106
/l/lk},4 - TIJl-35790 NASA Technical Memorandum 85790 NASA-TM-85790 19840017357 Installation Noise Measurements of Model SR and CR Propellers P.J. W.Block May 1984 ... COpy ,; oj j.) f) 1984 I_ANGLEY RESEARCH CENTEf< LIBRARY, NASA HAMPTON" VIRGINIA NI\SI\ National Aeronautics and Space Administration Langley Research center Hampton, Virginia 23665 https://ntrs.nasa.gov/search.jsp?R=19840017357 2019-04-12T14:13:13+00:00Z

Installation Noise Measurements of Model SR and CR Propellers

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

/l/lk},4 - TIJl-35790

NASA Technical Memorandum 85790

NASA-TM-85790 19840017357

Installation Noise Measurementsof Model SR and CR Propellers

P.J. W.Block

May 1984

...

L~BRARY COpy,; oj j.) f) 1984

I_ANGLEY RESEARCH CENTEf<LIBRARY, NASA

HAMPTON" VIRGINIA

NI\SI\National Aeronautics andSpace Administration

Langley Research centerHampton, Virginia 23665

https://ntrs.nasa.gov/search.jsp?R=19840017357 2019-04-12T14:13:13+00:00Z

INTRODUCTION

Recent studies have shown that turboprop-powered aircraft may offer signifi­

cant fuel savings over turbofan-powered aircraft (ref. 1). Thus, new aircraft

propulsion systems are being studied which incorporate new and advanced propeller

concepts such as highly swept and tapered blades, pusher configurations, and

counter-rotating propellers. The noise impact of these propellers and the effect

of their installation on the noise radiation pattern is of concern from the

standpoint of cabin or interior noise as well as from the community noise impact.

To assess the magnitude of the noise impact, propeller noise measurements are

needed on these advanced propeller concepts. However, the measurement of propel­

ler noise is complicated by the fact that the installed configuration has a

non-uniform directivity pattern (ref. 2). That is, the radiation pattern of a

free propeller is modified or distorted when it is installed on the aircraft and

tne amount of additional noise from the installed propeller is dependent on the

location of the observer (or microphone). Thus, a comprehensive experimental

study of the noise from an installed propeller requires many microphone measure­

ments. These measurements can then be used to validate available prediction

methods and to supplement the data base on advanced propeller installation

effects.

This paper summarizes noise measurements on a 0.1 scale SR-2 propeller in a

single and counter rotation mode, in a pusher and tractor configuration, and

operating at non-zero angles of attack. A measurement scheme which permitted 143

measurements of each of these configurations is also described.

B

Cp

SYMBOLS AND ABBREVIATIONS

Fourier coefficients

number of blades per row or per propeller disk

power coefficient = P/pn3d5

CTd

f

J

M

n

P

BPF

CR

CRT

ips

mic

OTS

rpm

thrust coefficient = T/pn2d4

propeller diameter

frequency

propeller advance ratio, U/nd

Mach number

number of revolutions per second

power absorbed by the propeller

free stream dynamic pressure

propeller thrust

air temperature

tunne1 vel oc ity

angle of attack or pitch angle of the propeller nacelle withrespect to the airstream

propeller pitch setting at .75 radial station with respect tothe plane of rotation

air density

Abbreviations

blade passage frequency = nB

counter rotation propeller

CR tractor

inches per second

microphone

open test section

revolutions per minute

SPL

SR

SRP

SRT

sound pressure level

single rotation propeller

SR pusher

SR tractor2

DESCRIPTION OF THE EXPERIMENT

Propellers.- The SR2 propeller design was employed in this study. The coord­

inates of this design are documented (ref. 2) and are displayed in 3-0 form in

figure 1. The blades were fabricated on a numerically controlled milling machine

to a tolerance of ± .003 inches (.076 lOm) on the airfoil contour and ± .005 inches

(.127 mm) on span warpage. When placed in the hub, the radial position tolerance

was ± .0025 inches (.064 mm).

The hubs for the single rotation propeller (SR) and counter rotation propel­

lers (CR) permitted 2, 4, or 8 blade operation over a blade pitch range from _2°

to 60°. The blades were set into a collective pitch angle gear and clamped in the

hub such that when assembled the blades did not wobble. The spinner, hub, and

blades were dynamically balanced to 4000 rpm, not to exceed .01 ounce-inches (7.06

x 10-5 n-m) of imbalance*, and tested for failure at 10500 rpm for 30 seconds in a

partial vacuum. Both the SR and CR systems were driven by a single 29 hp (10000

rpm) electric motor.

The SR and CR systems differed in the following ways. The SR was 16.9 inches

(.429 m) in diameter, and the blade pitch angles were adjustable in one degree

increments. To set the angle a pin was placed in a labeled hole in the hub. With

this arrangement the collective blade angle was exactly repeatable. The actual

blade pitch angle setting at the 75 percent radial station (S.75) is obtained from

the labeled hole or nominal setting by S.75 (degrees) = .98522 x (nominal setting)

+ .89°. The SR rotated clockwise looking upstream.

The CR coordinates were obtained by scaling the SR coordinates down by a

factor of 0.88757 to a diameter of 15 inches (.381 m). The blades were then

*At 4000 rpm the rotating system appeared to have a resonance. This imbalance wasnever exceeded throughout the rpm range tested.

3

shifted out radially .552 inches (.014 m). The resultant diameter of the CR was

16.104 inches (.409 m). The hub for the CR permitted a continuous range of blade

angle settings. The collective blade angle for one row of blades was set using a

blade mould fixture and protractor which resulted in an accuracy of ± .25

degrees. The reference chord for the CR was at the 79.1 percent radial station.

To obtain the pitch angle at the standard 75 percent station the following

relationship is used:

8.75 = 8.79 + 1.34°

For the tests described herein, each disk of the CR had the same pitch setting.

The pitch change axis of the two rows of blades was separated by 2.31 inches

(.0587 m). The front row of blades was driven clockwise looking upstream; the

back row was driven counterclockwise. A spider gear system consisting of two

gears and two pinions drove the back row of blades in the opposite direction and

at the same rpm.

Nacelle, Strut, and Sting.- The nacelle was a body of revolution with a maxi­

mum outside diameter of 6 inches (.152 m). It housed a 29 hp, 10000 rpm, water­

cooled electric motor. All the test hardware configurations are described in

figure 2.

There were two front ends for the nacelle - one for the SR and another for

the CR, which included a gearbox. There were two mounts for the nacelle - the

sting mount, where the nacelle was an aerodynamic extension of the straight sting,

and the pylon or strut mount, where the nacelle was attached to a scaled

horizontal tail surface which hung down from the sting via an adapter. There were

also two configurations for the nacelle in the pylon mount - tractor (propeller

precedes nacelle) and pusher (propeller follows nacelle). Photos of the SR in a

tractor and pusher configuration on the pylon mount are shown in figure 3.

The strut was a tapered NACA 0012 airfoil. The chord length above the

nacelle was 12.5 inches (.318 m) and below it was 10 inches (.254 m).

4

The location of the propeller disk plane for the sting mounted SR at zero

angle of attack defines the reference plane for this test (see fig. 2). This

location is the a-stop for the microphone carriage which will be described next.

In other hardware configurations the propeller disk plane was displaced from this

reference line as shown in figure 2. These displacements are given for the zero

angle-of-attack case in figure 2. At non-zero angles of attack the location of

the disk plane was moved slightly forward (upstream) or backward from this posi­

tion. The actual location of the propeller disk plane for all configurations and

angles of attack is given in the test configurations table.

The straight sting was used to change the propeller pitch while keeping the

. height of the propeller axis 35 inches (.889 m) above the microphone carriage.

The adapter, which connected the pylon or horizontal tail surface to the sting

permitted the nacelle to be yawed in ± 5° increments, with the position of the

centerline of the propeller disk kept constant.

Microphone Carriage.- The microphone carriage was a streamlined rectangular

flat plate holding an array of eleven flush mounted microphones (see figure 4).

It was designed to circumvent the complexity of reflections from the floor while

providing the capability of making numerous streamwise noise measurements of all

the propeller configurations.

The carriage was 72 inches (1.83 m) wide (streamwise dimension), 168 inches

(4.27 m) long (cross stream dimension), and 2.3 inches (.0584 m) thick. Its

construction included an aluminum frame, a rigid foam core, and an aluminum skin

all sandwiched and bonded together using an epoxy adhesive with a wooden beam

running spanwise down the center of the chord for microphone mounting.

The microphones were slip fit into phenolic holders which were secured to the

wooden beam. A three-view drawing of the carriage showing the microphone loca­

tionsis given in figure 5 along with a description of the microphone mount.

5

The microphones t labeled 1 through lIt were positioned at nominally 12.50

increments in the cross stream direction (azimuthally) from the propeller axis t

which was 35 inches (.889 m) above the carriage.

The carriage was moved in the streamwise direction on Thompson bearings and a

set of one inch stainless steel rods (see figure 4). The drive system consisted

of an electric motor t gearbox t sprocket t and continuous cable t which moved the

carriage at a velocity of 4.4 inches/sec (.112 m/sec). The carriage was stopped

at 13 to 15 fixed streamwise positions which corresponded to nominal 100 incre­

ments from the propeller disk planet beginning at 600 in front of the disk plane

and ending 600 behind for the reference condition. These stoPSt which were indi­

cated by a microswitch t were labeled 6t5t ••• ltOt-lt ••• -5t-6t respectively. Two

more stoPSt labeled 7 and 8t were added t which measured the noise at 720 and 780

in front of the disk plane. When at the stop labeled Ot the microphone array was

in the disk plane of the reference configuration t namely the sting mounted SRT at

zero angle of attack (see fig. 2). At stop 0 the noise at 00 from the disk plane

was recorded t and at stop +4 the noise 400 in front of the disk plane was

recorded t etc. For configurations other than this reference condition t the stop

label does not correspond to the measurement angle with respect to the disk

plane. The actual angles of the microphone with respect to the disk plane for all

the carriage stops and test configurations (which will be discussed in a later

section) are given in Table 1.

Thus t the noise radiation pattern for each of the propeller configurations

was measured at a minimum of 143 locations covering the range from 60 0 upstream to

600 downstream and about 580 on both sides of the propeller axis. Figure 6 shows

the coordinate system defining the microphone locations. This system is fixed t

with respect to the tunnel t with its origin on the axis of the disk plane for the

sting mounted SR at 00 pitch and 00 yaw (reference configuration). The microphone

coordinates are given in Table 2 for all 15 carriage stops.

6

Since a microphone that is flush mounted in a large rigid surface will record

a pressure doubling, a correction to all the data is made to obtain free field

levels. This correction (6 dB) has been subtracted from all the acoustic data

presented herein. The data have not been normalized to a reference distance from

the propeller axis.

Facility.- The tests were conducted in the Langley 4- x 7-Meter Tunnel. This

is a closed single-return atmospheric wind tunnel allowing open or closed test

section operation. A more detailed description of this facility and an acoustic

evaluation of the open test section (OTS) are given in reference 2. Figure 7 is a

plan view of the OTS showing two of the extreme microphone carriage stops (+6 and

-6), propeller plane location, and locations of the acoustic treatment. Unlike

the previous test, described in reference 2, open cell foam bats 6 inches (.152 m)

thick were applied to the raised ceiling, sidewalls, and control room wall. A

reevaluation of the reflection characteristics of the OTS showed that within the

dynamic range of the recording instrumentation the microphone systems were not

able to detect reflections from these surfaces.

A typical background noise spectrum is given in figure 8. This was measured

with no propeller on the sting-mounted nacelle. The results are from microphone 6

(tunnel centerline) with the microphone carriage at stop +4. The frequency band­

width for this analysis is 9.765 Hz. To adjust for the difference in analysis

bandwidth between these levels and the propeller data, the quantity

bdB = 10 log BPF9:76"5

is added to the band levels in figure 8 to obtain the level of the corresponding

background noise in the figures which give the propeller noise (figs. 9-14). Here

BPF is the blade passage frequency of the propeller, which may change for each

propeller noise run. The nominal flow velocity for this and all the propeller

noise runs was 101 fps (30.5 mjs).

7

TEST CONDITIONS

Table 3 gives the conditions examined in this test. All data were obtained

at a tunnel Q of 12 psf (575 n/m2 ), which gave a nominal tunnel speed of 101 fps

(30.5 m/s).

The first column gives the tunnel run number. This run number is given on

the data plots. The next two columns describe the hardware and correspond to

those configurations shown in figure 2. The next five columns describe the test

conditions, namely the number of blades, nominal 6.75' propeller rps, and nacelle

pitch (angle-of-attack) and yaw angles. The next seven columns give the measured

values of parameters which may be appropriate for prediction purposes.

The axial location of the center of the propeller disk is given in terms of

the coordinate x3 shown in figure 6. A positive value (~X3) represents a position

which is farther upstream than the reference position. The reference position is

the sting-mounted SR at 00 pitch and 00 yaw. At this reference point the micro­

phones are directly under the propeller disk at the stop labeled O. For example,

in runs 132 through 135 the pylon was rotated to the pusher position, making the

disk of the SRP 40 inches (1.016 m) behind the plane of microphones at stop O. In

the case of counterrotating propellers, the location of the aft disk is given.

For example, in runs 82 through 85 the aft disk of the sting mounted CRT was 2.61

inches (.0663 m) in front of the microphones at stop 0 because of the extra room

required for the gearbox. This information is also found in figure 2.

The SR and CR propellers were each tested with 4 blades per disk or per

row. The noise from SRT was measured on a sting mount (runs 52-55) as well as a

pylon or strut mount (runs 136-139) to examine the change due to this

installation. An 8-bladed SR was also tested (Runs 140-142) to provide a

comparison with the 4 + 4 CR (runs 82-87) where the total number of blades is the

same.

8

Two blade pitch angles, e.7S, were tested (nominally 12° and 20°). These

were chosen to provide efficient propeller operation at the relatively low tunnel

speed (100 fps) and high rotational tip speed (800 fps) being considered for full

scale operation. The actual S.7S is also given in the table. At each angle,

S.7S, two rotational speeds (rps) were examined - one at the predicted peak

efficiency and one slightly higher - to increase the loading of the propeller

without stalling it. The abbreviation "perf" in the rps column (runs 136, 139,

140, 143, 146, and 149) indicates that an aerodynamic performance run was made

over a range of rotational speeds.

To examine the effect of simply changing the pitch of the propeller shaft or

axis, the noise of the sting mounted SRT and CRT was mapped at _8°, 0°, and + 8°

(runs 52-55, 63-70, and 82-87). For these runs the height of the propeller was

held at 35 inches (.889 m) above the microphone carriage; however, the axial

location did shift slightly. The propeller disk was also yawed 10° (runs

146-151), with the axis of the disk kept at the same location as the no-yaw (yaw =

0°) propeller cases.

