65
Cics 515 – Summer 2012 © Dr. Son Vuong 1 University of British Columbia CICS 515 (Part 2) CICS 515 (Part 2) Computer Networks Lecture 5b-c – IPv6 and Other Protocols Instructor: Dr. Son T. Vuong Email: [email protected] The World Connected

Instructor: Dr. Son T. Vuong Email: [email protected] The World Connected

  • Upload
    miriam

  • View
    62

  • Download
    5

Embed Size (px)

DESCRIPTION

University of British Columbia CICS 515 (Part 2) Computer Networks Lecture 5b-c – IPv6 and Other Protocols. Instructor: Dr. Son T. Vuong Email: [email protected] The World Connected. IPv6. Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation: - PowerPoint PPT Presentation

Citation preview

Page 1: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 1

University of British Columbia

CICS 515 (Part 2)CICS 515 (Part 2) Computer NetworksLecture 5b-c – IPv6 and Other Protocols

Instructor: Dr. Son T. VuongEmail: [email protected]

The World Connected

Page 2: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 2

IPv6 Initial motivation: 32-bit address space soon to

be completely allocated. Additional motivation:

header format helps speed processing/forwarding header changes to facilitate QoS

IPv6 datagram format: fixed-length 40 byte header no fragmentation specified in basic header

Page 3: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 3

IPv6 Header (Cont)Priority: identify priority among datagrams in flowFlow Label: identify datagrams in same “flow.” (concept of“flow” not well defined).Next header: identify upper layer protocol for data

Page 4: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 4

Other Changes from IPv4

Checksum: removed entirely to reduce processing time at each hop

Options: allowed, but outside of header, indicated by “Next Header” field

ICMPv6: new version of ICMP additional message types, e.g. “Packet Too Big” multicast group management functions

Page 5: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 5

Transition From IPv4 To IPv6

Not all routers can be upgraded simultaneous no “flag days” How will the network operate with mixed IPv4 and

IPv6 routers? Tunneling: IPv6 carried as payload in IPv4

datagram among IPv4 routers

Page 6: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 6

TunnelingA B E F

IPv6 IPv6 IPv6 IPv6

tunnelLogical view:

Physical view:A B E F

IPv6 IPv6 IPv6 IPv6

C D

IPv4 IPv4

Flow: XSrc: ADest: F

data

Flow: XSrc: ADest: F

data

Flow: XSrc: ADest: F

data

Src:BDest: E

Flow: XSrc: ADest: F

data

Src:BDest: E

A-to-B:IPv6

E-to-F:IPv6

B-to-C:IPv6 inside

IPv4

B-to-C:IPv6 inside

IPv4

Dual IPv6/IPv4 Router

Dual IPv6/IPv4 Router

Page 7: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 7

IPv6 – Peer Instruction – Question 5.2

IPv6 supports the following features:A. 128-bit IP address B. Auto-configuration (plug-and-play) (stateless)

as well as dynamic IP address via a DHCPv6 server (stateful) C. More options via extension headers including Jumbogram of greater than 64KB D. Efficient header processing E. All the above F. A, B and C

Page 8: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 8

IPv6 – Peer Instruction – Question 5.3

An IPv6 datagram is 80,000 bytes. What extension header must be used?

A. Destination option

B. Fragmentation

C. Authentication

D. Hop-by-hop

E. None of the above

Page 9: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 9

IPv6 – Peer Instruction – Question 5.4

The IPv6 jumbogram option gives rise to the following issues:

A. Fragmentation

B. 16-bit length of UDP

C. 16-bit MSS option of TCP

D. Checksum calculation

E. All of the above

F. B and C

Page 10: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 10

Ch 4: Network Layer and Routing The IP Protocol

IP Format, Addressing, fragmentation, Internet Control Protocols (ICMP)

Routing RIP (Routing Information Protocol) OSPF (Open Shortest Path First) The Interior Gateway Routing Protocol BGP – The Exterior Gateway Routing Protocol

IPv6 Internet Multicasting Mobile IP

Page 11: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 11

What’s next ?

