53
INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ EMMANUEL ALEJANDRO SARAOZ GALDAMEZ ING. ELECTRICA 9° SEMESTRE NUM. CONTROL: 06270364 REPORTE DE RESIDENCIA PROFESIONAL “USO EFICIENTE DE LA ENERGIA EN LUMINARIAS TIPO EXTERIOR DEL INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ” ASESOR: M.C. JULIO ENRIQUE MEGCHUN VAZQUEZ ENERO DEL 2011, TUXTLA GUTIERREZ CHIAPAS.

INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ

EMMANUEL ALEJANDRO SARAOZ GALDAMEZ

ING. ELECTRICA 9° SEMESTRE

NUM. CONTROL: 06270364

REPORTE DE RESIDENCIA PROFESIONAL

“USO EFICIENTE DE LA ENERGIA EN LUMINARIAS TIPO EXTERIOR

DEL INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ”

ASESOR: M.C. JULIO ENRIQUE MEGCHUN VAZQUEZ

ENERO DEL 2011, TUXTLA GUTIERREZ CHIAPAS.

Page 2: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

2

INDICE

MISION, VISION Y VALORES DEL INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ-------------------------3

ANTECEDENTES-----------------------------------------------4 INTRODUCCION-----------------------------------------------6 OBJETIVO---------------------------------------------------7 MARCO TEORICO----------------------------------------------8 TIPOS DE LUMINARIAS EXTERIORES ----------------------------10 Y CARACTERISTICAS CONCEPTOS SOBRE ILUMINACION DE ESPACIO---------------------16 DESARROLLO DEL PROYECTO------------------------------------24 MEMORIA TECNICA DEL PROYECTO-------------------------------25 CALCULOS DE CONSUMO DE POTENCIA Y--------------------------26 CORRIENTE SUB. 1 DESCRIPCION DE CONSUMO DE ENERGIA SUB. 1-------------------28 CALCULO DE CONSUMO DE POTENCIA Y --------------------------29 CORRIENTE SUB. 2 DESCRIPCION DE CONSUMO DE ENERGIA SUB. 2-------------------31 CALCULO DE CONSUMO DE POTENCIA ----------------------------32 Y CORRIENTE SUB.4 DESCRIPCION DEL CONSUMO DE ENERGIA SUB. 4------------------32 CONSUMO GLOBAL POR TIPO DE LAMPARA-------------------------33 UBICACIÓN FISICA DE SUBESTACIONES Y TABLEROS DE CONTROL-------------------------------------------------35 DESARROLLO DE PROPUESTA Y COMPARACION DE AHORRO DE ENERGIA---------------------------------------43 COMPARACION DE AHORRO DE ENERGIA ENTRE CARGA ACTUAL Y CARGA PROPUESTA-----------------------47 IMPLEMENTACION DE PROYECTO EN EL EDIFICIO Z----------------48 REPORTE DE ACTIVIDADES REALIZADAS EN NOV-DIC---------------49 RESULTADOS-------------------------------------------------50 BIBLIOGRAFIA-----------------------------------------------51 ANEXOS-----------------------------------------------------53

Page 3: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

3

“MISION, VISION Y VALORES DEL INSTITUTO TECNOLOGICO DE TUXTLA

GUTIERREZ”

Misión

Formar de manera integral profesionales de excelencia en el campo de la ciencia y

la tecnológia con actitud emprendedora, respeto al medio ambiente y apego a los

valores éticos

Visión

Ser una Institución de excelencia en la educación superior tecnológica del Sureste,

comprometida con el desarrollo socioeconómico sustentable de la región

Valores

El ser humano

El espíritu de servicio

El liderazgo

El trabajo en equipo

La calidad

El alto desempéño

Page 4: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

4

ANTECEDENTES En la década de los 70’s, se incorpora el estado de Chiapas al movimiento educativo nacional extensión educativa, por intervención del Gobierno del Estado de Chiapas ante la federación. Esta gestión dio origen a la creación del Instituto Tecnológico Regional de Tuxtla Gutiérrez (ITRTG) hoy Instituto Tecnológico de Tuxtla Gutiérrez (ITTG). El día 23 de agosto de 1971 el Gobernador del Estado, Dr. Manuel Velasco Suárez, colocó la primera piedra de lo que muy pronto sería el Centro Educativo de nivel medio superior más importante de la entidad. El día 22 de octubre de 1972, con una infraestructura de 2 edificios con 8 aulas, 2 laboratorios y un edificio para talleres abre sus puertas el Instituto Tecnológico de Tuxtla Gutiérrez con las carreras de Técnico en Máquinas de Combustión Interna, Electricidad, Laboratorista Químico y Máquinas y Herramientas. En el año 1974 dio inicio la modalidad en el nivel superior, ofreciendo las carrera de Ingeniería Industrial en Producción y Bioquímica en Productos Naturales. En 1980 se amplió la oferta educativa al incorporarse las carreras de Ingeniería Industrial Eléctrica e Ingeniería Industrial Química. En 1987 se abre la carrera de Ingeniería en Electrónica y se liquidan en 1989 las carreras del sistema abierto del nivel medio superior y en el nivel superior se reorientó la oferta en la carrera de Ingeniería Industrial Eléctrica y se inicia también Ingeniería Mecánica.

En 1991 surge la licenciatura en Ingeniería en Sistemas Computacionales. Desde 1997 el Instituto Tecnológico de Tuxtla Gutiérrez ofrece la Especialización en Ingeniería Ambiental como primer programa de postgrado.

En 1998 se estableció el programa interinstitucional de postgrado con la Universidad Autónoma de Chiapas para impartir en el Instituto Tecnológico la Maestría en

Biotecnología. En el año 1999 se inició el programa de Maestría en Administración como respuesta a la demanda del sector industrial y de servicios de la región.

