32

Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

4D-Variational Data Assimilation using POD Reduced-OrderModel

Gilles TISSOT, Laurent CORDIER,Nicolas BENARD, Bernd R. NOACK

Institut PPRIME, Poitiers

GDR Contrôle Des Décollements

Orsay, 15-16 novembre 2012

1/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 2: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

Context

Model based �ow control:

Flow

Controller

z(t)

y(t)

c(t)

w(t)

r(t)

Need for a dynamical model :

Representative of the �ow (at least input/ouput behavior).

Fast ⇒ Low order model.

2/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 3: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

Context

Model based �ow control:

Huge number of DoF ⇒ POD Reduced-Order Model

POD ROM coming from Galerkin projection imperfect

⇒ Data assimilation to improve the POD ROM

Principle: To combine di�erent sources of information to estimateat best (in an optimal way) the state of the system.

Imperfect observations (incomplete, noised)

Imperfect model (simpli�ed)

A priori knowledge of the state of the system

Approaches:

Stochastic method (ex: Kalman Filter)

Variational method: Minimisation of a cost functional J

3/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 4: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

Outline

1 What is 4D-Var?

2 FormalismStrong dynamical constraintWeak dynamical constraint

3 ResultsDNS DataDNS Data - Twin experimentsPIV Data

4/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 5: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

Data AssimilationWhat is Data Assimilation?

We have some observations Y.

X

t

Y

5/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 6: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

Data AssimilationWhat is Data Assimilation?

We know a model M. u model parameters

∂X (t)

∂t+ M(X (t), u) = 0 ; X (0) = X0

X

t

Y

5/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 7: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

Data AssimilationWhat is Data Assimilation?

We know a background solution (X b0, ub). (η, u) control parameters.

∂X (t)

∂t+ M(X (t), u) = 0 ; X (0) = X b

0 + η

X

t

Y

Background

solution

Xb

0

5/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 8: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

Data AssimilationWhat is Data Assimilation?

We know a background solution (X b0, ub). (η, u) control parameters.

∂X (t)

∂t+ M(X (t), u) = 0 ; X (0) = X b

0 + η

X

t

Y

X (t)=X(t ; X , u )bBackground

solution

Xb

0b

5/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 9: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

Data AssimilationWhat is Data Assimilation?

4D-Var: search for (ηa, ua) = argmin(J(η, u))

J(η, u) =1

2

∫ T

0

‖Y−H(X (t; η, u))‖2R−1dt+1

2‖η‖2B−1+

1

2‖u−ub‖2C−1

X

t

Y

X (t)=X(t ; X , u )

X0

bBackground

solution

Analysed

solution

Xb

0b

a

5/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 10: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

Data AssimilationWhat is Data Assimilation?

4D-Var: search for (ηa, ua) = argmin(J(η, u))

J(η, u) =1

2

∫ T

0

‖Y−H(X (t; η, u))‖2R−1dt+1

2‖η‖2B−1+

1

2‖u−ub‖2C−1

X

t

Y

X (t)=X(t ; X , u )

a

X (t)=X(t ; X , u )

X0

bBackground

solution

Analysed

solution

Xb

0b

a

a

5/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 11: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

Context

Objectives of Data Assimilation: Estimate

6/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 12: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

Context

Objectives of Data Assimilation: Forecast

6/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 13: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

Formalism

Strong dynamical constraintVariational Data Assimilation

7/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 14: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

FormalismStrong dynamical constraint (Papadakis, 2007)

Model:

∂X (t)

∂t+ M(X (t), u) = 0

X (0) = X0 + η

Cost functional:

J(η, u) =1

2

∫ T

0

‖Y−H(X (t; η, u))‖2R−1dt+1

2‖η‖2B−1+

1

2‖u−ub‖2C−1

H observation operator

R, B and C correlation matrix which represent how we trust inthe observations and the background solutions.