A representative sample of the data will be given in this report since the

total number of measurements and conditions would comprise over 4500 figures. The

conditions for which data are presented in this report are given in the last

column of Table 3. The microphone stop for which the data will be given corre­

sponds to an angle between 35° and 40° in front of the propeller disk plane.

MEASUREMENTS AND DATA REDUCTION

Propeller Force Data

To provide a correlation for various noise prediction schemes the propeller

thrust and torque were measured. The torque data remained in question at the time

this report was prepared and thus are not included. The propeller thrust for each

configuration is given in Table 3.

9

Noi se Data

The microphone data were high-pass filtered at 80 Hz and FM recorded on one­

inch magnetic tape at 60 ips. A once-per-revolution pulse which was generated by

a magnetic pick-up on the shaft was also recorded. A triple redundancy system was

employed for recording the attenuator settings. The recorded data were digitized

using the once-per-revolution pulse to obtain 512 points of data for each revolu­

tion of the shaft. A minimum of 120 revolutions of data were stored for each

microphone (61440 points).

The data were analyzed in the time domain and the frequency domain and are

presented in the time domain as pressure time histories and in the frequency

domain as sound pressure levels for each of the first 25 harmonics of the blade

passage frequency. In the time domain an average time history or mean signal was

computed by averaging the sampled pressure signal over the 120 revolutions of the

shaft. This resulted in a mean value of the signal and standard deviation (0) for

each of the 512 points. These results are presented as a function of the shaft

rotation angle and labeled "mean signal + and - 0" on the data plots. These

results show how much data scatter exists at a particular microphone location and

for a given propeller configuration. The mean signal is Fourier analyzed and

presented in the frequency domain as a function of the harmonics of the blade

passage frequency (BPF).

In the frequency domain two methods of analysis were used. In the first

method each revolution of data was Fourier analyzed to produce the sine and cosine

coefficients for the first 25 harmonics of the BPF (an and bn; n = 1-25,

respectively). These coefficients are averaged over the 120 revolutions of data

yielding an and 5n• The root mean square (rms) amplitude of the noise

contribution for each of the harmonics is computed from these using

cn = Jan2 + 5n2/ 12

10

and converted to decibels using

( 1)

Equation (1) gives the sound pressure level (SPL) in dB for each of the 25

harmonics. The result is labeled IIMethod 111 on the data plots. In principle,

Method 1 should give the same results as the spectrum of the mean signal. Differ­

ences which arise are due to artifacts introduced by the computation and do not

usually occur until the harmonic level is more than 30 dB down from the peak.

In the second method of analysis in the frequency domain, the sine and cosine

coefficients are obtained for each revolution (as in method 1), and then the mean

square is computed for each revolution using cn,2 = (an2 + bnl ) / 2. The

values cnl2 are averaged over the 120 revolutions yielding-c n where

- {Ic n = 120

120I

i=1

Equation (1) is used to compute the SPLts of each of the n harmonics. This method

is labeled "Method 211 and is analagous to narrowband power s'pectral analysis with

bandwidth equal to the BPF. For comparison purposes the BPF is given on the data

plots (figs. 9-14) in the figure label with the rpm and rotational tip speed of

the propeller (UTip). Typically, the results from Method 1 and Method 2 agree

for the first few harmonics, which are above the background noise of the tunnel

(SR). As the harmonic number increases, Method 2 gives the levels of the

background noise (compare with figure 8), whereas Method 1 gives levels below the

background noise which appear to follow the trends expected for propeller noise.

Because some propeller configurations do not generate levels above the background

noise in the higher harmonics, Method 1 is a valuable method of picking out the

levels of a few more harmonics.

11

Finally, the results from method 1, namely in and 6n are used to reproduce the

pressure time history for one revolution of the shaft. This time history, which

is truly periodic, is plotted with the mean signal. Comparison of these time

history results reveals differences in the noise generated by differences in the

blades themselves or in their pitch setting. The above calculations are presented

for each of the eleven microphones at a carriage stop corresponding to angles

between 36.4 and 40.8 degrees upstream of the propeller disk plane (refer to Table

1). The data for the eleven microphones are followed by a summary of that stop.

This summary consists of the OASPL, calculated all three ways, plotted against the

microphone location.

DATA RESULTS

The data which are presented were obtained at angles corresponding to between

36.4° and 40.8° forward (upstream) of the propeller disk plane (refer to Table

1). These angles were chosen because they tend to show the effect of the unsteady

loading of the propeller. The data have not been corrected,for differences in

distances in order to release the data in a timely manner.

The data obtained from the sting-mounted SR at ~.75 = 12° with 4 blades is

shown in figure 9. Figures 9(a) through 9(k) give the results for each of the

individual microphones (1 through 11) respectively. Figure 9(1) is a summary of

the OASPLls for the particular carriage stop - in this case stop 4. Figure 10

shows the results from the same condition, except the angle of attack is +8°. The

format of presentation is the same. Figure 11 shows the CR results. Figures 12,

13, and 14 show the SR pusher, SR tractor with 8 blades, and SR tractor with 4

blades, espectively.

Finally, since the number of points per revolution was held constant while

the BPF increased by a factor of 2 on the data for run 141 (SR tractor with

8-blades), harmonics above 20 are affected by aliasing.

12

REFERENCES

1. Mitchell, G. A.; Mikkelson, D. C.: Summary and Recent Results from the NASAAdvanced High-Speed Propeller Research Program. NASA TM 82891, 1983.

2. Block, P. J. W. and Gentry, G. L.: Evaluation of the 4- x 7-Meter Tunnel forPropeller Noise Measurements. NASA TM 85721, 1984.

13

......(J'I

Table 1.- Angles of the microphone array with respect to the propeller disk plane forall configurations, in degrees.

Microphone carriage stop labelRuns Configuration 8x3

in. 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6.. -

52-54 SRT/sting 0 77 .8 72.6 60.7 50.8 40.8 30.7 20.5 10.2 0 -10.2 -20.5 -30.7 -40.8 -50.8 -60.763,64,67,68 SRT .. +8° 3.75 77.5 72.1 59.1 48.2 37.1 26.0 15.0 4.2 - 6.1 -16.0 -25.7 -35.0 -44.1 -53.1 -62.165,66,69,70 SRT .. _8° -.75 77 .9 72.7 61.0 51.3 41.5 31.6 21.6 11.4 1.2 - 9.0 -19.4 -29.8 -40.1 -50.3 -60.4

82-85 CRT 0° 2.61 77.6 72.3 59.6 49.0 38.3 27.5 16.7 6.0 - 4.3 -14.3 -24.2 -33.8 -43.2 -52.4 -61. 786 .. +8° 6.36 77 .3 71.7 58.0 46.2 34.3 22.4 10.9 .1 -10.3 -19.9 -29.1 -37.8 -46.6 -54.6 -63.0

87 .. _8° 1.86 77.7 72.4 59.9 49.5 39.0 28.4 17.8 7.2 - 3.0 -13.1 -23.1 32.9 -42.5 -52.0 -61.4

132-135 SRP (pylon) -40. 80.2 77 .0 71.1 67.1 63.5 60.1 56.6 52.9 48.8 43.9 37.5 28.8 15.6 -4.74 -32.5

136-151 SRT (pylon) - 5. 78.2 73.4 62.5 53.8 45.2 36.4 27.4 17 .9 8.1 - 2.1 -13.0 -24.3 -35.7 -47.3 -58.6

Table 2.- List of microphone locations and distances for all microphonecarriage stops in inches (m).

Stop Mic Coordinates of the Microphone Positions DistanceXl X2 X3 R

8 1 -35.0(-0.139) 57. 2 ( 1. 45) 162. a( 4. 11) 175.1( 4. 45)

8 2 -35.13<-0.89) 40. 3 ( 1. 02) 162.0': 4. 11) 170.6( 4. :n)

8 3 -35.0(-0.89) 27. 7 ( 0. 70) 162.9( 4. 11) 168.0( 4.27)

8 4 -35.13<-0.89) 17. 5 ( 0. 44) 162.9( 4. 11) 166.7( 4. 23)

8 5 -35.0(-9.89) 8. 5 ( 9. 21) 162.9( 4. 11) 166.9( 4. 22)

8 6 -35.9(-9.89) 9. 9 ( 9. 99) 162.0( 4. 11) 165.7( 4. 21)

8 7 -35.9(-0.89) -8.5(-9.21) 162.13< 4. 11) 166.9( 4. 22)

8 8 -35.9(-9.89) -17.5(-0.44) 162.9( 4.11> 166.7( 4.23:)

8 9 -35.0(-9.89) -27.7(-0.70) 162.IH 4.11> 168. (H 4.27>

8 10 -35.9(-0.89) -49.3(-1.02) 162.0( 4. 11) 179.6( 4.13:)

8 11 -35.13<-9.89) -57.2(-1. 45) 162.9( 4. 11) 175.3( 4. 45)

7 1 -35. ~l(-0. 89) 57. 2 ( 1. 45) 112.9( 2. 84) 139.5( 3. 32)

7 2 -35.0(-0.89) 40. 3 ( 1. 92) 112.9( 2. 84) 124.1( 3. 15)

7 3 -35.13<-0.89) 27. 7 ( 0. 79) 112. a( 2. 84) 120.6( 3. 06)

7 4 -35.9(-9.89) 17. 5 ( 9. 44) 112. 0': 2. 84) 118.6( 3.01>

7 5 -35.0(-0.89) 8. 5 ( 13.21> 112.e( 2. 84) 117.6( 2. 99)

7 6 -35; 0(-0. 89) 0. 9 ( 0. 01D 112.0( 2. 84) 117. H 2.98)

7 7 -35.9(-9.89) -8.5(-0.21> 112.9( 2. 84) 117.6( 2. 99)

7 8 -35.0(-9.89) -17.5(-0.44) 112.9( 2. 84) 118.6( 3.9U

7 9 -35.13<-0.89) -27.7(-9.79) 112.9( 2. 84) 129.6( 3. 96)

7 10 -35.13<-0.89) -49.3(-1.92) 112.13< 2. 84) 124.1< 3. 15)

7 11 -35.9(-13.89) -57.2(-1.45) 112.9( 2. 84 ~ 1313.5( 3. 32)

6 1 -35.9(-13.89) 57. 2 ( 1. 45) 62. 3 ( 1. 58) 91. 5 ( 2. :n)

6 2 -35.9(-9.89) 49. 3 ( 1. 132) 62. 3'; 1. 58) 82. 9 ( 2. es)6 3 -35.9(-9.89) 27. 7 ( 0. 70) 62. 3 ( 1. 5 B) 76. 7 ( 1. 95)

6 4 -15.0(-0.89) 17. 5 ( 0. 44) 62. 1 ( 1. 58) 73:.6( 1. B7)

6 5 -35.0(-0.89) B. 5 ( 0.21> 62. 3: ': 1. 58) 72. 9 ( 1. s:n

6 6 -35. ~l(-9. 89) 0. 0 ( 0. 90) 62.3': 1. 58) 71. 5 ( 1.82)

6 7 -15.9(-0.89) -8.5(-0.21) 62. 1 ( 1. 58) 72. 0 ( 1. s:n6 8 -35.0(-0.89) -17.5(-9.44) 62. 3: ( 1. 58) 71.6( 1. 87)

6 9 -15.0(-9.89) -27.7(-9.79) 62. 3 ( 1. 58) 76. 7 ( 1. 95)

6 10 -35.9(-9.89) -49.3(-1.92) 62. 3 -I~ 1. 58) 82. a ( 2. 0 B)

6 11 -35.9(-13.89) -57.2(-1.45) 62. 3 ( 1. 58) 91. 5'; 2.3:n

:5 1 -35.9(-9.89) 57. 2 ( 1. 45) 42. 9 ( 1. 09) 79. 6 ( 2. e2)

5 2 -35.0(-9.89) 40. 3 ( 1. 02) 42. 9 ( 1. 09) 68. 5 ( 1. 74)

5 3 -35.13<-9.89) 27. 7 ( 13. 79) 42. 9 ( 1. 09) 61. 9 ( 1.57>

5 4 -35.9(-9.89) 17. 5 ( 9. 44) 42. 9': 1. 99) 58. 9 ( 1.47>

:5 :5 -35.9(-0.89) 8. 5 ( 9. 21) 42. 9( 1. 99) 56. 9 ( 1. 42)

:5 6 -35.9(-9.89) 0. 9 ( B. 90) 42. 9 ( 1. 09) 55. 4 ( 1.41>

5 7 -35.0(-9.89) -8.5(-9.21> 42. 9 ': 1. 99) 56. 0 ( 1. 42)

5 8 -35.9(-9.89) -17.5(-£1.44) 42. 9 ( 1. 09) 58. 9 ( 1.47)

:5 9 -35.9(-9.89) -27.7(-9.79) 42. 9 ( 1. 09) 61. 9 ( 1.57>

:5 19 -35.9(-9.89) -40.3(-1. 02) 42. 9 ( 1. 09) 68. 5 ( 1. 74)

5 11 -35.0(-0.89) -57.2(-1.45) 42. 9 ( 1. 09) 79. 6 ( 2. 02)

4 1 -35. ~)(-9. 89) 57. 2 ( 1. 4:5) 313. 2 ( 0.77> 73. 5 ( 1. 87)

4 2 -35.0(-9.89) 40. 3': 1. 02) 39. 2 ( 0.77> 61. 3 ( 1. 56)

4 3 -35.0(-0.89) 27. 7 ( 0. 70) 30. 2( 0.77> 53. 9 ( 1.37>

4 4 -35.0(-0.89) 17. 5 ( e. 44) 39. 2 ( e. 77) 49. 4 ( 1. 26)

16

..

Table 2.- Continued.

