16
IG1552EW 01/10 Table of Contents Preface 1 Parallel vs Series Piping 1 Summary 1 Closed Loop Sizing Summary 2 Pressure Drop Calculation Instructions 3-5 Residential Pressure Drop Calculation Worksheet 6 Other Pump Performance Curves 7 Unit Pressure Drop Tables 7-9 Pipe Pressure Drop Tables 10-15 Equivalent Length of Fittings 16 Fluid Performance Comparison 16 Preface WaterFurnace’s closed ground loop heat exchangers (GLHE) systems provide an excellent return on investment when properly installed A site survey should be conducted to ensure that conditions are favorable for a closed loop installation Some GLHE installation considerations are: Adequate space must be available for the GLHE installation Earth conditions to four-six foot depth must be such that trenching can easily be done for horizontal installations Soil type and moisture content must be favorable for efficient heat transfer Horizontal closed loops must be properly backfilled to ensure good heat transfer Trenches deeper than 5 feet must be shored for safety of personnel On vertical earth loops a survey should be done to determine geological formation and estimated drilling costs Vertical closed loops must be properly grouted, or sealed, to prevent cross contamination of aquifers and to ensure good heat transfer NOTE: Horizontal earth loop backfilling tends to compact over a period of several months, and the performance improves as this compaction occurs Parallel vs. Series Piping Parallel piping systems, when compared to series piping systems, provide these important features in GLHE systems: Low pressure drop, thus lower pumping costs Lower cost of pipe (generally) 3/4” IPS high density polyethylene is used for the circuits This size is generally substantially less expensive than the larger pipe that would be required for a series loop of equal pressure drop Good heat transfer vs surface area It is for these reasons that WaterFurnace generally recommends parallel piping systems for GLHE systems where equipment tonnage exceeds 2 tons Summary This manual is a guide to aid in calculating loop pressure drop and determining pump size(s) needed to deliver the best performance at the lowest power consumption It should be noted, however, that a loop could be designed (which would be completely adequate from a thermal standpoint) that would function with a high pressure drop However, this system would require a larger pump consuming higher pumping watts resulting in higher operating costs This is not a recommended design The pressure drop calculation method contained herein can be used on horizontal, vertical, pond/ lake, and horizontal/vertical hybrid loops for both series and parallel piping systems Instruction Guide: Residential Earth Loop Pressure Drop Calculation and Pump Sizing

Instruction Guide - WaterFurnace

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Instruction Guide - WaterFurnace

Instruction Guide: Residential Earth Loop Pressure Drop Calculation and Pump Sizing

1IG1552EW 01/10

Table of Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Parallel vs . Series Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Closed Loop Sizing Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Pressure Drop Calculation Instructions . . . . . . . . . . . . . . . . 3-5

Residential Pressure Drop Calculation Worksheet . . . . . . . . 6

Other Pump Performance Curves . . . . . . . . . . . . . . . . . . . . . . 7

Unit Pressure Drop Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9

Pipe Pressure Drop Tables . . . . . . . . . . . . . . . . . . . . . . . . . . 10-15

Equivalent Length of Fittings . . . . . . . . . . . . . . . . . . . . . . . . . .16

Fluid Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . .16

PrefaceWaterFurnace’s closed ground loop heat exchangers (GLHE) systems provide an excellent return on investment when

properly installed . A site survey should be conducted to ensure that conditions are favorable for a closed loop installation .

Some GLHE installation considerations are:

Adequate space must be available for the GLHE installation .•

Earth conditions to four-six foot depth must be such that trenching can easily be done for horizontal installations .•

Soil type and moisture content must be favorable for efficient heat transfer .•

Horizontal closed loops must be properly backfilled to ensure good heat transfer .•

Trenches deeper than 5 feet must be shored for safety of personnel .•

On vertical earth loops a survey should be done to determine geological formation and estimated drilling costs .•

Vertical closed loops must be properly grouted, or sealed, to prevent cross contamination of aquifers and to ensure •

good heat transfer .

NOTE: Horizontal earth loop backfilling tends to compact over a period of several months, and the performance improves

as this compaction occurs .

Parallel vs. Series PipingParallel piping systems, when compared to series piping systems, provide these important features in GLHE systems:

Low pressure drop, thus lower pumping costs•

Lower cost of pipe (generally) 3/4” IPS high density polyethylene is used for the circuits . This size is generally •

substantially less expensive than the larger pipe that would be required for a series loop of equal pressure drop .

Good heat transfer vs . surface area•

It is for these reasons that WaterFurnace generally recommends parallel piping systems for GLHE systems where

equipment tonnage exceeds 2 tons .

SummaryThis manual is a guide to aid in calculating loop pressure drop and determining pump size(s) needed to deliver the

best performance at the lowest power consumption . It should be noted, however, that a loop could be designed (which

would be completely adequate from a thermal standpoint) that would function with a high pressure drop . However, this

system would require a larger pump consuming higher pumping watts resulting in higher operating costs . This is not a

recommended design . The pressure drop calculation method contained herein can be used on horizontal, vertical, pond/

lake, and horizontal/vertical hybrid loops for both series and parallel piping systems .

Instruction Guide:Residential Earth Loop Pressure Drop Calculation

and Pump Sizing

Page 2: Instruction Guide - WaterFurnace

Instruction Guide: Residential Earth Loop Pressure Drop Calculation and Pump Sizing

2IG1552EW 01/10

Figure 1: Vertical - Reverse Return 3 Ton Loop

90 Elbow(Typical)

Tee(Typical)

Loop Out

Loop In

Unit

Hose Kitor

Inside Piping

Recommended BuildingPenetration

PVC PipeInside

PE Pipe

Fernco RubberAdaptor

Wall

Wall

FlowCenter

FCI

Building Penetration -Watertight and Sealed

3

Inside Supplyand Return

4

Outside sypplyand return

Fittings

CircuitPiping

(RunoutPiping)

5

6

Flow Center With1 or 2 Pumps

11

Outside

Inside

Closed Loop Sizing SummaryA) One ton of heating / cooling = 12,000 BTU . (One BTU is the amount of heat required to raise one pound of water 1

degree Fahrenheit) .

B) 3 gpm per ton of WFI equipment recommended flow rate for closed loops, 2 .25 gpm per ton minimum flow rate for

closed loops .

C) 1 circuit per ton (with pressure drop exceptions)

D) Total gpm = Flow through each circuit

Number of Circuits

E) 2 feet of head for each 10 fittings (up to 7 tons) - Over 7 tons, calculate the equivalent pipe lengths and add to sup

ply/return and circuit piping .

F) A pressure drop calculation must be performed to determine the number of pumps .

G) All circuits should be equal in length (maximum 10% difference) and manifold headers should be piped in reverse

return to ensure equal flow through circuits .

Multiple units can be supplied using one pumping system if the total flow rate and the total system pressure drop can

be met by the pump(s) . Calculate ALL WaterFurnace unit heat exchanger pressure drops (resistance to flow) at their

respective flow rates (they should be piped in parallel single molecule of water will only flow through one of them) . Flow

rate for units piped in parallel should be added together while resistance to flow/pressure drop that the pump is working to

overcome is the unit with the largest pressure drop .

Page 3: Instruction Guide - WaterFurnace

Instruction Guide: Residential Earth Loop Pressure Drop Calculation and Pump Sizing

3IG1552EW 01/10

Pressure Drop Calculation Instructions1) Fill in ALL BLANKS in information block at top of Pressure Drop Calculation Worksheet.

2) Unit Pressure DropA) Enter unit model number in 1a .B) Find unit on Residential Unit Pressure Drop Tables .

Inside Supply3

Pipe Size

a. WF Unit #1 __________@ ___ gpm _________ft. of hd. x_________temp. corr. factor =___________ft. of hd.

b. Hose Kit ____________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.

c. Inside Piping _________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.(Flow Center to Unit) Pipe Size

TOTAL Unit #1

a. WF Unit #2 __________@ ___ gpm _________ft. of hd. x_________temp. corr. factor =___________ft. of hd.

b. Hose Kit ____________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.

c. Inside Piping _________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.(Flow Center to Unit) Pipe Size

TOTAL Unit #2 ____________ft. of hd.

____________ft. of hd.Unit TOTAL (Largest of Total Unit #1 and Unit #2)

1

2

Job/Client Name __________________________________ GSC Technician __________________________________

Loop Description __________________________________________________________________________________

Total Trench/Bore ____________________________________________________ Number of Circuits ____________

Antifreeze __________________________________________________________ Minimum Loop Temperature _____

Residential Pressure Drop Calculation Worksheet

The purpose of the following formulasis to generate 3 points on the systemperformance curve.

Point 1Total gpm = 3 gpm per ton = _______Total pd = pd of the system = _______

Point 2Total gpm 2 = .667 x gpm = _______Total pd 2 = .5 x pd = _______

Point 3 Total gpm 3 = 1.33 x gpm = _______Total pd 3 = 2 x pd = _______

Point 1 is generated from the designflow need and the pressure drop (pd)associated with this particular pipingsystem. Points 2 and 3 are generatedfrom point 1.

TOTAL SYSTEM PRESSURE DROP Total gpm= ______________ Total pressure drop= _________ft. of hd.

Fittings (Add 2 ft. of hd. for every 10 fittings) ___________ft. of hd.6

Circuit Piping __________@ ____gpm _________ft. x ___________ft. of hd./100 ft. =______________ft. of hd.Pipe Size

5

Outside Supply& Return Piping _________@ ____gpm _________ft. x ____________ft. of hd./100 ft. =____________ft. of hd.

Return Piping(to FC) _________@ ___gpm ________ft. x __________ft. of hd./100 ft. =____________ft. of hd.

4Pipe Size

NOTE: If using pumps other than shown, refer to the manufacturer’s performance data for those pumps.