A partir de 2000 se abrió también la Especialización en Biotecnología Vegetal y un año después dio inicio el programa de Maestría en Ciencias en Ingeniería Bioquímica y la Licenciatura en Informática

Page 5: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

5

El instituto tecnológico de Tuxtla Gutiérrez es una institución de educación superior que ofrece sus servicios educativos en un horario que abarca desde las 7:00 a.m hasta las 9:00 p.m. En este horario se imparten clases teóricas y prácticas en las distintas carreras que ofrece la institución. Como puede apreciarse, hay un intervalo de tiempo en el que la institución oferta sus servicios en un horario vespertino en el cual se hace necesario el uso de luminarias exteriores para alumbrar pasillos, andadores y diversas áreas del instituto que requieren de una iluminación óptima. Cuenta con luminarias tipo exterior que no satisfacen totalmente los planes actuales de ahorro de energía. De ahí, la necesidad de diseñar un programa que permita regular el consumo total de energía en cuanto a luminarias de tipo exterior se refiere.

Page 6: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

6

INTRODUCCION Actualmente, la conciencia por la conservación del medio ambiente y por el uso eficiente de la energía ha cobrado mayor importancia en todos los ámbitos de desarrollo del ser humano. El interés por frenar la emisión de gases contaminantes, la disminución de combustibles fosiles para la producción de energía son temas de gran importancia a la hora de hablar en aspectos de conservación del medio ambiente. El efecto invernadero y los cambios climáticos alrededor del mundo han sido temas de análisis para ver las consecuencias de la irresponsabilidad del ser humano a la hora de llevar a cabo su desarrollo sin tomar en cuenta al medio ambiente. Es por eso que hoy, cobra gran importancia el interés por el uso eficiente de la energía. Este interés se materializa al analizar opciones de ahorro de energía, todo esto con el único interés de contribuir a esa tan preciada conservación del medio ambiente. El ahorro de energía es hoy, un asunto de importancia, no por que se busque prevenir el desgaste del medio ambiente, sino, por el contrario se pretende corregir y si no se puede del todo frenar la contaminación, mermar en lo que se puede el uso indiscriminado de energía. Es por eso, que actualmente, el instituto tecnológico de Tuxtla Gutiérrez, una institución educativa comprometida con la sociedad y con las futuras generaciones, fomenta el ahorro de la energía en todas sus actividades. La elaboración de la presente residencia, toma su principal justificación en ese punto, el cual es contribuir al ahorro de energía a través del diseño de un programa de ahorro de energía, que tendrá como enfoque principal el estudio técnico de las lámparas tipo exterior que se encuentran instaladas actualmente en el plantel.

Page 7: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

7

OBJETIVO Realizar un estudio técnico sobre el consumo de energía de las luminarias tipo exterior del “INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ”, así como establecer la ubicación geográfica de cada una de las luminarias en el instituto. Como parte del objetivo, cabe mencionar que se sentaran las bases para la implementación de un programa de ahorro de energía en cuanto a las luminarias exteriores se refiere.

OBJETIVOS ESPECIFICOS

1; Realizar un levantamiento digital a través de un plano. 2; diseñar diagramas unifilares de cada uno de los circuitos que se utilicen para la alimentación de luminarias tipo exterior. 3; elaborar cuadro de cargas del plano realizado. 4; instalar luminarias exteriores en la parte frontal del edificio z. 5; ubicar centros de carga, alimentación de circuitos, interruptores de circuitos de alimentación de luminarias tipo exterior. 6; realizar un conteo de luminarias, consumo y tipo. 7; proponer una alternativa o solución que pretenda disminuir el consumo en watts en luminarias tipo exterior.

Page 8: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

8

MARCO TEORICO

HISTORIA DEL ALUMBRADO PÚBLICO

Tras el control del fuego por parte de los humanos uno de sus usos fue la iluminación. Así

pudo usarse mediante antorchas para iluminar algunos lugares. Como este sistema era

engorroso y poco duradero fueron apareciendo luminarias con diferentes aceites y mechas

que permitían iluminar durante más tiempo y de forma más cómoda. Han sido encontradas

lámparas de terracota en las planicies de Mesopotamia datadas entre el 7000 y el 8000 a. C.

y otras de cobre y bronce en Egipto y Persia cercanas al 2700 a. C.

Las primeras ordenanzas sobre alumbrado público que se conocen datan del siglo XVI. En

Francia, venían obligados los vecinos (1524) a colgar una luz en la puerta de sus casas y

hasta 1558 no se colocaron faroles en las esquinas de las calles. En 1662, el abate Laudati

Carraffe organizó un cuerpo de vigilancia nocturna encargado de encenderlos y apagarlos.

En 1667, el teniente de policía Le Reynie reformó y fijó el alumbrado público. Uno de sus

sucesores, Sartines, introdujo el empleo de reflectores o reverberos y en 1818 fue adoptado

el gas, extendiéndose después a todas las ciudades importantes del mundo.

La primera utilización del alumbrado por gas para la iluminación pública fue en 1807,

cuando Frederick Albert Winsor iluminó uno de los lados de la calle Pall Mall de Londres,

tras mejorar el sistema que años antes había investigado el francés Philippe Lebon.

Las primeras farolas de gas requerían que un farolero recorriese las calles al atardecer para

ir encendiéndolas, pero años después se empezaron a emplear dispositivos de encendido

automático que prendían la llama al activarse el paso de gas. Las primeras farolas fueron

fabricadas en el Imperio Árabe.3

Las primeras farolas eléctricas empleadas, eran del tipo arco eléctrico, inicialmente las

velas eléctricas, velas Jablochoff o velas Yablochkov desarrolladas por el ruso Pavel

Yablochkov en 1875. Se trataban de lámparas de arco eléctrico con electrodos de carbón

que empleaban corriente alterna, que garantizaba que los electrodos ardieran de forma

regular. Las velas Yablochkov fueron usadas por primera vez para alumbrar los grandes

almacenes Grand Magasins de Louvre, en París en los años 1880. Poco después fueron

instaladas de forma experimental en el puente Holborn Viaduct y la calle Thames

Embankment de Londres. Más de 4000 de estas lámparas estaban en uso en 1881, aunque

por entonces ya se habían desarrollado mejoras en las lámparas de arco diferencial por parte

de Friederich von Hefner-Alteneck de la empresa alemana Siemens & Halske. En los

Estados Unidos fue rápida la adopción del alumbrado de arco. En 1890 había instaladas

alrededor de 130000.