IPv4, IPv6

Internet Control Message Protocol (ICMP) Address resolution (ARP) Getting (dynamic) addresses (DHCP) DNS

What have we covered?

Routing protocols (RIP, OSPF, BGP)

Page 12: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 12

University of British Columbia

CICS 515 (Part 2)CICS 515 (Part 2) Computer NetworksLecture 5c – ICMP, ARP, DHCP, DNS

Instructor: Dr. Son T. VuongEmail: [email protected]

The World Connected

Page 13: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 13

Lect. 5c – Other IP protocols

ICMP, ARP, DHCP (Sect. 4.4.3, 5.4) DNS (Sect. 2.5 )

Internet Control Message Protocol (ICMP) (Sect 4.4.3)

Address Resolution (ARP) (Sect 5.4)

Dynamic IP address assignment (DHCP) (Sect 5.4)

Domain Name System (DNS) (Sect2.5)

Page 14: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 14

ICMP: Internet Control Message ProtocolICMP: Internet Control Message ProtocolRFC 792RFC 792 Used by hosts & routers to communicate

network-level information error reporting: unreachable host, network, port,

protocol echo request/reply (used by ping)

Network-layer “above” IP: ICMP msgs carried in IP datagrams

ICMP message: type (1B), code (1B), checksum (2B) plus part of IP datagram causing error (header + first 8 bytes of data)

Page 15: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 15

                                                                                                                                                                                       

ICMP datagram structure

ICMP msgs carried in IP datagrams ICMP data contains part of IP datagram

causing error (IP header + first 8 bytes of data)

Page 16: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 16

ICMP: Internet Control Message ProtocolType Code description0 0 echo reply (ping)3 0 dest. network unreachable3 1 dest host unreachable3 2 dest protocol unreachable3 3 dest port unreachable3 6 dest network unknown3 7 dest host unknown4 0 source quench (congestion control - not

used)5 0-3 redirect a host to a better router8 0 echo request (ping)9 0 route advertisement10 0 router discovery (solicitation)11 0 TTL expired12 0 bad IP header

Page 17: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 17

“Real” Internet delays and routes What do “real” Internet delay & loss look like? traceroute (tracert) program: provides delay

measurement from source to router along end-end Internet path towards destination. For all i: sends three UDP packets that will reach router i on

path towards destination router i will return packets to sender sender times interval between transmission and

reply.

3 probes

3 probes

3 probes

Page 18: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 18

Traceroute and ICMP Source sends series of UDP

segments to dest First has TTL =1 Second has TTL=2, etc. Unlikely port number

When nth datagram arrives to nth router: Router discards datagram And sends to source an ICMP

message (type 11, code 0) Message includes name of router&

IP address

When ICMP message arrives, source calculates RTT

Traceroute does this 3 times

Stopping criterion UDP segment eventually arrives

at destination host Destination returns ICMP “port

unreachable” packet (type 3, code 3)

When source gets this ICMP, stops.

Page 19: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 19

Address Resolution Protocol (ARP)Address Resolution Protocol (ARP)

How do we convert the IP address of each node (either the destination node, or a router) into the address on the local network? E.g. IP -> Ethernet.

Each machine keeps a mapping of IP address to physical addresses in a cache.

E.g. cascade.cs.ubc.ca 08:00:20:79:70:f5dragon.cs.ubc.ca 08:00:09:27:b4:73

etc… What if the mapping isn’t known, or has expired?

Send an ARP (Address Resolution Protocol) broadcast message over the network.

Page 20: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 20

ARP Packet Format

TargetHardwareAddr (bytes 2-5)

TargetProtocolAddr (bytes 0-3)

SourceProtocolAddr (bytes 2-3)

Hardware type = 1 ProtocolType = 0x0800

SourceHardwareAddr (bytes 4-5)

TargetHardwareAddr (bytes 0-1)

SourceProtocolAddr (bytes 0-1)

HLen = 48 PLen = 32 Operation

SourceHardwareAddr (bytes 0-3)

0 8 16 31

Page 21: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 21

ARP Fields Request format

HardwareType - Type of physical network (e.g., Ethernet)

ProtocolType - Type of higher layer protocol (e.g., IP)

HLEN & PLEN - Length of physical and protocol addresses (measured in bits)

Operation - Request for an address, or response to a request.