Stop Mic Coordinates of the Microphone Positions Distance

Xl X2 X3 R

4 5 -35.9(-0.89) 8. 5 ( 9. 21) 3B. 2 ( 0.7n 47. 0 ( 1. 19)

4 6 -35.0(-0.89) 9. a ( B.IHD 39. 2 ( 0.77) 46. 2 ( 1.17)

4 7 -35.9(-9.89) -8.5(-9.21) 39. 2': 9.7n 47. IH 1. 19)

4 8 -35.0(-13.89) -17.5(-9.44) 3B. 2 ( 0.77) 49. 4 ( 1. 26)

4 9 -35.0(-9.89) -27. 7(-B. 70) 30. 2 ( 9. 77) 53. 9 ( 1.37)

4 10 -35.13(-9.89) -49.3(-1. 132) 30. 2 ( a.7n 61. 3 ( 1. 56)

4 11 -35. IH-13. 89) -57.2(-1.45) 39. 2 ( 13.7n 73. 5 ( 1. £In

3 1 -35.0(-13.89) 57. 2 ( 1. 45) 29. 8 ( 0. 53) 713. 2 ( 1. (8)

3 2 -35.13(-9.89) 49. 3 ( 1.132) 213. 8 ( 0. 53) 57. 3 ( 1. 45)

3 3 -35.13(-13.89) 27. 7 ( 9. 79) 213. 8 ( a. 53) 49. 2 ( 1. 25)

3 4 -35.0(-13.89) 17. 5 ( 9. 44) 213. 8 ( 9. 53) 44. 3 ( 1. 13)

3 5 -35.1:)(-9.89) 8. 5 ( 13.21) 29. 8 ( 9. 53) 41. 6 ( 1. 06)

3 6 -35. IH-e. 89) 9. 9 ( e. 913) 213. 8 ( e. 53) 49. 7 ( 1. e 3)

J 7 -35.9(-13.89) -8.5(-13.21) 20. 8 ( e. 53) 41. 6 ( 1. a 6)

3 8 -35.0(-9.89) -17.5(-9.44) 29. 8 ( 9. 53) 44.3( 1. 13)

3 9 -35.9(-9.89) -27.7(-9.79) 213. 8 ( B. 53) 49. 2 ( 1. 25)

3 113 -35.13(-9.89) -413.3(-1. B2) 29. 8 ( 13.5:n 57. 3 ( 1. 45)

3 11 -35.9(-9.89) -57.2(-1.45) 2B. 8': e. 53) 79. 2 ( 1. (8)

2 1 -35.9(-9.89) 57. 2 ( 1. 45) 13. it: 9. 33) 68. 3 ( 1. (4)

2 2 -35.13(-13.89) 4 a. 3 ( 1. 132) 13. 1 ( 9. 33) 54. 9 ( 1. 4 a)

2 " -35. B(-9. 89) 27. 7 ( 9. 713) 13. 1 ( B. 33) 46. 5 ( 1. 18)-'

2 4 -35.9(-13.89) 17. 5 ( 9. 44) 13. 1 ( e. 33) 41. 3 ( 1. a 5)

2 5 -15. (H-9. 89) 8. 5 ( e. 21) 13. 1': e. 33) 38. 3 ( 13.9n

2 6 -35.13(-9.89) e. 13 ( e. e 9) 13. 1 ( e. 33) 37. 4 ( a. 95)

2 7 -35.13(-9.89) -8.5(-13.21> 13. 1 ( 9. 33) 38. 3 ( 0.9n

2 8 -35.9(-13.89) -17.5(-13.44) 13. 1 ( 0. 33) 41. 3 ( 1. a 5)

2 9 -35.13(-0.89) -27.7(-13.79) 13.1': 0. 33) 46. 5 ( 1. 18)

2 113 -35.13(-13.89) -49.3(-1.92) 13. 1 ( e. 33) 54. 9 ( 1. 4 a)

2 11 -35.13(-13.89) -57.2(-1. 45) 13. 1 ( 0. 33) 68. 3 ( 1. (4)

1 1 -35.13(-13.89) 57. 2 ( 1. 45) 6. 3 ( 9. 16) 67. 3 ( 1.(1)

1 2 -35.9(-13.89) 4 e. 3 ( 1. 13 2) 6. 3 ( 0. 16) 53. 7 ( 1. 36)

1 3: -35.13(-13.89) 27. 7 ( e. (0) 6. 3 ( 9. 16) 45. 1 ( 1. 15)

1 4 -35.9(-9.89) 17. 5 ( 0. 44) 6. 3 ( 0. 16) 39. 6 ( 1.0U

1 5 -35.9(-9.89) 8. 5 ( 0.21> 6. 3 ( 9. 16) 36. 6 ( 0. 93)

1 6 -35.13(-9.89) 9. 9': e. 90) 6. 3 ( 0. 16) 35. 6 ( a. 90)

1 7 -35.9(-9.89) -8.5(-0.21) 6. 3': 0. 16) 36. 6 ( a. 93)

1 8 -35. (H-0. 89) -17.5(-13.44) 6. 3 ( 9. 16) 39. 6 ( .1. 0 U

1 9 -35.9(-0.89) -27.7(-9.70) 6. 3 ( 0. 16) 45. 1 ( 1. 15)

1 10 -35. IH-13. 89) -413.3(-1.92) 6. 3 ( e. 16) 53. 7 ( 1. 36)

1 11 -35.9(-13.89) -57.2(-1. 45) 6. 3 ( 0. 16) 67. J( 1.(1)

e 1 -35.9(-9.89) :; 7'. 2 ( 1. 4:;) e. e( e. ee) 67'. B( 1. (' B)

0 2 -35.13(-9.89) 49. 3 ( 1. 92) 9. 13 ( e. 0(3) 53. 4 ( 1. 36)

0 3 -35.13(-0.89) 27. 7 ( 0. 79) 9. 9 ( 9.01n 44. 6 ( 1. 13)

a 4 -35.9(-9.89) 17. 5 ( 9. 44) 0. a·: a. 139) 39.1( 9. 99)

f) 5 -35.13<-13.89) 8. 5 ( a. 21) a. e ( a. 00) 36.ft( e.91>

0 6 -35.13(-13.89) 9.IH 0.aln 0. 9 ( e. 00) 35.IH a. 89)

0 7 -35.9(-9.89) -8.5(-9.21) 9. 9 ( 9. 90) 36. e ( 0.9U

e 8 -35. f)(-9. 89) -17.5(-9.44) 0. 9 ( e. 99) J 9. 1 ( 0. 99)

17

Table 2.- Continued.

Stop Mic Coordinates of the Microphone Positions Distance

Xl X2 X3 R

9 9 -35.9(-9.89) -27.7(-9.79) 0. 9 ( e. 89) 44. 6 ( 1. 13)

9 19 -35. IH-9. 89) -40. :H-1. 92) 9. 9 ( 9. 99) 53. 4 ( 1. 36)

9 11 -35.9(-0.89) -57.2(-1. 45) 9. 0 ( 9. 99) 67. 9 ( 1. 79)

-1 1 -35.9(-0.89) 57. 2 ( 1. 45) -6.3(-9.16) 67. 3 ( 1.71'

-1 2 -35. fH-9. 89) 49. 3 ( 1. 92) -6.3(-9.16) :5 3. 7 ( 1. 36)

-1 3 -35.9(-9.89) 27. 7 ( 9. 79) -6.3(-9.16) 45. 1 ( 1. 15))

-1 4 -35.9(-9.89) 17. 5 ( 9. 44) -6.3(-0.16) 39. 6 ( 1.8U

-1 :5 -35. fH-9. 89) 8. 5 ( 9. 21) -6.3(-9.16) 36. 6 ( 9. 93)

-1 6 -35.0(-9.89) 9. 9 ( 9. 99) -6.3(-9.16) 35. 6 ( 8. 98)

-1 7 -35.0(-0.89) -8.5(-0.21) -6.3':-9.16) 36. 6 ( 9. 93)

-1 8 -35.0(-9.89) -17.5(-9.44) -6.3(-0.16) 39. 6 ( 1.91'

-1 9 -35.0(-9.89) -27.7(-0.70) -6.3(-0.16) 45. 1 ( 1. 15)

-1 10 -35.0(-9.89) -49.3(-1. 02) -6.3(-0.16) 53. 7 ( 1. 36)

-1 11 -35. fH-9. 89) -57.2(-1.45) -6.3('-0.16) 67. 3 ( 1. 71)

-2 1 -35.9(-9.89) 57. 2 ( 1. 45) -13.1(-9.33) 68. :n 1. 74)

-2 2 -35. fH-0. 89) 49. 3 ( 1. 92) -13.1':-9.33) . 54. 9 ( 1. 49)

-2 3 -35.0(-9.89) 27. 7 ( 9. 79) -13.1':-9.13) 46. 5 ( 1. 18)

-2 4 -35.9(-0.89) 17. 5 ( 9. 44) -13.1':-9.33) 41. "3 ( 1. 85)

-2 :5 -35.9(-9.89) 8. 5 ( 9.21> -13.1(-9.33) 38. J( 8. 97>

-2 6 -35. fH-9. 89) 9. 9 ( e. 913) -13.1(-9.3:n 37. 4 ( 9. 9:5)

-2 7 -35.0(-9.89) -8.5(-9.21> -13.1(-9.33) 38. 3 ( 9.97>

-2 8 -35.9(-0.89) -17.5':-13.44) -13.1(-9.33) 41. 3 ( 1. 95)

-2 9 -35.0(-9.89) -27.7(-9.7ID -13.1<-13.33) 46. 5 ( 1. 18)

-2 10 -35.0(-0.89) -49.3(-1.92) -13.1(-9. J3) 54. 9 ( 1. 48)

-2 11 -15.0(-9.89) -57.2(-1. 45) -11.1(-9.11) 68. 3 ( 1. 74)

-~ 1 -35.9(-9.89) 57. 2 ( 1. 45) -29.8(-9.53) 70. 2 ( 1. 78)

-3 2 -35.0(-0.89) 49. 3 ( 1. 02) - 2 9. 8( - 9. 5 3 ) 57. 3 ( 1. 45)

-3 3 -35.13(-9.89) 27. 7 ( 9. (0) -29.8(-B.5:n 49. 2 ( 1. 25)

-3 4 -35.0(-9.89) 17. 5 ( 9. 44) -29.8(-9.53) 44. 3 ( 1. 13)

-3 5 -15.0(-9.89) B. 5 ( 0. 21) -213.8(-9.53) 41. 6 ( 1'. 96)

-3 6 -35.0(-13.89) B. 9 ( 9. BID -29.8('-9.53) 40. 7 ( 1.9:n

-3 7 -35.9(-0.89) -8.5(-0.21> -20.8(-0.53) 41. 6 ( 1. a 6)

-3 8 -35.9(-9.89) -17.5(-9.44) -29.8(-9.5:n 44. 3 ( 1.1:n

-3 9 -35.9(-9.89) -27.7(-9. (9) -29.8(-9.53) 49. 2 ( 1. 25)

-3 19 -35. IH-9. 89) -49.3(-1.92) -29.8('-9.53) 57. 3 ( 1. 45)

-3 11 -35.9(-9.89) -57.2(-1.45) -29.8(-9.53) 79. 2 ( 1. 7S)

-4 1 -35.9(-0.89) 57. 2 ( 1. 45) -39.2(-9.77> 73. 5 ( 1. 87)

-4 2 -35.9(-9.89) 49. 3 ( 1. 92) -39.2(-9.77> 61. 3 ( 1. 56)

-4 3: -35. IH-9. 89) 27. 7 ( 9. (9) -39.2(-9.77> 53. 9 ( 1.37>

-4 4 -35. ~H-9. 89) 17. 5 ( 9 44) -39.2(-9.77> 49. 4 ( 1. 26)

-4 5 -35.9(-9.89) 8. 5 ( 9.21> -HI. 2(-9. 77> 47. 9 ( 1. 19)

-4 6 -35.9(-9.89) 9. 9 ( 9. 13 9) -313.2(-9.77) 46. 2 ( 1.17>

-4 7 -35. tl(-9. 89) -S. 5(-9.21) -39.2(-13.77> 47. 13 ( 1. 19)

-4 8 -35.9(-0.89) -17.5(-9.44) -39.2('·9.77) 49. 4 ( 1. 26)

-4 9 -35.13(-9.89) -27.7(-9.713) -39.2('-13.77> 53. 9 ( 1.37>

-4 19 -35.9(-9.89) -413.3(-1. 92) -39.2(-9.77> 61. 3 ( 1. 56)

-4 11 -35.9(-0.89) -57.2(-1.45) -313.2(-9.77> 73. 5 ( 1.87>

-5 1 -35.9(-9.89) 57. 2 ( 1. 45) -42.9(-1. 99) 79. 6 ( 2. e2)

18

..

Table 2.- Concluded.

Stop Mic Coordinates of the Microphone Positions DistanceXi X2 X3 R

--5 2 -35.9(-9.89) 49. 3 ( 1. 92) -42.9(-1. 99) 68. 5 ( 1. 74)

-5 3 -35. /H-9. 89) 27. 7 ( 0. 79) -42.9(-1. (9) 61. 9 ( 1. 57>

-5 4 -35. /H-9. 89) 17. 5 ( 0. 44) -42.9(-1. 99) 58. 8 ( 1. 47)

-5 5 -35.13<-0.89) 8. 5 ( 9. 21) -42.9(-1. 99) 56. 9 ( 1. 42)

-5 6 -35.13<-9.89) 0.IH 9. 99) -42.9(-1. 99) 55. 4 ( 1.41>

-5 '( -35. /H-9. 89) -8.5(-9.21> -42.9(-1. 69) 56. 6 ( 1. 42)

-5 B -35.0(-9.89) -17.5(-9.44) -42.9(-1. 89) 58. 8 ( 1.47>

-5 9 -15.9(-9.89) -27.7(-9.78) -42.9(-1.139) 61. 9 ( 1.57>

-5 10 -15.9(-8.89) -40.3(-1. 82) -42.9(-1.139) 68. 5 (, 1. 74)

-5 11 -35.9(-9.89) -57.2(-1. 45) -42.9(-1. 139) 79. 6 ( 2. 82)

-6 1 -35.9(-0.89) 57. 2 ( 1. 45) -62.3(-1. 58) 91. 5 ( 2. J 3)

-6 2 -35.13(-0.89) 40.3( 1. 02) -62.3(-1.58) 82. e ( 2. 0 B)

-6 3 -35.0(-9.89) 27. 7 ( 8. (8) -62.3(-1. 5B) 76. 7 (, 1. 95)

-6 4 -35. IH-9. 89) 17. 5 ( B. 44) -62.3(-1.58) 73. 6 ( 1. Bn

-6 5 -35.13(-0.89) 8. 5 ( 9. 21) -62.3(-1.58) 72. 9 ( 1. s:n-6 6 -35.9(-9.89) 9. 8 ( 0. e 0) -62.3(-1.58) 71. 5 ( 1. 82)

-6 7 -35.0(-9.89) -S. 5(-0. 21> -62.3':-1. S8) 72. 0 ( 1. 83)

-6 8 -35. ~,l(-e. 89) -17. :5<-0. 44) -62.3(-1. 58) 73. 6 ( 1.87)

-6 9 -35. ~,l(-9. 89) -27.7(-0.70) -62.3(-1. 58) 76. ·7 ( 1. 95)

-6 19 -35.0(-0.89) -49.3(-1. 132) -62.3(-1. 58) 82. 9 ( 2. 98)

-6 11 -35.9(-9.89) -57.2(-1. 45) '-62.3(-1. 58) 91. 5 ( 2.3:0

19

Table 3.- Test conditions.