Timişoara, en la actual Rumania, fue la primera ciudad de la Europa continental en contar

con alumbrado público por electricidad. El 12 de noviembre de 1884 instaló 731 lámparas.

Page 9: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

9

La luz de arco eléctrico tenía dos grandes inconvenientes. Emite una luz intensa y gran

desprendimiento de calor, aunque útil para zonas industriales como los astilleros, era

incómoda para las calles de las ciudades. Además requiere mucho mantenimiento debido al

rápido desgaste de los electrodos de carbón. A finales del siglo XIX, con el desarrollo de

lámparas incandescentes baratas, brillantes y fiables, las de luz de arco quedaron en desuso

para el alumbrado público, permaneciendo para usos industriales.

La lámpara fluorescente se usó brevemente después de la lámpara incandescente en

alumbrado público, principalmente debido a que no es una fuente puntual de luz, aún

cuando son más eficientes que las lámparas incandescentes.

Page 10: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

10

TIPOS DE LUMINARIAS EXTERIORES Y

CARACTERISTICAS

Lámparas de Incandescencia

En este tipo de lámparas, la emisión de luz es el resultado de la alta temperatura alcanzada por un filamento de volframio, en una atmósfera de gas inerte o de vacío, al pasar por dicho filamento corriente eléctrica.

El rendimiento luminoso de esta lámpara es pequeño. Se emplea para iluminación de interiores en locales de techo bajo (menos de 4 m).

Lámparas o Tubos de Descarga Luminosa

La emisión de luz es el resultado de la descarga eléctrica a través de gases o vapores metálicos. La descarga se realiza aplicando al tubo una tensión superior a un valor crítico (según el gas y su presión) y, una vez iniciada, la resistencia de la lámpara disminuye; por lo que para limitar la intensidad es necesario el empleo de bobinas (reactancias) o transformadores de dispersión (con un gran entrehierro).

Las lámparas de descarga más utilizadas son:

Lámparas de vapor de mercurio a alta presión: Dan un color blanco azulado y tienen un buen rendimiento luminoso. Se utilizan en alumbrado público e industrial.

Lámparas de vapor de sodio: Dan un color amarillo y tienen muy buen rendimiento luminoso. Se utilizan en alumbrado público y de exteriores.

Tubos de alta tensión: Dan distintos colores según el gas utilizado y necesitan una tensión de 2.000 V a 6.000 V según la longitud del tubo. Se utilizan en publicidad.

Lámparas o Tubos Fluorescentes

La emisión de luz es la consecuencia de la descarga eléctrica a través de vapor de mercurio a baja presión, que da origen a rayos ultravioletas transformados en luz visible por medio de polvos fluorescentes situados en la pared interior del tubo. Las lámparas fluorescentes más utilizadas son:

Lámparas de baja tensión con encendido diferido: El encendido se produce por una sobre tensión instantánea al efectuar la lámina bimetálica en atmósfera de neón el corte del circuito en el que está la reactancia L.

Lámpara de encendido instantáneo: El encendido se produce en el momento de la conexión.

Lámparas de conexión “dúo”: Para evitar el efecto estroboscópico (oscilación de la emisión de luz debido a la corriente alterna) se utiliza en corriente alterna monofásica el montaje en paralelo de dos tubos, conectando uno de ellos por medio de un condensador.

Page 11: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

11

Actualmente en el instituto tecnológico se encuentran instaladas tres tipos de luminarias: ° Vapor de sodio ° Vapor de mercurio. ° Aditivo metálico. Es por ello que nuestra investigación parte de ahí como referencia. Lámpara a vapor de sodio SDW-T (Sodio blanco) Son lámparas de sodio de alta presión con tubo de descarga de óxido de aluminio sinterizado, alojado en una envoltura tubular de vidrio transparente, al vacío. La elevada presión de sodio da un brillo y reproducción de color excepcionales. El tubo de descarga contiene una amalgama de sodio y mercurio a una presión de 95KPa, adicionado con xenon para facilitar la ignición y limitar la conducción de calor, incrementando así la eficiencia luminosa y la reducción del parpadeo. Las lámparas SDW-T utilizan un balasto y una unidad de control especial de Philips, que elimina las desviaciones de color provocadas por las variaciones de la tensión de red. Estas lámparas tienen una temperatura de color de 2500K y un elevado índice de rendimiento de color: Ra=83. Tienen posición de uso universal.

Dimensiones en mm.

Page 12: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

12

Page 13: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

13

LAMPARA A VAPOR DE SODIO Lámparas a vapor de sodio de alta presión, para uso de interiores o exteriores, con un tubo de descarga de óxido de aluminio sinterizado y recubierto por una ampolla ovoidal exterior, cubierta con pintura fluorescente. Las lámparas emiten luz cálida con una elevada eficiencia luminosa (120 lm/w), lo que las hace recomendables en aquellas aplicaciones en las que se necesita luz abundante y económica. La pared interior del bulbo está cubierta por una capa muy uniforme de pirofosfato de calcio aplicada en forma electrostática. Este recubrimiento de la ampolla permite mantener el flujo luminoso con baja depreciación, asegurando una buena performance durante toda su vida útil. Su geometría hace que pueda ser utilizada en las mismas ópticas y luminarias diseñadas para lámparas a vapor de mercurio de color corregido, donde normalmente se tiene luz difusa. A estas características se le suma una larga vida útil y una operación estable durante la misma. Estas lámparas emplean un balasto e ignitor.

Dimensiones en mm.

Page 14: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

14

Page 15: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

15

Aditivos Metálicos (A/M)

CARACTERISTICAS

Son lámparas de descarga de alta presión, su construcción se basa en un bulbo de vidrio duro en el que se encuentra

alojado un volumen de gas noble con compuestos metálicos de mercurio y algunos otros elementos, de donde reciben el

nombre de Aditivos Metálicos.

Son lámparas de la familia de Vapor de Mercurio por lo que ofrecen gran cantidad de luz, con la característica de que el

color se ve modificado por los nuevos compuestos adicionados, obteniéndose una buena reproducción cromática.