Grundfos Pump Curve - UP26 - 99

50

60

70

UP26-99 SINGLE

UP26-99 DOUBLE

0

10

20

30

40

0 5 10 15 20 25 30 35

HEAD(FEET)

FLOW (GPM)

Model Number

Flow Rate (gpm) EWT (Deg F) Factor

Pressure Drop (ft. of hd.) 1.10

1 Pressure Drop (psi)

70

50

30

0.90

90 0.88

110 0.83

NS030 NS036 Pressure Drop Correction Factor

4.0 6.0 8.0

3.2 6.6 11.1

1.4 2.8 4.8

5.0 7.0 9.0

2.2 4.5 7.5

1.0 1.9 3.3

1st column for open loop (1 .5 gpm/ton if EWT > 50°F; 2 gpm/ton if EWT < 50°F)

2nd column minimum forclosed loop (2 .25 gpm/ton)

Multiply this factor times the unit pressure drop if not at 50°F (10°C)

3rd column Recommended for closed loop (3 gpm/ton)

Inside Supply3

Pipe Size

a. WF Unit #1 __________@ ___ gpm _________ft. of hd. x_________temp. corr. factor =___________ft. of hd.

b. Hose Kit ____________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.

c. Inside Piping _________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.(Flow Center to Unit) Pipe Size

TOTAL Unit #1

a. WF Unit #2 __________@ ___ gpm _________ft. of hd. x_________temp. corr. factor =___________ft. of hd.

b. Hose Kit ____________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.

c. Inside Piping _________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.(Flow Center to Unit) Pipe Size

TOTAL Unit #2 ____________ft. of hd.

____________ft. of hd.Unit TOTAL (Largest of Total Unit #1 and Unit #2)

1

2

Job/Client Name __________________________________ GSC Technician __________________________________

Loop Description __________________________________________________________________________________

Total Trench/Bore ____________________________________________________ Number of Circuits ____________

Antifreeze __________________________________________________________ Minimum Loop Temperature _____

Residential Pressure Drop Calculation Worksheet

The purpose of the following formulasis to generate 3 points on the systemperformance curve.

Point 1Total gpm = 3 gpm per ton = _______Total pd = pd of the system = _______

Point 2Total gpm 2 = .667 x gpm = _______Total pd 2 = .5 x pd = _______

Point 3 Total gpm 3 = 1.33 x gpm = _______Total pd 3 = 2 x pd = _______

Point 1 is generated from the designflow need and the pressure drop (pd)associated with this particular pipingsystem. Points 2 and 3 are generatedfrom point 1.

TOTAL SYSTEM PRESSURE DROP Total gpm= ______________ Total pressure drop= _________ft. of hd.

Fittings (Add 2 ft. of hd. for every 10 fittings) ___________ft. of hd.6

Circuit Piping __________@ ____gpm _________ft. x ___________ft. of hd./100 ft. =______________ft. of hd.Pipe Size

5

Outside Supply& Return Piping _________@ ____gpm _________ft. x ____________ft. of hd./100 ft. =____________ft. of hd.

Return Piping(to FC) _________@ ___gpm ________ft. x __________ft. of hd./100 ft. =____________ft. of hd.

4Pipe Size

NOTE: If using pumps other than shown, refer to the manufacturer’s performance data for those pumps.

Grundfos Pump Curve - UP26 - 99

50

60

70

UP26-99 SINGLE

UP26-99 DOUBLE

0

10

20

30

40

0 5 10 15 20 25 30 35

HEAD(FEET)

FLOW (GPM)

C) Enter Flow rate (gpm), and Pressure Drop (feet of head) from closed loop (optimum) column (recommended flow rate for closed loop, 3 gpm/ton) .

D) Enter Pressure Drop Correction Factor for proper entering water temperature (use 30°F for closed loops), and multiply by “feet of head” for that unit . Enter this number at far right, this is the “feet of head for Unit #1”, without rubber hose .

Page 4: Instruction Guide - WaterFurnace

Instruction Guide: Residential Earth Loop Pressure Drop Calculation and Pump Sizing

4IG1552EW 01/10

Pressure Drop Calculation Instructions cont.3) Rubber Hose Pressure Drop

A) Use 1” Rubber Hose Chart for equivalent pipe size .

B) Enter total system gpm .

C) Enter total feet in rubber hose . Rubber hose has high resistance to flow, maximum length 10’ on supply and 10’

on return, total maximum is 20’ .

D) Enter “feet of head/100 feet” from chart in this manual .

E) Divide total feet of rubber hose by 100, then multiply that number by “feet of head/100 feet” . Enter this

number at far right . This is “feet of head” for rubber hose .

F) Add the “feet of head” of the unit to the “feet of head” of the rubber hose . This is the “Total Unit #1” feet of

head .

4) Inside Supply and Return Pressure Drop

A) Enter size of piping .

B) Enter total system gpm (Total of the gpm required by each unit) .

C) Enter total footage inside supply and return (wall penetration to flow center pump(s), both directions) .

D) Enter “feet of head/100 feet” from chart in this manual .

E) Divide total footage by 100, then multiply that number by “feet of head/100 feet” . Enter this number at far

right . This is the “feet of head" for the inside supply and return . (If total footage = 100 feet, multiply “feet of

head/100 feet” by 1 . If the total footage = 230 feet, multiply “feet of head/100 feet” by 2 .3 .)

5) Outside Supply and Return Pressure DropA) Enter size of piping .

B) Enter total system gpm (Total of the gpm required by each unit) .

C) Enter total footage of outside supply and return (wall penetration to manifold, both directions) .

D) Enter “feet of head/100 feet” from chart in this manual .

E) Divide total footage by 100, then multiply that number by “feet of head/100 feet” . Enter this number at far

right . This is the “feet of head” for the outside supply and return . (If total footage = 100 feet, multiply “feet of

head/100 feet” by 1 . If total footage = 230 feet, multiply “feet of head/100 feet” by 2 .3 .)

Inside Supply3

Pipe Size

a. WF Unit #1 __________@ ___ gpm _________ft. of hd. x_________temp. corr. factor =___________ft. of hd.

b. Hose Kit ____________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.

c. Inside Piping _________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.(Flow Center to Unit) Pipe Size

TOTAL Unit #1

a. WF Unit #2 __________@ ___ gpm _________ft. of hd. x_________temp. corr. factor =___________ft. of hd.

b. Hose Kit ____________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.

c. Inside Piping _________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.(Flow Center to Unit) Pipe Size

TOTAL Unit #2 ____________ft. of hd.

____________ft. of hd.Unit TOTAL (Largest of Total Unit #1 and Unit #2)

1

2

Job/Client Name __________________________________ GSC Technician __________________________________

Loop Description __________________________________________________________________________________

Total Trench/Bore ____________________________________________________ Number of Circuits ____________

Antifreeze __________________________________________________________ Minimum Loop Temperature _____

Residential Pressure Drop Calculation Worksheet

The purpose of the following formulasis to generate 3 points on the systemperformance curve.

Point 1Total gpm = 3 gpm per ton = _______Total pd = pd of the system = _______

Point 2Total gpm 2 = .667 x gpm = _______Total pd 2 = .5 x pd = _______

Point 3 Total gpm 3 = 1.33 x gpm = _______Total pd 3 = 2 x pd = _______

Point 1 is generated from the designflow need and the pressure drop (pd)associated with this particular pipingsystem. Points 2 and 3 are generatedfrom point 1.

TOTAL SYSTEM PRESSURE DROP Total gpm= ______________ Total pressure drop= _________ft. of hd.

Fittings (Add 2 ft. of hd. for every 10 fittings) ___________ft. of hd.6

Circuit Piping __________@ ____gpm _________ft. x ___________ft. of hd./100 ft. =______________ft. of hd.Pipe Size

5

Outside Supply& Return Piping _________@ ____gpm _________ft. x ____________ft. of hd./100 ft. =____________ft. of hd.

Return Piping(to FC) _________@ ___gpm ________ft. x __________ft. of hd./100 ft. =____________ft. of hd.

4Pipe Size

NOTE: If using pumps other than shown, refer to the manufacturer’s performance data for those pumps.

Grundfos Pump Curve - UP26 - 99

50

60

70

UP26-99 SINGLE

UP26-99 DOUBLE

0

10

20

30

40

0 5 10 15 20 25 30 35

HEAD(FEET)

FLOW (GPM)

Inside Supply3

Pipe Size

a. WF Unit #1 __________@ ___ gpm _________ft. of hd. x_________temp. corr. factor =___________ft. of hd.

b. Hose Kit ____________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.

c. Inside Piping _________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.(Flow Center to Unit) Pipe Size

TOTAL Unit #1

a. WF Unit #2 __________@ ___ gpm _________ft. of hd. x_________temp. corr. factor =___________ft. of hd.

b. Hose Kit ____________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.

c. Inside Piping _________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.(Flow Center to Unit) Pipe Size

TOTAL Unit #2 ____________ft. of hd.

____________ft. of hd.Unit TOTAL (Largest of Total Unit #1 and Unit #2)

1

2

Job/Client Name __________________________________ GSC Technician __________________________________

Loop Description __________________________________________________________________________________

Total Trench/Bore ____________________________________________________ Number of Circuits ____________

Antifreeze __________________________________________________________ Minimum Loop Temperature _____

Residential Pressure Drop Calculation Worksheet

The purpose of the following formulasis to generate 3 points on the systemperformance curve.

Point 1Total gpm = 3 gpm per ton = _______Total pd = pd of the system = _______

Point 2Total gpm 2 = .667 x gpm = _______Total pd 2 = .5 x pd = _______

Point 3 Total gpm 3 = 1.33 x gpm = _______Total pd 3 = 2 x pd = _______

Point 1 is generated from the designflow need and the pressure drop (pd)associated with this particular pipingsystem. Points 2 and 3 are generatedfrom point 1.

TOTAL SYSTEM PRESSURE DROP Total gpm= ______________ Total pressure drop= _________ft. of hd.

Fittings (Add 2 ft. of hd. for every 10 fittings) ___________ft. of hd.6

Circuit Piping __________@ ____gpm _________ft. x ___________ft. of hd./100 ft. =______________ft. of hd.Pipe Size

5

Outside Supply& Return Piping _________@ ____gpm _________ft. x ____________ft. of hd./100 ft. =____________ft. of hd.

Return Piping(to FC) _________@ ___gpm ________ft. x __________ft. of hd./100 ft. =____________ft. of hd.

4Pipe Size

NOTE: If using pumps other than shown, refer to the manufacturer’s performance data for those pumps.