Source/Target Physical/Protocol addresses

Page 22: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 22

ARP Comments An ARP packet sits at the same level in the

protocol graph as an IP packet. However ARP service is used by IP; thus ARP can also be viewed as a sublayer below IP.

ARP table entries timeout in about 10 minutes

Update the ARP table with information about the source when you are the target. Hence, both source/target physical/protocol addresses are in the packet.

Page 23: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 23

How does a host get an IP address?

Fixed – assigned Dynamic – changeable: via DHCP why?

Dynamic Host Configuration Protocol Dynamic Host Configuration Protocol (DHCP)(DHCP)

Page 24: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 24

Dynamic Host Configuration Protocol (DHCP)

DHCP allows config info (IP address etc) stored in DHCP server to be retrieved automatically by each host when booted or connected to network (via broadcast DHCPDiscover message)

that is, special IP address 255.255.255.255 ignored by everyone except the DHCP server

Page 25: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 25

DHCP (cont’d)

DHCP also allows dynamic assignment of IP addresses to hosts (DHCP server maintains a pool of available IP addresses to lease to host and host need to renew lease periodically).

It is not desirable to have a DHCP server on every network – instead, uses a relay agent for each network.

Relay agent unicasts DHCP request to server

Page 26: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 26

DHCP with relay agent

DHCP

relay

DHCP

serverOther networks

Unicast to server

Broadcast

Host

Page 27: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 27

DHCP Packet Format

DHCP is derived from an earlier protocol called BOOTP

Operation HType HLen Hops

Transaction ID (Xid)

Client IP addr

Your IP addr (yiaddr)Server IP addr

Gateway IP addr

Client hardware addr (chaddr) (16 bytes)

Server name (64 bytes)

file (128 bytes)

options

No. of secs Flags/unused

Page 28: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 28

DHCP (cont’d)

Sent using UDP Client puts hardware address in chaddr Server replies with IP address in yiaddr (and

other config info, e.g. gateway addr, server IP address, etc)

Types of DHCP packets (spec’d as options): Discover, Offer, Request, Decline, Ack,

Nack, Release Scalability/manageability -- recurring theme

(via relay/proxy)

Page 29: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 29

DHCP Scenario DHCP Client DHCP Server

Discover

Offer

Request (or Decline)

Ack (or Nack)

Request

Ack (or Nack)

Release

. . .. . .

Page 30: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 30

Layering Relationships between ICMP, ARP, DHCP and IP, UDP

ICMP/IP IP calls ARP/Link(Ethernet) DHCP(BOOTP) / UDP(67/68) (for simple

configinfo)

DHCP(BOOTP) / TFTP/UDP(69) (to get config file)

Page 31: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 31

DNS: Domain Name System

Page 32: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 32

Chapter 2: Application layer 2.1 Principles of network applications 2.2 Web and HTTP 2.3 FTP 2.4 Electronic Mail

SMTP, POP3, IMAP 2.5 DNS 2.6 P2P file sharing 2.7 Socket programming with TCP 2.8 Socket programming with UDP 2.9 Building a Web server

Page 33: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 33

Domain Name System (DNS)Domain Name System (DNS) OverviewOverview What do names do?

identify objects help locate objects define membership in a group specify a role convey knowledge of a secret

Name space defines set of possible names consists of a set of name to value bindings

Page 34: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 34

Properties

Names versus addresses Location transparent versus location-

dependent Flat versus hierarchical Global versus local Absolute versus relative By architecture versus by convention Unique versus ambiguous

Page 35: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 35

Examples

Hostscheltenham.cs.princeton.edu 192.12.69.17

192.12.69.17 80:23:A8:33:5B:9F Files

/usr/llp/tmp/foo (server, fileid)