175w

250w

400w

1000w

1500w

COLORES.

Color de luz blanco amarillento

LAMPARA DE VAPOR DE MERCURIO

Se utilizan para alumbrado exterior, en alumbrado público, estacionamientos, obras, etc. En

interiores se utilizan para iluminar naves de fabricación, salas de ventas, lobbies, etc.

CARACTERISTICAS

Las lámparas de descarga se caracterizan por producir gran cantidad de luz gracias a una

descarga eléctrica que se lleva a cabo en un bulbo de vidrio en una atmósfera de gas con algún

compuesto metálico. En el caso de la HQL, el tubo de descarga lleva mercurio, que debido a la

temperatura y al voltaje se vaporiza y permite la descarga eléctrica. La posibilidad de aplicación

de las lámparas de vapor de mercurio en alta presión son muchas. La economía que representa

por su rendimiento luminoso y larga vida permite realizar iluminaciones en las que se requiere

una luz abundante con una aceptable reproducción cromática.

100w

125w

175w

Page 16: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

16

CONCEPTOS SOBRE ILUMINACION DE ESPACIOS

A continuación se presentan conceptos que se deben tomar en cuenta a la hora de cálculos de luminosidad e iluminación:

Flujo luminoso (ððð

Energía luminosa emitida por unidad de tiempo. Su unidad es el lumen (lm). Su valor viene dado por el fabricante, y su rendimiento es la relación entre el flujo que emite y la potencia que consume.

Intensidad luminosa (I):

Es el flujo luminoso emitido en una dirección dada por unidad de ángulo sólido (estereoradián). Su unidad es la candela (cd). Unidad patrón del S.I.

Iluminación (E):

Es el flujo luminoso recibido por unidad de superficie. Se mide en lux (lx), utilizando un aparato llamado luxómetro.

1 lux = 1 lm

1 m

Luminancia o brillo (L):

Es la intensidad luminosa en una dirección dada por unidad de superficie aparente luminosa o iluminada. Se mide en nit (nt), aunque también se utiliza la cd/cm.

En esta parte podremos conocer las principales técnicas para calcular las variables que se toman en cuenta en la iluminación de exteriores.

Para el cálculo utilizaremos el "Método del Flujo Total", un método sencillo que, aunque no muy exacto, nos permite obtener unos valores útiles como primera aproximación, o para alumbrados en los que no son necesario resultados precisos:

Page 17: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

17

Page 18: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

18

Page 19: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

19

Tablas Útiles

Tipo Iluminación

media Em

(Lux)

Autopistas, autovías y carreteras con intenso tráfico 20-35

Vías urbanas y plazas importantes 10-20

Vías y paseos residenciales 5-15

Polideportivos 100-500

Flujo de la lámpara (Lm) Altura (m)

3.000 ≤ L< 10.000 6 ≤ H < 8

10.000 ≤ L < 20.000 8 ≤ H < 10

20.000 ≤ L < 40.000 10 ≤ H < 12

L ≥ 40.000 ≥ 12

Disposición Relación anchura/altura

Unilateral ≤ 1

Tresbolillo 1 < A/H ≤1.5

Pareada > 1.5

Iluminación media Em (lux) Separación / altura

2 ≤ Em < 7 5 ≤ d/h < 4

7≤ Em < 15 4 ≤ d/h < 3.5

15 ≤ Em ≤ 30 3.5 ≤ d/h < 2

Page 20: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

20

Factor de mantenimiento fm

Vía Luminaria abierta Luminaria cerrada

Limpia 0.75 0.80

Media 0.68 0.70

Sucia 0.65 0.68

Page 21: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

21

Cálculo del Factor de Utilización

Page 22: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

22

Page 23: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

23

Page 24: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

24

DESARROLLO DEL PROYECTO

Para tener una visión general de las lámparas instaladas en la institución fue necesario lo

siguiente:

1; desarrollar una memoria técnica de los circuitos de iluminación exterior.

2; desarrollar una ubicación espacial de cada una de las luminarias instaladas en nuestra

instalación a fin de conocer su ubicación exacta para mantenimientos futuros.

3: definir tipo de lámpara y su consumo en watts.

4; diseñar un croquis a fin de conocer la ubicación de cada una de las luminarias tipo

exterior que se encuentran actualmente instaladas en el instituto tecnológico de Tuxtla

Gutiérrez.

5; definir la alimentación general de cada uno de los circuitos alimentadores de las

luminarias, así como conocer las zonas en que se maneja el instituto tecnológico de Tuxtla

Gutiérrez para su mantenimiento.

6; conocer la ubicación exacta de los tableros de los circuitos alimentadores de las

luminarias exteriores.

7; diseñar diagramas unifilares, cuadros de carga de cada circuito de luminarias.

9; proponer una mejora en cuanto a luminarias tipo exterior se refiere para disminuir

consumo de energía en ese rubro.

10; elaborar un estudio técnico de las luminarias de aditivo metálico sli lighting 175 watts.

Page 25: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

25

MEMORIA TECNICA

INSTITUCION: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ

Alimentación del circuito de iluminación exterior:

Subestación num.1.

Características del transformador: transformador en aceite, 300 kva.

Ubicación de subestación: Edificio “I”.

Interruptor principal: square D, 3 x 2000 A, 220/127 volts.

Ubicación de tablero de control: edificio “D”.

Circuitos controlados:

(1) “TALLERES”: interruptor termo magnético, 2 x 30 A, 220/127 volts.

(2) “ENTRADA PRINCIPAL”: interruptor termo magnético, 2 x 30 A,

220/127 volts.

(3) “ EDIFICIOS E,H,G”: interruptor termo magnético, 2 x 30 A, 220/127

volts.

(4) “FRENTE ESTACIONAMIENTO”: interruptor termo magnético, 2 x

30 A, 220/127 volts.

(5) “EDIFICIO M,P,S”: interruptor termo magnético, 2 x 50 A, 220/127

volts.

(6) “EDIFICIO K,L”: interruptor termo magnético, 2 x 30 A, 220/127 volts.

