

Lamiaceae: Calamintha grandiflora (L). Moench., C.nepeta (L.) Savi, C. Officinalis Moench., Clinopodium umbrosum (Bieb.) C. Koch., C. Vulgare L., Glechoma hederacea L., Lamium album L., Leonurus quinquelobatus Gilib., Melissa officinalis L.,

Mentha longifolia (L.) Huds., Mentha pulegium L. Origanum vulgare L., Stachys officinalis (L.) Trevis. Trachistemon orientalis (L.) G. Don fil. Lauraceae: Laurus nobilis L. Malvaceae: Althaea officinalis L., Malva sylvestris L.

Oleaceae: Fraxinus excelsior L Papaveraceae: Chelidonium majus L., Glaucium flavum Grantz Plantaginaceae: Plantago lanceolata L., P. major L. Polygonaceae: Poligonum aviculare L., Persicaria hydropiper (L.) Spach, P. maculata (Rafin.) A.&D. Love, Rumex crispus L. Primulaceae: Cyclamen adzharicum Pobed., Lysimachia verticillaris Spreng. Primula sibthorpii Hoffmgg. Punicaceae: Punica granatum L.

Ranunculaceae: Helleborus caucasicus A. Br., Clematis vitalba L.

Page 149: Instruments for Modelling Black Sea River Basins: Research

149

Rhamnaceae: Frangula alnus Mill., Rhamnus microcarpa Boiss. Rosaceae:Cydonia oblonga Mill., Geum urbanum L., Fragaria vesca L., Laurocerasus officinalis M. Roem., Malus orientalis Uglitzk., Potentilla erecta (L.) Raeusch., Poterium polyganum W. Et K.Rosa canina L., R. Pomifera Herrm. Rubus caesius L., R. buschii Grossh. ex Sinjkova, Sorbus boissieri Schneid. Rubiaceae:Asperula odorata L. Salicaceae: Salix alba L., S. caprea L. Sambucaceae: Sambucus ebulus L., S. nigra L. Scrophulariaceae:Digitalis ferruginea L., D. purpurea L., Verbascum thapsus L., Veronica officinalis L.

Solanaceae: Datura stramonium L.,

Hyoscyamus niger L., Solanum nigrum L.

Tiliaceae: Tilia begoniifolia Stev. Urticaceae: Urtica dioica L. Viburnaceae: Viburnum opulus L. Violaceae: Viola arvensis Murr. Viscaceae: Viscum album L.

Vitaceae: Vitis vinifera L. Zygophyllaceae. Tribulus terrestris L. MONOCOTYLEDONAE Alliaceae: Allium ursnum L. Ruscus ponticus Woronow., Ruscus colchicus P. F.

Yeo. Amaryllidaceae: Galanthus woronowii Losinsk., Leucojum aestivum L. Asparagaceae: Asparagus litoralis Stev. Convallariaceae:Convallaria majalis L., Cyperaceae: Cyperus badius Desf. Juncaceae: Juncus bufonius L. Poaceace: Elytrigia repens (L.) Nevski

დასკვნები ჩვენს მიერ ჩატარებული კვლევის შედეგად დავადგინეთ:

1. მდ. აჭარისწყლის სხვადასხვა ბიოტოპში გავრცელებულა 142 სახეობის

სამკურნალო მცენარე

2. ისინი განაწილებულია 56 ოჯახში და 112 გვარში.

3. სამკურნალო სახეობათა სიმრავლით გამოირჩევ ოჯახები: Asteraceae — 14 სახეობა,

Lamiaceae — 14, Rosaceae — 12, Hypericaeae — 6, Polypodiaceae — 6, Scrophulariaceae — 3, Fabaceae — 4, Fagaceae — 4, Solanaceae — 4. Polygonaceae — 4.

მადლიერება ღრმა მადლიერებას გამოვხატავთ კონფერენციის ორგანიზატორების მიმართ,

კონფერენციის მოწყობისათვის და გვერდში დგომისათვის.

ლიტერატურა ვარშანიძე ნ. თურმანიძე ნ. (2011). აჭარის სამკურნალო მცენარეთა ტაქსონომიური

მრავალფეროვნება. საერთაშორისო კონფერენცია: საქართველოს

ბიომრავალფეროვნება თბილისი. გვ. 110-114.

ვარშანიძე ნ. (2013). აჭარაში გავრცელებული სამკურნალო მცენარეების სახეობრივი

მრავალფეროვნება. (მონოგრაფია.) ბათუმი. ,,შოთა რუსთაველის სახელმწიფო

უნივერსიტეტი“. ბათუმი. 267 გვ.

ვარშანიძე. ნ. ასანიძე ნ. თურმანიძე ნ. (2014) აჭარაში გავრცელებული სამკურნალო

მცენარეები და მათი ბიოეკოლოგია. (მონოგრაფია). თბილისი. ,,უნივერსალი“. 268 გვ.

Page 150: Instruments for Modelling Black Sea River Basins: Research

150

კეცხოველი ნ., ხარაძე ა., გაგნიძე რ.`(1971-2003). საქართველოს ფლორა~. 1-13.

თბილისი, მეცნიერება.

საქართველოს მცენარეების სარკვევი (1964) ტ. 1. თბილისი. მეცნიერება. 458 გვ.

საქართველოს მცენარეების სარკვევი (1969 ) ტ. 1. თბილისი. მეცნიერება. 440 გვ.

Дмитриева А.А. Определитель растений Аджарии. Тбилиси, „Мецниереба”, т. I, 1990. 327 стр.

Дмитриева А.А. Определитель растений Аджарии. Тбилиси, „Мецниереба”, т. I, 1990.; т. II, 1990. 278 стр.

Czerepanov S. (1995). Vascular plants of Russia and Adjacent states (the former USSR). Cambridge University Press, 516 pp.

Page 151: Instruments for Modelling Black Sea River Basins: Research

151

Protected Areas of Kolkheti

Ketevan Memarne MSc Student of Biology Department

Faculty of Natural Sciences and Health Physiopathology and Biodiversity Institute

Batumi Shota Rustaveli State University Email: [email protected]

Abstract The beauty of Kolkheti nature and particularly of south Kolkheti is inimitable and unique.

Elements of Kolkhic flora are gathered here and similar is almost nowhere to find. Floral elements present here are living nature monuments, as Kolkheti represents the refugium of ancient flora trapped here ever since glacial period. For centuries changing environmental conditions lead to disappearance of many species. In established ancient plant communities species are interconnected and dependent on each other as organs in the living organism. Loss of some species from the community has knock-on effect on other species and, affects the entire community. To address this problem humans are inevitably engaged in taking care of

rare and disappearing species. In all countries globally protected areas and nature reserves are established to safeguard unique ecosystems, providing these areas with strict protection zones, designate nature monuments, compile and maintain 'red lists' of species.