HARDWARE CONDITIONS

Run Mount/ Type Number of Nominal Pitch, Yaw,# Conf; gu rat; on Propell er Blades 8. 75' rps deg. deg.

deg. -52 Sting/tractor SR 4 20 100 0 053 II II II II 20 120 II II

54 II II II II 12 168 II II

55 II II II II 12 190 II II

63 St i ngft ractor SR 4 20 100 8 064 II 120 865 II 100 -866 II 120 -867 12 168 868 II 190 869 II 190 -870 II 168 -8 II

82 St; ng/t ractor CR 4+4 20 100 0 083 II II II II II 120 II II

84 II II II II 12 168 II II

85 II II II II II 190 II II

86 II II II II II 168 +8 II

87 II II II II II 168 -8 II

132 Pylon/pusher SR 4 12 168 0 0133 II II II II II 190 II II

134 II II II II 20 100 II II

135 II II II II II 120 II II

136 Pylon/tractor SR 4 16 perf 0 0137 II II II 168138 II II II 190139 II II 20 perf140 SR 8 12 perf141 II II 168142 II II 190143 SR 4 perf144 II 168145 II 190146 II perf 10147 II 168 II

148 II II 190 II

149 II 20 perf II

150 II II 100 II

151 II II 120 II

20

Table 3 (contld)

Measured ValuesActual Posltlon of8.75 , disk plane TA, PA' U, T, Figure

with respect fps lbf No.deg. to reference,* OF slugs/ft3

inches (ax3)

20.6 o. 43.0 .00243 99.6 17.720.6 II 43.0 II 99.6 26.412.7 II 43.7 II 99.7 X ** 912.7 II 43.9 II 99.8 X **

20.6 3.75 62.5 .00235 101.0 6.0II 3.75 II 15.5II - 0.75 62.6 II 101.4 6.3II - 0.75 62.7 II 101.4 16.1

12.7 3.75 60.0 .00236 100.5 16.8 10II 3.75 59.0 .00237 100.5 27.5II - 0.75 57.0 28.6II - 0.75 56.7 .00238 100.4 17.8

21.3 2.61 67.5 .00228 102.4 9.821.3 II 65.6 .00229 21.913.3 II 52.6 .00239 100.5 25.5 11

II II 55.0 .00238 100.8 39.3II 6.36 55.1 .00238 101.2 25.2II 1.86 55.1 26.5

12.7 -40. 56.8 .00237 100.4 15.0 1212.7 II 59.0 .00237 100.5 26.220.6 II 65.0 .00233 101.7 14.120.6 II 67.1 .00232 102.2 25.8

17.5 - 5. 69.1 .00231 101.0 -II 69.0 .00232 102.2 34.1II 66.5 .00232 102.7 50.6

20.6 62.7 .00234 101.5 -12.7 59.6 .00236 102.0 -

58.7 .00236 101.2 20.6 1358.2 .00237 101.1 34.857.4 101.1 -58.0 101.5 15.4 1458.0 101.5 26.356.7 101.1 -56.7 101.4 12.956.4 101.4 23.0

20.6 55.3 .00238 101.5 -II 55.3 II 101.3 4.4II 54.8 II 101.2 13.2

*Reference position is the sting mounted SR at 0° angle of attack.**Balance data in question.

21

-

ttf~~f-== r==... .

~""--~ "",F:::::::---=~ \\ ~-,...J--~ J:---=~

l- t-I ~-;;:::

~r-. I--. r-= ::::,.-

~

\~I~-

.\ II

,\n\\

-\

II

-

\ \ \\

\+~~

Figure 1.- Three dimensional display of SR2 propeller design which was used in this study.

22

Runs 52-70

,+2.01·-.-4.92·IJ

I

STING MOUNTED CR 82-87

132-135

136-151

IIIII

-----''---. .-,---'--------MOUNTED SR PUSHER

(SRP)

MOUNTED I SR TRAC~~__ (SRT)I ~

ROTATION AXIS IFOR PUSHER I

AND T,RACTOR ~I

I n------------_1. I

I-tJ

II

IIIr

I

IIIJ

REFERENCE IL1NEj

III

II14 -----_._-

Figure 2.- Drawing of the propeller/nacelle configurations.

23

N-+:>0

SR TRACTORSR 'PUSHER

"

Figure 3.- Photo showing pylon mounted tractor and pusher configurations.

-Figure 4.- Isometric sketch of the microphone carriage in the Langley 4- x 7-Meter Tunnel.

25

FRONT VIEW

I j

~ELOCATIONS

SIDE VIEW

+I 1.50-(.0381m)

Ift:---~--t----=r

... ..... ~ '1"" .... - ....

MICROPHONE CABLE TAPEDTO UNDERSIDE OF MICROPHONE

CARRIAGE

N0'1

PLAN VIEW

MICROPHONE MOUNTi 57.20- (1.45m)40.27- (1.02m)

6- (.914m) ~

27.71- (.704m)

I >-+~:17.47- (.444m)8.46- (.215m)

.-·t +++ +......il- -<

MIC 1 2 3 4 5 6 7 8 9 10 11

36- (.914m)

3

Figure 5.- Sketch of microphone carriage showing dimensions and microphone locations_

~MIC 1

PROPELLER(rotates clockwiselooking into the flow)

-5-6

-8

-9

_10

_11MICROPHONE ARRAY AT STOP '0' "

. Figure 6.- Isometric sketch showing coordinate system in which microphone locations aredefined.

27

BELLMOUTHCOLLECTOR SCALE

LL.L.1' • , , , , I

-4- 10' .....(3.05m)

+8

MICROPHONECARRIAGE

STOP+

-6

0"- REFERENCE POSITION(STING MOUNTED SR)

+6

................