Users Larry Peterson [email protected]

Page 36: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 36

Summary of “Naming” or identification

Domain name: a name that makes sense to a human -- e.g. “cascade.cs.ubc.ca”

IP address: an identifier that makes sense to hosts and routers -- e.g. “142.103.7.7”

Physical address: an identifier that makes sense to the interface card -- e.g. “8:0:2b:e4:b1:2”

Page 37: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 37

DNS: Domain Name System

People: many identifiers: SSN, name, passport #

Internet hosts, routers: IP address (32 bit) - used

for addressing datagrams “name”, e.g.,

www.yahoo.com - used by humans

Q: map between IP addresses and name ?

Domain Name System: distributed database

implemented in hierarchy of many name servers

application-layer protocol host, routers, name servers to communicate to resolve names (address/name translation) note: core Internet function,

implemented as application-layer protocol

complexity at network’s “edge”

Page 38: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 38

DNS: Domain Name System

Why not centralize DNS? single point of failure traffic volume distant centralized database Maintenance doesn’t scale!

DNS services Hostname to IP address

translation Host aliasing

Canonical and alias names

Mail server aliasing Load distribution

Replicated Web servers: set of IP addresses for one canonical name

Page 39: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 39

Examples (cont) Mailboxes

Servicesnearby ps printer with short queue and 2MB

Nameserver

Mailprogram

User

TCP

IP

2cs.ubc.ca

142.103.7.513

vuong @ cs.ubc.ca1

142.103.7.51 4

142.103.7.51 5

Page 40: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 40

Domain Naming System

Hierarchy

Namechinstrap.cs.princeton.edu

edu com

princeton … mit

cs ee

ux01 ux04

physics

cisco … yahoo nasa … nsf arpa … navy acm … ieee

gov mil org net uk fr

Page 41: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 41

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.eduDNS servers

umass.eduDNS servers

yahoo.comDNS servers

amazon.comDNS servers

pbs.orgDNS servers

Distributed, Hierarchical Database

Client wants IP for www.amazon.com; 1st approx: Client queries a root server to find com DNS server Client queries com DNS server to get amazon.com DNS

server Client queries amazon.com DNS server to get IP address

for www.amazon.com

Page 42: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 42

Name Servers Partition hierarchy into zones

edu com

princeton … mit

cs ee

ux01 ux04

physics

cisco … yahoo nasa … nsf arpa … navy acm … ieee

gov mil org net uk fr

Rootname server

UBCname server

Cisconame server

CSname server

ECEname server

Each zone corresponds to an admin authority (implemented by two or more name servers for redundancy)

Root name serversTop Level Domain (TLD) Servers

Authoritative Servers

Local Name Servers (LNS)

Page 43: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 43

DNS: Root name servers contacted by local name server that can not resolve name root name server:

contacts authoritative name server if name mapping not known gets mapping returns mapping to local name server

13 root name servers worldwide

b USC-ISI Marina del Rey, CAl ICANN Los Angeles, CA

e NASA Mt View, CAf Internet Software C. Palo Alto, CA (and 17 other locations)

i Autonomica, Stockholm (plus 3 other locations)

k RIPE London (also Amsterdam, Frankfurt)

m WIDE Tokyo

a Verisign, Dulles, VAc Cogent, Herndon, VA (also Los Angeles)d U Maryland College Park, MDg US DoD Vienna, VAh ARL Aberdeen, MDj Verisign, ( 11 locations)

Page 44: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 44

TLD and Authoritative Servers

Top-level domain (TLD) servers: responsible for com, org, net, edu, etc, and all top-level country domains uk, fr, ca, jp. Verisign controls .com and .net TLDs

Many companies act as intermediaries Educause for edu TLD

Authoritative DNS servers: organization’s DNS servers, providing authoritative hostname to IP mappings for organization’s servers (e.g., Web and mail). Can be maintained by organization or service provider

Page 45: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 45

Local Name Server

Does not strictly belong to hierarchy Each ISP (residential ISP, company,

university) has one. Also called “default name server”

When a host makes a DNS query, query is sent to its local DNS server Acts as a proxy, forwards query into

hierarchy.