Grundfos Pump Curve - UP26 - 99

50

60

70

UP26-99 SINGLE

UP26-99 DOUBLE

0

10

20

30

40

0 5 10 15 20 25 30 35

HEAD(FEET)

FLOW (GPM)

Inside Supply3

Pipe Size

a. WF Unit #1 __________@ ___ gpm _________ft. of hd. x_________temp. corr. factor =___________ft. of hd.

b. Hose Kit ____________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.

c. Inside Piping _________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.(Flow Center to Unit) Pipe Size

TOTAL Unit #1

a. WF Unit #2 __________@ ___ gpm _________ft. of hd. x_________temp. corr. factor =___________ft. of hd.

b. Hose Kit ____________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.

c. Inside Piping _________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.(Flow Center to Unit) Pipe Size

TOTAL Unit #2 ____________ft. of hd.

____________ft. of hd.Unit TOTAL (Largest of Total Unit #1 and Unit #2)

1

2

Job/Client Name __________________________________ GSC Technician __________________________________

Loop Description __________________________________________________________________________________

Total Trench/Bore ____________________________________________________ Number of Circuits ____________

Antifreeze __________________________________________________________ Minimum Loop Temperature _____

Residential Pressure Drop Calculation Worksheet

The purpose of the following formulasis to generate 3 points on the systemperformance curve.

Point 1Total gpm = 3 gpm per ton = _______Total pd = pd of the system = _______

Point 2Total gpm 2 = .667 x gpm = _______Total pd 2 = .5 x pd = _______

Point 3 Total gpm 3 = 1.33 x gpm = _______Total pd 3 = 2 x pd = _______

Point 1 is generated from the designflow need and the pressure drop (pd)associated with this particular pipingsystem. Points 2 and 3 are generatedfrom point 1.

TOTAL SYSTEM PRESSURE DROP Total gpm= ______________ Total pressure drop= _________ft. of hd.

Fittings (Add 2 ft. of hd. for every 10 fittings) ___________ft. of hd.6

Circuit Piping __________@ ____gpm _________ft. x ___________ft. of hd./100 ft. =______________ft. of hd.Pipe Size

5

Outside Supply& Return Piping _________@ ____gpm _________ft. x ____________ft. of hd./100 ft. =____________ft. of hd.

Return Piping(to FC) _________@ ___gpm ________ft. x __________ft. of hd./100 ft. =____________ft. of hd.

4Pipe Size

NOTE: If using pumps other than shown, refer to the manufacturer’s performance data for those pumps.

Grundfos Pump Curve - UP26 - 99

50

60

70

UP26-99 SINGLE

UP26-99 DOUBLE

0

10

20

30

40

0 5 10 15 20 25 30 35

HEAD(FEET)

FLOW (GPM)

Page 5: Instruction Guide - WaterFurnace

Instruction Guide: Residential Earth Loop Pressure Drop Calculation and Pump Sizing

5IG1552EW 01/10

Pressure Drop Calculation Instructions cont.6) Circuit Piping Pressure Drop

A) Enter size of piping .

B) Enter circuit gpm (divide total gpm by number of circuits to get circuit gpm) .

C) Enter total circuit length (if circuit is one 200’ deep bore, circuit is 400’; if circuit is one leg of a 6-pipe loop in

a 400’ long ditch, circuit is 800’) .

D) Enter “feet of head/100 feet” from chart in this manual .

E) Divide circuit length by 100, then multiply that number by “feet of head/100 feet” . Enter this number at the

far right . This is the “feet of head” for the Circuit Piping . (If total footage = 100 feet, multiply “feet of head/100

feet” by 1 . If total footage = 230 feet, multiply “feet of head/100 feet” by 2 .3 .)

F) Check Reynolds number for circuit piping at circuit gpm from pipe pressure drop charts . Reynolds number

must exceed 2500 .

7) FittingsFor a typical residential job, up to 7 tons, add 2 feet of head for every 10 fittings . If more than 7 tons, count the number of

fittings and convert into an equivalent pipe length from page 16 of this manual . Then figure the pressure drop using steps

from the SUPPLY and RETURN pressure drop section .

8) Total System Pressure DropA) Take gpm from the unit section and enter in “Total gpm” .

B) Add up “feet of head” from each section and enter this number in the “Total pd” .

9) Plotting Piping System CurveA) Use “Total gpm” and “Total pd” for Point 1 .

B) For Point 2; multiply “Total gpm” by .667, and multiply “Total pd” by .5 .

C) For Point 3; multiply “Total gpm” by 1 .33, and multiply “Total pd” by 2 .

D) Plot these three points on the Piping System Curve / Pump Curve chart using “feet of head” and GPM .

E) Starting at 0 gpm and 0 feet of head, draw a curving line through points 1, 2, and 3 .

F) Find the spot where this curved line crosses the “pump curves” and draw a line straight down to the gpm line

at the bottom of the chart . This will determine if you need one or two pumps .

Inside Supply3

Pipe Size

a. WF Unit #1 __________@ ___ gpm _________ft. of hd. x_________temp. corr. factor =___________ft. of hd.

b. Hose Kit ____________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.

c. Inside Piping _________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.(Flow Center to Unit) Pipe Size

TOTAL Unit #1

a. WF Unit #2 __________@ ___ gpm _________ft. of hd. x_________temp. corr. factor =___________ft. of hd.

b. Hose Kit ____________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.

c. Inside Piping _________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.(Flow Center to Unit) Pipe Size

TOTAL Unit #2 ____________ft. of hd.

____________ft. of hd.Unit TOTAL (Largest of Total Unit #1 and Unit #2)

1

2

Job/Client Name __________________________________ GSC Technician __________________________________

Loop Description __________________________________________________________________________________

Total Trench/Bore ____________________________________________________ Number of Circuits ____________

Antifreeze __________________________________________________________ Minimum Loop Temperature _____

Residential Pressure Drop Calculation Worksheet

The purpose of the following formulasis to generate 3 points on the systemperformance curve.

Point 1Total gpm = 3 gpm per ton = _______Total pd = pd of the system = _______

Point 2Total gpm 2 = .667 x gpm = _______Total pd 2 = .5 x pd = _______

Point 3 Total gpm 3 = 1.33 x gpm = _______Total pd 3 = 2 x pd = _______

Point 1 is generated from the designflow need and the pressure drop (pd)associated with this particular pipingsystem. Points 2 and 3 are generatedfrom point 1.

TOTAL SYSTEM PRESSURE DROP Total gpm= ______________ Total pressure drop= _________ft. of hd.

Fittings (Add 2 ft. of hd. for every 10 fittings) ___________ft. of hd.6

Circuit Piping __________@ ____gpm _________ft. x ___________ft. of hd./100 ft. =______________ft. of hd.Pipe Size

5

Outside Supply& Return Piping _________@ ____gpm _________ft. x ____________ft. of hd./100 ft. =____________ft. of hd.

Return Piping(to FC) _________@ ___gpm ________ft. x __________ft. of hd./100 ft. =____________ft. of hd.

4Pipe Size

NOTE: If using pumps other than shown, refer to the manufacturer’s performance data for those pumps.

Grundfos Pump Curve - UP26 - 99

50

60

70

UP26-99 SINGLE

UP26-99 DOUBLE

0

10

20

30

40

0 5 10 15 20 25 30 35

HEAD(FEET)

FLOW (GPM)

Inside Supply3

Pipe Size

a. WF Unit #1 __________@ ___ gpm _________ft. of hd. x_________temp. corr. factor =___________ft. of hd.

b. Hose Kit ____________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.

c. Inside Piping _________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.(Flow Center to Unit) Pipe Size

TOTAL Unit #1

a. WF Unit #2 __________@ ___ gpm _________ft. of hd. x_________temp. corr. factor =___________ft. of hd.

b. Hose Kit ____________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.

c. Inside Piping _________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.(Flow Center to Unit) Pipe Size

TOTAL Unit #2 ____________ft. of hd.

____________ft. of hd.Unit TOTAL (Largest of Total Unit #1 and Unit #2)

1

2

Job/Client Name __________________________________ GSC Technician __________________________________

Loop Description __________________________________________________________________________________

Total Trench/Bore ____________________________________________________ Number of Circuits ____________

Antifreeze __________________________________________________________ Minimum Loop Temperature _____

Residential Pressure Drop Calculation Worksheet

The purpose of the following formulasis to generate 3 points on the systemperformance curve.

Point 1Total gpm = 3 gpm per ton = _______Total pd = pd of the system = _______

Point 2Total gpm 2 = .667 x gpm = _______Total pd 2 = .5 x pd = _______

Point 3 Total gpm 3 = 1.33 x gpm = _______Total pd 3 = 2 x pd = _______

Point 1 is generated from the designflow need and the pressure drop (pd)associated with this particular pipingsystem. Points 2 and 3 are generatedfrom point 1.

TOTAL SYSTEM PRESSURE DROP Total gpm= ______________ Total pressure drop= _________ft. of hd.

Fittings (Add 2 ft. of hd. for every 10 fittings) ___________ft. of hd.6

Circuit Piping __________@ ____gpm _________ft. x ___________ft. of hd./100 ft. =______________ft. of hd.Pipe Size

5

Outside Supply& Return Piping _________@ ____gpm _________ft. x ____________ft. of hd./100 ft. =____________ft. of hd.

Return Piping(to FC) _________@ ___gpm ________ft. x __________ft. of hd./100 ft. =____________ft. of hd.

4Pipe Size

NOTE: If using pumps other than shown, refer to the manufacturer’s performance data for those pumps.

Grundfos Pump Curve - UP26 - 99

50

60

70

UP26-99 SINGLE

UP26-99 DOUBLE

0

10

20

30

40

0 5 10 15 20 25 30 35

HEAD(FEET)

FLOW (GPM)

Inside Supply3

Pipe Size

a. WF Unit #1 __________@ ___ gpm _________ft. of hd. x_________temp. corr. factor =___________ft. of hd.

b. Hose Kit ____________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.

c. Inside Piping _________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.(Flow Center to Unit) Pipe Size

TOTAL Unit #1

a. WF Unit #2 __________@ ___ gpm _________ft. of hd. x_________temp. corr. factor =___________ft. of hd.

b. Hose Kit ____________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.

c. Inside Piping _________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.(Flow Center to Unit) Pipe Size

TOTAL Unit #2 ____________ft. of hd.