კოლხეთის დაცული ტერიტორიები

ქეთევან მემარნე

ბათუმის შოთა რუსთაველის სახელმწიფო უნივერსიტეტი

საბუნებისმეტყველო და ჯანდაცვის ფაკულტეტი

ბიოლოგიის დეპარტამენტის მაგისტრანტი

ფიტოპათოლოგიისა და ბიომრავალფეროვნების ინსტიტუტი

ელექტრონული ფოსტა: [email protected]

რეზიუმე

განუმეორებელი და უნიკალურია კოლხეთისა და განსაკუთრებით კი სამხრეთი

კოლხეთის ბუნება. აქ თავი მოუყრია კოლხეთის ფლორის ელემენტებს, რომელთა

მსგავსი სხვაგან ძნელად თუ მოიძებნება. არსებული ფლორის ელემენტები ბუნების

ცოცხალი ძეგლებია, ვინაიდან კოლხეთი გამყინვარების ეპოქაში უძველესი ფლორის

რეფუგიუმს წარმოდგენდა. საუკუნეების მანძილზე, გარემო პირობების

ცვალებადობამ, მრავალი სახეობის დაღუპვა გამოიწვია. ოდითგანვე ჩამოყალიბებულ

თანასაზოგადოებაში სახეობები ისე უკავშირდებიან ერთმანეთს, როგორც

ორგანიზმში ორგანოები და საზოგადოებიდან რომელიმე სახეობის ამოვარდნა ზიანს

აყენებს მას და იწვევს გადაგვარებას. ყოველივე ამან აიძულა დიდი ხანია

კაცობრიობა, რათა ეზრუნა იშვიათი და ქრობადი სახეობების გადარჩენისათვის.

მსოფლიოს ყველა ქვეყანაში უნიკალური ეკოსისტემების შენარჩუნებისა და

გადარჩენისათვის შექმნილია დაცული ტერიტორიები, ნაკრძალები (ბუნების მკაცრი

დაცვის ზონა), ბუნების ცოცხალი ძეგლები, არსებობს “წითელი წიგნი”.

Page 152: Instruments for Modelling Black Sea River Basins: Research

152

შესავალი დღეისათვის აჭარაში ოთხი დაცული ტერიტორიაა:

კინტრიშის სახელმწიფო ნაკრძალი: დაარსების პერიოდი და უნიკალურობა:

კინტრიშის სახელმწიფო ნაკრძალი (ბუნების დაცვის საერთაშორისო კავშირის IUCN

პირველი კატეგორია) შეიქმნა 1959 წელს და დღემდე ფუნქციონირებს. მისი ფართობი

შეადგენს 16 000 ჰას. ნაკრძალის ადმინისტრაცია ხელმძღვანელობს 2002 წლის 22

იანვარს ყოფილი საქართველოს დაცული ტერიტორიების, ნაკრძალებისა და

სამონადირეო მეურნეობის სახელმწიფო დეპარტამენტის მიერ მიღებული

დებულებით [4]. ქობულეთის დაცული ტერიტორიები: ქობულეთის ნაკრძალი და ქობულეთის აღკვეთილი: დაარსების პერიოდი და უნიკალურობა: 1996 წლიდან ისპანი II ცოცხალი

სფაგნუმიანი ტორფნარი შეტანილია რამსარის კონვენციით დაცული ტერიტორიის

სიაში, როგორც მნიშვნელოვანი ჰაბიტატი მიგრირებადი, მობუდარი და მოზამთრე

ფრინველებისათვის. 1999 წლიდან მიღებული იქნა კანონი კოლხეთის ჭარბტენიანი

დაცული ტერიტორიების შესახებ, 2002 წლიდან კი ფუნქციონირება დაიწყო

ქობულეთის ნაკრძალმა (ისპანი II) და ქობულეთის აღკვეთილმა (ისპანი I). მისი

ფართობი 750 ჰექტარია. ისპანი II ამავე დროს მსოფლიოს პირველი პერკოლაციური

ტორფნარია. პრობლემა: კანონის მიხედვით გათვალისწინებული იყო ასევე დაცული

ტერიტორიის მესამე კატეგორია: “მრავალმხრივი გამოყენების ტერიტორია”, რომელიც არ ჩამოყალიბებულა და აუცილებელია ჩამოყალიბდეს. მტირალას ეროვნული პარკი: დაარსების პერიოდი და უნიკალურობა: ჩამოყალიბდა

2007 წელს. მტირალას ეროვნული პარკი, ფართობი 16000 ჰა, მოიცავს სამ რაიონს:

ქობულეთის, ხელვაჩაურის, ქედის რაიონებს. სადაც ენდემების სიუხვე შეინიშნება

[3]. აქაა მსოფლიოში ცნობილი ერთობა “შქერიანი”, ლოკალური ენდემი

ორფანდინეზია. პარკს აფინანსებს ნორვეგიის მთავრობა და გერმანიის განვითარების

ფონდი. დღეისათვის მიმდინარეობს დამხმარე პროექტის განხორციელება, რომელიც

გულისხმობს მიმდებარე დასახლებული პუნქტების რესურსებით სარგებლობას.

მაჭახელას ეროვნული პარკი: ეროვნული პარკი აჭარაში, მდინარე მაჭახელისწყლის

ხეობაში მდებარეობს. ფართობი 8733 ჰა (2012). დაარსდა 2012 წელს უნიკალური

ბიოლოგიური და ლანდშაფტური ბიომრავალფეროვნების შენარჩუნების, კოლხური

ტყეების ეკოსისტემის გრძელვადიანი დაცვის, ეკოლოგიური უსაფრთხოებისა და

ბუნებრივ გარემოში ტურისტული და რეკრეაციული საქმიანობის განვითარების

უზრუნველყოფის მიზნით [4].

დაცულ ტერიტორიებში არსებული პრობლემები ვინაიდან ნაკრძალში მკაცრი რეჟიმის გამო და რომ მოსახლეობის სიახლოვეა დაცულ

ტერიტორიაში, მოსახლეობის ეკონომიური ინტერესი, იმის გამო, რომ არაა

სანაცვლოდ ადგილობრივი მოსახლეობის ალტერნატიული რესურსებით მომარაგება

და დასაქმება თავს იჩენს ძირითადი პრობლემები. რა უნდა გაკეთდეს

ბიომრავალფეროვნების კონსერვაციის მიზნით, ნაკრძალის ნორმალური

ფუნქციონირებისათვის ზუსტ მეცნიერულ კვლევებზე დაყრდნობით ჩამოყალიბდეს

დაცული ტერიტორიის ისეთი კატეგორია, როგორიცაა ეროვნული პარკი, რომელშიც

გათვალიწინებული იქნება ბუნების მკაცრი დაცვის (ნაკრძალი) ანუ ბირთვული ზონა

Page 153: Instruments for Modelling Black Sea River Basins: Research

153

(რომელიც იქმნება ყველაზე მეტად ხელუხლებელი და ბიომრავალფეროვნებით

გამორჩეულ უბანში), ბუნების ძეგლი, მრავალმხრივი ანუ ტრადიციული

გამოყენებისა და ვიზიტორთა ზონები. ტრადიციული გამოყენების ზონაში

ჩამოყალიბდება ინფრასტრუქტურა, რაც ეკოტურიზმის განვითარების საუკეთესო

პირობა იქნება [1,2]. შესაბამისად მომზადდება პროექტები დაცული ტერიტორიასთან

მცხოვრები მოსახლეობის სოციალ-ეკონომიური პირობების გაუმჯობესების მიზნით.