Page 46: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 46

requesting hostcis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS serverdns.poly.edu

1

23

4

5

6

authoritative DNS serverdns.cs.umass.edu

78

TLD DNS server

Example: Iterative queries Host at cis.poly.edu wants IP

address for gaia.cs.umass.edu

iterative query:contacted server replies with name of server to contact“I don’t know this name, but ask this server”

Page 47: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 47

requesting hostcis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS serverdns.poly.edu

1

2

45

6

authoritative DNS serverdns.cs.umass.edu

7

8

TLD DNS server

3

Recursive queries

recursive query: puts burden of name

resolution on contacted name server

heavy load?

Page 48: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 48

DNS: caching and updating records

once (any) name server learns mapping, it caches mapping cache entries timeout (disappear) after some time TLD servers typically cached in local name servers

Thus root name servers not often visited

update/notify mechanisms under design by IETF RFC 2136 http://www.ietf.org/html.charters/dnsind-charter.html

Page 49: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 49

DNS records

DNS: distributed db storing resource records (RR)

Type = NS name is domain (e.g. foo.com) value is IP address of

authoritative name server for this domain

RR format: (name, value, type, ttl)

Type = A name is hostname value is IP address

Type = CNAME name is alias name for some

“cannonical” (the real) name

www.ibm.com is really servereast.backup2.ibm.com value is cannonical name

Type = MX value is name of

mailserver associated with name

Page 50: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 50

Example: Root Server

(princeton.edu, cit.princeton.edu, NS, IN) [in the Princeton domain](cit.princeton.edu, 128.196.128.233, A, IN)

(cisco.com, thumper.cisco.com, NS, IN) [in the Cisco domain](thumper.cisco.com, 128.96.32.20, A, IN)

Page 51: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 51

Further example: Princeton Server [within Princeton domain]

(cs.princeton.edu, optima.cs.princeton.edu, NS, IN)

[name server]

(optima.cs.princeton.edu, 192.12.69.5, A, IN)

(ee.princeton.edu, helios.ee.princeton.edu, NS, IN)

[another name server]

(helios.ee.princeton.edu, 128.196.28.166, A, IN)

(jupiter.physics.princeton.edu, 128.196.4.1, A, IN)

(saturn.physics.princeton.edu, 128.196.4.2, A, IN)

(mars.physics.princeton.edu, 128.196.4.3, A, IN)

(venus.physics.princeton.edu, 128.196.4.4, A, IN)

Page 52: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 52

Further example: CS Server [within the CS domain in the Princeton domain]

(cs.princeton.edu, optima.cs.princeton.edu, MX, IN)

[mail server]

(cheltenham.cs.princeton.edu, 192.12.69.60, A, IN)

(che.cs.princeton.edu, cheltenham.cs.princeton.edu, CNAME, IN) [alias/actual]

(optima.cs.princeton.edu, 192.12.69.5, A, IN)

(opt.cs.princeton.edu, optima.cs.princeton.edu, CNAME, IN) [another alias]

(baskerville.cs.princeton.edu, 192.12.69.35, A, IN)

(bas.cs.princeton.edu, baskerville.cs.princeton.edu, CNAME, IN)

Page 53: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 53

DNS protocol, messagesDNS protocol : query and reply messages, both with same message format

msg header identification: 16-bit id for

query, reply to query uses same id

flags: query or reply recursion desired recursion available reply is authoritative

Page 54: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 54

DNS protocol, messages

Name, type fields for a query

RRs in reponseto query

records forauthoritative servers

additional “helpful”info that may be used

Page 55: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 55

Inserting records into DNS

Example: just created startup “Network Utopia” Register name networkuptopia.com at a registrar (e.g.,

Network Solutions) Need to provide registrar with names and IP addresses of

your authoritative name server (primary and secondary) Registrar inserts two RRs into the com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)(dns1.networkutopia.com, 212.212.212.1, A)

Put in authoritative server Type A record for www.networkuptopia.com and Type NS record for networkutopia.com

How do people get the IP address of your Web site?