(7) “EDIFICIO D,I”: interruptor termo magnético, 2 x 30 A, 220/127 volts.

Page 26: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

26

CALCULOS DE CONSUMO EN POTENCIA Y CORRIENTE

DISEÑO DE CUADRO DE CARGAS DE CIRCUITOS ALIMENTADOS POR

SUBESTACION 1

(1) TALLERES

Lámparas sub. Vapor de merc. 2 x 250 watts = 500 watts

Lámparas sub. Vapor de merc. 1 x 450 watts = 450 watts

Lámparas sub. Vapor de sodio 1 x 250 watts = 250 watts

TOTAL= 1200 watts

I= P / (v x f.p)

I= 1200 watts / (220 x .90) = 6.06 A

(2) ENTRADA PRINCIPAL

Lámparas sub. Vapor de merc. 3 x 250 watts = 750 watts

Lámparas sub. Aditivo met. 4 x 250 watts = 1000 watts

TOTAL= 1750 watts

I= P / (v x f.p)

I= 1750 watts / (220 x .90) = 8.83 A

(3) EDIFICIOS “E, H, G”

Lámparas sub. Vapor de merc. 2 x 450 watts = 900 watts

Lámparas sub. Vapor de merc. 4 x 250 watts = 1000 watts

Lámparas sub. Vapor de sodio 1 x 250 watts = 250 watts

TOTAL= 2150 watts

I= P / (v x f.p)

I= 2150 watts / (220 x .90) = 10.85 A

(4) FRENTE ESTACIONAMIENTO

Lámparas sub. Vapor de merc. 7 x 250 watts = 1750 watts

Lámparas sub. Vapor de merc. 3 x 450 watts = 1350 watts

TOTAL= 3100 watts

I= P / (v x f.p)

I= 3100 watts / (220 x .90) = 15.65 A

Page 27: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

27

(5) EDIFICIO “M, P, S”

Lámparas sub. Vapor de merc. 1 x 450 watts = 450 watts

Lámparas sub. Vapor de merc. 3 x 250 watts = 750 watts

Lámparas sub. Aditivo met. 1 x 250 watts = 250 watts

Lámparas fluorescentes. 6 x 75 watts = 450 watts

TOTAL= 1900 watts

I= P / (v x f.p)

I= 1900 watts / (220 x .90) = 9.84 A

(6) EDIFICIOS “K, L”

Lámparas sub. Vapor de merc. 5 x 250 watts = 1250 watts

Lámparas sub. Vapor de merc. 2 x 450 watts = 900 watts

TOTAL= 2150 watts

I= P / (v x f.p)

I= 2150 watts / (220 x .90) = 10.85 A

(7) EDIFICIO “D, I”

Lámparas sub. Vapor de merc. 3 x 250 watts = 750 watts

Lámparas sub. Vapor de merc. 2 x 450 watts = 900 watts

TOTAL= 1650 watts

I= P / (v x f.p)

I= 1650 watts / (220 x .90) = 8.33 A

Page 28: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

28

DESCRIPCION DE CONSUMO DE ENERGIA POR CIRCUITO

NUM.

CIRCUITO

Luminaria

v. de merc.

450 watts

Luminaria

V. de

merc.

250 watts

Luminaria

v. de sodio

250 watts

Luminaria

Aditivo

metálico

175-250

watts

Lámparas

Fluorescente

75 watts

Total

watts

I

(1) 1 2 1 ---------- ------------ 1200 6.06

A

(2) ---------- 3 ----------- 4 ------------ 1700 8.83

A

(3) 2 4 1 ----------- ----------- 2150 10.85

A

(4) 3 7 ----------- ----------- ------------ 3100 15.65

A

(5) 1 3 ----------- 1 6 1900 9.84

A

(6) 2 5 2150 10.85

A

(7) 2 3 1650 8.33

A

TOTAL 13950

70.41

A

Page 29: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

29

INSTITUCION: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ

Alimentación del circuito de iluminación exterior:

Subestación num.2.

Características del transformador: transformador en aceite, 500 kva.

Ubicación de subestación: costado “Edificio Q”.

Interruptor principal: square D, 3 x 2000 A, 220/127 volts.

Ubicación de tablero de control: edificio “A”.

Circuitos controlados:

(8) edificios “Q, A”: interruptor termo magnético, 2 x 30 A, 220/127 volts.

(9) alumbrado frontal: interruptor termo magnético, 1 x 30 A, 220/127 volts.

(9.5) alumbrado frontal edificio “Q”: interruptor termo magnético, 2 x 30 A,

220/127 volts.

Page 30: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

30

CALCULO DE CONSUMO EN POTENCIA Y CORRIENTE

DISEÑO DE CUADRO DE CARGAS DE CIRCUITOS ALIMENTADOS POR

SUBESTACION 2

(8) EDIFICIOS “Q, A”

Lámparas sub. Vapor de merc. 4 x 250 watts = 1000 watts

Lámparas sub. Vapor de merc. 2 x 450 watts = 900 watts

TOTAL= 1900 watts

I= P / (v x f.p)

I= 1900 watts / (220 x .90) = 9.56 A

(9) ALUMBRADO FRONTAL ITTG

Lámparas fluorescentes . 6 x 75 watts = 450 watts

TOTAL= 450 watts

I= P / (v x f.p)

I= 450 watts / (220 x .90) = 2.27

(9.5) ALUMBRADO FRONTAL EDIFICIO Q

Lámparas sub. Vapor de merc. 4 x 250 watts = 1000 watts

TOTAL= 1000 watts

I= P / (v x f.p)

I= 1000 watts / (220 x .90) = 5.05 A

Page 31: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

31

DESCRIPCION DE CONSUMO DE ENERGIA POR CIRCUITO

TOTAL

NUM.

CIRCUITO

Luminaria

v. de merc.

450 watts

Luminaria

V. de

merc.