.'!iiiiiiiiii!~i: NTR 0 L

~~~~~~~ ROO M

.------o--o-----t::J!:::::::;W:::::::::::::::

FLOW DIREC.TION

Figure 7.- Planview of the 4- x 7-Meter Tunnel open test section showing microphonecarriage locations.

28

MIC 6 ORSPL= 9q.21q

~

, J

I I

76

74:

72

70

68OJ0

66

d6L1>w62-.J

~60:J(f) 58(f)wn:: 560-

o 5lfz6 52(f)

50

q8

q6 1..LL-LL.~u...J..J...L.1-L.1-L.LJ,...I...I-l..L.L.L..L.J....L.1..l....I....I...Ju....L.L.I-J.~.LL.L.L.L..L...L.I....L.Lu....L..I-U...LJ....U..J....L.U...U •.u.JIIIw....L1IJ...J...1111..u...11L..L.L111..L..LJIIIL...LJ.d.L.L.J11IU-.l-II.L..J,..L"O,.11111

o 1000 2000 3000 qOOO 5000 6000 7000~ 8000 9000 10000FREQUENCY, HZ

Figure 8.- Typical background noise spectra of the 4~ x 7-M Tunnel opentest section; U=lOO fps (30.5 m/s).

29

TP NOISE/TAPE 11071 OjP.BLOCK TEST NO.2 RUN NO. 54+4

Results from ...

I I I_LD.-J-.J-.li..LJ-L_L1.J.-J_LLJJ~J-l--l-..L.-J_-J....-l--lI.J90 180 270 360

Shaft Rototion Angle, Deq~~ees

"'.""""

~:<:X:;~:·;/,/ mean signal + and - cr-- mean Fourier coef. - method 1 .

·f;',:..50

a= :)\ill 25L::JmmQ)l-

n..

o I "'::

(J

«-50 l-_L.LLLJ

o

100 !--

~O0 0(\:'-- -e

0... v, ~::t

00.! 80 ---(l) ~L

~'CD"D 70r

~

-.JCL(f) GO[

500

o<>

5

Results from...

(> mean Fourier coer. - method 1I:::. magnitude overage - method 2o rneon signa!

HOrnl()nICS ()";: BQC', I

{a) rn fer op'-' Ot"!€:

Ffgure 9. - Run 54+4 . BPF= 671.7 Hz. RPM=10076.0. UTiP=743.0 fl1:3.

30

TP NOISE/TAPE 11071 OjP.8LOCK

Results from ...

TEST NO.2 RUN NO. 54+4

o0..

100

.",.,' .. ,.,

;~<:':"::/:':::/~ mean signal + and - cr-- mean Fourrer coef. - met.hod

' ..illL::J(f)(j)C!>L

o~

~ -50oo

-<-1 00 U-J'~-J-""""""-J.-l...J...lJ-3 I

o 90She-a100r

.()a Q0

r'<01' .I'

II::t

00J 80[IJ..1

.6L O·~ Li

CD6/:;:.

""D 70,

--.JD- €;.(/)

,I

60

I I I I I IJ-l.--l-.J_I-l_-LLJJ_.L-'-J<--!--J~I-....;II.-JI180 270 360

RotatIon Angle~ Degrees

Results from...

<> mean Fourier coef. - method 16. magnitude av'erage - me"thod 2o mean signal

~}_LJ,"-L.---.,,-,--I'15 20

O"~ BPF

(b) mfcrophone 2

Ffgure 9. - Contrnued.

31

TP NOISE/TAPE 11071 OjP.BLOCK TEST NO.2 RUN NO. 54+4

Results from...

Results frol11 ...

(> m,,~on Fourier coef. - method 1b. magnitude overoge - rne'~hod 2o meon signal

25I I I

20I I

15BPF

L.LiJ.-J I I I I I L.LJJ_lJ.__LJ_L I ,J-LJ_LU_L_L.LI~~O 180 270 360

Shott Rotation Ang!e~ Degrees

.,.,., .;::.:::.:::/:/}~ mean signal + and - (T

-- mean Fourier coef...... method40o

0....

o+:i~ -20o()

<C-4-0

0

100 c::-

~o0 gOt- .

0....

8J:::t~0 O·0J

(I)L

co70-0

-l~CL

(j) eot50(= I

0

{c) rnkrcphcne .3

Figure 9. - Ccntfn ued.

32

TP NOISE/TAPE 11071 O/P.BLOCK TEST NO.2 RUN NO. 54+4

•Results from ...

- method 1 4

I ! I I J-LLlLLJ.-LJJ270 360

Results from ...

<> mean Four ier coef.I:::. magnitude o\,"erage - methoc 2o mean signal

,-LLLJ.-J180

Rototfon Ancle.;;;.J ,

., , ..~/////;:,: mean signal + and - cr-- mean Fourier- coef. - method

/1\:[;::.:.,:\:,

I I I I I I I-LJ I I I I I90

Shaft

50

o-50

aj' 25·~

::J(f)(f)Q)I.....

Q

o:.t3(r) -"">5::J L.'~

ao«

aII

{d) micr ophone 4

Figure 9. - Ccntinued.

33

TP NOISE/TAPE 11071 a/p.BLOCK TEST NO. 2 RUN NO. 54+4

Results from...

I25

I20

I I I I L..LJ,--,-I-,--I-'---l.......J-...JIJ270 360

Degrees

(> mean Fourier coef. - method 1l::. magnitude overage - rnet,od 2o mean signal

Results from...

"""""0'

;::X:.:;".:::.:::/'; mean signal + and - cr-- mean Fourier coef,;:..,.- method

:," :::::::. ..•...•..•.••..:.•..:..~...~. .::::':.:::t:: . ',' , r :'::;~~';'.

[IA:. tllJ);\§:;.iJ',1{1. ;&il1;;;;\ ~;f'f%~'i"""" j;~;;;i;;1

I I I I I I LJ .;:?\... I I I I I I-LLJ I

90 180Sh aft Rototi on An gl e~

-40 Io

()

illL

40a

CL

~

-'0-(f) 60

{e) m krcphcne 5

Ffgure 9. - Ccntfnued.

34

TP NOISE/TAPE 11071 O/p.BLOCK TEST NO. 2 RUN NO. 54+4

Results from ....

o0..

o

40

.,.,.,.,.",~::::::::.:X:::/ mean signal + and - cr-- mean Fourier coef. - method

ResLlIts ft-om ...

<> mean Fourier eClef. - method 16 magnitude overage - method 2o mean signal

(j)I I I I

10Horrnonics

5

<{

-40 J-LLLLLIlJi..-J.-...J..I--"'f.-..i.-1....LI~I ...J-.I-LI---JI I I U-.LL_L1J'-'-....l-...'LJ.....LJ-LJo 90 180 270 360

Shaft Rototion Ang!e~ Degrees

{f} microphone (3

Ffgur e 9. - Contfnued.

35

TP NOISE/TAPE 11071 O/P.BLOCK TEST NO. 2 RUN NO. 54+4

Results from...

50

.,.,., ... ,.,

~::X:::X'X:/~ mean signal + and - cr-- mean Fourier coef. - method

LL........,--JII.-..-J-I_20 2515

,.r: B',DFUi

Results from...

(> mean Fourier caef. - method 1l::. magnitude O\lerage - me'a'lOd 2o mean signal

I I I I I LlLl-l.-.J I I I 1...J.....J.-1..l.-..J-.J1_LLJJ'180 270 360

Rotation Angle~ Degrees90

Shaft

50 '--'--'--'--.l.-.l.-~~.1.-.1.-.1.-='l>--J---L.--L.J I Io 5 10

HOrtT10nics

0

100r0 gO=-

Q.. aJ ~~00J

())

lorן.-

m-a

"---I(L(() 60

(g) microphone 7

Frgure 9. - Ccntinued.

36

TP NOISE/TAPE 11 071 O/P.8LOC~< TEST NO. 2 RUN NO. 54+4

Results from ...

..,'-Of

};\}:.'.'"

'::'::",

Results f,-ofl1...

<> mean Fourier coef. - method 1t::. magnitude average - me-thed 2o mean signal

0'_"'0""'

~/::-x:x}r mean signal + and - cr-- mean Fourier coef. - method

J'--I--Jl......lI....LJ-l_hU-LLLulJ-.J.....LLJ--LLLlLJ.-'--J.--<--.J'--'--'--'I90 180 270 360

Sho-ft Rotation Angle~ Degrees

40

-40o

ui' 20L:J(J)(J)<I.)L

n...

a0... ...//.:.

~ g}~/

~ -20oo

<:'(

;"

50 '---'---'---'---'--.L-..-I.----E"'t--'---<-t~f_·-'----'L.....-J-~~-'--.1....--.J.--L-.--'-----'--...L._.J"--'-~,Jo '10 15 25

Hornlonlcs ejf BPF

~ 70

lOaFa 90,­

0...~oC'..J 80illL

~

-In...(f) 60

(h) rnfcropl1one 8

Ffgur e 9. - Ccntfnued.

37

TP NOISE/TAPE 11071 O/p.BLOCK TEST NO. 2 RUN NO. 54+4

Results from ...

I I I I ! I I LJ,--l-...J..-Ji-lJ270 360

Degrees

.,

......':.":

Results from..•

o mean Fourier coef. - method 1/J. magnitude average - me-thod 2o mean signal

I I I I I I 1.-l.J-.J...J180

Rotation Ang!e~

0,_"""",

;////// mean signal + and - cr-- mean Fourier caef. - method

L..-!--I--}_l-.J-,--,I~90

Shott

f350 L-...L...---'--...l.--'-~~~-'--'--"I~~",,-'-'---L---,_-.1-lo---Jlo---Jl............J-.....J-.....J-.....J-.....J---I---I-____

o 5 10 '1 5 20 25Hortll()nics of BPF

400

0.....

20<DL::J(J)(J)Q)L

0...

10°fa 90~

0...::t - 6

00J 80 -<D f1L <)~ ~

CD ~~b./J.'"D 70r

.....JQ...(f) 60

(i) microphone 9

Ffgure 9, - Contfnued.

38

TP NOISE/TAPE 11071 O/p.BLOCK TEST NO. 2 RUN NO. 54+4

Results from ...

I I L.Ll360

40

(1)" 20L::lQ')Q')

illL

0...

., ,.,;~:X«:X:/~ mean signal + and - (J

:':. mean Fo,:-!rier caef. - met~.od.~, . ,"'::':':1

•••• J' ':"'''':::::: "::",:::::.:.:::::. ,.:.:::::::.~.

1'://'/:::: ':;+:':', .:.::::,.::/./.f-.:.::.::::::.'.::. ..:::::'::::;;:: :..: ·:.::':'·k ·<?2//·:: '.:::':;:.r- ['" :. ::.. '::":'1:" ':." :. ':", ":'?i!~/ '" .:.

~ -20 [':;'::::':'::'::: ::.:::::::::'::'~'S;P' \),};;/

-4-0 UJ LLJ~ I I I I ! I I 1..L.LJ I I ! I I Io 90 '180 270

Shaft Rotation Angle~ Degrees

oIl

10°F0 gOr ~Il~

.....:t..00.l 80

i-

IDL

IT!'U 70-

--I0...ifJ 60

50o

Results fro Ill...

<> mean Fourier coef. - method 1I:::. magnitude overage - method 2o mean signal

{j) mfcrophone 10

Figut" e 9. - Continued.

39

TP NOISE/TAPE 11071 0/p.BLOCK TEST NO.2 RUN NO. 54+4

Results from...

o0...

100

.",.,.,.",

;::.;~:./;::./?~ mean signal + and - cr-- mean Fourier coef. - method

Results fro 111 ...

-0 mean Fourier coef. - method 1I:::. magnitude overage - method 2o mean signal

Horrnonfcs

8

0

100 r:-.Q

0 90l ~Il. sol::t00J

illL

~ 70

"-.JCL(f) 60

..IDL:J(j)(j)(1)L

CL

o+.tlfJ::J -50

] -1 00 L'~...l.-J..-L..JL-I-'...!-\I L.LJ-.LL I I I LJ I I I. J I I I J I 1.-J.-..I-'--J-....I--JIJ90 180 270 360

Shaft Rotation Angle, Degrees

{k) mfcr c.1pl'lone 11

Figure 9. - Continued.

40

105

Resul ts fror'o ...A n' eo!'1 F "'J,·r"",- ....oe'"'\,/" I ," il\.:l I ... j H::~ \... I ~

b. m agnitucie averag eo mean signal

- n1er'lOc) ;

- method 2

90

-4-585 _l_....l.---__-J..._~l_"'-----JI_-'------..I..-__I

-3 -2 -1 0 1 2 3 4 5MICTophone locctI,O:""i j feet

(I) Surnrnary of SlOP 4

9. - Run 54+4 . BPF= 671.7 Hz. RPM= 10076.0. UTiP=743.0 fps.

41

ATP NOISE/TAPE 8311079901 jP.BLOCK TEST NO.2 RUN NO. 67+4

Results from ...

..

rnagnitude O\leroge -- rn8'>::~!od 2meon signal

Results from...

o rneon Fourier coef. - method 1b.o

I ~~,),)f.1~1 If 1,,~ 10Harrnonics

100 c:¢\

:::t

~ 801:: ~~ 6,

L t:: b. I:::.CD F ~.. l:1 l:1 t..::.'\"D 70 : '....... ~ I:::. £::..

£::..1:::.I:::.l:::.l:::.

6,b.

b. A b.£::..A.6,

._L..1 .1-1--,IL--L~I,-LL 1 J15 20 25

()": BPF

-'0_(f) 60

{a) mict'l:'lphone

Figure 10. - Run 67+4. BPF= 670.8 Hz. RPM=10062.5. UTijl::;=742.0 1·ps.

42

ATP NOISE/TAPE 8311079901 /P.8LOCK TEST NO.2 RUN NO. 67+4

o0...

100

Results from...

@};};}\\~ mean signal + and - (J

-- mean Fourier coef. - method

CD"'0

.....':':'.~~

I I liJ I I270

Degrees

Results frolll ...

(> mean Fourier coef. - method 1f:j, mGgnitude overage - me-thod 2o mean signal

{b) microphone 2

Figure 10. - Continued.

43

ATP NOISE/TAPE 8311079901 /P.BLOCK TEST NO.2 RUN NO. 67+4

oCl.

100

Results from ...

~~/{;\?% mean signal + and - cr-~ mean Fourier coef. - method

Results fr-on1...

<> mean Fourier c'Jef. - method 1l:::. magnitude overage - me·~:~od 2o mean signal

(c) rnicr<lph<ll'l€ 3

Frgure 10. - C'.:H,tfnued.

44

..

ATP NOISE/TAPE 8311079901 /P.BLOCK

Results from ...

TEST NO.2 RUN NO. 67+4

..Q)

~

:J(J)(J)~}

L

Results from...

<> mean Fourier coef. - method 1I.':,. rnognitude average - method 2.o mean signal

(d) t'nicrophcne i.~.

Figure 10. - C'.Jntinued.

45

ATP NOISE/TAPE 8311079901 /P.8LOCK TEST NO.2 RUN NO. 67+4

o0..

100

Results from ..•

ft(~\\\~ mean signal + and - cr-- mean Fourier coef. - method

mean signal

., I

rncgi1~T.UGe D\ler-Gg~3

Re;Jults from...

<> mean Fourier coef. - met~loG 1!:::.o

..illL:::)(f)(f)

VL

0...

{e) rn icr()ph~~ne 5

Figure 10. - Continued.

46

ATP NOISE/TAPE 8311079901 /P.BLOCK TEST NO.2 RUN NO. 67+4

oCL

100

Results from ...

f~?\\\) mean signal + and - cr-- mean Fourier coef. - method

Results from...

<> mean Fourier coef. - method 1~ magnitude overage - method 2o mean signal

50

Ob-Wi-50!-'

I I ! LUJ-l-l-l..J-'_.l_I_.1J..-LLJ-l"""_J.-1...J--J180 270

Rototfon AnQ:e~ Degi'"ees

{f} microphone eFfgure10. - Continued.

47

,.J360

AlP NOISE/TAPE 8311079901!P.8LOCK

Results from..•

TEST NO.2 RUN NO. 67+4

110 1-

~¢\":'1 100.'::"'-

0 __ t=::t ,r=0 l= ¢r('.~

90~-illl.-

eo\J 80

--.I0_Cf1 70

Results f,-olll ...

o mean Four ier coef. - methoc 1l::. rnagnftuce overage - me-t''lod 2o mean signal

DL-_. ClC"

'1 I

(g) microphone 7

Figure 10.

48

ATP NOISE/TAPE 8311079901 /P.BLOCK TEST NO.2 RUN NO. 67+4

Results from ...

?t~\\\\ mean signal + and - (T

({ 100~ mean Fourier coef. - method

~ 50 .:":::'. .:?; /~Vt\ .;·.~::~t(\

~ 0 ".~.:.:"~:':"'~':"""'~"":'::":"""""" ::..::..:,......•::::.':.:: :li'.:::~:..~::: t\f\"0: -: . .,# \.,'io.:::..!..:-.::.:::::.,:':.:.::::::::::.~::::: :: :,':7.'::!::.:.·;.;,l \\.:..:.~~::.;.::..::.:.::'.:.: :::.:.:.:;:.:.·.:: _.:.·.:;:.:.:=:.~:· ::.~:.Ii'".L.::.<:Jit%.:·;,t:.tf;o \~!~.~.·..·.~:::·.;.·:.:::::.·.,.:.;.·.;.:.~:::.i.:ij,r·,':' :.~ ~;'.'-:--' .'\::~~~:~}~~::::;:;'(j)