მოხდება ტრადიციული დარგების აღდგენა. ძირითადი პრობლემური საკითხებია: – უნიკალური ბიომრავალფეროვნების გაღარიბება; – დასახლებულ პუნქტებთან სიახლოვე;

– მიწათსარგებლობის საკითხი;

– ადგილობრივი მოსახლეობის ეკონომიური ინტერესები დაცული

ტერიტორიის ჩამოყალიბებისა და შემდეგაც არაა გათვალისწინებული

დაცული ტერიტორიების მიმდებარედ და მის ტერიტორიაზე მცხოვრები

მოსახლეობის ეკონომიური ინტერესები, ვინაიდან აქ არსებული ძალზე

შეზღუდული რეჟიმის წესების სანაცვლოდ არაა უზრუნველყოფილი

მოსახლეობის ალტერნატიული რესურსებით მომარაგება და დასაქმება;

– ძალზე დაბალი გარემოსდაცვითი ცნობიერება.

სურ. 1. Rhododendron ungernii

პრობლემების გადაწყვეტის გზები – ჩატარდეს ზუსტი მეცნიერული კვლევები. რის შედეგადაც გამოვლინდება და

შეირჩევა:

o ბუნების მკაცრი დაცვის ანუ ბირთვული ზონა

o აღდგენის ზონა

o ბუფერული ანუ მრავალმხრივი გამოყენების ტერიტორია

o ვიზიტორთა ზონა

– ბიომრავალფეროვნების მონიტორინგის სქემის შემუშავება დაცული

ტერიტორიებისათვის;

Page 154: Instruments for Modelling Black Sea River Basins: Research

154

– მონაცემთა ბაზის არარსებობა, იშვიათი და ქრობადი სახეობების არაზუსტი

მონაცემები;

– შესაბამისად უნდა მომზადდეს მენეჯმენტის გეგმა;

– ინფრასტრუქტურის ჩამოყალიბება და ეკოტურიზმის განვითარების

ხელშეწყობა.

ლიტერატურა 1. კოლხეთის ეროვნული პარკის მენეჯმენტის გეგმა, 2005 წელი, დაცული

ტერიტორიების სააგენტო.

2. ქობულეთის ნაკრძალისა და ქობულეთის აღკვეთილის მენეჯმენტის გეგმა, 2005

წელი, დაცული ტერიტორიების სააგენტო.

3. მტირალას ეროვნული პარკის მენეჯმენტის გეგმა. 2009 წელი, დაცული

ტერიტორიების სააგენტო.

4. http://apa.gov.ge.

Page 155: Instruments for Modelling Black Sea River Basins: Research

155

State of the Ecology of Kintrishi River

Khatia Meskhidze ([email protected]), Nino Tsilosani Faculty of Natural Sciences and Health, 3rd Grade Students of Ecology Speciality

Batumi Shota Rustaveli State University, 3 Ninoshvili Street, Batumi, Georgia Scientific Supervisor: Assist. Prof. Guguli Dumbadze

Abstract River Kintrishi takes its source from Khino Mountain and enters the Black Sea near the Kobuleti resort town. Its overall length is 45 kilometres. The river is fed by precipitation, groundwater and snow melt.

This research is concerned with the current hydro-chemical and ecological state of the Black Sea Basin River Kintrishi and establishes the level of the anthropogenic impact. Research performed along the field visit routes established, that the river quality from the sources to almost its mouth is clean, not discoloration is observed and transparency is perfect, only in rare occasions in downstream reaches solid waste debris are becoming noticeable. In these downstream areas, near the villages Khutsubani and Kobuleti signs of eutrophication is apparent.

Hydro-chemical analysis of samples established, that the level of contamination by chemical substances is within norms and do not exceed maximal permissible concentrations.

მდინარე კინტრიშის ეკოლოგიური მდგომარეობა

ხატია მესხიძე, ნინო წილოსანი

საბუნებისმეტყველო მეცნიერებათა და ჯანდაცვის ფაკულტეტის

ეკოლოგიის სპეციალობის III კურსის სტუდენტები

ბათუმის შოთა რუსთაველის სახელმწიფო უნივერსიტეტი

ბათუმი, ნინოშვილის 35. ელექტრონული ფოსტა: [email protected]

სამეცნიერო ხელმძღვანელი: ასისტ. პროფ. გუგული დუმბაძე

რეზიუმე მდინარე კინტრიში სათავეს ხინოს მთიდან იღებს და კურორტ ქობულეთის

სიახლოვეს, შავ ზღვაში ჩაედინება. მისი საერთო სიგრძე 45 კილომეტრია. ის

საზრდოობს წვიმის, მიწისქვეშა და თოვლის წყლით.

კვლევა მოიცავს ინფორმაციას საქართველოს შავი ზღვის აუზის მდინარე კინტრიშის

დღეისათვის არსებული, ჰიდროქიმიური და ეკოლოგიური მდგომარეობის შესახებ,

იდენტიფიცირებულია ანთროპოგენის მდინარეზე ზემოქმედების მდგომარეობა.

მარშრუტული გამოკვლევებით დადგინდა, რომ მდინარის წყალი სათავიდან

შესართავამდე, სუფთაა, არ აქვს ფერი შეცვლილი და გამჭვირვალეა, მხოლოდ იშვიათ

შემთხვევებში, მდინარის ქვემო დინებაში გვხვდება მყარი მუნიციპალური

ნარჩენებით დაბინძურების შემთხვევები. ასევე ქვემო დინებაში, სოფ. ხუცუბანსა და

სოფ. ქობულეთის მიდამოებში შეინიშნებოდა ევტროფიკაციის ნიშნები.

წყლის სინჯის ჰიდროქიმიური ანალიზით დადგინდა, რომ მასში სხვადასხვა

ქიმიური ნივთიერებების რაოდენობა ნორმის ფარგლებშია და არ აღემატება

ზღვრულად დაშვებულ კონცენტრაციებს.

Page 156: Instruments for Modelling Black Sea River Basins: Research

156

შესავალი მდინარე კინტრიში (ძვ. ხინოს წყალი) სათავეს იღებს მესხეთის ქედის ჩრდილო-

დასავლეთ კალთაზე, მთა ხინოს მახლობლად, ზღვის დონიდან 2599 მ-ზე. ის

კინტრიშის დაცული ტერიტორიების წყლის მთავარი არტერიაა. მდინარე

ქობულეთთან ერთვის შავ ზღვას, სიგრძე 45 კმ, აუზის ფართობი 291 კმ². საზრდოობს

წვიმის, მიწისქვეშა და თოვლის ნადნობი წყლით. წყალდიდობა იცის გაზაფხულზე,

წყალუხვია შემოდგომაზეც, წყალმცირობა — ზამთარსა და ზაფხულში.