____________ft. of hd.Unit TOTAL (Largest of Total Unit #1 and Unit #2)

1

2

Job/Client Name __________________________________ GSC Technician __________________________________

Loop Description __________________________________________________________________________________

Total Trench/Bore ____________________________________________________ Number of Circuits ____________

Antifreeze __________________________________________________________ Minimum Loop Temperature _____

Residential Pressure Drop Calculation Worksheet

The purpose of the following formulasis to generate 3 points on the systemperformance curve.

Point 1Total gpm = 3 gpm per ton = _______Total pd = pd of the system = _______

Point 2Total gpm 2 = .667 x gpm = _______Total pd 2 = .5 x pd = _______

Point 3 Total gpm 3 = 1.33 x gpm = _______Total pd 3 = 2 x pd = _______

Point 1 is generated from the designflow need and the pressure drop (pd)associated with this particular pipingsystem. Points 2 and 3 are generatedfrom point 1.

TOTAL SYSTEM PRESSURE DROP Total gpm= ______________ Total pressure drop= _________ft. of hd.

Fittings (Add 2 ft. of hd. for every 10 fittings) ___________ft. of hd.6

Circuit Piping __________@ ____gpm _________ft. x ___________ft. of hd./100 ft. =______________ft. of hd.Pipe Size

5

Outside Supply& Return Piping _________@ ____gpm _________ft. x ____________ft. of hd./100 ft. =____________ft. of hd.

Return Piping(to FC) _________@ ___gpm ________ft. x __________ft. of hd./100 ft. =____________ft. of hd.

4Pipe Size

NOTE: If using pumps other than shown, refer to the manufacturer’s performance data for those pumps.

Grundfos Pump Curve - UP26 - 99

50

60

70

UP26-99 SINGLE

UP26-99 DOUBLE

0

10

20

30

40

0 5 10 15 20 25 30 35

HEAD(FEET)

FLOW (GPM)

Page 6: Instruction Guide - WaterFurnace

Instruction Guide: Residential Earth Loop Pressure Drop Calculation and Pump Sizing

6IG1552EW 01/10

Inside Supply3

Pipe Size

a. WF Unit #1 __________@ ___ gpm _________ft. of hd. x_________temp. corr. factor =___________ft. of hd.

b. Hose Kit ____________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.

c. Inside Piping _________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.(Flow Center to Unit) Pipe Size

TOTAL Unit #1

a. WF Unit #2 __________@ ___ gpm _________ft. of hd. x_________temp. corr. factor =___________ft. of hd.

b. Hose Kit ____________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.

c. Inside Piping _________@ ___gpm _________ft. x ______________ft. of hd./100 ft. =____________ft. of hd.(Flow Center to Unit) Pipe Size

TOTAL Unit #2 ____________ft. of hd.

____________ft. of hd.Unit TOTAL (Largest of Total Unit #1 and Unit #2)

1

2

Job/Client Name __________________________________ GSC Technician __________________________________

Loop Description __________________________________________________________________________________

Total Trench/Bore ____________________________________________________ Number of Circuits ____________

Antifreeze __________________________________________________________ Minimum Loop Temperature _____

Residential Pressure Drop Calculation Worksheet

The purpose of the following formulasis to generate 3 points on the systemperformance curve.

Point 1Total gpm = 3 gpm per ton = _______Total pd = pd of the system = _______

Point 2Total gpm 2 = .667 x gpm = _______Total pd 2 = .5 x pd = _______

Point 3 Total gpm 3 = 1.33 x gpm = _______Total pd 3 = 2 x pd = _______

Point 1 is generated from the designflow need and the pressure drop (pd)associated with this particular pipingsystem. Points 2 and 3 are generatedfrom point 1.

TOTAL SYSTEM PRESSURE DROP Total gpm= ______________ Total pressure drop= _________ft. of hd.

Fittings (Add 2 ft. of hd. for every 10 fittings) ___________ft. of hd.6

Circuit Piping __________@ ____gpm _________ft. x ___________ft. of hd./100 ft. =______________ft. of hd.Pipe Size

5

Outside Supply& Return Piping _________@ ____gpm _________ft. x ____________ft. of hd./100 ft. =____________ft. of hd.

Return Piping(to FC) _________@ ___gpm ________ft. x __________ft. of hd./100 ft. =____________ft. of hd.

4Pipe Size

NOTE: If using pumps other than shown, refer to the manufacturer’s performance data for those pumps.

Grundfos Pump Curve - UP26 - 99

50

60

70

UP26-99 SINGLE

UP26-99 DOUBLE

0

10

20

30

40

0 5 10 15 20 25 30 35

HEAD(FEET)

FLOW (GPM)

Page 7: Instruction Guide - WaterFurnace

Instruction Guide: Residential Earth Loop Pressure Drop Calculation and Pump Sizing

7IG1552EW 01/10

Other Pump Performance Curves

Flow Center - 3 Pumps

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

Gallons per Minute

Pres

sure

Dro

p (F

T H

D)

FC3

Typical Large System Pump Curves

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80

Pres

sure

Dro

p (ft

hd)

Flow (gpm)

5055

5038 5028

Residential Unit Pressure Drop Tables

Series Model & Size

Closed Loop (minimum) Closed Loop (optimum)

Flow Rate Pressure Drop* Flow Rate Pressure Drop*

GPM PSI Ft. Head GPM PSI Ft. Head

Envision

Single Speed

NS022 4 .5 1 .6 3 .8 6 .0 2 .7 6 .2

NS030 6 .0 2 .8 6 .6 8 .0 4 .8 11 .1

NS036 7 .0 1 .9 4 .5 9 .0 3 .3 7 .5

NS042 8 .0 2 .1 4 .8 11 .0 4 .1 9 .4

NS048 9 .0 2 .1 4 .9 12 .0 3 .7 8 .4

NS060 12 .0 3 .6 8 .4 15 .0 5 .3 12 .3

NS070 15 .0 4 .0 9 .3 18 .0 5 .5 12 .7

Envision

Dual Capacity

ND026 Low 5 .0 1 .8 4 .3 7 .0 3 .4 7 .9

ND026 High 6 .0 2 .6 6 .0 8 .0 4 .4 10 .1

ND038 Low 6 .0 1 .6 3 .7 8 .0 2 .6 6 .1

ND038 High 7 .0 2 .1 4 .8 9 .0 3 .2 7 .4

ND049 Low 8 .0 1 .8 4 .2 11 .0 3 .1 7 .2

ND049 High 9 .0 2 .2 5 .2 12 .0 3 .6 8 .4

ND064 Low 10 .0 2 .5 5 .7 14 .0 4 .7 10 .8

ND064 High 12 .0 3 .5 8 .1 16 .0 6 .0 13 .8

ND072 Low 13 .0 3 .3 7 .5 16 .0 4 .6 10 .6

ND072 High 15 .0 4 .2 9 .8 18 .0 5 .7 13 .1

E & EZ

Single Speed

E024 4 .5 1 .4 3 .2 6 .0 2 .4 5 .6

E030 5 .5 2 .0 4 .7 7 .0 3 .1 7 .2

E035 7 .0 3 .4 7 .9 9 .0 5 .4 12 .4

E040 8 .0 3 .3 7 .7 11 .0 4 .7 10 .9

E047 9 .0 3 .5 8 .2 12 .0 5 .6 12 .9

E058 11 .0 2 .9 6 .7 14 .0 4 .6 10 .6

E066 13 .0 4 .1 9 .5 16 .0 5 .8 13 .4

E & EZ

Dual Capacity

E036 Low 4 .0 1 .0 2 .2 5 .0 1 .5 3 .4

E036 High 7 .0 2 .8 6 .5 9 .0 4 .5 10 .4

E048 Low 6 .0 1 .9 4 .4 9 .0 3 .5 8 .1

E048 High 9 .0 3 .5 8 .1 12 .0 5 .6 12 .9

E060 Low 8 .0 2 .0 4 .6 11 .0 2 .9 6 .7

E060 High 11 .0 2 .9 6 .7 14 .0 4 .6 10 .6

E072 Low 10 .0 2 .6 6 .0 13 .0 4 .1 9 .5

E072 High 13 .0 4 .1 9 .5 16 .0 5 .8 13 .4

Ent. Water Temp. CorrectionFactor°F °C

30 -1 1 .08

70 21 0 .93

90 32 0 .88

110 43 0 .83

* Pressure Drops shown at

50°F EWT . For Pressure

Drops at other EWTs, use

table below .

Page 8: Instruction Guide - WaterFurnace

Instruction Guide: Residential Earth Loop Pressure Drop Calculation and Pump Sizing

8IG1552EW 01/10

Series Model & Size

Closed Loop (minimum) Closed Loop (optimum)