--&JO[] -1 ~~ LUD_I_L.LL-LLl.-LU_d-Ll..l.J

o 90 'jaoShaft Rototion I~..nc:e.

...J ,

I I I i I LJ---I.-...L-J.LJ...-L.LJ270 360

Deorees;;J11O[

(J '100'·_ 'II

~::t~.

0('.J 90 c.- (.).IJ) ~L

co801"D

-'0-(f) 70~

~608

0

Results from...

<> mean Fourier coef . - rneJ.:hod 1f:::. magnitude overage - method 2o mean signc!

{h) microphone g

Figure 10. - Contfnued.

49

ATP NOISE/TAPE 8311079901 /P.8LOCK TEST NO.2 RUN NO. 67+4

Results from..•

.:'::.#.

Results from...

<> mean FourIer coef. - method 16 magnitude averoge -. me~:;,oC: 2o mean signal

'00 i-.C;ll>

col <)0 ~ J g

CL:.t

0 1=C'\J

::[ill"-

IT!-0

-l0_0'1 60

.-:':~~'.~'.~'.~'..,~;/:\\\\;:~ mean sIgnal + and - a

~ 100~ .. mean Fourier coef. - method

Q) .:.:.:. .,;::~L::J(f)(f)([)L

CL

()+J~ -50>-oo<

- i 00 LJ_LJ_LLJ_J_JJ_J_I_I._LL_L-UJ_L.LJ-1..-J I I I J-1_J-1-1.-J-1..J.-JJo ~W 180 270 360

Shoft Rototfon AnQ:e? Degrees

50E Io

.0I---,,~tc..../ ~IL..-,-l .....<~p~1---,---,--,---,-'..J , I5 10 'j 5·

Horn,onlcs o·e BPF

I20

I25

..

(i) micr ophone 9

Figure 10. - C'ontfnued.

so

ATP NOISE/TAPE 8311079901 jP.BLOCK TEST NO.2 RUN NO. 67+4

Results from...

..;~.~N{;\/:~;) meon signal + ond - cr-- meOlt:·.Fourier

o0..

..(]JL:JmmQ)L

0..

o

-< -50 LL.L.L1J_LJ...J_J_U_LJ-l-LJ-lJ...J_ J...J --1_, J-l_I-L.L_LJ_J_I..-J__L_i-l_Jo 90 180 270 3$0

Shaft Rot.ation A'l'··'A Decreesj ~p >oJ., '-J

100 C::-~"C?-~1.> v'

!=l=

;0 0CI E=- .(;.>0_.

~'.' §::::t i=080~

I~c-..l .(-:)

tJ}

~l.-

eo'"'0 70r_I0_(f) 60b

1-

~50f=1

0

Results fronl,,"

<> mean Fourier coef. - method 1I:::. magnitude ovef'age - me-t:1od 2.o mean signal

{j} microphone 10

Figur e 10. - Continued.

51

ATP NOISE/TAPE 8311079901 /P.BLOCK TEST NO.2 RUN NO. 67+4

oQ..

100

Results from...

~~)\\??~ mean signal + and - cr-- mean Fourier coef. - method

I I I L.LJ LJ_U-l-LJJ270 360

Dearees;;;l

Results from...

<> meiJr, Four ier coef. - rnE,I~hod 1l:::. mcgnitude overage - ITlf::d:'-il::>G 2.o mean signal

I I LJ I I !.-J_L..l. I'180

Rototion Angle 1

@I !

--L---L--L---L---I.'---I.1---L---I.--f-lc9-!-""O I I I5 10

Harrnonlcs ()f

50

-50

i 00: {}FE ¢tC:

0 90r-CL E:::t.0 § ~c'./ BOL-ID EL

Em"D 70:-

~"--JCL(f) t=

6°1-50 I

0

u+­(j)::;oo

<:(

-1 00 u_LJ_1LJ-.lJ.J._LJo ~W

Sh aft

(k) mIcrophone 11

Figure 10. - C(Hy~inuE~d.

52

Resu~t9 frot('~.""

.-,--_l-~ I I~,----,-_l-3 ~2 -'I 0 2 3 4 5

tviicr 0 Dhon e I·:,) c·::d:ion j feetI

{I) Summa!'}/, o·f Step 4

Fil;}ure 10. - Run 67+4 . BPF= 670.8 Hz. .RPM=10062.5. Unp=742.0 fp$.

53

ATP NOISE/TAPE 8311149901/P.8l0CK TEST NO.2 RUN NO. 84+4

200

Results from..•

jWf;~;X?~ mean signol + and - CT

-- mean Fourier coef. - method

110

oD...

05 100L~({)({)

~ 0 ~-.:.r,0....

()~

~ -100ou«

- 200 L.-I-~--I--I--I--J...-I---'-'--J--'--'---I.I-,I,---,--I......1-1..1--1.1-11---,--1..L-1.......1...L1-I1_1L-.L-1.......1....1--/.1......1-..I...-i-...I--I.I,--1o 90 180 270 360

Shaft Rotation Angle~ Degrees'

a 100

~oN 90(l)L

Results from...

<> mean Fourier coef. - method 16. magnitude overage - method 2o mean signal

fg 80

....JCLifJ 70

5

o

10 15Harmonics of BPF

20 25

(0) mrcrophone 1

Frgure 11. - Run 84+4 . 8PF= 665.9 Hz. RPM= 9988.9. Unp=701.7 fps.

54

ATP NOISE/TAPE 8311149901!P.8LOCK TEST NO. 2. RUN NO. 84+4

200

Results from...

f?\\\;) mean signal + and - (J

-- mean Fourier coef. - method

110

oD-

05 100L::J(()(()

~ 00-

o+-~ -100

~ - 2001'--.1.-1............--'--.1'--.1.-...1-1...1..1--,-1--11'--1-.1 ..1-'...1..1-1-1--11--1--1 ..1-1 ...1..1-1-1-..1.1_ 11--1-1 ...1-1 ......1-..1.1--11'--.1.-1...1-1 ...1..1-.L--I'---i.-...............L-1 Io 90 180 270 3eO

Sh aft Rotation An gl e, Degr ees

Results from...

o mean Fourier coef. - method 1I::::. magnitude average - method 2o mean signal

o 100

%.aN 90

OJL

~ 80

"-ICL.(f) 70

5

00

o

<>0<>B 0

10 15Harmonics of BPF

{b) mfcl'ophone 2.

Ffgur e 11 . '- Contfnued.

55

20 25

ATP NOISE/TAPE 8311149901/P.BLOCK TEST NO.2 RUN NO. 84+4

o0..

..Q)L:::l({)(j)(1)L

n..

100

100

Results from..•

ft~~~\{{~~ mean signal + and - cr-- mean Fourier coef. - method

I I360

a 90

~oN 80(J)L

OJ"D 70

~

-JCL(.f) 60

o

Results fro"m ....mean Fourier coef. -. method 1magnitude overage - method 2mean signal

<>

10 15Hornl0nics of 8PF

(c) mIcrophone 3

Figure 11. - Continued.

56

ATP NOISE/TAPE 8311149901/P.8LOCK TEST NO.2 RUN NO. 84+4

3$090 180 270Shaft Rotation Angle, Degrees

Results from...

@nNN~~ mean signal + and - cr-- mean Fourlercoef. - method

110

2000

0....

100lJ)L:J({)(f)(1)L

CL

(J;...-~ -100ou«

-·200 I..-L......L-..J......J-.l-..i.-J..-J..--'--....L-I---L-.....L-J.-.-I,.--I.......!.-L-...L......L-..J......J-..L.-..i.-L-...!-.......J.-....L-I--I-..i.-.L-.l.--I......J-...I

o

~ 80

a 100

%.o"" 90Q)L

-..JCL(f) 70

Results from..•

<> mean Fourier coef. - method 1~ magnitude average - method 2o mean signal

5 20 25

{d) n"licr ophone 4

Figure 11, -0 Continued.

57

ATP NOISE/TAPE 8311149901/P.BLOCK TEST NO.2 RUN NO. 84+4

Results from..•

(> mean Fourier coef. - method 1b. magnitude overage - method 2o mean signal

Results from..•

~tf{{{{~~ mean signal + and - {T

-- mean Fourier coef. - method

110

~ 80

"---ICL(f) 70

a 100

~oC'\I 90(l)L

2000

0...h

100IDL::J(()(()(l)L

CL

()~

~ -100oo

-<- 200 L.....I-..l-.-.L......I..-L--I-...JL..-I.-l.....J--..l-.-.L......I..-L--I-...JL..-I.-l.....J--...l-.J--L..-J......l.-.J---!-I.-.-l......l-.J-....I..-L--I-W

o 90 180 270 360Shaft Rotation Angle, Degrees

{e} microphone 5

Ffgure 11. - ContInued.

58

ATP NOISE/TAPE 8.311149901/P.BLOCK TEST NO.2 RUN NO. 84+4

36090 180 270Shaft Rototion Angle~ Degrees

Results from ..•

1~g\~::\~~';\;~ mean signal + and - cr-- mean Fourier coef. - method

110

2000

0.....

100IDL::J({)(()<J.)L

0...

()~

~ -100oo<

- 200 '---'---'---'---'--'--'--J....-L.--'--'--'--'--'--'--'--I--'---''---'--I.-.l-..L-I-..l..-.<'--'---J--............-.1..-'--L--L-L--'--I

o

Results from....

o mean Fourier coef. - method 16 magnitude overage - method 2o mean signal

a 100

%o0J 90(J)L

~ 80ft

---.JCL(f) 70

5 10 15Harrnonics of BPF

20 25

(f) microphone 6

Ffgur e 11. - Continued.

59

ATP NOISE/TAPE 8311149901/P.BLOCK TEST NO.2 RUN NO. 84+4

200

Results from ...

~%\?\:) mean signal + and - cr-- mean Fourier coef. - method

..

36090 180 270Shaft Rotation Angle, Degrees

110

..(1)L:J(f)(j)(I)L.

0...

():j:i

~ -100oo

4':- 200 L.-..1--L-..L......J---l-.....L..-.l..--L....l-....I-..JI-..L.-L-.l.-....l.---l--I--L.-..1--L-..L......J---l-.....L..-.l..--L....l-....I-..JL..-J...-I-..L......J--J...--L.....J

o

o 100

~o0J 90Q)L

Results from..•

(> mean Fourier coef. - method 1l:::. magnitude overage - method 2o mean signal

~ 80

"~

0...(f) 70

o<>

5

oS

10 15Horrnonics of BPF

20 25

{g) mfcl'ophone 7

Ffgur e 11. - Ccntfnued.

60

ATP NOISE/TAPE. 8311149901!P.BLOCK

Results from ..•

TEST NO.2 RUN NO. 84+4

Results from...

<> mean Fourier coef. - method 11::. magnitude average - method 2o mean signal

o 100~...:l.oN 90illL

;g 80

5 20 25

(h) rnicrophone 8

Frgure ll. - Contrnued.

61

ATP NOISE/TAPE 8311149901/P.BLOCK

Results from ...

TEST NO.2 RUN NO. 84+4

200o

CL

<is 100L:::J(f)(f)(])L

CL

.... :~ ..~\\?:?:\ mean signal + and - cr--- mean Fourier coef. - method

...,',:::,

~ -100oo-«

- 200 ............---I...-.L--l..---'--...L.--1.--'--'---'--'--'--'--'-....t...-J'--'--'--I...-...1--J.-..............-&..-.L...-.L..---'---'--l...LL..t-1-'---L......1I_1o 90 180 270 360

Shaft Rotation Angle~ Degrees110

o 100

~o0J 90Q)L

;g 80

Results from...

<> rnean Fourier coef. - rnethod 1I::::. rnagnitude overage - method 2o mean signal

{i) rnicrophone 9

Figure 11 - Continued.

62

ATP NOISE/TAPE 8311149901!P.8LOCK TEST NO.2 RUN NO. 84+4

Results from...

o

Results from...

<>o<>

o<>

°0

~ill.6Q

O· ~ ~~ ~& "V" II II (> mean Fourier coef. - method 1

~ £::A magnitude overage - method 2f0 ~ 06me~ &gnol

~ J\ ~ J\~ ~!:J.~~

6~~

'~ <>e)?~ 0

<> ~<> <>8o<>@.oooo

40 '---1..--'-._.L....L ....1.....J --,--,-I--1--1--1-1--1-1--11--1...--1----1-1--1-1--,--,-I----1-1? 1 1 1 <j> 1o 5 '1 0 15 20 25

Harrnonics of BPF

90

50

".--J0-f.f) 50

96 60

o 80

%.o('.J 70illL

(\{{{{~~ mean signal + and - cr-"_ mean Fouf:~er coef. - method

o 1:\, f;{\ . r."1Q.. ....':-: I) ."':" :I;:.:

..(l)L:::JillillQ)!0.-

Il

()

:J - ..;, (::r 1?:;N:j ~r b" (::;;, ~:) \[:jil:) ..... ~f::;t ~o ,.j.1 \:1 I,f I ~::::l \ V·'~ ;11 ~i:~io I~:f \. ':::J·:::·.:I .~ ~ '\, ~':':':1

4. -50 U ..J..J ......L...Ll...J I I I 1 I I I I I I I I \Z:' I I 1_'......1.1.-1..............................----L-JIi......'1o 90 180 270 360

~. Shaft Rototlon Angle~ Degrees

(j) microphone 10

Ffgure 11. - Continued.

63

ATP NOISE/TAPE 8311149901/P.BLOCK TEST NO.2 RUN NO. 84+4

,',.:-:....

:'::::

I 1 I I I 1 I I 1 1 1.-..11_11.-.-1-1..1-1-J-I-l.I-..1I--L-.J-...J--J--I......I.I--J1180 270 360

Rotation Angle, Degt"ees

Results from ..•

?)\\\\~ meon signal + ond - cr-- meon Fourier coef. - method100

..IDL::Jif)if)(1)L

0....

()~

~ -50

o Iu

<( -1 00 --,-I-'--'--'---'--L--J.-I.....1_1 I Io 90

Sh ott

oCL

100/:).

906-0 6 <>

~ ~

6 0o

%o0J 80illL

fg 70

50o

o0<>

<>

10Horn'lon IeS

Results from...

meon Fourier coef. - method 1magnitude overage - method 2mean signal

<3 <>

<t> ??~ f~.....t....-....L---L..---L-I15 20 25

of BPF

{k) rn fer apl'lOn e 11

Figure 11. - Contfnued.

64

110

105

co\J

--1 1000-(f)

«o

95

Results frot'n ...~ mean Fourier coef. - method 1

/~~agnltudelJ.verage - method 2

~,\// ~

<>

-5 -4 ....3 - 2 -1 0 1 2 3Microphone location j feet

4 5

{I} Summar y of Stop 4

Figure 11 .. - Run 84+4 . BPF= 665.9 Hz. RPM= 9988.9. UTiP=701.7 fps.

65

ATP NOISE/TAPE 8311199901/P.BLOCK TEST NO.2 RUN NO. 132-2

100

Results from...

y~~(~~~\\~j mean signal + and - <r-- mean Fourier coef. - method

36090 180 270Shaft Rotation Angle~ Degrees

100

o0-

ID 50L::Jen(J)

VL 0

CL

o~

~ -50oo

<:(

- 100 '--'----I...-..J..-I----'--'--.L-J..--'-..I..-J----L.......l-.L.-.L--L-...L..-'--'-.....l-.L-.I.--L-....L.-J..--L.--l...-...L-l-.J........l-.l--I.--L-..I..--l

o

o 900....:::toC'..J 80

<J)

L

f?3 70

---'0...(f) 60

6.6.

<>

Results from...

<> mean Fourier coef. - method 1.6. magnitude overage - method 2o mean signal

10Harmonics

(a) microphorle

Figure 12. - Run 132-2. BPF= 670.9 Hz. RPM=1Q063.2. U TiP=742.1 fps.

66

ATP NOISE/TAPE 8311199901/P.BLOCK TEST NO.2 RUN NO. 132-2

36090 180 270Shott Rotation Angle, Degrees

Results from...

[f{{~{/;) mean signal + and - cr-- mean Fourier coef. - method

100

1000

0.....

50IDL::J(f)(f)

VL

CL

()~

~ -50oo

<C

- 100 ~-'--..L-,.L-'-.....L-l"""""'~'---'----'--'-.1--.L-'--'--'--'--1-L--L.---'--'-.J.--L-'-..J.......I--'-...L-L--L.-'--.l--L--'--J

o

0 90CL~

0N 80(])L

CD70u

"-l0...(f) 60

Results fr-om...

-0 mean Fourier coef. - method 1~ magnitude overage - method 2o mean signal

{b) microphone 2

Figure 12. - Continued.

67

ATP NOISE/TAPE 8311199901/P.BLOCK TEST NO.2 RUN NO. 132-2

36090 180 270Shaft Rotation Angle~ Degrees

Results from..•

~N~~~{{~~~~~ mean signal + and - cr-- mean coef. - method

110

1000

CL..

50Q)L:J(f)(f)Q)L

(L

<.);...,~ -50oo«