250 watts

Luminaria

v. de sodio

250 watts

Luminaria

Aditivo

metálico

175-250

watts

Lámparas

Fluorescente

75 watts

Total

watts

I

(8) 2 4 ------------- ---------- ------------ 1900 9.56A

(9) ---------- ----------- ----------- ------------ 6 450 2.27

A

(9.5) --------- 4 ----------- ----------- ----------- 1000 5.05

3350 16.88

A

Page 32: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

32

INSTITUCION: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ

Alimentación del circuito de iluminación exterior:

Subestación num.3.

Caracteristicas del transformador: transformador en aceite, 300 kva.

Ubicación de subestación: costado “Edificio Z”.

Interruptor principal: square D, 3 x 800 A, 220/127 volts.

Ubicacion de tablero de control: edificio “Z”.

Circuitos controlados:

(10) Alumbrado frontal “Z”: interruptor termo magnético, 2 x 15 A, 220/127

volts.

CALCULO DE CONSUMO DE POTENCIA Y CORRIENTE

DISEÑO DE CUADRO DE CARGAS DE CIRCUITOS ALIMENTADOS POR

SUBESTACION 4

(10) ALUMBRADO FRONTAL EDIFICIO Z

Lámparas sub. Aditivo metalico. 3 x 175 watts = 525 watts

TOTAL= 525 watts

I= P / (v x f.p)

I= 525 watts / (220 x .90) = 2.65 A

DESCRIPCION DE CONSUMO DE ENERGIA POR CIRCUITO

NUM.

CIRCUITO

Luminaria

v. de merc.

450 watts

Luminaria

V. de

merc.

250 watts

Luminaria

v. de sodio

250 watts

Luminaria

Aditivo

metálico

175-250

watts

Lámparas

Fluorescente

75 watts

Total

watts

I

(10) --------- ------- -------- 3 ------------ 525 2.65

A

Page 33: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

33

CONSUMO GLOBAL POR TIPO DE LAMPARA

A través del conteo de las luminarias exteriores del plantel, obtuvimos los siguientes

resultados:

Existen 56 luminarias tipo exterior en el instituto tecnológico de Tuxtla gutierrez instaladas

actualmente.

El tipo y el consumo se aprecian en la siguiente grafica:

71%

16%

4%

9%

V.M 250W

V.M. 450W

V.S.250W

AD.MT 250

Page 34: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

34

GRAFICA DE CONSUMO EN WATTS POR TIPO DE LÁMPARA

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

v.m 250 w

v.m 450 w

v.sod 250 w

ad.mt 250

El consumo total en watts es de 15550 watts de los cuales cada tipo de lámpara consume lo

siguiente:

Vapor de mercurio de 250 watts: 9750 watts.

Vapor de mercurio de 450 watts: 500 watts.

Vapor de sodio de 250 watts: 500 watts.

Aditivo metálico de 250 watts: 1250 watts.

Page 35: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

35

UBICACIÓN FISICA DE SUBESTACIONES Y TABLEROS DE CONTROL

SUBESTACION 1:

EDIFICIO 1

SUBESTACION 1

EDIFICIO “I”

Page 36: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

36

Transformador subestación 1.

Tablero de control general.

Page 37: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

37

Ubicación de tablero de control de luminarias.

Transición aéreo - subterránea de C.F.E a ITTG.

Page 38: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

38

SUBESTACION 2

UBICACIÓN:

Costado edificio “Q”

Subestación 2

Edificio Q

Page 39: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

39

Transformador subestación 2.

Tablero de control subestación 2

Page 40: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

40

Transición aéreo- subterránea de CFE a ITTG.

Tablero de control de luminarias tipo exterior

Edificio a.

Page 41: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

41

SUBESTACION 4

UBICACIÓN:

Costado edificio “Z”

Transformador subestación 4

Tablero de control subestación 4

EDIFICIO Z

Page 42: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

42

“Edificio z”

Page 43: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

43

DESARROLLO DE PROPUESTA Y COMPARACIÓN DE AHORRO DE ENERGÍA

“Generalización del uso de luminarias suburbanas tipo exterior HID (Aditivo metalico) de 175 watts”

Descripción de las lámparas HID (Aditivo metalico) Las lámparas de haluro metálico, también conocidas como lámparas de aditivos metálicos, lámparas de halogenuros metálicos, lámparas de mercurio halogenado o METALARC, son lámparas de descarga de alta presión, del grupo de las lámparas llamadas HID (Hight Intensity Discharge). Son generalmente de alta potencia y con una buena reproducción de colores, además de la luz ultravioleta. Originalmente fueron creadas en los años 1960 para el uso industrial de estas pero hoy se suelen aplicar en la industria tanto como el hogar.

Son de uso industrial tanto como de uso doméstico. Generalmente se le suele usar en

estaciones de combustible, plazas y alumbrado público. También se le suele usar en la

iluminación de acuarios. Por su amplio espectro de colores, se le suele usar en lugares

donde se requiere una buena reproducción de colores, como estaciones de televisión y

campos deportivos.

Funcionamiento

Como otras lámparas de descarga de gas eléctrica, por ejemplo las lámparas de vapor de

mercurio (muy similares a la de haluro metálico), la luz se genera pasando un arco eléctrico

a través de una mezcla de gases. En una lámpara de haluro metálico, el tubo compacto

donde se forma el arco contiene una mezcla de argón, mercurio y una variedad de haluros

metálicos. Las mezclas de haluros metálicos afecta la naturaleza de la luz producida,

variando correlacionadamente la temperatura del color y su intensidad (por ejemplo, que la

luz producida sea azulada o rojiza). El gas argón se ioniza fácilmente, facultando el paso

del arco voltaico pulsante a través de dos electrodos, cuando se le aplica un cierto voltaje a

la lámpara. El calor generado por el arco eléctrico vaporiza el mercurio y los haluros

metálicos, produciendo luz a medida que la temperatura y la presión aumentan. Como las

otras lámparas de descarga eléctrica, las lámparas de haluro metálico requieren un equipo

auxiliar para proporcionar el voltaje apropiado para comenzar el encendido y regular el

flujo de electricidad para mantener la lámpara encendida. La lámpara de Metal Halide de

150W, tiene como característica especial que funciona mejor en sitios abiertos.