8/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 15: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

FormalismStrong dynamical constraint Optimality system

Find ∇J for minimisation: λ(t) Lagrange multiplier

Adjoint equation

−∂λ∂t

(t) +

(∂M∂X

)∗λ(t) =

(∂H∂X

)∗R−1 (H(X (t))− Y)

λ(T ) = 0

Optimality condition

∂J

∂η= λ(0) + B−1η

∂J

∂u= −

∫ T

0

(∂M∂u

)∗λ(t)dt + C−1(u − ub)

9/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 16: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

Formalism

Weak dynamical constraintVariational Data Assimilation

10/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 17: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

FormalismWeak dynamical constraint (Papadakis, 2007)

Model:

∂X (t)

∂t+ M(X (t)) = w(t) ; X (0) = X0 + η

Cost functional:

J(η,w(t)) =1

2

∫ T

0

‖Y−H(X (t))‖2R−1dt+1

2‖η‖2B−1+

1

2

∫ T

0

‖w(t)‖2W−1dt

Adjoint equation: Unchanged

Optimality condition:

∂J

∂η= λ(0) + B−1 ;

∂J

∂w(t)= λ(t) +W−1w(t)

11/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 18: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

ResultsDNS Data Strong constraint

DNS data from a cylinder wake (DNS code Icare - IMFT)

Re = 200

Nt = 200

2 periods of vortex shedding

6 POD modes used and represent 99% of the �ow energy

POD Decomposition:

v(x , t) = vm(x) +Nt∑i=1

aPi (t)Φi (x)

12/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 19: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

ResultsDNS Data Strong constraint

Observations Y: aPi (t) (D'Adamo, 2007)Model Mgal :

daRidt

(t) = Ci +

Ngal∑j=1

LijaRj (t) +

Ngal∑j=1

Ngal∑k=1

QijkaRj (t)aRk (t)

aR(0) = aP(0) + η

Background solution: taken as initial control parameters

η0 = 0

C 0

i = L0ij = Q0

ijk = 0

Covariance matrices:

R−1 = I, B−1=C−1 = σ2I, σ = 10−3

13/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 20: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

ResultsDNS Data Strong constraint

-2

0

2

-3 -2 -1 0 1 2 3 4

a2

a1

1

-0.6

-0.3

0

0.3

0.6

-3 -2 -1 0 1 2 3 4

a3

a1

1

-0.6

-0.3

0

0.3

0.6

-0.4 0 0.4

a4

a3

1

-1

-0.5

0

0.5

-0.6 -0.3 0 0.3 0.6

a6

a5

POD

4D-Var

1

Figure: 4D-Var for the DNS dataset.

14/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 21: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

ResultsDNS Data - Twin experiments Strong constraint

-2

0

2

-3 -2 -1 0 1 2 3 4

a2

a1

1

-0.6

-0.3

0

0.3

0.6

-3 -2 -1 0 1 2 3 4

a3

a1

1

-0.6

-0.3

0

0.3

0.6

-0.4 0 0.4

a4

a3

1

-1

-0.5

0

0.5

-0.6 -0.3 0 0.3 0.6

a6

a5

POD

4D-Var

1

Figure: 4D-Var twin experiments for the DNS dataset.

15/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 22: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

ResultsDNS Data - Twin experiments Strong constraint

e(t) =

√∑Ngal

i=1

(ai (t)− aTruei (t)

)2/ 1

T

∫ T0

∑Ngal

i=1aTruei (t)2dt

0.0001

0.001

0.01

0.1

1

10

100

0 50 100 150 200 250 300 350 400

e(t)

time step

assimilation forecast< >< >

0.0001

0.001

0.01

0.1

1

10

100

0 50 100 150 200 250 300 350 400

e(t)

time step

assimilation forecast< >< >

0.0001

0.001

0.01

0.1

1

10

100

0 50 100 150 200 250 300 350 400

e(t)

time step

assimilation forecast< >< >

0.0001

0.001

0.01

0.1

1

10

100

0 50 100 150 200 250 300 350 400

e(t)

time step

assimilation forecast< >< >

0.0001

0.001

0.01

0.1

1

10

100

0 50 100 150 200 250 300 350 400

e(t)

time step

assimilation forecast< >< >

perfect observations

noised observations

analysed solution

Figure 1:1

Figure: Time evolutions of errors. Comparison between the case of

perfect observations and the case of twin experiments.

16/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 23: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

ResultsPIV Data Strong and Weak constraint

PIV Data of a cylinder wake (N. Benard, Pprime)

Re = 40000

Nt = 128

10 periods of vortex shedding

16 POD modes used and represent 31% of the �ow energy

Background solution: taken as initial control parameters

Strong 4D-Var : Weak 4D-Var :

η0 = 0 Solution of the strong 4D-Var.C 0

i , L0

ij , Q0

ijk found by

Galerkin projection.