-1 00 L-L--I--..1.-.JI...-.I.--'--.L...1.--'-...L.-I'--J..-'--.L..-L--L.....1..-L-.L.-'--...L.-.I--L....J.-..........--I--....I..-.I--l--'--.L.-.L--L.....I-..-I

o

Results from..•

o mean Fourier coef. - method 1b. magnitude average - method 2o mean signal

o 100

~oN 90(J)L

~ 80

5 10 15Hart110nics of 8PF

20 25

{c) ml<:rophone 3

Ffgure ~2. - Contfnued.

68

ATP NOISE/TAPE 8311199901!P.8LOCK TEST NO.2 RUN NO. 132-2

360

".:'. ;::.....

\<~d/ %~J.• \~U \"\~,:;/

90 180 270Shaft Rotation Angle~ Degrees

Results from...

N{~~~\\< mean signal + and - cr-- mean Fourier coef. - method100

110

o0....

..IDL:J(f)(f)

~ 0CL.

()~

(j) -50:Joo

<C- 100 L.-L.-1..--'--I.---'--I-...JL...-1..--'--.1...-l..--'-..1...-L---'-...l-Jl.......I.---'--~--'--'--I.~-I-...J'---'---'--.L--l---'-..J..-..J.---'--'

o

o 100

~oC'J 90(J)L

~ 80

Results ft-om .••

o mean Four ier coef. - method 11::. magnitude mlerage - method 2o mean signal

..-'CL.

~ ::l---L- g,,---,-_Io 5

I I I I I10

Hor rnon les

I25

{d) microphone 4

Figure 12. - Continued.

69

ATP NOISE/TAPE 8311199901/P.BLOCK TEST NO.2 RUN NO. 132-2

100

Results from..•

NA{<~ mean signal + and - cr-- mean Fourier coef. - method

360

Results from...

o mean Fourier coef. - method 1lJ. magnitude overage - method 2o mean signal

90 '180 270Shaft RotatIon Angle~ Degrees

110

<)

o 100

%.00.l 90 ~<)OJL

CO80-0 b.

ft 0-1CL(() 70

..IDL:::J(f)(f)(J)L

0...

o;...,(f)

:::Joo«

- 100 '---'--'--...I....-'--L...-'--............--'--...J...-.l---'--'-"---'---'---'--''--'--'--'----'---L...o.............'--'---'--..J...-.l,--'--'--'---'---'--...I....-'

o

{e} microphone 5

Frgure 12 - Continued.

70

ATP NOISE/TAPE 8311199901!P.BLOCK TEST NO.2 RUN NO. 132-2

100

Results from..•

fH{\\~~;j mean signal + and - cr-- mean Fourier coef. - method

36090 180 270Shaft Rotation Angle, Degr ees

110

..Q)L::J({)(ll(\)L

CL

()~

~ -50oo«

- 100 '---'---I-....L..--l..-1---I-....L.....JL..-\...--I-....I---JL..-\......J.......1--I---I.....J........I....-L---I.....J................--L....I.--..........-I-...I.--.l-...L-'--...I.--1-...J

o

Results from..•

o mean Fourier coef. - method 1b. magnitude overage - method 2o mean signal

a 100II~oN 90(I)

L

~ 80ft

--.J0...(f) 70

5 10 15Harmonics of 8PF

20 25

(f) microphone 6

Frgure 12 - Continued.

71

ATP NOISE/TAPE 8311199901!P.BLOCK

Results from...

TEST NO.2 RUN NO. 132-2

oCL

100

.~: ... ~ ~',:",',',:.,

~;:;:;:\\;:\\~ mean signal + and - cr-- mean Fourier coef. - method

Results korn..•

<> mean Fourier coef. - method 1f::t. magnitude overage - method 2o mean signal

100

o 90

~o0J 80ill!.-

~ 70..

---lCL(f) 60

5

(g) microphone 7

Figur e 12. - Continued.

72

20 25

ATP NOISE/TAPE 8311199901/P.8LOCK TEST NO. 2 RUN NO. 132-2

o0....

50

100

Results from...

1~;!N{))j mean signal + and - (J

-- mean Fourier coef. - method

90 180 270Shaft Rotation Angle~ Degrees

360

Results ft-om...

-0 mean Four ier coef. - method 16. magnitude average - method 2o mean signal

o 90

%.o0J 80())L

~ 70

"-l0..(f) 60

5

(h) microphone 8

Figure 12 .. - Continued.

73

20 25

ATP NOISE/TAPE 8311199901/P.BLOCK TEST NO.2 RUN NO. 132-2

o0..

100

Results from..•

ff;~S~\\? mean signal + and - cr-- mean Fourier coef. - method

36090 180 270Shaft Rotation Angle, Degrees

100

..Q)L:J(f)(f)(1)L

0....

o~

~ -50oo

<'(

- 100 l--1.-.I-..L-J.--I-....L-JL.-I.......I.-l.-I..-.I-..l-.J.--'-....L-J--J.......I.-'--J..-.I-.J...-L--I-..I-...IL.-I.......I.-.I...-I..-.I-..J.......I---'---I

o

Results from•.•

<> mean Fourier coef. - method 1l:::. magnitude overage - method 2o mean signal

(} 90

~oC'-J 80Q)L

CD'""0 70

ft

-lQ...

(f) 60

5 10 15Harmonics of BPF

20 25

(1) mfcr ophone 9

Frgure 12. - Contrnued.

74

ATP NOISE/TAPE 8311199901/P.8LOCK TEST NO.2 RUN NO. 132-2

100

Results from...

(~N({(;j mean signal + and - <1

-- mean Fourier coef. - method·l

25

360

20

Results from..•

<> mean Fourier coef. - method 1fj, magnitude average - method 2o mean signal

10 15Harmonics of 8PF

B

90 180 270Shaft Rotation Angle, Degrees

5

100(>

~ 70..

---I0..(f) 60

a 90

~aN 80(J)L

o0...

05 50L:::J(()(fJ

~ 0CL

o~(f):::Joo«

- 100 '---J..-L-...........--'--~--'-..L-'--'--L-.L---'---'--...I..-I,--'--'--''--'--'--''--'---'-- ..........--'-~'--'-.....L-''--'--'--'

o

(j) mfcrophone 10

Frgure 12. - Contrnued.

75

ATP NOISE/TAPE 8311199901 jP.8l0CK TEST NO.2 RUN NO. 132-2

..

360

Results from•••

-0 mean Fourier coef. - method 1lJ. magnitude overage - method 2o mean signal

10Harmonics

90 180 270Shaft Rotation Angle, Degrees

Results from..•

1N{~;~;~;\~;j mean signal + and - cr-- mean Fourier coef. - method

~ 70

100

ft

-'0....(f) 60

a 90

~o('.J 80(])L

1000

0..... 50(l)

L::J({)({)(J)L

n...o~

gj -50oo

<{

-1 00 l--I--I...-.l-..L---I........J.--I--L.....L-L-...I--I...-.l.-.L---I........L-..J.--L..-L..-IL......L.-I...-.L-.L---I........L-J.--L......L..-.oL......L.....L.-.L-.L~

o

(k) microphone 11

Figure 12. - Continued.

76

, 10

Results from .••<> mean Fourier coef. - method 16. magnitude average ... method 2o mean s19nal

105

co"'0

-.i'1000...(f)

«o

95

90 L..-..L.-_-'--_......._-L._--L._---I__..L.-_-'--_......._--'-_.........

54-5 -4 -3 - 2 -1 0 1 2 3Microphone location, feet

(I) Summary of Stop -2

Frgure 12. - Run 132-2. BPF = 670.9 Hz. RPM= 10063.2. UT(p=742.1 fps.

77

ATP NOISE/TAPE 8311199905/P.BLOCK TEST NO.2 RUN NO. 141 +3

36090 180 270Shaft Rotation Angle t Degrees

Results from...

1~:.Y{)\~ mean signal + and - cr--:-:-- mean FourTer coef. - method40

100

oQ..

..(J)L:J((]((]<J)L

CL

o:.j::i

~ -20o()

<C

-40 '--'----'--...........--'--'--..........--'--'--'--'----'--..........--'--'--..........---'--'"'--'--'--'--..........--'-...........--'----'--..........--'--'--'o

Results ft-om..•

-0 mean Fourier coef. - method 16 magnitude average - method 2o mean signal

o 90

%.oN 80

(J)L

~ 70

-'CL(f) 60

5 20 25

(a) I"t'licrophone 1

Figure 13 - Run 141+3. BPF=1348.6 Hz. RPM=10114.6. UTiP=745.9 fps.

78

ATP NOISE/TAPE 8311199905/P.BLOCK TEST NO.2 RUN NO. 141+3

40

Results from...

jNN~~\~~? mean signal + and - cr-- mean Fourier coef. - method

36090 180 270Shaft Rotation Angle, Degrees

100

"Q)L::J(f)(f)illL

0...

o~

~ -20o(J

<:(

- 40 L.-l..-J....-...L.......I-1-.....L..-J-..I..--.1.--'--'--'---J--J.-..J.--'--'---L.-l..--J--..L-...J.--'--'--.L.-J.--J....-...L..-i-..l-.....L..-J...-,L-L-.J--.I

o

Results from...

<> mean Fourier coef. - method 1fj, magnitude overage - method 2o mean signal

a 90

~oC\l 80(J)L

~ 70

5 10 15HarmonIcs of BPF

20 25

{b) microphone 2

Figure 13 .. - Continued.

79

ATP NOISE/TAPE 8311199905/P.8LOCK TEST NO.2 RUN NO. 141+3

Results from ...

o0...

..([JL:J(J)(J)(I)L

0..

30

90

signal + and - <r

90 180 270Shaft Rotation Angle~ Degrees

360

2520

Results from ...

o mean Fourier coef. - method 1f:j, magnitude overage - method 2o mean signal

10 15Harmonics of BPF

54OL...-"---"---"---"---"-"'--"'--'''''--'''---'---'--'''----'--'__-'---'--"''---"''---"''----'----'----'---'--....L...-,-I

o

.....J0-(f) 50

o 80

%oN 70IDL

96 60

(c) microphone 3

Figure 13. - Continued.

80

ATP NOISE/TAPE 8311199905/P.8LOCK TEST NO.2 RUN NO. 141 +3

100

Results from ..•

D@)))~ mean sIgnal + and - cr-- mean FourIer coef. - method

o0....

40

I I I I90

Shaft

I I I I I I I---l-I.l-l...L..l-.L1.....J.1_11-.L-1...L-.l-L1.....J.1--l1---l--I......L..--L...-J--..J..-1I'180 270 360

Rototfon An gl e~ Degt" ees

90 ~

..

o0....:::i.o

N 80illL

co-0 70

5

Results ft-om ...

<> mean Fourier coef. - method 1f::. magnitude average - method 2o mean signal

(d) rnicrophone 4

Figure 13. - Ccntrnued.

81

ATP NOISE/TAPE 8311199905/P.BLOCK TEST NO.2 RUN NO. 141 +3

30

Results from...

1~«~~((:~ mean signal + and - cr-- mean Fourier caef. - method

90

6o 80

%.0N 70(J)L

~ 60~

...JCL(f) 50

5

Results from..•

¢' mean Fourier caef. - method 1.6. magnitude overage - method 2o mean signal

o

20

{e) microphone 5

Figure 13. - Continued.

82

ATP NOISE/TAPE 8311199905/P.BLOC~< TEST NO.2 RUN NO. 141 +3

oCL

30

Results from ...

?(\\\\\ mean signal + and - cr_..._- mean Fourier coef. - method

(j

...(l)L::Jillill(J)L

Q.. o "",1;""'\i·"4""",\"-";~,:,,.-\,,.%":.}1'4;'-.".''X":':":'~'?';"""';;""":~

. - 30 L.LLJ.......I-l..J-l....l..1-J...-J1,---,--'..J-I-,-I-1.1--,1,--,--'oL-l-,-'-.1..1--11--1--1..1-1..J-I-.1..1-1.1--,11..-.L-1oL-l-1-1-1.1--11--,---,-1.LJ...J..-L....1

o 'gO 180 270 360Shoft RototlOIl Angle~ Degrees

1--1-1--J,.1-l..--L..--I---1.--.L.-<c?_..LJ15 20 25

of BPF

Results frotll ...

<) mean Four ier coef. - method 1f:l magnitude a\lerage - method 2o mean signal

(>~

°0<> 0

<t> VN )'..? 1 8·4-0 _.J...._J..........I--'-_l:--J.--J._sv· Y<~.:. ~/ 1 I

o 5 '10HortTI()1l leS

<DL

90 ._.....-

,-.~

......J0..(f) 50 -

OJ -'\J 60·_..·..-

o 80 -'-0... ••

::toN

(f) rnk:r~Jph(Jne 6

Ffgur e 13 - C~Jntfnued.

83

ATP NOISE/TAPE 8311199905/P.BLOCK TEST NO.2 RUN NO. 141 +3

Results from ...

0,25

360

20'IS()f BPF

Results ft-om ...

<> mean Four ler coef. - method 1f::J. magnitude average - method 2o mean signal

90 '180 270Shaft Rototion Angle~ Degrees

.0·0

<>o

-:30 '---'---1--'-->-....1...--1--'--'--'---1-....L...-'--'--J--....L...-'--'--'--'--'--'--J--..L-I--'-"""O-..L-I---'--"""O-...........---'-"""O-~

o

90 ~

o 80CL::toN 70IJ.)L

9,B 60

-lD-(j) 50

30o

0...

(g) mfcrophone 7

Ffgu reB. - Ccntfn ued.

84

ATP NOISE/TAPE 83111 999 05!P.8 LOCt\ TEST NO.2 RUN NO. 141 +3

Results from ...

360~lO '180 270Sh aft Rotot[ on ~.n gl e, Degr ees

"':':':"

f%\\\;) mean signal + and - cr-- mean Fourier coef. - method40

100~

-40 '--'--'--...l.-..L-'--...I-..J'---'--'--.L-..L.-'--~-'---'---''---'--'--'--'--'--J..-4-'--~--'--'---"'--'--1-",---,----L-..J

o

..illL:JmmillLII

():pm:Jo(J

<.{

o!l

~ 70

--.JII(/) 60

o

~o(,..J

Q)L

90

80

Results from ...(> mean Fourier coef. - method 1f::" magnitude m"'erage - method 2o mean signal

b..~

1 /0' 6. ./::;, IL:!..50 l..--'--..J..--'--.:..J.!..-L-~~--1----''---J.--'---..J..--'---l-.-L--.u.l..---l-_.L.lA;.>-.0,0.....&""'-\ I I I I

o 5 10 15 20 25HOt~rn()nICS of BPF

(h) rnic:r ophone 8

Figur e 13 - Continued.

. 85

ATP NOISE/TAPE 8311199905/P.8LOCK TEST NO.2 RUN NO. 141 +3

Results from...

{}:'}'~~~:'~~::\:::1 mean signal + and - cr30 .- mean Fourier coef. - method 1 ;~,

o (; ;\ ":.\ .t::/\(l

..OJ~

::JOJOJill!.....

II

(j

-+-'m 'It::::J - .....'au-<

100

90 '180 270Shaft Rotc1tfon Angle 1 Deg-rees

360

Results ft-om ...

(> mean Fourier coef. - method 1I::::. magnitude average - method 2o mean signal

o%aN

ill!.....

90

80

70

60

~.

5 '10 '15Harrn·:,)nics of BPF

{O rnlcr ophone 9

FIgure 13 - ContInued.

86

20 25...

ATP NOISE/TAPE 83111'99905/P.8LOC~< TEST NO.2 RUN NO. 141+3

..(JJ

'I.­::Jmm(1)l.-

n...

4-0

Results from ...

f)~}:}}::) mean slgnol + and - cr-- mean Fourier coef. - method

o:.;:;0') ,)r)::J -Lt

oo-«

- 40 '--J..-'--...l-I..--J.,.-'--....L.-J.

o

100

180 270ROtc1tion Anr~le, Degrees

I I360

o 90[l.

:::t.oc'J 80(J)I.-

~ 70

Results from ...

<> mean Fourier coef. - method 11:::. magnitude overage - method 2o mean signal

(j) microphone 10

Ffgure ] 3 - Contfnued.

87