კინტრიში გამოივლის სოფლებს — ხინოს, მესხი ქედს, ზერაბოსელს, ცხემვანს,

ჭახათს, კოხს, სოფ. ქობულეთს, ხუცუბანს, გელაურს და კვირიკეს. ბოლოში ერთვის

საკმაოდ მოზრდილი მდინარე კინკიშა, რომელზედაც აგებულია “კინკიშის ჰესი“. გარდა ამისა, მას ბევრი მოზრდილი მდინარე და ნაკადული უერთდება. ესენია:

ხეკნარა, პერანგა, მამედაღი, დიდღელე, მისანათის ღელე (30-მეტრიანი

თვალწარმტაცი ჩანჩქერით), ბოლქვაძეების ღელე და ჩრდილა (ორსაფეხურიანი 70

მეტრის სიმაღლე წყალვარდნილით) და სხვა, შედეგად, მდინარის კალაპოტი

ფართოვდება და შავ ზღვას ერთვის ქალაქ ქობულეთში. მდ. კინტრიშზე

შემორჩენილია თამარ მეფის დროინდელი აგებული რამდენიმე თაღოვანი ხიდი.

მდ. კინტრიში მდიდარია საუკეთესო ხარისხის თევზებით. როგორიცაა: კალმახი,

საზანი, წვერა და ა. შ. შავიზღვისპირეთში შავი ზღვის ორაგულის აღწარმოებისათვის

ვარგისი მდინარე მხოლოდ საქართველოშია შემორჩენილი. და სწორედ მათ შორის

ერთ-ერთი კინტრიშია. მდ. კინტრიშზე ამჟამად მიმდინარეობს ელექტროსადგურის

მშენებლობა.

აქტუალობა ბოლო წლების განმავლობაში სწრაფი ტემპით გაიზარდა წყლის მოხმარება, როგორც

ქალაქებში, ისე სოფლებში. შესაბამისად, მოიმატა და ფართო ხასიათი მიიღო წყლის

დაჭუჭყიანებამაც, რაც მდინარეებსა და წყალსატევებში ჭუჭყიანი წყლის შერევითაა

განპირობებული.

ზღვის დაბინძურების წყაროების კვლევის დროს უმნიშვნელოვანესი ადგილი

უჭირავს ზღვაში ჩამდინარე მდინარეების ეკოლოგიური მდგომარეობის შესწავლას.

კვლევის მიზანი საქართველოს შავი ზღვის აუზის მდინარე კინტრიშის ჰიდროქიმიური და არსებული

ეკოლოგიური სიტუაციის გამოკვლევა, დაბინძურების მდგომარეობისა და

დამაბინძურებელი წყაროების ანალიზი, ბუნებრივი და ანთროპოგენული

ფაქტორების იდენტიფიცირება.

კვლევის მასალა და მეთოდიკა კვლევის ობიექტს წარმოადგენდა მდ. კინტრიში და მასში შემავალი სხვა მდინარეები

თუ ნაკადულები. კვლევა ჩატარდა მარშრუტული მეთოდით, მდინარის ზღვის

შესართავიდან დაწყებული, ხინოს მთის დასაწყისამდე, ასევე, ვიზუალურად

გამოკვლეული იქნა მასში შემავალი მდ. კინკიშა მის დასაწყისამდე და სხვა მცირე

მდინარეები და ღელეები.

Page 157: Instruments for Modelling Black Sea River Basins: Research

157

ასევე ჩატარდა წყლის ჰიდროქიმიური ანალიზი სხვადასხვა მავნე ნივთიერებათა

შემცველობაზე, რომლისთვისაც სინჯი აღებული იქნა მდ. კინტრიშის ზღვასთან

შესართავიდან დაახლოებით 200-300 მეტრის მოშორებით.

კვლევის შედეგები მარშრუტული გამოკვლევებით ნათლად ჩანდა, რომ მდინარის წყალი სათავიდან

შესართავამდე, სუფთაა, არ აქვს ფერი შეცვლილი და გამჭვირვალეა, რაც იძლევა

მასში მოცურავე სხვადასხვა სახეობის თევზების თავისუფლად ხილვის საშუალებას.

მიუხედავად იმისა, რომ მდინარის აუზის ირგვლივ ხეობებში 10 სოფელია

გაშენებული, უშუალოდ მდინარის სანაპიროებზე გვხვდება მხოლოდ რამდენიმე

ოჯახი, არსად გვხვდება ავტოსამრეცხაო. მდინარის სანაპიროზე მდებარეობს

საყვავილე მეურნეობა, დაახლოებით 50 მ-ით მოშორებულია ფილების მწარმოებელი

მცირე საწარმო. ზაფხულობით მდინარის ნაპირები ხშირად გამოიყენება საპიკნიკედ,

ასევე ფუნქციონირებს კაფე და რესტორანი. სოფლებში არ არსებობს საკანალიზაციო

სისტემა, სასოფლო-სამეურნეო სავარგულები დაკავებულია საბოსტნე კულტურებით,

სიმინდით, ციტრუსოვანთა თუ სხვა ხეხილოვან მცენარეთა ნარგაობებით.

ყოველივე აღნიშნული, მდინარის ქვემო დინებაში, მის ნაპირებზე ქმნის

მუნიციპალური მყარი ნარჩენებით მცირედ დაბინძურების შემთხვევებს. ასევე არ

არის გამორიცხული წყლის დაბინძურება ფეკალური მასებით, ზედაპირულად

აქტიური ნივთიერებებითა და პესტიციდებით.

ევტროფიკაციის ნიშნები გამოვლინდა რამდენიმე ადგილას, მდ. კინტრიშის აუზის

ქვემო დინებებში, სოფ. ქობულეთის მიდამოებში. კერძოდ, სოფ. ქობულეთთან

ახლოს, მდინარის ნაპირებზე განთავსებული საცხოვრებელი სახლების სიახლოვეს,

ასევე, სოფ. ხუცუბნის ცენტრთან და სოფ. კვირიკეს ცენტრში, საზოგადოებრივი

თავშეყრის ადგილას.

მდინარის ზღვასთან შესართავი ზღვის დონეზეა, რის გამოც ფერხდება წყლის

ზღვაში შესვლა და გვერდით შემავალი, მდორედ მიმდებარე ნაკადულების

დაჭაობებას იწვევს.

მიმდინარე წლის 9 აგვისტოს ჩატარდა მდ. კინტრიშის წყლის ჰიდროქიმიური

ანალიზი, რომელიც აღებული იქნა მდინარის ზღვასთან შესართავიდან 200-300

მეტრით აღმა. დაადასტურდა, რომ მასში სხვადასხვა ქიმიური ნივთიერებების

რაოდენობა ნორმის ფარგლებშია. კერძოდ, pH – 7.15; გახსნილი ჟანგბადი – 12,7 მგ/ლ;

ჟანგბადის ბიოლ. მოთხოვნილება – 0.39 მგ/ლ (ზდკ 5.8), ხოლო ამონიუმის აზოტის

კონცენტრაცია – 0.003 მგ/ლ (ზდკ – 1.4). მდინარის ქვემოწელში წყლის

მინერალიზაცია დაბალია – 70.0 მგ/ლ, დაბალია წყლის სიმღვრივეც. მდინარის

ფსკერი დაფარულია წყლის მცენარეებით.