Page 44: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

44

Componentes

Los principales componentes de la lámpara de halúro metálico son los siguientes. Tienen

una base metálica (a veces una en cada extremo), que permita la conexión eléctrica. La

lámpara es recubierta con un cristal protector externo (llamado bulbo) que protege los

componentes internos de la lámpara (a veces también es dotado de un filtro de radiación

ultravioleta, provocada por el vapor de mercurio. Dentro de la cubierta de cristal, se

encuentran una serie de soportes y alambres de plomo que sostienen el tubo de cuarzo

fundido (donde se forma el arco voltaico y la luz), y a su vez este se encaja en los

electrodos de tungsteno. Dentro del tubo de cuarzo fundido, además del mercurio, contiene

yoduros, bromuros de diferentes metales y un gas noble. La composición de los metales

usados define el color y la temperatura de la luz producida por la lámpara.

Otros tipos tienen el tubo donde se forma el arco de alúmina en vez de cuarzo fundido,

como las lámparas de vapor de sodio. Usualmente estos son llamados haluro metálico de

cerámica o CMH (del inglés Ceramic Metal Halide)

Algunas lámparas son recubiertas internamente con fósforo para difundir la luz.

Balastros

Las lámparas de haluro metálico requieren balastros para regular el flujo continuo del arco

y proporcionar el voltaje apropiado a la lámpara. Algunas lámparas grandes contienen un

electrodo especial de encendido para generar el arco cuando la lámpara es encendida,

generando un parpadeo leve al momento del encendido. Las lámparas más pequeñas no

requieren un electrodo de encendido, y en lugar de este utilizan un circuito especial de

encendido, que se encuentra dentro del balasto, generando un pulso de alto voltaje entre los

electrodos de funcionamiento.

En el caso de los balastros electrónicos, algunos están disponibles para las lámparas de

haluro metálico. La ventaja de estos balastros es un control más preciso y exacto de la

potencia, proporcionando un color más consistente y una vida más larga de la lámpara. En

algunos casos se dice que los balastros electrónicos incrementan la eficiencia de la lámpara,

reduciendo el consumo eléctrico, pero hay excepciones, por ejemplo las lámparas de alta

frecuencia (High Output) o muy alta frecuencia (Very High Output) donde el rendimiento

no aumenta con el uso de balastos electrónicos.

El tiempo de vida de estas lámparas va desde las 20.000 a 22.000 h

Page 45: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

45

DESARROLLO DE PROPUESTA DE AHORRO DE ENERGIA

Consumo de energía con luminarias HID de 175 watts

Carga de luminarias subestación 1

Num. de

circuito

Lámpara HID

175 watts

Lámparas

fluorescentes

75 Watts

Total watts

I

1 3 ---------- 525 2.65 A

2 7 ----------- 1226 6.18 A

3 7 ---------- 1226 6.18

4 10 1750 8.83 A

5 5 6 1325 6.69

6 7 ---- 1226 6.18

7 5 ---- 875 4.41

8153 41.12 A

TOTAL

Page 46: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

46

Carga de luminarias subestación 2

Num. de

circuito

Lámpara HID

175 watts

Lámparas

fluorescentes

75 Watts

Total watts

I

8 6 ---------- 1050 5.30 A

9 --------- 6 450 2.27 A

9.5 7 ---------- 1225 6.18

2725 13.75 A

TOTAL

Carga de luminarias subestación 3

Num. de

circuito

Lámpara HID

175 watts

Lámparas

fluorescentes

75 Watts

Total watts

I

10 3 ---------- 525 2.65 A

525 2.65 A

TOTAL

Page 47: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

47

COMPARACIÓN DE AHORRO DE ENERGÍA ENTRE CARGA

ACTUAL Y CARGA PROPUESTA

subestación Carga

actual en

watts

Carga

actual en

amperes

Carga

propuesta

en watts

Carga

propuesta

en amperes

1 13950 70.41 8153 41.12

2 3350 16.88 2725 13.75

4 525 2.65 525 2.65

CONSUMO

TOTAL

17825 W 89.94 A 11403 W 57.52 A

AHORRO DE ENERGIA

WATTS AMPERES

Carga actual 17825 89.94

Carga propuesta 11403 57.52

Ahorro 6422 W 32.42 A

El ahorro de energía en watts es de un 36 %. El ahorro de energía en corriente es de un 36 %.

Page 48: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

48

IMPLEMENTACIÓN DE PROYECTO DE AHORRO DE ENERGÍA

EN EL EDIFICIO “Z”

Como parte del proyecto se procedió a la instalación de tres luminarias tipo suburbano exterior de 175 watts en el edificio “Z”.

“Edificio z”

Se instalaron las tres luminarias en la parte frontal del edificio quedando de la siguiente forma:

inteii

Se instalo un interruptor square D de 2 x 15 a 220/127 volts. El conductor que se utilizo es un tipo condulac tipo uso rudo de 3 x 12.

Edificio z

Interruptor

Page 49: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

49

“REPORTE DE ACTIVIDADES REALIZADAS EN EL BIMESTRE NOV-

DIC”

“ALUMBRADO FRONTAL DEL INSTITUTO TECNOLOGICO DE TUXTLA

GUTIERREZ”

En la parte frontal del instituto tecnológico de Tuxtla Gutiérrez se cuentan con 12 luminarias

tipo fluorescentes de las denominadas “lámparas ahorradoras”.

El consumo de cada lámpara es de 75 watts. (Ver croquis anexo.)

El tablero de control de estas luminarias se encuentra dentro de la caseta de acceso al

estacionamiento.

La alimentación de este circuito proviene de la subestación 3 (edificio q).

El interruptor que controla el circuito es un interruptor de 30 A x 127 volts.

“MANTENIMIENTO A REGISTROS DEL INSTITUTO TECNOLÓGICO DE TUXTLA

GUTIÉRREZ”

Los registros del instituto tecnológico de Tuxtla gutierrez se encuentran en deterioro físico

por el factor tiempo-ambiente.

Aunado a que no se les ha brindado el mantenimiento y limpieza que estos deberían tener.

En el transcurso de la ubicación de registros alimentadores se procedió a limpiar los

registros.