Page 56: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 56

Dig www.telus.ca;; QUESTION SECTION:;www.telus.ca. IN A;; ANSWER SECTION:www.telus.ca. 86400 IN CNAME www.telus.com.www.telus.com. 600 IN A 205.206.163.16;; AUTHORITY SECTION:telus.com. 600 IN NS dns1.cidc.telus.com.telus.com. 600 IN NS dns2.cidc.telus.com.;; ADDITIONAL SECTION:dns1.cidc.telus.com. 59695 IN A 216.123.224.131dns2.cidc.telus.com. 59695 IN A 66.203.199.203

DNS DDoS, Poisoning and Hijacking

Page 57: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 57

Layering Relationships between ICMP, ARP, DHCP, DNS and IP, UDP

ICMP/IP, ICMPv6/IPv6 IP calls ARP/Link(Ethernet) DHCP(BOOTP) / UDP(68) (for simple configinfo)

DHCP(BOOTP) / TFTP/UDP(69) (to get config file) DNS / UDP(53)

Page 58: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 58

What’s next ?

IPv4, IPv6 Internet Control Message Protocol (ICMP) Address resolution (ARP) and getting

(dynamic) addresses (DHCP)

What have we covered?

Routing protocols (RIP, OSPF, BGP)

Page 59: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 59

IPv6 Initial motivation: 32-bit address space soon to

be completely allocated. Additional motivation:

header format helps speed processing/forwarding header changes to facilitate QoS

IPv6 datagram format: fixed-length 40 byte header no fragmentation specified in basic header

Page 60: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 60

IPv6 Header (Cont)Priority: identify priority among datagrams in flowFlow Label: identify datagrams in same “flow.” (concept of“flow” not well defined).Next header: identify upper layer protocol for data

Page 61: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 61

Other Changes from IPv4

Checksum: removed entirely to reduce processing time at each hop

Options: allowed, but outside of header, indicated by “Next Header” field

ICMPv6: new version of ICMP additional message types, e.g. “Packet Too Big” multicast group management functions

Page 62: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 62

Transition From IPv4 To IPv6

Not all routers can be upgraded simultaneous no “flag days” How will the network operate with mixed IPv4 and

IPv6 routers? Tunneling: IPv6 carried as payload in IPv4

datagram among IPv4 routers

Page 63: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 63

TunnelingA B E F

IPv6 IPv6 IPv6 IPv6

tunnelLogical view:

Physical view:A B E F

IPv6 IPv6 IPv6 IPv6

C D

IPv4 IPv4

Flow: XSrc: ADest: F

data

Flow: XSrc: ADest: F

data

Flow: XSrc: ADest: F

data

Src:BDest: E

Flow: XSrc: ADest: F

data

Src:BDest: E

A-to-B:IPv6

E-to-F:IPv6

B-to-C:IPv6 inside

IPv4

B-to-C:IPv6 inside

IPv4

Dual IPv6/IPv4 Router

Dual IPv6/IPv4 Router

Page 64: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 64

Ch 4: Network Layer and Routing The IP Protocol

IP Format, Addressing, fragmentation, Internet Control Protocols (ICMP)

Routing RIP (Routing Information Protocol) OSPF (Open Shortest Path First) The Interior Gateway Routing Protocol BGP – The Exterior Gateway Routing Protocol

IPv6 Internet Multicasting Mobile IP

Page 65: Instructor: Dr. Son T. Vuong Email: vuong@cs.ubc The World Connected

Cics 515 – Summer 2012 © Dr. Son Vuong 65

What’s next ?

IPv4, IPv6 Internet Control Message Protocol (ICMP) Address resolution (ARP) and getting

(dynamic) addresses (DHCP) DNS

What have we covered?

Routing protocols (RIP, OSPF, BGP)