Flow Rate Pressure Drop* Flow Rate Pressure Drop*

GPM PSI Ft. Head GPM PSI Ft. Head

ES

Single Speed

ES024 4 .5 1 .8 4 .2 6 .0 2 .7 6 .2

ES030 6 .0 2 .7 6 .3 8 .0 4 .4 10 .2

ES

Dual Capacity

ES036 Low 4 .0 1 .2 2 .7 5 .0 1 .7 3 .9

ES036 High 7 .0 2 .9 6 .7 9 .0 4 .7 10 .9

ES048 Low 6 .0 1 .9 4 .4 9 .0 3 .5 8 .1

ES048 High 9 .0 3 .5 8 .2 12 .0 5 .6 12 .9

ES060 Low 8 .0 2 .0 4 .6 11 .0 2 .9 6 .7

ES060 High 11 .0 2 .9 6 .7 14 .0 4 .6 10 .6

ES072 Low 10 .0 2 .6 6 .0 13 .0 4 .1 9 .5

ES072 High 13 .0 4 .1 9 .5 16 .0 5 .8 13 .4

Synergy3D

SDV038 Low 4 .0 0 .8 1 .9 8 .0 2 .6 6 .1

SDV038 High 5 .0 1 .2 2 .7 9 .0 3 .1 7 .2

SDV049 Low 5 .0 0 .9 2 .0 11 .0 3 .1 7 .2

SDV049 High 6 .0 1 .2 2 .7 12 .0 3 .6 8 .4

SDV064 Low 6 .0 0 .9 2 .2 14 .0 4 .7 10 .8

SDV064 High 8 .0 1 .7 3 .8 16 .0 5 .8 13 .4

SDV072 Low 10 .0 2 .1 4 .9 16 .0 4 .6 10 .6

SDV072 High 12 .0 3 .0 6 .9 16 .0 5 .7 13 .1

Synergy3

RT046 9 .0 5 .2 12 .0 12 .0 8 .3 19 .2

RT056 11 .0 5 .4 12 .5 14 .0 7 .7 17 .8

RT066 13 .0 6 .7 15 .5 16 .0 10 .3 23 .8

Legend

LS024 4 .5 2 .2 5 .1 6 .0 4 .4 10 .2

LS030 6 .0 3 .6 8 .3 8 .0 4 .7 10 .9

LS036 7 .0 2 .3 5 .3 9 .0 5 .8 13 .4

LS042 8 .0 3 .1 7 .2 11 .0 7 .5 17 .3

LS048 9 .0 6 .3 14 .6 12 .0 9 .9 22 .9

LS060 12 .0 6 .7 15 .5 15 .0 9 .2 21 .3

LS070 15 .0 6 .0 13 .9 18 .0 8 .4 19 .4

Versatec Ultra

US009 2 .0 3 .2 7 .4 3 .0 6 .0 13 .9

US012 2 .5 2 .3 5 .3 3 .5 3 .6 8 .3

US015 3 .0 1 .0 2 .31 4 .0 1 .8 4 .2

US018 4 .0 1 .8 4 .2 5 .0 3 .2 7 .4

US023 4 .5 2 .2 5 .1 6 .0 4 .4 10 .2

US024 4 .5 2 .2 5 .1 6 .0 4 .4 10 .2

US030 6 .0 1 .8 4 .2 8 .0 3 .6 8 .3

US036 7 .0 2 .3 5 .3 9 .0 5 .8 13 .4

US041 8 .0 3 .1 7 .2 11 .0 7 .5 17 .3

US042 8 .0 3 .1 7 .2 11 .0 7 .5 17 .3

US048 9 .0 6 .3 14 .6 12 .0 9 .9 22 .9

US060 12 .0 6 .7 15 .5 15 .0 9 .2 21 .3

US070 15 .0 6 .0 13 .9 18 .0 8 .4 19 .4

Premier

P010 2 .0 3 .2 7 .4 2 .5 4 .9 11 .4

P013 2 .5 4 .4 10 .1 3 .5 7 .7 17 .8

P019 4 .0 2 .0 4 .6 5 .0 3 .3 7 .7

P022 4 .5 3 .1 7 .2 6 .0 5 .8 13 .3

P028 5 .5 2 .0 4 .7 7 .0 3 .1 7 .2

P034 7 .0 3 .7 8 .7 9 .0 5 .9 13 .6

P040 8 .0 4 .5 10 .4 11 .0 9 .0 20 .8

P046 9 .0 5 .2 12 .0 12 .0 8 .3 19 .2

P056 11 .0 5 .2 12 .0 14 .0 7 .2 16 .6

P066 13 .0 6 .7 15 .5 16 .0 10 .3 23 .8

Residential Unit Pressure Drop Tables cont.

Page 9: Instruction Guide - WaterFurnace

Instruction Guide: Residential Earth Loop Pressure Drop Calculation and Pump Sizing

9IG1552EW 01/10

Residential Unit Pressure Drop Tables cont.

V(L/X)009 2 .0 2 .5 5 .8 2 .5 4 .0 9 .2

V(L/X)012 2 .3 3 .8 8 .8 3 .0 6 .1 14 .1

V(L/X)015 3 .0 1 .6 3 .6 4 .0 2 .1 4 .9

V(L/X)018 4 .0 2 .1 4 .9 5 .0 3 .0 6 .9

Versatec V(L/X)024 4 .5 2 .6 6 .0 6 .0 4 .1 9 .5

Vertical V(L/X)030 6 .0 5 .9 13 .6 8 .0 10 .1 23 .3

V(L/X)036 7 .0 3 .1 7 .2 9 .0 5 .2 12 .0

V(L/X)042 8 .0 4 .4 10 .2 11 .0 8 .0 18 .5

V(L/X)048 9 .0 4 .5 10 .4 12 .0 7 .4 17 .1

V(L/X)058 11 .0 5 .4 12 .5 14 .0 7 .7 17 .8

V(L/X)009 2 .0 3 .2 7 .4 2 .5 4 .6 10 .6

V(L/X)012 2 .3 3 .6 8 .3 3 .0 6 .2 14 .3

V(L/X)015 3 .0 1 .6 3 .6 4 .0 2 .1 4 .9

V(L/X)018 4 .0 2 .0 4 .7 5 .0 3 .4 7 .9

Versatec V(L/X)024 4 .5 3 .1 7 .2 6 .0 6 .0 13 .9

Horizontal V(L/X)030 6 .0 2 .4 5 .4 8 .0 3 .8 8 .8

V(L/X)036 7 .0 3 .6 8 .3 9 .0 5 .3 12 .2

V(L/X)042 8 .0 4 .7 10 .9 11 .0 8 .6 19 .9

V(L/X)048 9 .0 4 .4 10 .2 12 .0 7 .3 16 .9

V(L/X)058 11 .0 4 .7 10 .9 14 .0 7 .2 16 .6

V(L/X)070 13 .0 5 .5 12 .7 16 .0 8 .1 18 .7

NSW018R 4 .0 0 .9 2 .1 5 .0 1 .4 3 .2

NSW018H 4 .0 1 .4 3 .2 5 .0 2 .2 5 .1

NSW025R 5 .5 2 .0 4 .6 7 .0 3 .0 6 .9

Envision NSW025H 5 .5 3 .0 6 .9 7 .0 4 .6 10 .6

NSW Hydronic NSW040H/R 7 .5 2 .1 4 .9 10 .0 3 .5 8 .1

NSW050H/R 11 .5 3 .4 7 .9 15 .0 5 .4 12 .5

NSW060H/R 13 .5 3 .9 9 .0 18 .0 6 .7 15 .5

NSW075H/R 14 .5 5 .3 12 .2 19 .0 7 .6 17 .6

NDW100 15 .0 0 .8 1 .9 23 .0 2 .2 5 .1

Envision NDW120 18 .0 1 .3 3 .0 28 .0 3 .2 7 .4

NDW Hydronic NDW150 21 .0 1 .9 4 .4 32 .0 3 .9 9 .0

NDW180 24 .0 2 .4 5 .6 36 .0 4 .7 10 .9

EW020 6 .0 4 .6 10 .7 9 .0 10 .0 23 .2

EW EW030 8 .0 2 .6 6 .1 12 .0 5 .6 12 .9

Water-to-Water EW042 11 .0 2 .9 6 .6 16 .5 6 .2 14 .4

EW060 14 .0 2 .9 6 .8 21 .0 5 .2 12 .0

Premier P034 7 .0 3 .4 7 .9 9 .0 5 .2 12 .0

Water-to-water P056 11 .0 5 .9 13 .7 14 .0 8 .5 19 .7

Versatec V036W 7 .0 3 .3 7 .6 9 .0 5 .0 11 .6

Water-to-water V060W 11 .0 4 .1 9 .5 14 .0 5 .8 13 .4

C07 1 .5 1 .3 3 .0 2 .0 2 .1 4 .9

C09 1 .8 1 .9 4 .5 2 .5 3 .2 7 .4

Console C12 2 .3 2 .1 4 .9 3 .0 3 .4 7 .9

C15 3 .0 3 .8 8 .8 4 .0 6 .4 14 .8

C18 4 .0 3 .3 7 .6 5 .0 5 .5 12 .7

Page 10: Instruction Guide - WaterFurnace

Instruction Guide: Residential Earth Loop Pressure Drop Calculation and Pump Sizing

10IG1552EW 01/10

Pipe Pressure Drop Tables

Pressure Drop for Rubber HosePer 100 ft, of hose, in feet of head

BRINE 1 WATER @ 32°F BRINE 4 20% METHANOL @ 30°F Viscosity 0.001243 lbm/ft sec Darcy-Weisbach Method Viscosity 0.002072 lbm/ft sec Darcy-Weisbach MethodDensity 62.42 lb/ft3 Density 60.80 lb/ft3

FLOWRATE

1” IPS RUBBER HOSE 1 1/2” IPS RUBBER HOSE FLOWRATE

1” IPS RUBBER HOSE 1 1/2” IPS RUBBER HOSEPD (ft) Vel ft/s Re PD (ft) Vel ft/s Re PD (ft) Vel ft/s Re PD (ft) Vel ft/s Re

1 0.15 0.41 1711 0.02 0.21 1141 1 0.18 0.41 1000 0.03 0.21 6672 0.52 0.82 3422 0.08 0.43 2281 2 0.59 0.82 2000 0.09 0.43 13333 1.05 1.23 5133 0.15 0.64 3422 3 1.21 1.23 2999 0.18 0.64 20004 1.74 1.64 6844 0.25 0.86 4562 4 2.00 1.64 3999 0.29 0.86 26665 2.58 2.04 8555 0.38 1.07 5703 5 2.95 2.04 4999 0.43 1.07 33336 3.55 2.45 10266 0.52 1.29 6844 6 4.06 2.45 5999 0.59 1.29 39997 4.64 2.86 11976 0.68 1.50 7984 7 5.31 2.86 6998 0.77 1.50 46668 5.87 3.27 13687 0.86 1.72 9125 8 6.71 3.27 7998 0.98 1.72 53329 7.21 3.68 15398 1.05 1.93 10266 9 8.25 3.68 8998 1.20 1.93 5999

10 8.67 4.09 17109 1.26 2.15 11406 10 9.92 4.09 9998 1.45 2.15 666511 10.24 4.50 18820 1.49 2.36 12547 11 11.72 4.50 10997 1.71 2.36 733212 11.93 4.91 20531 1.74 2.58 13687 12 13.64 4.91 11997 1.99 2.58 799813 13.72 5.31 22242 2.00 2.79 14828 13 15.70 5.31 12997 2.29 2.79 866514 15.62 5.72 23953 2.28 3.01 15969 14 17.87 5.72 13997 2.60 3.01 933115 17.63 6.13 25664 2.57 3.22 17109 15 20.16 6.13 14996 2.94 3.22 999816 19.74 6.54 27375 2.88 3.43 18250 16 22.57 6.54 15996 3.29 3.43 1066417 21.94 6.95 29086 3.20 3.65 19390 17 25.10 6.95 16996 3.66 3.65 1133118 24.25 7.36 30797 3.53 3.86 20531 18 27.74 7.36 17996 4.04 3.86 1199719 26.66 7.77 32508 3.89 4.08 21672 19 30.49 7.77 18995 4.44 4.08 1266420 29.16 8.18 34219 4.25 4.29 22812 20 33.36 8.18 19995 4.86 4.29 1333021 4.63 4.51 23953 21 5.29 4.51 1399722 5.02 4.72 25094 22 5.74 4.72 1466323 5.43 4.94 26234 23 6.21 4.94 1533024 5.85 5.15 27375 24 6.69 5.15 1599625 6.28 5.37 28515 25 7.18 5.37 1666326 6.73 5.58 29656 26 7.69 5.58 1732928 7.66 6.01 31937 28 8.76 6.01 1866230 8.64 6.44 34219 30 9.88 6.44 19995