ATP NOISE/TAPE 8311199905/P.8LOCK TEST NO.2 RUN NO, 141 +3

Results from ...•

.'.':',

;:i:h.

1~S~~\\(~\ mean signal + and - cr40 ;,,\'0, Fourier coet. - method

ci: j}j$,Q1 20!>­::J(l)(l)

illL-

0...

o :~I!

<t _40 '--'--'-...l....-l.-.L.-'-..J........JI'---'--'-.J---J~·--'·;~::-_?.J---J--,---,\_~T......../ -'-..I..-.-L--,--,-",---,---,--,-,--,---,--,--L..L..L..Jo 90 '1030 270 360

Shaft Rototlon ft,ngle, Degrees100

a 90CL:::toC',~ 80illL

~ 70

Results from ....

<> meon Fourier coef. - met.hod 1L::. magnitude overoge - method 2o meon signal

l::.l::.

l::.iJ.l::.

/j./j.

50 '---'---"--~i9--""---'---'----'----'--'--'----'----'---J---1.---'---'---'---'---'---'---l.---,";~...!:±:._fo 5 '1 0 15 20 25

Horrnonics ()f BPF

{l<.) mfcrophone 11

Ffgure 13 - Contfnued.

88

..

..

100

95

Q)\J

_J 90II(f).~

C::J

8'.)

Resul ts frorn '"<> I"neon Fourier coef. - method 1fj, I'nagnitude average - method 2o I'neon sIgnal

80 ....._1 I I I II

-5 -4 -3, rl -1 0 1 2 .3 4 5-L

tvlicrc)phone I,'" ("""l+ion feet--' .....,'- ... 1

{ IJ" <' . "t...:>urnrnar y ot S op

Figure 13. - Run 141+3. BPF=1.:548.6 Hz. RPM=10114.6. IJ np=745.9 fps.

89

I-\TP NOISE/TAPE 8,311199906/P.8LOCK TEST NO.2 RUN NO. 144+3

Results from ...

270Degrees

I I I I I I I I I I I180

Rc)totf on A.n 1;;]1 e~

I 1 I 1 I

90Shaft

50

100

?)\'~\\~}1 mean signal + and - cr

-/0\ mean Fouriert0ref. - method /]\ l\.\l:.•;.:.',~.~..'.;.':~.'.~.>.'.;,(:::;:;., /:,~t\ (,;,:i:\ .

I,:lf"",::••:.·,(;:;:,:/~::,:\,,~,·.j.~:·;:.~\:{:.\:::," (J:-"i:\ Jl.{~\~ dAM(J)" 25 . ._, r. ,!:~t:\l::\ ./' ::::l', rr.l:.:t\

I (. \ .~::i:::t\:::h (.i::.:':':~'::~:\ j;/'" "d','~ 1'1':+ \; ;", /. , ., \" "J'.'J \:\·••••••l~..:.':,. " , \ .,..'

. 1'" "/"" ,"'1"\ 'r:"' :,t•• ~ t,"1"\,:J I":~'" '..', .'..', . '. .' .'; t' .

.•(.;'J ,.;:, J.:-:~"< ::'\:" .•..•:.-:;. ,."'.< ,,' r .' '\m I: 1,l':J, (:.f::.I\:P, 'l'i' ~,!:

m \+:), kt:' :;~I.',i.,::,.:~::,., ~f.,.~·.·,l:I.;::l':· ,in\~;:\;::~ ;:; <:·1,N:1 ~~\;1,

~ 0 ,',:)\\.:'.:'.·.:.:-.:',\:,.:.\i.;i.:.\.:l:;:.._.,..;.;:.':~~.::F::\::::•.:..::•.•:',,':'l':.,:i:.::

7

:.,:.:::.·.:::.,:.; :.f::::,::..:'.":'::'~::::·":~":'I::'~';~/~':••"'" \~~~i!l \(,:;:,\:~.~,~..~.~.'.~::.~.:~.'.~o \ - ~:-·\~l'l~~Y \~l(.1

<-50 _I

o

Results frorl1 ...

(> mean Fourier coef. - method 1h. magnitude average - method 2o meon signal

..2520

<>-. 0

50 L-...I.---L...--l---L--L-..::It:.:..-.L-::±::...l-L...--l---L--L--::..LL-.l..-..L----l-.-L--1..--L_L-.l..-..L----l--.l.----I

o 5 10 '15-HOrtTIOnfcs ()f BPF

70

80

60

a0...~o0J

Q)L

-.J0...(f)

«(I) rnfc:ropl"'OIH: 1

Figure 14'. - Run 144+3. BPF= 672.6 Hz. RPM= 10088.3. IJ Tip=743.9 fp:s,

90

ATP NOISE/TAPE 8.311199·906/P.8LOCK TEST NO.2 RUN NO. 144+3

•Results frorn ..•

360

Results ft-orn ...

<> mean Fourier coef. - method 1~ magnitude overage - method 2o mean signal

90 180 270Shaft Rototfon Angle, Degt"ees

- 50 L.-J..-I.-..J..-L.-.L..-..L-..J-.Jo-....1..-l......l-.-.J'---ol---l.-..L.-1---L.....L-.J--l.---L....l.-.L.....L--L..-l.-.L.....L-l-...L.-L.-J..-..L-...l-.JL......J

o

<>°050 '--~-'---'---'---'--'--~--'--"r~••~...........-->./><--..>--''---'---'---'---'---'---'--'---"'---'---'---'

o 10HanTlOnfcs

o:;:;

OJ "&:..::::J -[.;.

ou

<t:

100 O.

~ 70

o 90

~oN 80OJL

{b) mfcrophone 2

Ffgure 14 - Continued.

91

ATP NOISE/TAPE 83111·99906/P.8LOC~< TEST NO.2 RUN NO. 144+·3

Results from ... »

...

360

20

::..~.

Results from...

<> mean Fourier coef. - method 1f1 magnitude a\lerage - method 2o mean signal

.'../i/\.

10HOrtTlonlCS of BPF

90 180 270Shaft Rototion Angle~ Degrees

5

{;~\~\\\) mean sIgnal + and - cr-- mean Fourier coef. - method

100

~

90

680 e70

cE W[cD 20L::imm(l)!.....

CL

o:p

r.J) r,.-)::i - Ll.

o()

<C

- 40 L-l.-l..-...l..-l...-l.-l..-...l..-L-L-l..-...L-L-L-L...L-L-L.-L..L-J:...-J...-L.L.-l:...-J...-l-.L.-l--L.-l-.L.-l--L.-l-.J-.J

o

.....JCLifJ 60

o~o(,••J

illL

(c) microphone ,3

Figure 14 - Continued.

92

ATP NOISE/TAPE 831119990e/p.BLOCK TEST NO.2 RUN NO. 144+3

Results from...

~~{;\<{t mean signal + and - cr-- mean FourTer coef. - method

• 500

0......

25<l)L::J(Jl(Jl

:-~:.(\)L

CL

0:.p

Io

100

I I I I I90

Shaft

I I I I I I I I I I I180

Rotation Angle~

I I I I 1L..-1L....J1L.-l-1..-l.-L.....L.-1.-1I270 360

Degrees

o 90

%.o0~ 80(DL

~ 70

<>o

Results from..•

-0 mean Fourier coef. - method 1l:::. magnitude overage - method 2o mean signal

5

(d) microphone 4

Figure 14. - Continued.

93

20 25

ATP NOISE/TAPE 8311199906/P.BLOC~< TEST NO.2 RUN NO. 144-+3

..

360

\\w~;~?'\\.\~:::

90 180 270Shatt Rotation Angle, Degrees

Results from...

~W~\\\\~ mean sIgnal + and - cr-- mean Fourier coef. - method

'.

0:[:\:::::"::"

50

(I)" 25L::J(f.J(f.J

<D!...

0...

o0...

o=-.--.m "){;'.::J - L. .••)

oo«

- 50 L-L---I.-..L-..I.-L.....J-..JI...-l-...J.-l.-J...---I.-..I..-L-L.....J..-.II...-l-...J.-I..-I..---I.-..I-.J..-L...J...--I.I...-l--L-..I..-I.......L.......I-.J..--1-..l

o

100Results from...

<> mean FourIer coef. - method 1h. magnit.ude average - method 2o mean signal

a 90~

....:.t.a0~ 80illL

IT!-0 70

5 10 15Horrnonics of BPF

20 25 ...

{e) microphone 5

Frgure 14. - Continued.

94

ATP NOISE/TAPE ~B11199906/P.8LOCK TEST NO.2 RUN NO. 144+3

1-1---,--,-1-1.1_120 25

Results from..•

<> mean Fourier coef. - method 1I:::. magnitude average - method 2o mean signal

??:';\{}) mean signal + and - crmean Fourier coef..S); method

){~i~i,~\

_1......1-1..l-..I........L..-I1......J1L-L-1..1.-1 ...I...·..J...··"·-J...I-LI......J-L-.L.-..l-..J......l-..L--1......JL-L-1.1-1 ...1...1..J...I-J...I.....L..-II....,.;IL.....I.-I..I.-...L.....I-II90 180 270 360

Shaft Rotation Angle~ Degrees

Results from...

50 ._._,.......1 -.1--&>--1?--I-.-I.B__�.____.L~_t~<l>fL__I_~__I.____.L,_1 I Io 5 10 15

Harrnonics of BPF

100

..(l)L::JCflCfl(l)L

0...

50o

0..

~ 70 -~

-.J0...(() 60 .....'

o:.r-.

0") ..... &:::J -L...)oo«

-50o

o 900..:::toN 80(J)L

~'

...

{f} micrcph<me (3

Figure 14. - Ccntlnued.

95

ATP NOISE/TAPE 831119990e/p.8LOCK TEST NO.2 RUN NO. 144+3

oCL

100

Results from...

??\\W) mean signal + and - 0"

-- mean Fourier coef. - method •

•25

360

20

.:~..~~.~

Results from..•

o mean Fourier coef. - method 1fj, magnitude average - method 2o mean signal

10 15Harmonics of BPF

90 180 270Shaft Rotation Angle, Degrees

5

~ 70

100

..-.JCLifJ 60

a 90

~oC'J 80IJ)L

..ID

::J(f)(f)

~ 0CL

<-)~

~ -50oo«

- 100 ............--I.....-'--'--'-....L-J.--l---'--...1.......J---I---I..............--'--'--L.-.I..--I.....-'--'--'-....L-J.--l---'--.........---I---I..............--'-..........

o

(g) microphone 7

Ffgure 14 - Contfnued.

96

ATP NOISE/TAPE 831119990e/p.8LOCK TEST NO.2 RUN NO. 144-+3

36090 180 270Shaft Rotation Angle, Degrees

Results from..•

~~;r;\\?) mean signal + and - cr-- mean Fourier coef. - method 1

100

1000

CL..

50IDL::;i(f)(f)<l)L

0...

<->~

~ -50ou«

- 100 '---L---'--...L--J--'--'-...........--'-.............--L..-'-J-...I.~ .........I---L--'-.I...-I.~ .........---'--...........--'--'-'--'---'-...L--J

o

III

Results from..•

(> mean Fourier coef. - method 1fj, magnitude overage - method 2o mean signal

a 90

~o0J 80())L

~ 70

10 15Harmonics of BPF

25

(h) mfcl"ophone 8

Ffgure 14 - Ccntfnued.

97

ATP NOISE/TAPE 831119990ejp.8LOCK TEST NO. 2 RUN NO. 144+3

Results from...

jf:~~~~~\\>~i mean signal + and - cr-- mean Fourier coef. - method50

0fl

..25(I)

L::J(Jl(JlQ)L

n...()

100 <)

o 90

~ ~oC'J 80

1 1 I 1 190

Shaft

I I 1 I 1 I 1--Jll.......I..-l",-'..J..-J...I......I--.L1---l1~1",-I...1-1 ..L..-L......L.-J~.L-.;II180 270 360

Rotation Angle, Degr ees

Results from..•

<> mean Fourier coef. - method 16 magnitude overage -method 2o mean signal

~ 70

"-'0....(f) 60

50 L,--.L....-.I.-o.-'---.L.--'---'--....1-....L--....1--=---'---'---'--'---'---'---'---'----L---'-----"----'---''--'---'

o 5 10 15 20 25"Harrnonics of BPF

{l} microphone 9

Figu r e 14 - Cantin ued.

98

ATP NOISE/TAPE 831119990a/p.BLOCK TEST NO.2 RUN NO. 144-+3

"

o!l.

100

Results from...

?~N~A:{~ mean signal + and - cr-- mean Fourier coef. - method

..(I)

L:J(f)(j)())L

CL

o+-t

(f) -50

6 Io

-« -1 00 ,--,-I-L-.,--,--,-,--,-I......1_1 I Io 90

Shaft100

I I I I 1 1 I I I I 1180

Rotation Angle,

I I I 1 '_1,"-,,--1"'--'-.........--'--11"--'1270 360

Degrees

Results ft-om...

o mean Fourier coef. - method 1lJ. magnitude overage - method 2o mean signal

00....:::t

0N(])L

OJ-0

..-'CL(j)

II

90

80

70

60

5 10 15Harrnonics of BPF

(j) rnfcrophone 10

Ffgure 14. - Contfnued.

99

20 25

ATP NOISE/TAPE 8311199906!P.8LOCK TEST N~O. 2'

aCL

50

ResuJts fr om...

{r~)\\\j mean-- mel9n

signal + and - aFourier coef'iC\ method

2520

Results, fr-om...

<> memn Four ier coef. - method 1L':l magnitude mveroge - method 2o mean signal

10 15Harmonics of BPF

5

<>o 00o

100. ~

:.j::i

Cf) _')&;.:J ,1;......,

oo

<{ - 50lL-..Lr-J-.L-...L.-'--.J......J.1--l1'--'-.l-1-L1-I-1..L1.....I1_.L-1-1.1-1-1 ..J-1--l1---'..-1-L1-I-1 ..L.1.....11-.1-1...1;,1_1.....·· ..J-1.....II"--L--Io-'"--L.-Ji-..L.-'Io 90 180 270 360

Shaft Rota:tion Angl'e~ Degrees

-'CL(f) 60

a 90

~o0J 80illL

fg 70

(k) mfcrop~lone11

Ffgur e 14. - Cantfn ued.

100

105

Results from ...<> mean Fourier coef. - method 1l::J. magnitude average - method 2o mean signal

100

CO-0

..--.J 950....(f)«0

90

-4-585 ~--'----L-_._J _-'---'-----'-I--'-----'1_1

-3 -2 -1 0 1 2 .3 4 5Microphone locotlon j feett

(I) Surnrnary of SklP 3

Figure 14. - Run 144-+3. BPF= 672.6 Hz. RPM= 10088.3. UTfp=743.9 fps.

101

'O"---~-'--'--------"'T""'::-::,------:------".-------- .....1. ~;r;~ ~M-85790 2. Government Accession No. !) 3.' Recipient(f,Catalog' No., 1\

4. Title and Subtitle

Installation Noise Measurements of Model SR and CRPropellers

I; 5: Re~rt Date, I:I t,l~v 1984 I'I' 6;, Pel'forming)OrllilDizationCOde., I,: 535~03-12-08 I:

7. Author(sl I: 8. PerformingOrllilniZation Re~rt iNo;,

•I

I'1'1; COntractor, Grant·, No.

P. J. W. Block~ --II; 10. Work Unit No.

: 0, Performing Organization Name and Address I:NASA Langley Research CenterHampton~ Virginia 23665

,14. Sponsoring Agency, COde,

12. Sponsoring Agency Name and, Address

Na ti onal Aeronautics and Space Admini s,tna:tion,Washington~ DC 20546

I,........:-::-~:-::----::--------l !

1------------------------------11:13. TypeiOf Re~rt, and Period COvered

Te.chn deal Memorandum':

15. Supplementary, Notes

16. Abstract

Thi~ paper summarizes noise measurements on a 0.1 scale SR~2 propeller in asingle and counter rotation mode, in a pusher and, tractor conf:ig~H'ation;,.and:operati ng at nom-zero angles of attack. A. measurement scHeme which permUted143 measurements of each of these configurations is also described~

17. Key Words (Suggested by Author(s) I

Aerodynamic Noise, Aircraft Wake,Propellers, Propeller Noise, AcousticMeasurement, Low Speed Wind Tunnels

18: Distribution Statement

Unclassified:' - Unlimited,I

Subject Category 71

19. Security Classif. (of this report)

Unclassified20. Security Classif; (of this, page)

Unclassified2,1. No; of Pages

102

22; Price

A06

N-JOS For sale by the National Technical Information Service. Springfield. Virginia 22161