დასკვნა ამრიგად, მდ. კინტრიშის ეკოლოგიური რისკის ფაქტორებია საყოფაცხოვრებო

დაბინძურება, გაუმართავი და ხშირ შემთხვევაში არარსებული საკანალიზაციო

სისტემა და სოფლის მეურნეობა, რომლებიც ქმნიან საყოფაცხოვრებო მყარი

ნარჩენებით, ფეკალური მასებით, ზედაპირულად აქტიური ნივთიერებებითა და

პესტიციდებით დაბინძურების რისკს.

Page 158: Instruments for Modelling Black Sea River Basins: Research

158

მიუხედავად ამისა, დღეისათვის მდინარის წყალი სუფთა და კამკამაა მასში მცირეა

მყარი მუნიციპალური ნარჩენები, ასევე ქიმიური და ბუნებრივი მინარევების

შემცველობა მცირეა და არ აღემატება ზღვრულად დასაშვებ ნორმებს. კარგად ჩანს

2015 წლის სექტემბრის უკიდურესი წყალმცირობა.

Page 159: Instruments for Modelling Black Sea River Basins: Research

159

Anthropogenic Impacts on Habitats of Kolkheti Lowland Shorelines

Natela Tetemadze Faculty of Natural Sciences and Health

Batumi Shota Rustaveli State University Email: [email protected]

Abstract Kolkheti Lowland is the relic refugium of glacial period, hosting relic species of flora and fauna. Most of its habitats and species are under intense anthropogenic pressure. Floral elements present here are living monuments of the ancient nature. For centuries changing environmental conditions lead to loss of many species. Their destiny is not caused only by

natural, climatic and geographic variability; most significant impact is of anthropogenic nature. All those species, which disappeared in the human historic time span, are results of the wrongdoings of the mankind. Anthropogenic impacts drastically modify vast landscape spaces, bringing them to the edge of ecological catastrophe. Removal of some species from biocenosis of interconnected species leads to ultimate degradation of the overall ecosystem.

ანთროპოგენური ზეგავლენა კოლხეთის დაბლობის სანაპირო ზოლის ჰაბიტატებზე

ნათელა ტეტემაძე

ბათუმის შოთა რუსთაველის სახელმწიფო უნივერსიტეტი

საბუნებისმეტყველო მეცნიერებათა და ჯანდაცვის ფაკულტეტის დოქტორანტი

ელექტრონული ფოსტა: [email protected]

რეზიუმე კოლხეთის დაბლობი გამყინვარების დროინდელი რელიქტია, რელიქტურია აგრეთვე

მისი ფლორაცა და ფაუნაც. მათი მნიშვნელოვანი ნაწილი უდიდესი ანთროპოგენური

ზემოქმედების ქვეშ იმყოფება. აქ არსებული ფლორის ელემენტები უძველესი

ბუნების ცოცხალი ძეგლებია. საუკუნეების მანძილზე, გარემო პირობების

ცვალებადობამ მრავალი სახეობის დაღუპვა გამოიწვია. მათი ბედისწერა მარტო

ბუნებრივ-კლიმატური გეოგრაფიული ფაქტორების შედეგი როდია. მათზე

განსაკუთრებული კვალი დატოვა ანთროპოგენურმა ფაქტორმა. ყველა სახეობა,

რომელიც ადამიანის ისტორიულ ეპოქაში დაიღუპა, მოსახლეობის უსულგულო

დამოკიდებულების მსხვერპლი გახდა. ანთროპოგენურმა ფაქტორმა სახე უცვალა

მსოფლიოს თვალუწვდენელი სივრცეების ლანდშაფტებს და ეკოლოგიურ

კატასტროფამდე მიიყვანა ისინი. ოდითგანვე ჩამოყალიბებულ თანასაზოგადოებაში

სახეობები ისე უკავშირდებიან ერთმანეთს, როგორც ორგანიზმში ორგანოები და

ბიოცენოზიდან რომელიმე სახეობის ამოვარდნა ზიანს აყენებს მას და იწვევს

გადაგვარებას.

Page 160: Instruments for Modelling Black Sea River Basins: Research

160

შესავალი კოლხეთის დაბლობის ჰაბიტატებს შეექმნა მრავალი პრობლემა, როგორებიცაა:

ტორფის მოპოვებისა და მელიორაციული პროექტები წლების განმავლობაში დააშრეს კოლხეთის ტორფნარების 140000 ჰა ტერიტორია.

ტორფის მოპოვებისას იღებდნენ ტორფის ზედა 2 მ სისქის ფენას, რის გამოც

გრიგოლეთმა და შავწყალამ დაკარგეს თავისი ორიგინალური ლანდშაფტშემქმნელი

ფუნქცია, გაიზარდა ნახშირბადის ემისია ატმოსფეროში და თვით იქცნენ

გაჭუჭყიანების წყაროდ. მეცხრამეტე საუკუნის ოცდაათიანი წლებიდან კოლხეთში

მიმდინარეობდა მელიორაციული პროცესები, რის გამოც დააშრეს თითქმის 200 000

ჰა ფართობი. მალთაყვამ და გრიგოლეთმა დაკარგეს თავიანთი პირვანდელი სახე, მათ

ადგილას მეორადი მდელოები ჩამოყალიბდა, ინვაზიური სახეობებით

წარმოდგენილი.

ხელყოფილი დრენირებული მდელოები ხელსაყრელი გარემო აღმოჩნდა ინვაზიური

სახეობებისათვის, უმეტესობა მათგანისა გაველურებულია და სხვა ადვენტურებთან

ერთად სახე უცვალეს კოლხეთის უნიკალურ ლანდშაფტებს.

განსაკუთრებულ ზიანს აყენებს ტორფნარს ხანძრები. ხანძრები ზამთარსა და ადრეა

გაზაფხულზეა. განსაკუთრებით მაშინ, როცა ფრინველების მიგრაციაა. მონადირეები

უკიდებენ ცეცხლს ტორფნარს რათა მწევარმა ადვილად იპოვოს ნანადირევი. ამ დროს

მთლიანად იწვის იმნათის ტორფნარი. ხანძრები იწვევს შემდეგ ცვლილებებს:

– სახეობრივი შემადგენლობის ცვლას ანუ Sphagnum imbricatum-ის გაქრობას;

– აღარ ხდება ტორფის აკუმულაციის პროცესი;

– ირღვევა ცოცხალი სფაგნუმიანი ტორფნარის მიკრორელიეფი, ჩნდება

ჩაღრმავებანი და ბორცვაკები.

სანაპირო ზოლის მთლიანი ათვისება თითქმის განადგურებულია სანაპირო ზოლი, მისი მცენარეული საფარი, რაც იწვევს

ეროზიულ პროცესებს.

საქონლის ძოვება პრობლემას წარმოადგენს საქონლის უსისტემო უნებართვო ძოვება, რაც უდიდეს

ზიანს აყენებს მნიშვნელოვან ცენოზებს, არ ხდება თვითგანახლების პროცესი.

საქონლის ძოვება იწვევს ხელოვნურ დრენაჟს, მატულობს ტორფის ხრწნის პროცესი.