Rev. 1/06 Rev. 1/06

BRINE 8 25% ETHANOL @ 30°F BRINE 5 30% PROPYLENE GLYCOL @ 30°FViscosity 0.003593 lbm/ft sec Darcy-Weisbach Method Viscosity 0.004972 lbm/ft sec Darcy-Weisbach MethodDensity 61.30 lb/ft3 Density 64.50 lb/ft3

FLOWRATE

1” IPS RUBBER HOSE 1 1/2” IPS RUBBER HOSE FLOWRATE

1” IPS RUBBER HOSE 1 1/2” IPS RUBBER HOSEPD (ft) Vel ft/s Re PD (ft) Vel ft/s Re PD (ft) Vel ft/s Re PD (ft) Vel ft/s Re

1 0.20 0.41 581 0.03 0.21 388 1 0.22 0.41 442 0.03 0.21 2952 0.68 0.82 1163 0.10 0.43 775 2 0.73 0.82 884 0.11 0.43 5893 1.38 1.23 1744 0.20 0.64 1163 3 1.48 1.23 1326 0.22 0.64 8844 2.28 1.64 2325 0.33 0.86 1550 4 2.45 1.64 1768 0.36 0.86 11795 3.38 2.04 2906 0.49 1.07 1938 5 3.62 2.04 2210 0.53 1.07 14736 4.65 2.45 3488 0.68 1.29 2325 6 4.97 2.45 2652 0.72 1.29 17687 6.08 2.86 4069 0.89 1.50 2713 7 6.52 2.86 3094 0.95 1.50 20638 7.69 3.27 4650 1.12 1.72 3100 8 8.23 3.27 3536 1.20 1.72 23579 9.44 3.68 5231 1.38 1.93 3488 9 10.11 3.68 3978 1.47 1.93 2652

10 11.36 4.09 5813 1.66 2.15 3875 10 12.16 4.09 4420 1.77 2.15 294711 13.42 4.50 6394 1.96 2.36 4263 11 14.37 4.50 4862 2.09 2.36 324112 15.63 4.91 6975 2.28 2.58 4650 12 16.73 4.91 5304 2.44 2.58 353613 17.97 5.31 7557 2.62 2.79 5038 13 19.25 5.31 5746 2.81 2.79 383114 20.46 5.72 8138 2.98 3.01 5425 14 21.91 5.72 6188 3.19 3.01 412515 23.09 6.13 8719 3.37 3.22 5813 15 24.73 6.13 6630 3.60 3.22 442016 25.85 6.54 9300 3.77 3.43 6200 16 27.68 6.54 7072 4.03 3.43 471517 28.74 6.95 9882 4.19 3.65 6588 17 30.78 6.95 7514 4.49 3.65 500918 31.77 7.36 10463 4.63 3.86 6975 18 34.02 7.36 7956 4.96 3.86 530419 34.92 7.77 11044 5.09 4.08 7363 19 37.40 7.77 8398 5.45 4.08 559820 38.20 8.18 11626 5.57 4.29 7750 20 40.91 8.18 8840 5.96 4.29 589321 6.06 4.51 8138 21 6.49 4.51 618822 6.58 4.72 8525 22 7.04 4.72 648223 7.11 4.94 8913 23 7.61 4.94 677724 7.66 5.15 9300 24 8.20 5.15 707225 8.23 5.37 9688 25 8.81 5.37 736626 8.81 5.58 10075 26 9.44 5.58 766128 10.03 6.01 10850 28 10.74 6.01 825030 11.32 6.44 11626 30 12.12 6.44 8840

Rev. 1/06 Rev. 1/06

Page 11: Instruction Guide - WaterFurnace

Instruction Guide: Residential Earth Loop Pressure Drop Calculation and Pump Sizing

11IG1552EW 01/10

Pipe Pressure Drop Tables cont.Pressure Drop, Polyethylene Pipe, SDR 11Per 100 ft. of pipe, in feet of head

BRINE 1 WATER @ 32°FViscosity 0.001243 lbm/ft secDensity 62.42 lb/ft3 Darcy-Weisbach

Method

FLOWRATE

3/4” IPS SDR 11 1” IPS SDR 11 1 1/4” IPS SDR 11 1 1/2” IPS SDR 11 2” IPS SDR 11PD (ft) Vel

ft/s Re PD (ft) Vel ft/s Re PD (ft) Vel

ft/s Re PD (ft) Vel ft/s Re PD (ft) Vel

ft/s Re1 0.32 0.55 1989 0.11 0.35 1591 0.04 0.22 1260 0.02 0.17 1101 0.01 0.11 8812 1.06 1.11 3979 0.37 0.71 3183 0.12 0.44 2520 0.06 0.34 2202 0.02 0.22 17613 2.16 1.66 5968 0.75 1.06 4774 0.25 0.66 3780 0.13 0.51 3303 0.04 0.32 26424 3.57 2.21 7958 1.24 1.41 6365 0.41 0.89 5040 0.21 0.68 4404 0.07 0.43 35235 5.28 2.76 9947 1.83 1.77 7956 0.60 1.11 6299 0.32 0.85 5505 0.11 0.54 44036 7.26 3.32 11937 2.51 2.12 9548 0.83 1.33 7559 0.44 1.02 6606 0.15 0.65 52847 9.51 3.87 13926 3.29 2.48 11139 1.09 1.55 8819 0.57 1.19 7707 0.20 0.76 61658 12.01 4.42 15916 4.16 2.83 12730 1.37 1.77 10079 0.72 1.35 8808 0.25 0.87 70459 14.76 4.98 17905 5.11 3.18 14321 1.69 1.99 11339 0.89 1.52 9909 0.31 0.97 7926

10 17.75 5.53 19894 6.14 3.54 15913 2.03 2.22 12599 1.07 1.69 11010 0.37 1.08 880611 20.97 6.08 21884 7.26 3.89 17504 2.39 2.44 13859 1.26 1.86 12111 0.44 1.19 968712 24.42 6.63 23873 8.45 4.24 19095 2.79 2.66 15119 1.47 2.03 13212 0.51 1.30 1056813 28.09 7.19 25863 9.72 4.60 20686 3.21 2.88 16378 1.69 2.20 14313 0.59 1.41 1144814 11.07 4.95 22278 3.65 3.10 17638 1.92 2.37 15414 0.67 1.52 1232915 12.49 5.30 23869 4.12 3.32 18898 2.17 2.54 16515 0.75 1.62 1321016 13.99 5.66 25460 4.61 3.55 20158 2.43 2.71 17616 0.84 1.73 1409017 15.55 6.01 27051 5.13 3.77 21418 2.70 2.88 18717 0.94 1.84 1497118 17.19 6.37 28643 5.67 3.99 22678 2.99 3.05 19818 1.03 1.95 1585219 18.89 6.72 30234 6.23 4.21 23938 3.28 3.22 20919 1.14 2.06 1673220 20.67 7.07 31825 6.82 4.43 25198 3.59 3.39 22020 1.24 2.17 1761321 22.51 7.43 33417 7.42 4.65 26458 3.91 3.56 23121 1.35 2.27 1849422 24.42 7.78 35008 8.05 4.87 27717 4.25 3.72 24222 1.47 2.38 1937423 26.39 8.13 36599 8.71 5.10 28977 4.59 3.89 25323 1.59 2.49 2025524 9.38 5.32 30237 4.94 4.06 26424 1.71 2.60 2113625 10.07 5.54 31497 5.31 4.23 27525 1.84 2.71 2201626 10.79 5.76 32757 5.69 4.40 28626 1.97 2.82 2289728 12.28 6.20 35277 6.47 4.74 30827 2.24 3.03 2465830 13.86 6.65 37796 7.30 5.08 33029 2.53 3.25 2641932 15.52 7.09 40316 8.18 5.42 35231 2.83 3.47 2818134 17.25 7.53 42836 9.09 5.76 37433 3.15 3.68 2994236 19.07 7.98 45356 10.05 6.09 39635 3.48 3.90 3170338 20.96 8.42 47876 11.05 6.43 41837 3.83 4.12 3346540 22.93 8.86 50395 12.09 6.77 44039 4.18 4.33 3522642 24.97 9.31 52915 13.16 7.11 46241 4.56 4.55 3698744 27.09 9.75 55435 14.28 7.45 48443 4.94 4.77 3874946 29.28 10.19 57955 15.43 7.79 50645 5.34 4.98 4051048 16.63 8.13 52847 5.76 5.20 4227150 17.86 8.47 55049 6.18 5.42 44032

Rev. 1/06

Page 12: Instruction Guide - WaterFurnace

Instruction Guide: Residential Earth Loop Pressure Drop Calculation and Pump Sizing

12IG1552EW 01/10

Pipe Pressure Drop Tables cont.