Covariance matrices:

Strong : σ = 1 ; Weak : σ = 10−3

17/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 24: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

ResultsPIV Data Strong and Weak constraint

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

a2

a1

1

-0.4

-0.2

0

0.2

0.4

0.6

-1 -0.5 0 0.5 1

a3

a1

1

-1-0.8-0.6-0.4-0.2

00.20.40.60.81

1.2

0 20 40 60 80 100 120

a1

time step

1

-0.4-0.2

00.20.40.60.81

1.2

0 20 40 60 80 100 120

a3

time step

PODst 4D-Varw 4D-Var

1

Figure: 4D-Var for the PIV dataset. Strong and weak constraint.18/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 25: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

ResultsPIV Data Strong and Weak constraint

Weak 4D-Var can relax the dynamical constraints and �t better theobservations.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120

e(t)

time step

4D-Var Strong

4D-Var Weak

Figure 1:1

Figure: Time evolution of the errors between observations and estimation.

But no forecast is possible ! (w(t) unde�ned)19/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 26: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

Conclusion

Conclusion

Method coming from meteorology/oceanography, applied on�ow control.

4D-Var is a well established tool and the results depend on thequality of the inputs (model, observations, background).

The belief we have in each information has to be consistentwith its imperfections.

Summary

Two methods of 4D-Var were presented.

POD ROM improved by 4D-Var.

Tested by twin experiments, then on PIV data.

20/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 27: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

Introduction What is 4D-Var? Formalism Results Conclusion

QUESTIONS???

21/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 28: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

FormalismPerfect model

Descent algorithm, we need ∇J:

Finite di�erences

X

t

X(t ; X +dŋ , u )

X0

0

X(t ; X , u+du )0

( ∂J∂η,δη) = J(η+εδη,u)−J(η,u)

ε

( ∂J∂u,δu) = J(η,u+εδu)−J(η,u)

ε

N + 1 temporal integrations

Adjoint method

X,

t

X(t ; X , u )X(0)

0

λ(t ; X(t),u)

λ

λ(0) λ(T)=0

∇J is a function of λ(t)

2 temporal integrations

22/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 29: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

ResultsDNS Data - Twin experiments Perfect Model

Twin experiments

De�ne a true state:Analysed solution of the previous 4D-Var

Create arti�cial observations:Noising the original observations by adding X/σi whereX ' N (0, σ2t ), σt = 0.2 and σi = 2[ i+1

2].

Compare the true state and the new analysed solution:

e(t) =

√∑Ngal

i=1

(ai (t)− aTruei (t)

)2/ 1

T

∫ T0

∑Ngal

i=1aTruei (t)2dt

23/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 30: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

ResultsDNS Data - Initial condition sensitivity Perfect Model

η is small (≈ 0.1% mode amplitude).Is it a sensitive control parameter?

Now we run the same simulation with η = 0 ...

24/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 31: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

ResultsDNS Data - Initial condition sensitivity Perfect Model

-2

0

2

-3 -2 -1 0 1 2 3 4

a2

a1

1

-0.6

-0.3

0

0.3

0.6

-3 -2 -1 0 1 2 3 4

a3

a1

1

-0.6

-0.3

0

0.3

0.6

-0.4 0 0.4

a4

a3

1

-1.5

-1

-0.5

0

0.5

-0.6 -0.3 0 0.3 0.6

a6

a3

POD

4D-Var

1

Figure: 4D-Var with η = 0.25/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements

Page 32: Institut PPRIME, Poitiers - univ-orleans.fr...Introduction What is 4D-Vr?a rmalismFo ResultsConclusion 4D-Variational Data Assimilation using POD Reduced-Order Model Gilles TISSOT

ResultsDNS Data - Initial condition sensitivity Perfect Model

0.0001

0.001

0.01

0.1

1

10

100

0 50 100 150 200 250 300 350 400

e(t)

time step

assimilation forecast< >< >

0.0001

0.001

0.01

0.1

1

10

100

0 50 100 150 200 250 300 350 400

e(t)

time step

assimilation forecast< >< >

0.0001

0.001

0.01

0.1

1

10

100

0 50 100 150 200 250 300 350 400

e(t)

time step

assimilation forecast< >< >

0.0001

0.001

0.01

0.1

1

10

100

0 50 100 150 200 250 300 350 400

e(t)

time step

assimilation forecast< >< >

η 6= 0η = 0

Figure 1:1

Figure: Time evolutions of errors. Comparison between the case of

perfect observations with η 6= 0 and η = 0.

26/21 G. TISSOT, Institut Pprime, GDR Contrôle Des Décollements