დაცული ტერიტორიები, მდებარეობენ, რა დასახლებულ პუნქტებთან და სასოფლო

სამეურნეო სავარგულებთან ახლოს, განიცდიან უდიდეს ანთროპოგენულ

ზემოქმედებას, როგორებიცაა:

– უნებართვო ჩეხვა ტყეებისა, რომელმაც შეიძლება გამოიწვიოს უნიკალური

ეკოსისტემების განადგურება;

– ნადირობა იშვიათ და გადაშენების პირას მდგომ სახეობებზე;

– ნადირობა გადამფრენ ფრინველებზე;

– უკანონო თევზჭერა;

– ტორფის მოპოვება;

– დრენაჟი. დააშრეს ჭაობების მნიშვნელოვანი ნაწილი, რომელიც სასოფლო-

სამეურნეო სავარგულებად არასდროს გამოუყენებიათ. ანთროპოგენული

Page 161: Instruments for Modelling Black Sea River Basins: Research

161

ზემოქმედების შეწყვეტის შემდეგ მათი მნიშვნელოვანი ნაწილი კვლავ

დაჭაობდა;

– სასოფლო-სამეურნეო სავარგულებად და საძოვრებად გამოყენება, რაც უდიდეს

ზიანს აყენებს მნიშვნელოვან ცენოზებს. არ ხდება თვითგანახლების პროცესი;

– გაახოებულ გადაგვარებულ ეკოსისტემებზე ჩამოყალიბდა მეორადი

მდელოები;

– ეკოსისტემების დაბინძურების მნიშვნელოვან წყაროს წარმოადგენს

საყოფაცხოვრებო ნარჩენები;

– ტყეების გაჩეხვა მთაში, რაც საშიშროებას ქმნის წყალმოვარდნებისა და

ღვარცოფებისათვის სანაპირო ზოლში. იტბორება ქალაქი ქობულეთი,

სოფლები.

– დაბალი საზოგადოებრივი ცნობიერება.

ნაგავსაყრელები ეკოსისტემების გაჭუჭყიანების მნიშვნელოვან წყაროს წარმოადგენს საყოფაცხოვრებო

ნარჩენები.

დაბალი გარემოსდაცვითი ცნობიერება მოსახლეობის გარემოსდაცვითი ცნობიერება ჯერ კიდევ დაბალია. დაცული ტერიტორიები (კოლხეთის ეროვნული პარკი, ქობულეთის სახელმწიფო ნაკრძალი)

მდებარეობენ დასახლებულ პუნქტებთან და სასოფლო-სამეურნეო სავარგულებთან

ახლოს, რაც პრობლემებს უქმნის დაცულ ტერიტორიებს.

აუცილებელია ხე-ტყის დამზადებაზე მორატორიუმის უზრუნველყოფა

გადაბერებული ტყის კორომებისა და მაღალი კონსერვაციული ღირებულების მქონე

ტყეებში და ამ კორომების დაცვის პრიორიტეტულობის პრინციპის გამოყენება,

მეცნიერების, არასამთავრობო ორგანიზაციათა და ადგილობრივი მოსახლეობის

ჩართვა ამ ღონისძიებებში.

ეკოლოგიურად გაუმართლებელი გრანდიოზული მშენებლობანი ყულევის ტერმინალის მშენებლობისას გაიჩეხა 1000 ჰა რელიქტური კოლხური ტყე,

საფრთხე ემუქრება კოლხეთის ეროვნული პარკის მკაცრი დაცვის (ბირთვულ) ზონაში

მყოფ ჭურიის ტორფნარსა და მის უნიკალურ ბიომრავალფეროვნებას; ჰაბიტატის

რღვევამ კი ლეგენდარული კოლხური ხოხობის გაქრობა გამოიწვია.

ეკოსისტემათა ათვისებისას არ არსებობს ზუსტ მეცნიერულ დასკვნებზე

დაფუძნებული გარემოზე ზემოქმედების შეფასება (გზშ). ამის მაგალითად ყულევის

უზარმაზარი ტერმინალის მშენებლობაც კმარა. კოლხეთის ცოცხალი ტორფნარების

ჩამოყალიბებას განსაკუთრებული გეოლოგიური პროცესები, ზღვის ტრანსგრესიული

და რეგრესიული მოვლენები უძღოდა წინ. ამ მხრივ განსაკუთრებული

მნიშვნელობისაა ახალშავზღვური ტერასის ანუ დიუნის ჩამოყალიბების პროცესი.

კოლხეთის ყველა, განსაკუთრებით კი ჭურიისა და ნაბადას ცოცხალი ტორფნარები,

ზღვის დონეზე დაბლა მდებარეობენ. გაიჩეხა ასეული ჰექტარი ხელუხლებელი

რელიქტური კოლხური ტყე, სადაც იზრდებოდა ლაფანი, კოლხური ბზა, იმერული

და ჰართვისის მუხები. ეს სახეობები დღეისათვის საქართველოს ახალი “წითელი

ნუსხის” სახეობებია. აღარაა ულამაზესი ზღვისპირა დიუნა და გამქრალია მისი

Page 162: Instruments for Modelling Black Sea River Basins: Research

162

მცენარეულობა, როგორიცაა ზღვისპირა ასპარაგუსი, სპარსული ხვართქლა. გაქრობის

საფრთხე ემუქრება კოლხეთის იშვიათ ენდემს – ლაფანს. ჰაბიტატების რღვევამ

ლეგენდარული კოლხური ხოხობის გაქრობაც კი გამოიწვია. სავალალო

მდგომარეობაშია ადგილობრივი მოსახლეობა. გაუნადგურეს მშვენიერი

საკარმიდამო. ტორფნარების დაშრობის მიზნით გაყვანილია სადრენაჟე არხები, რის

გამოც არსებობს მალარიის ეპიდემიის საშიშროება. ადგილობრივ მოსახლეობას არა

აქვს სასმელი წყალი, რომელსაც ათეულობით კილომეტრის მანძილიდან ეზიდება.

იმის გამო, რომ არ არსებობს ზუსტ მეცნიერულ დასკვნებზე დაფუძნებული გარემოზე

შემოქმედების შეფასება, თვით გრანდიოზული ყულევის ტერმინალიც კი საფრთხის

წინაშე დგას.

პირწმინდადაა გაჩეხილი დაბლობის რელიქტური კოლხური ტყე. შემორჩენილია

მხოლოდ მურყნარი თავისი გარემოსადმი მაღალი რეაქციის გამო. ამასთანავე

მოსახლეობის მოთხოვნილებამ ტყეს დიდი ზიანი მიაყენა. ამის ერთ-ერთი მიზეზი

ალტერნატიული სათბობის არარსებობა და წლების განმავლობაში გამეფებული

კორუფციაა. ადამიანი ჩეხავს ტყეს და მის ადგილს იჭერს სასოფლო-სამეურნეო

სავარგულები, ან ისინი ამ მიზნით არასდროს გამოუყენებიათ. გაჩეხილ მეორად

მდელოებზე ჩამოყალიბდა დაბალი ხარისხის საძოვრები და მეორადი ცენოზები.