BRINE 2 WATER @ 50°F

Viscosity 0.000912 lbm/ft sec

Density 62.42 lb/ft3 Darcy-Weisbach Method

FLOWRATE

3/4” IPS SDR 11 1” IPS SDR 11 1 1/4” IPS SDR 11 1 1/2” IPS SDR 11 2” IPS SDR 11PD (ft) Vel

ft/s Re PD (ft) Vel ft/s Re PD (ft) Vel

ft/s Re PD (ft) Vel ft/s Re PD (ft) Vel

ft/s Re1 0.29 0.55 2711 0.10 0.35 2169 0.03 0.22 1717 0.02 0.17 1501 0.01 0.11 12002 0.98 1.11 5423 0.34 0.71 4338 0.11 0.44 3434 0.06 0.34 3001 0.02 0.22 24013 2.00 1.66 8134 0.69 1.06 6506 0.23 0.66 5151 0.12 0.51 4502 0.04 0.32 36014 3.30 2.21 10846 1.14 1.41 8675 0.38 0.89 6869 0.20 0.68 6002 0.07 0.43 48015 4.88 2.76 13557 1.69 1.77 10844 0.56 1.11 8586 0.29 0.85 7503 0.10 0.54 60016 6.72 3.32 16269 2.33 2.12 13013 0.77 1.33 10303 0.40 1.02 9003 0.14 0.65 72027 8.80 3.87 18980 3.05 2.48 15182 1.00 1.55 12020 0.53 1.19 10504 0.18 0.76 84028 11.12 4.42 21692 3.85 2.83 17350 1.27 1.77 13737 0.67 1.35 12005 0.23 0.87 96029 13.66 4.98 24403 4.73 3.18 19519 1.56 1.99 15454 0.82 1.52 13505 0.28 0.97 10802

10 16.43 5.53 27115 5.69 3.54 21688 1.88 2.22 17171 0.99 1.69 15006 0.34 1.08 1200311 19.41 6.08 29826 6.72 3.89 23857 2.22 2.44 18889 1.17 1.86 16506 0.40 1.19 1320312 22.60 6.63 32538 7.82 4.24 26026 2.58 2.66 20606 1.36 2.03 18007 0.47 1.30 1440313 26.00 7.19 35249 9.00 4.60 28194 2.97 2.88 22323 1.56 2.20 19507 0.54 1.41 1560414 10.25 4.95 30363 3.38 3.10 24040 1.78 2.37 21008 0.62 1.52 1680415 11.56 5.30 32532 3.81 3.32 25757 2.01 2.54 22509 0.70 1.62 1800416 12.94 5.66 34701 4.27 3.55 27474 2.25 2.71 24009 0.78 1.73 1920417 14.39 6.01 36869 4.75 3.77 29191 2.50 2.88 25510 0.87 1.84 2040518 15.91 6.37 39038 5.25 3.99 30909 2.77 3.05 27010 0.96 1.95 2160519 17.49 6.72 41207 5.77 4.21 32626 3.04 3.22 28511 1.05 2.06 2280520 19.13 7.07 43376 6.31 4.43 34343 3.33 3.39 30011 1.15 2.17 2400521 20.83 7.43 45545 6.87 4.65 36060 3.62 3.56 31512 1.25 2.27 2520622 22.60 7.78 47713 7.45 4.87 37777 3.93 3.72 33013 1.36 2.38 2640623 24.43 8.13 49882 8.06 5.10 39494 4.25 3.89 34513 1.47 2.49 2760624 8.68 5.32 41211 4.58 4.06 36014 1.58 2.60 2880725 9.32 5.54 42929 4.91 4.23 37514 1.70 2.71 3000726 9.99 5.76 44646 5.26 4.40 39015 1.82 2.82 3120728 11.37 6.20 48080 5.99 4.74 42016 2.07 3.03 3360830 12.83 6.65 51514 6.76 5.08 45017 2.34 3.25 3600832 14.36 7.09 54949 7.57 5.42 48018 2.62 3.47 3840934 15.97 7.53 58383 8.42 5.76 51019 2.91 3.68 4080936 17.65 7.98 61817 9.30 6.09 54021 3.22 3.90 4321038 19.40 8.42 65251 10.22 6.43 57022 3.54 4.12 4561040 21.22 8.86 68686 11.19 6.77 60023 3.87 4.33 4801142 23.11 9.31 72120 12.18 7.11 63024 4.22 4.55 5041144 25.07 9.75 75554 13.22 7.45 66025 4.58 4.77 5281246 27.10 10.19 78989 14.28 7.79 69026 4.95 4.98 5521248 15.39 8.13 72027 5.33 5.20 5761350 16.53 8.47 75029 5.72 5.42 60014

Rev. 1/06

Page 13: Instruction Guide - WaterFurnace

Instruction Guide: Residential Earth Loop Pressure Drop Calculation and Pump Sizing

13IG1552EW 01/10

Rev. 1/6/06

Pipe Pressure Drop Tables cont.

Pressure Drop, Polyethylene Pipe, SDR11Per 100 ft. of pipe, in feet of head

BRINE 8 25% ETHANOL @ 30°F

Viscosity 0.003593 lbm/ft sec

Density 61.30 lb/ft3 Darcy-Weisbach Method

FLOWRATE

3/4” IPS SDR 11 1” IPS SDR 11 1 1/4” IPS SDR 11 1 1/2” IPS SDR 11 2” IPS SDR 11PD (ft) Vel ft/s Re PD (ft) Vel ft/s Re PD (ft) Vel ft/s Re PD (ft) Vel ft/s Re PD (ft) Vel ft/s Re

1 0.41 0.55 676 0.14 0.35 541 0.05 0.22 428 0.02 0.17 374 0.01 0.11 2992 1.39 1.11 1352 0.48 0.71 1081 0.16 0.44 856 0.08 0.34 748 0.03 0.22 5983 2.83 1.66 2028 0.98 1.06 1622 0.32 0.66 1284 0.17 0.51 1122 0.06 0.32 8984 4.68 2.21 2704 1.62 1.41 2162 0.53 0.89 1712 0.28 0.68 1496 0.10 0.43 11975 6.91 2.76 3379 2.39 1.77 2703 0.79 1.11 2140 0.42 0.85 1870 0.14 0.54 14966 9.51 3.32 4055 3.29 2.12 3244 1.09 1.33 2568 0.57 1.02 2244 0.20 0.65 17957 12.45 3.87 4731 4.31 2.48 3784 1.42 1.55 2996 0.75 1.19 2618 0.26 0.76 20948 15.73 4.42 5407 5.45 2.83 4325 1.80 1.77 3424 0.95 1.35 2992 0.33 0.87 23949 19.33 4.98 6083 6.69 3.18 4866 2.21 1.99 3852 1.16 1.52 3366 0.40 0.97 2693

10 23.25 5.53 6759 8.05 3.54 5406 2.65 2.22 4280 1.40 1.69 3741 0.48 1.08 299211 27.47 6.08 7435 9.51 3.89 5947 3.14 2.44 4708 1.65 1.86 4115 0.57 1.19 329112 31.99 6.63 8111 11.07 4.24 6487 3.65 2.66 5136 1.93 2.03 4489 0.67 1.30 359013 36.79 7.19 8787 12.74 4.60 7028 4.20 2.88 5564 2.21 2.20 4863 0.77 1.41 389014 14.50 4.95 7569 4.78 3.10 5993 2.52 2.37 5237 0.87 1.52 418915 16.36 5.30 8109 5.40 3.32 6421 2.84 2.54 5611 0.98 1.62 448816 18.32 5.66 8650 6.04 3.55 6849 3.18 2.71 5985 1.10 1.73 478717 20.37 6.01 9191 6.72 3.77 7277 3.54 2.88 6359 1.23 1.84 508618 22.51 6.37 9731 7.43 3.99 7705 3.91 3.05 6733 1.36 1.95 538619 24.75 6.72 10272 8.16 4.21 8133 4.30 3.22 7107 1.49 2.06 568520 27.07 7.07 10812 8.93 4.43 8561 4.71 3.39 7481 1.63 2.17 598421 29.48 7.43 11353 9.72 4.65 8989 5.13 3.56 7855 1.77 2.27 628322 31.98 7.78 11894 10.55 4.87 9417 5.56 3.72 8229 1.93 2.38 658223 34.57 8.13 12434 11.40 5.10 9845 6.01 3.89 8603 2.08 2.49 688124 12.28 5.32 10273 6.47 4.06 8977 2.24 2.60 718125 13.19 5.54 10701 6.95 4.23 9351 2.41 2.71 748026 14.13 5.76 11129 7.45 4.40 9725 2.58 2.82 777928 16.09 6.20 11985 8.48 4.74 10473 2.94 3.03 837730 18.15 6.65 12841 9.57 5.08 11222 3.31 3.25 897632 20.32 7.09 13697 10.71 5.42 11970 3.71 3.47 957434 22.60 7.53 14553 11.91 5.76 12718 4.12 3.68 1017336 24.98 7.98 15409 13.16 6.09 13466 4.56 3.90 1077138 27.45 8.42 16265 14.47 6.43 14214 5.01 4.12 1136940 30.03 8.86 17121 15.83 6.77 14962 5.48 4.33 1196842 32.71 9.31 17978 17.24 7.11 15710 5.97 4.55 1256644 35.48 9.75 18834 18.70 7.45 16458 6.48 4.77 1316546 38.35 10.19 19690 20.22 7.79 17206 7.00 4.98 1376348 21.78 8.13 17954 7.54 5.20 1436150 23.39 8.47 18703 8.10 5.42 14960

Page 14: Instruction Guide - WaterFurnace

Instruction Guide: Residential Earth Loop Pressure Drop Calculation and Pump Sizing

14IG1552EW 01/10

Pipe Pressure Drop Tables cont.