Algunos de los registros encontrados en la elaboración del croquis se encuentran en

completo deterioro.

“ILUMINACIÓN EN EL EDIFICIO Z”

Se instalaron tres lámparas de vapor de mercurio de 175 watts en el frente del edificio z.

El interruptor de este circuito es de 15 A x 220 v marca square d.

El cable alimentador de este circuito es condulac tipo uso rudo 3 x 12.

Page 50: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

50

RESULTADOS

En el instituto tecnológico de Tuxtla Gutiérrez el interés por el ahorro de energía ha crecido.

Tal interés se demuestra con las acciones que ha emprendido el departamento de

mantenimiento al empezar a realizar la conversión de luminarias de vapor de mercurio por

luminarias menos contaminantes como son las luminarias de aditivo metálico.

En esta presente residencia se pudo conocer la ubicación, tipo, consumo y numero de

luminarias existentes en el instituto tecnológico de Tuxtla Gutiérrez

Se realizo un estudio detallado de alternativas de ahorro en cuanto a la tecnología en

luminarias tipo exterior se refiere.

Se realizo un croquis de ubicación de cada una de las luminarias tipo exterior que se

encuentran instaladas en el instituto, así como se ubico a que circuito pertenecen cada una y

la alimentación de cada circuito existente.

Como resultado principal, se puede contemplar que se alcanzaron cada de los objetivos que

se habían presentado al iniciar este proyecto.

Page 51: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

51

BIBLIOGRAFIA

-. Balestrini A, M. Como se elabora el proyecto de investigación. Editorial BL

aConsultores Asociados. Quinta edición. Caracas 2001.

-. Blanco, J. (2001, Noviembre 22). Guri tiene sed. El nacional, P. C/3

-. Código Eléctrico Nacional (1981). Capítulo dos. Sección 220-22. Carga del neutro

del alimentador. Codelectra. P. 57.

-. Consumo. (1999). Consumo de energía eléctrica. Disponible: http:

//WWW.escelsa.com.br/investigadores/merc.energ./consumo energía/. Consulta:

2002, Marzo 18.

-. Covenin, "Iluminancias en tareas y áreas de trabajos". 2249-1991.

-. Electrotecnia. Revista internacional. Año 8, (68), Articulo sobre calidad de la

energía. pp 55-57.

-. Electrotecnia. Revista internacional. Año 8, (88), Articulo sobre el mejoramiento

del factor de potencia. pp 21-24.

-. Especificaciones técnicas para la adquisición de un sistema centralizado de

medición de energía eléctrica, Pequiven - Oriente.

-. Phillips. Manual del alumbrado. Paraninfo,s.a, Madrid 1984, pp 45-46.

-. G. Enríquez Harper. Fundamentos de sistemas de energía eléctrica. 1era Edición,

Limusa, México 1985, Cap 4, pp 305-373.

-. Hernández S, R. Metodología de la Investigación. Editorial Mc Graw Hill. México

1991.

-. Insumo industrial. Revista de la Asea Brown Boveri (ABB). Año 3, N° 35, Artículo

sobre costos de la energía eléctrica. pp 12-17.

-. IEEE, "Recommended practice for energy conservation and cost effective planing

in industrial facilities". IEEE std 739-1984.

-. IEEE Guide, "Test procedure for synchronous machines". IEEE std 115-1983.

-. J.R. Ortiz. Proyecto de ahorro de energía en el edificio sede Pequiven Caracas.

Dtto. Federal.

-. L.W. Matsch. Máquinas electromagnéticas y electromecánicas. Editorial

Alfaomega, S.A. México 1990, Cap 3, pp 83-130.

-. León, M. (2002, Enero 30). Sube la facturaeléctrica. El universal, p. 2-1.

-. Manual del ingeniero mecánico, Marks. 8va Ed., McGraw Hill, Volumen II, Cap.

15, pp 41-52.

-. Maracara, C. I. (2002, Febrero 26). Ahorrar electricidad en tiempos de crisis.

Ultimas Noticias, p. 18.

-. Montero, M. y Hochman, E. Investigación Documental. Editorial Panapo.

Caracas 1996.

Page 52: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

52

-. Penissi, O. Canalizaciones eléctricas residenciales. Raúl Clemente

Editores.Cuarta edición. Valencia – Venezuela 1993

-. R, Espinoza y Lara. Sistema de distribución. 1era Ed, Limusa, México 1990, Cap.

3, pp 55-90.

-. Sabino, C. Metodología de la Investigación. Editorial Logos. Caracas 1976.

-. Sánchez A, B. y Guarisma, J. G. Métodos de Investigación. Ediciones Eneva.

1980.

-. Sistema interconectado. (1997). Sistemas eléctrico interconectado (OPSIS).

Disponible: http://WWW. Cadafe.com. Consulta: 2002, Marzo 23.

-. Vásquez, J. (1998). Un vistazo a la historia del sistema eléctrico venezolano.

Disponible: http://WWW. Monografía.com/members. Tripod.com/Jaime V. Consulta:

2002, Marzo 20.

-. Veltri, R. Estrategias operacionales para optimizar el consumo de energía

eléctrica en las instalaciones operacionales del complejo petroquímico "José Antonio

Anzoátegui". Puerto la Cruz, Jose 1997.

-. Westinghouse. Manual del alumbrado. 3ra Ed., Dossat,s.a., México 1984, pp 60-

61.

Page 53: INSTITUTO TECNOLOGICO DE TUXTLA GUTIERREZ …

53

ANEXOS

NIVELES MINIMOS DE ILUMINACION SEGÚN LA NORMA OFICIAL MEXICANA TAREA VISUAL DEL PUESTO DE TRABAJO

AREA DE TRABAJO NIVELES MINIMOS DE ILUMINACION EN LUX

En exteriores: distinguir el area de transito, desplazarse caminando, vigilancia.

Areas generales exteriores: pasillos, patios y estacionamientos.

20 lux.

En interiores: distinguir area de transito, desplazarse caminando.

Areas generales interiores.

50 lux.

Requerimiento visual simple

Areas de servicio al personal.

200 lux.