მძიმე სოციალურ-ეკონომიური პირობები მოსახლეობის მძიმე სოციალურ-ეკონომიურმა პირობებმა, დემოგრაფიულმა

სიმჭიდროვემ, ანთროპოგენურმა ფაქტორებმა (ტყის ჭრა, საქონლის ძოვება,

ნადირობა, უკანონო თევზჭერა, ხანძრები) საფრთხე შეუქმნა დაცულ ტერიტორიებს

და უნიკალურ ჰაბიტატებს. დაცული ტერიტორიები მდებარეობენ დასახლებულ

პუნქტებთან და სასოფლო-სამეურნეო სავარგულებთან ახლოს, რაც პრობლემებს

უქმნიან დაცულ ტერიტორიების ბიომრავალფეროვნების გაღარიბებას.

კოლხეთისათვის ისეთი ტიპიური ჰაბიტატების, როგორიცაა ჰიდროფილური

მურყნარი ტყე, სფაგნუმიანი, ლითორალური ანუ ზღვისპირა ქვიშიანი

მცენარეულობა, ნაცვლად წარმოიქმნა ახალი ურბანიზირებული და ტექნიკით

(ნავთობის ცისტერნები, რკინიგზა, მაღალი ძაბვის ელექტროგადამცემი ხაზები)

გადატვირთული ტერიტორია. 1999 წლიდან განადგურდა ყულევის ტერიტორია და

შესაბამისად იქ არსებული ტბორები სრულიად, შესაბამისად ყულევის სანაპირო

გასწვრივი ზოლი ფოთამდე რკინიგზის ზოლის მშენებლობისათვის. 2002 წლიდან ეს

ტერიტორია კოლხეთის ეროვნული პარკის მკაცრი დაცვის ზონაში განიხილებოდა.

1999 წლიდან აქ დაიწყო ინფრასტრუქტურის განვითარება ისე, რომ არ გაკეთებულა

გარემოზე ზემოქმედების შეფასება, თუ რა საფრთხეს შეუქმნიდა მშენებლობა აქ

არსებულ ბიომრავალფეროვნებას. განადგურდა აქ მდებარე მტკნარწყლიანი ტბორები

და შესაბამისად სახეობები. არადა ეს ტერიტორიები რამსარის კონვენციის

მნიშვნელოვანი ჭარბტენიანი ტერიტორიაა მიგრირებადი და მიმომფრენი

ფრინველებისათვის.

1999 წელს მდ. ხობის მარცხენა სანაპიროზე დაიწყო ნავთობტერმინალის მშენებლობა.

ხოლო მომდევნო წელს კი მდინარე ხობისწყალის მარჯვენა სანაპიროზე საზღვაო

პორტის მშენებლობა დაიგეგმა. ყულევის ტერმინალის მშენებლობამ საგრძნობლად

Page 163: Instruments for Modelling Black Sea River Basins: Research

163

დააზიანა და შეცვალა ბუნებრივი მცენარეული საფარი. აუცილებელი გახდა ამ

ტერიტორიის ნაცვლად ახალი (საკომპენსაციო) დაცული ობიექტის (ან ობიექტების)

გამოყოფა.

1989 წ.

ყულევის ტერმინალამდე 2012 წ.

განადგურებული სანაპირო დიუნა

2015 წ.

ყულევის ტერმინალი დღეს

სურ. 1. საფრთხეები, რომლებიც ზემოქმედებენ სანაპირო ჰაბიტატებზე

ლიტერატურა: ბოლქვაძე ბ., მაჭუტაძე ი., 2013, „კოლხეთის დაბლობის სანაპირო ზოლის

მტკნარწყლიანი ტბორების მცენარეთა სახეობების ex-situ კონსერვაციის

აუცილებლობა ბათუმის ბოტანიკურ ბაღში. ბოტანიკური ბაღების

Page 164: Instruments for Modelling Black Sea River Basins: Research

164

მნიშვნელობა მცენარეთა მრავალფეროვნების შენარჩუნებაში, ბათუმის

ბოტანიკური ბაღი საიუბილეო კრებული, გვ. 48.

ბოლქვაძე ბ., მაჭუტაძე ი., 2013, „კოლხეთის დაბლობის სანაპირო ზოლის

მტკნარწყლიანი ტბორების მცენარეთა სახეობების ex-situ კონსერვაციის

აუცილებლობა ბათუმის ბოტანიკურ ბაღში. ბოტანიკური ბაღების

მნიშვნელობა მცენარეთა მრავალფეროვნების შენარჩუნებაში, ბათუმის

ბოტანიკური ბაღი საიუბილეო კრებული, გვ. 48.

ნახუცრიშვილი გ., მაჭუტაძე ი., 2014, „ყულევის ტერმინალის მიმდებარე

ტერიტორიების ჰაბიტატებისა და მცენარეული სახეობების შეფასება და

მონიტორინგის პროგრამის შემუშავება.“ კოლხეთის განვითარების ფონდი.

გვ. 54.

Izolda Matchutadze, Tamar Bakuradze, Mamuka Gvilava, Bulbuli Bolkvadze and David Baratashvili, 1013, Coastal Sand Dunes and Freshwater Ponds in Kolkheti – Threats and Needs for Conservation“, Lagoons: Habitat and Species, Human Impacts and Ecological

Effects Chapter, pp. 195-21, ISBN: 978-1-62808-092-6.

Matchutadze I., Bolkvadze B., Jakeli J., 2014, Kolkheti refugee-Habitat and species biodiversity

(Georgia), World Biodiversity Congress, SriLanka.

Page 165: Instruments for Modelling Black Sea River Basins: Research

165

Relic Kolkhic Forests of Kolkheti Lowland

Merab Tsinaridze PhD Student of Batumi Shota Rustaveli State University

Email: [email protected] Abstract Imeretian and hartwissian oaks, wingnuts, Kolkhic box-tree, Pontic marshmallow are species of red list and red book of Georgia, nominated recently to IUCN for designation as internationally threatened species. Due to the demand for hardwood timber these species were massively harvested on lowlands of Kolkheti and Kobuleti. No measures for ex-situ conservation are in place. Secondary meadows are formed on the harvested areas, with low quality grazing lands. It

should also be stressed, that regeneration of these species in natural ecosystems is proceeding with very slow rate (Matchutadze, 2003; Matchutadze, 2008).

კოლხეთის დაბლობის რელიქტური კოლხური ტყეები

მერაბ ცინარიძე

ბათუმის შოთა რუსთაველის სახელმწიფო უნივერსიტეტის დოქტორანტი

ელექტრონული ფოსტა: [email protected]

რეზიუმე იმერული და ჰართვისის მუხები, ლაფანი, კოლხური ბზა, პონტოს ტუხტი – “წითელი

ნუსხისა” და “წითელი წიგნის” სახეობებია, რომლებიც წარდგენილია ნომინაციაზე -

ბუნების დაცვის საერთაშორისო კავშირში, როგორც საერთაშორისო IUCN საფრთხის

წინაშე მყოფი სახეობები. ძვირფას მერქანზე მოთხოვნილების გამო კოლხეთისა და

ქობულეთის დაბლობზე ეს სახეობები მასიურად გაიჩეხა. არ შემუშავებულა მათზე

ex-situ კონსერვაციის ღონისძიებები. გაჩეხილ ტერიტორიებზე ჩამოყალიბდა

მეორადი მდელოები, დაბალი ხარისხის საძოვრები. ამასთანავე, უნდა აღინიშნოს,

რომ ბუნებრივ ეკოსისტემებში მათი განახლება ძალზე სუსტად მიმდინარეობს

(მაჭუტაძე 2003, მაჭუტაძე 2008).