Rev. 1/6/06

BRINE 4 20% METHANOL @ 30°F

Viscosity 0.002072 lbm/ft secDensity 60.80 lb/ft3 Darcy-Weisbach

Method

FLOWRATE

3/4” IPS SDR 11 1” IPS SDR 11 1 1/4” IPS SDR 11 1 1/2” IPS SDR 11 2” IPS SDR 11PD (ft) Vel ft/s Re PD (ft) Vel ft/s Re PD (ft) Vel ft/s Re PD (ft) Vel ft/s Re PD (ft) Vel ft/s Re

1 0.36 0.55 1162 0.12 0.35 930 0.04 0.22 736 0.02 0.17 643 0.01 0.11 5152 1.21 1.11 2325 0.42 0.71 1860 0.14 0.44 1472 0.07 0.34 1287 0.03 0.22 10293 2.47 1.66 3487 0.85 1.06 2789 0.28 0.66 2209 0.15 0.51 1930 0.05 0.32 15444 4.08 2.21 4650 1.41 1.41 3719 0.47 0.89 2945 0.25 0.68 2573 0.09 0.43 20585 6.04 2.76 5812 2.09 1.77 4649 0.69 1.11 3681 0.36 0.85 3217 0.13 0.54 25736 8.30 3.32 6975 2.87 2.12 5579 0.95 1.33 4417 0.50 1.02 3860 0.17 0.65 30887 10.87 3.87 8137 3.76 2.48 6509 1.24 1.55 5153 0.65 1.19 4503 0.23 0.76 36028 13.74 4.42 9300 4.76 2.83 7439 1.57 1.77 5890 0.83 1.35 5147 0.29 0.87 41179 16.88 4.98 10462 5.84 3.18 8368 1.93 1.99 6626 1.02 1.52 5790 0.35 0.97 4631

10 20.30 5.53 11625 7.03 3.54 9298 2.32 2.22 7362 1.22 1.69 6433 0.42 1.08 514611 23.99 6.08 12787 8.30 3.89 10228 2.74 2.44 8098 1.44 1.86 7077 0.50 1.19 566112 27.93 6.63 13950 9.67 4.24 11158 3.19 2.66 8834 1.68 2.03 7720 0.58 1.30 617513 32.13 7.19 15112 11.12 4.60 12088 3.67 2.88 9571 1.93 2.20 8363 0.67 1.41 669014 12.66 4.95 13018 4.18 3.10 10307 2.20 2.37 9007 0.76 1.52 720415 14.29 5.30 13947 4.71 3.32 11043 2.48 2.54 9650 0.86 1.62 771916 16.00 5.66 14877 5.28 3.55 11779 2.78 2.71 10293 0.96 1.73 823317 17.79 6.01 15807 5.87 3.77 12515 3.09 2.88 10937 1.07 1.84 874818 19.66 6.37 16737 6.48 3.99 13251 3.42 3.05 11580 1.18 1.95 926319 21.61 6.72 17667 7.13 4.21 13988 3.76 3.22 12223 1.30 2.06 977720 23.64 7.07 18597 7.80 4.43 14724 4.11 3.39 12867 1.42 2.17 1029221 25.75 7.43 19526 8.49 4.65 15460 4.48 3.56 13510 1.55 2.27 1080622 27.93 7.78 20456 9.21 4.87 16196 4.86 3.72 14154 1.68 2.38 1132123 30.19 8.13 21386 9.96 5.10 16932 5.25 3.89 14797 1.82 2.49 1183624 10.73 5.32 17669 5.65 4.06 15440 1.96 2.60 1235025 11.52 5.54 18405 6.07 4.23 16084 2.10 2.71 1286526 12.34 5.76 19141 6.50 4.40 16727 2.25 2.82 1337928 14.05 6.20 20613 7.40 4.74 18014 2.56 3.03 1440930 15.85 6.65 22086 8.36 5.08 19300 2.89 3.25 1543832 17.75 7.09 23558 9.35 5.42 20587 3.24 3.47 1646734 19.73 7.53 25031 10.40 5.76 21874 3.60 3.68 1749636 21.81 7.98 26503 11.50 6.09 23160 3.98 3.90 1852538 23.97 8.42 27975 12.64 6.43 24447 4.37 4.12 1955540 26.22 8.86 29448 13.82 6.77 25734 4.79 4.33 2058442 28.56 9.31 30920 15.05 7.11 27020 5.21 4.55 2161344 30.98 9.75 32392 16.33 7.45 28307 5.65 4.77 2264246 33.49 10.19 33865 17.65 7.79 29594 6.11 4.98 2367148 19.02 8.13 30880 6.58 5.20 2470050 20.43 8.47 32167 7.07 5.42 25730

Page 15: Instruction Guide - WaterFurnace

Instruction Guide: Residential Earth Loop Pressure Drop Calculation and Pump Sizing

15IG1552EW 01/10

Pipe Pressure Drop Tables cont.Pressure Drop, Polyethylene Pipe, SDR 11Per 100 ft. of pipe, in feet of head

BRINE 5 30% PROPYLENE GLYCOL @ 30°FViscosity 0.004972 lbm/ft sec

Density 64.50 lb/ft3 Darcy-Weisbach Method

FLOWRATE

3/4” IPS SDR 11 1” IPS SDR 11 1 1/4” IPS SDR 11 1 1/2” IPS SDR 11 2” IPS SDR 11PD (ft) Vel ft/s Re PD (ft) Vel

ft/s Re PD (ft) Vel ft/s Re PD (ft) Vel

ft/s Re PD (ft) Vel ft/s Re

1 0.44 0.55 514 0.15 0.35 411 0.05 0.22 325 0.03 0.17 284 0.01 0.11 2272 1.49 1.11 1028 0.52 0.71 822 0.17 0.44 651 0.09 0.34 569 0.03 0.22 4553 3.03 1.66 1542 1.05 1.06 1233 0.35 0.66 976 0.18 0.51 853 0.06 0.32 6824 5.01 2.21 2056 1.73 1.41 1644 0.57 0.89 1302 0.30 0.68 1138 0.10 0.43 9105 7.40 2.76 2570 2.56 1.77 2055 0.85 1.11 1627 0.45 0.85 1422 0.15 0.54 11376 10.18 3.32 3084 3.53 2.12 2466 1.16 1.33 1953 0.61 1.02 1707 0.21 0.65 13657 13.34 3.87 3598 4.62 2.48 2878 1.52 1.55 2278 0.80 1.19 1991 0.28 0.76 15928 16.85 4.42 4111 5.83 2.83 3289 1.92 1.77 2604 1.01 1.35 2275 0.35 0.87 18209 20.70 4.98 4625 7.17 3.18 3700 2.36 1.99 2929 1.25 1.52 2560 0.43 0.97 204710 24.90 5.53 5139 8.62 3.54 4111 2.84 2.22 3255 1.50 1.69 2844 0.52 1.08 227511 29.41 6.08 5653 10.18 3.89 4522 3.36 2.44 3580 1.77 1.86 3129 0.61 1.19 250212 34.25 6.63 6167 11.86 4.24 4933 3.91 2.66 3906 2.06 2.03 3413 0.71 1.30 273013 39.40 7.19 6681 13.64 4.60 5344 4.50 2.88 4231 2.37 2.20 3697 0.82 1.41 295714 15.53 4.95 5755 5.12 3.10 4557 2.70 2.37 3982 0.93 1.52 318515 17.52 5.30 6166 5.78 3.32 4882 3.05 2.54 4266 1.05 1.62 341216 19.62 5.66 6577 6.47 3.55 5207 3.41 2.71 4551 1.18 1.73 364017 21.81 6.01 6988 7.19 3.77 5533 3.79 2.88 4835 1.31 1.84 386718 24.11 6.37 7399 7.95 3.99 5858 4.19 3.05 5120 1.45 1.95 409519 26.50 6.72 7810 8.74 4.21 6184 4.61 3.22 5404 1.60 2.06 432220 28.99 7.07 8221 9.56 4.43 6509 5.04 3.39 5688 1.74 2.17 455021 31.57 7.43 8633 10.41 4.65 6835 5.49 3.56 5973 1.90 2.27 477722 34.25 7.78 9044 11.30 4.87 7160 5.95 3.72 6257 2.06 2.38 500523 37.02 8.13 9455 12.21 5.10 7486 6.44 3.89 6542 2.23 2.49 523224 13.16 5.32 7811 6.93 4.06 6826 2.40 2.60 546025 14.13 5.54 8137 7.45 4.23 7110 2.58 2.71 568726 15.13 5.76 8462 7.98 4.40 7395 2.76 2.82 591528 17.23 6.20 9113 9.08 4.74 7964 3.14 3.03 637030 19.44 6.65 9764 10.25 5.08 8533 3.55 3.25 682532 21.76 7.09 10415 11.47 5.42 9101 3.97 3.47 728034 24.20 7.53 11066 12.76 5.76 9670 4.42 3.68 773536 26.75 7.98 11717 14.10 6.09 10239 4.88 3.90 819038 29.40 8.42 12368 15.50 6.43 10808 5.37 4.12 864540 32.16 8.86 13019 16.95 6.77 11377 5.87 4.33 910042 35.03 9.31 13670 18.46 7.11 11946 6.39 4.55 955544 38.00 9.75 14321 20.03 7.45 12514 6.93 4.77 1001046 41.07 10.19 14971 21.65 7.79 13083 7.50 4.98 1046548 23.32 8.13 13652 8.08 5.20 1092050 25.05 8.47 14221 8.67 5.42 11375

Rev. 1/06

Page 16: Instruction Guide - WaterFurnace

Instruction Guide: Residential Earth Loop Pressure Drop Calculation and Pump Sizing

16IG1552EW 01/10

©2009 WaterFurnace International, Inc ., 9000 Conservation Way, Fort Wayne, IN 46809-9794 . WaterFurnace has a policy of continual product research and development and

reserves the right to change design and specifications without notice .

Equivalent Length of Fittings

Fitting Size .75" 1" 1.25" 1.5" 2" Coupling 1 1 1 1 1 Elbow, 45 degree 1 1 2 2 2 Elbow, 90 degree 3 3 4 4 6 Tee-branch 6 6 7 8 12

.75" pipe 1" pipe .75" pipe 1" pipe

Water @ 32° F 5968 4774 2.16 0.75

Water @ 50° F 8134 6506 2.00 0.69

20% Methanol @ 30° F 3487 2789 2.47 0.85

25° Environol @ 30° F(ethanol ) 2028 1622 2.83 0.98

30% Propylene Glycol @ 30° F 1542 1233 3.03 1.05

19% Propylene Glycol @ 30° F 3089 2466 1.24 0.5

Feet of Head per 100' of Pipe(Resistance to Flow)

Reynolds Number* (Turbulence)Brine Solution Type

Fluid Performance Comparison

Figure 2: Pressure Drop Through Tees

“A” has pressure drop of a coupling .

“B” has the pressure drop of a tee branch .

Since “B” is a 1 .5” x 1 .5” x 1” tee, use the chart below for the equivalent length of pipe .

Example: If “B” is a 2” x 2” x 1 .25” tee, the resistance to flow through the tee-brach portion of the fitting is equal to 7 feet of

1 .25” pipe .

Question: If “B” is a 1 .25” x 1 .25” x .75” tee, the resistance to flow through the tee-brach portion of the fitting is equal to

feet of pipe .

A B

Tee Branch

NOTE: All data at 3 gpm .

*A minimum Reynolds Number of 2500 is required for all circuit piping .