შესავალი რელიქტური კოლხური ტყის (ჰართვისის მუხებისა და ლაფანის შემორჩენილი

ხელუხლებელი კორომები) ფრაგმენტები შემორჩენილია ანაკლიაში მდ. ფიჩორის

ნაპირზე, იმნათის ტორფნარის სამხრეთით, ქობულეთში ისპანი II ნაკრძალის

უკიდურეს სამხრეთ აღმოსავლეთ ნაპირას, მცირე რაოდენობით თიკერში.

Page 166: Instruments for Modelling Black Sea River Basins: Research

166

შედეგები ლაფანის Pterocarya fraxinifolia-ს პოპულაციები კოლხეთის ეროვნულ პარკში

1. სენაკი, სენაკის სატყეო უბანი, სოფ. სირიაჩკონთან, სადაც მისი ყველაზე დიდი

პოპულაციაა;

2. მდ. ფიჩორის ნაპირები, აქ წლების წინ იჩეხებოდა მანამ სანამ ეროვნული პარკი

დაარსდებოდა;

3. იმნათის ტორფნარის მიმდებარე სამხრეთი ტყეები. აქ საგრძნობლად დიდი

პოპულაციაა დიდხნოვანი ეგზემპლარები. თანასაზოგადოებაში ჰართვისის

მუხასთან;

4. კოლხეთის ეროვნული პარკის ადმინისტრაციის შენობიდან ჩრდილოეთით.

აქაც მოზრდილი პოპულაციაა, მიუხედავად დაცულის სტატუსის არქონისა

მაინც შემორჩენილია ლაფანი;

5. ჭურიის ტყეებში ლაფნის ყველაზე მცირე პოპულაციაა ;

6. მდ. ფიჩორის ჩრდილოეთი ტყეები ე. წ. „აჭარლების“ დასახლებასთან

არსებული ტყეები, სადაც ასევე შემორჩენილია ლაფნების კორომი და მისი

დიდტანოვანი მრავალწლიანი ეგზემპლარები.

სურ. 1. Pterocarya fraxinifolia სურ. 2. Quercus hartwissiana

ჰართვისის მუხის პოპულაციები კოლხეთში

1. ისპანი 2 ტორფნარის სამხრეთ-აღმოსავლეთი ტყე;

2. თიკერის ტყე;

3. მდ. ფიჩორის ნაპირები;

4. იმნათის ტორფნარის სამხრეთი ტყეები;

5. კოლხეთის უბანი სოფ. თორსასთან;

6. ანაკლიაში მდ. ცივის ნაპირები.

Page 167: Instruments for Modelling Black Sea River Basins: Research

167

რეკომენდაციები კონსერვაციისათვის აუცილებელია:

მიწის გამოყენების მენეჯმენტი -> ჰაბიტატის და ბუნებრივი გარემოს აღდგენა,

უბნების/ადგილების დაცვა: სახეობის მენეჯმენტი -> სახეობის აღდგენა; სახეობის

მენეჯმენტი -> ex-situ კონსერვაცია -> სახეობის გენის ბანკის შექმნა; განათლება და

გარემოსდაცვითი შეგნების ჩამოყალიბება -> განათლება & კომუნიკაცია; ფორმალური

განათლება; კანონი და პოლიტიკა -> პოლიტიკა და რეგულაცია.

კვლევების აუცილებლობა:

კვლევები -> საფრთხეები; კონსერვაციის აუცილებლობა -> სახეობის

შესწავლა/კონსერვაციის გეგმა; კონსერვაციის გეგმა -> არეალზე დაფუძნებული

მენეჯმენტის გეგმის შემუშავება; მონიტორინგი -> პოპულაციური რიცხოვნება;

მონიტორინგი -> ჰაბიტატის სერვისი.

ლიტერატურა Matchutadze, I. Goradze, I. Tsinaridze, M. Jakeli, E. “Inventory of height conservation value

forest in Adjara, 2010, 1st International Turk-Japan conference in Trabzon, vol. 1, pp. 33-65.

ცინარიძე, მ., მაღალკონსერვაციული ტყის კორომები აჭარაში, რუსთაველის

უნივერსიტეტის სტუდენტთა და ახალგაზრდა მეცნიერთა კონფერენცია

გარემოს დაცვის დღისადმი მიძღვნილი, აჭარა, მდგრადი განვითარება,

მომავალი. 2011. Matchutadze I., Kurkhuli T., Tsinaridze. M. “Why Kolkheti relict forest is so valuable and

significant”, 1st International Turk-Japan conference in Trabzon, vol. 2010. Matchutadze. I. Tsinaridze. M. Tsiklauri. X. IUCN Globally Critically Endangered Woody Plant

Species of Relict Forest of Kolkheti Lowland 2013. Matchutadze I., Bolkvadze B., Tsinaridze. M. Jakeli J., 2014, “Kolkheti refugee-Habitat and

species biodiversity (Georgia), World Biodiversity Congress, SriLanka.

Page 168: Instruments for Modelling Black Sea River Basins: Research
Page 169: Instruments for Modelling Black Sea River Basins: Research

 

 

 

Instruments for Modelling Black Sea River Basins: Research Proceedings for Guria Region of Georgia 

Integrated Land‐use Management Modelling of Black Sea Estuaries (ILMM‐BSE) is a project supported by the second call of the EU Joint Operational Programme "Black Sea Basin 2007 – 2013".  Partners of the project are:  Applicant    Bourgas Regional Tourism Association BRTA, Bulgaria  ENPI Partners    Bourgas Prof. Assen Zlatarov University BTU, Bulgaria       Ukrainian Marine Environment Protection Association UkrMEPA, Ukraine       International Association CIVITAS GEORGICA, Georgia   IPA Beneficiary   Hayrabolu Municipality HBM, Turkey  IPA Partners    Turkish Marine Environment Protection Association TURMEPA, Turkey       Namık Kemal University NKU, Turkey  The overall objective of the project is to develop, enhance, and evaluate, impact assessment and other management tools for sustainable land use of the watershed areas of coastal river basins and mouths.  The  specific  areas  covered  by  the  ILMM‐BSE  project  include  river  basins  of Ergene  in  Turkey;  Ropotamo  and  Veleka  in  Bulgaria;  estuaries  of  Danube, Dniester and Dnieper in Ukraine; and river basins of Guria Region in Georgia.  This  publication,  produced  by  the Georgian  Partner  International  Association Civitas Georgica,  collates  the  thematic  research material,  generated  through coordinated action together with Black Sea partners and Georgian stakeholders.