28
Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa

Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Insect Respiration

Philip G. D. Matthews

Cetonischemaaeruginosa

Page 2: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to
Page 3: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

InsectRespira-on

• Outcomes:

–Beabletoiden-fythedifferentpartsofthetrachealsystem–Understandhowinsectsexchangeoxygenandcarbondioxidebetweentheir-ssuesandtheirenvironment

Hi.Welcometothismini‐lectureoninsectrespira-on.Thistalkwillcoverthestructureandfunc-onoftheinsect’srespiratorysystem.Itwillcoverboththeanatomyoftheinsect’srespiratorysystemandtheprocessesinsectsusetoobtainsufficientamountsofoxygenfromtheatmospherewhileelimina-ngcarbondioxide

Page 4: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Respiratorysystem:Vertebrate

1.Ven'la'on 2.Perfusion/circula'on

3.Diffusion

Lung Circulatorysystem

Capillaries Tissues

O2

CO2

Beforewegettoinsects,let’sstartbylookingathowrespira-onworksinsomethingweareallfamiliarwith–avertebrate.Firstly,thetaskofanyrespiratorysystemistosupplyoxygentothevarious-ssuesinthebody,whileatthesame-meremovingcarbondioxide.Inavertebrate,theexchangeofoxygenandcarbondioxidewiththeenvironmentcanbedividedintothreeparts.First,ven-la-on,wheretheanimal’sgasexchangeorgan,inthiscasethelungs,areven-latedwithatmosphericair.Bloodcontainingarespiratorypigment,inthiscasehaemoglobin,is loadedwithoxygenasitpassesthroughthelungwhilereleasingcarbondioxideithascarriedformthe-ssues.Fromthelungsthebloodisthenac-velycirculatedaroundthebodybytheheartthroughbloodvessels.Asbloodmovesthroughthecapillaries,itunloadsitsoxygenwhichthendiffusesacrossthewallsofthecapillariestothe-ssueswhereitisconsumedwithintherespiringcells.SotherearethreemainstepstogetoxygeninandCO2out:Ven-la-onofagasexchangeorgan,perfusionofacirculatorysystemandfinallydiffusionfromthecirculatorysystemtotherespiring-ssues

Page 5: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Respiratorysystem:Insect

Tissues

Trachealsystem

O2

CO2

Spiracles

2.Diffusion1.Ven'la'on

Nowlet’slookataninsect’srespiratorysystem.Firstly,youcanseethattheinsectdoesn’thavelungs,oracirculatorysystemwhichpumpsbloodcontaininghaemoglobin.Insteadwhatyoufindisanetworkofsilveryair‐filledtubesrunningthroughoutallpartsoftheinsectsbody.Theseair‐filledtubescomprisethetrachealsystem,andtheyopentotheatmospherethroughholesinthecu-clecalledspiracles.Theair‐filledtracheaearelargenearthespiracles,buttheybranchandramifyingintosmallerandsmallertubeswithintheinsect.Thefinestbranchesofthetrachealsystemarecalledthetracheoles,andtheyarethe-psofthetrachealtree:theyareblindendingandlieinamongthe-ssues.Soyoucanseethattheinsectrespiratorysystemallowsoxygenandcarbondioxidetobeexchangedwiththeatmospherethroughtheirspiracles,whilethetrachealsystemprovidesanair‐filledpathwayforthemovementofgasesfromthespiraclestothe-psofthetracheolesinamongthe-ssues.Thisarrangementisquitedifferenttothatofavertebrateasitallowsoxygenuptakeandcarbondioxideexchangetooccurwithoutneedingacirculatorysystemorrespiratorypigmentslikehaemoglobin.Itissortoflikeoxygenisbeingdelivered“whole‐sale”withoutthemiddle‐manofacirculatorysystem.

Page 6: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Thetrachealsystem

Componentsofthetrachealsystem:•Spiracles•Tracheae•Tracheoles•Airsacks(expanded,soW‐walledtracheae)

MillerP.L.1981TheAmericanCockroach

Thoracicspiracle

Thoracicspiracle

Abdominalspiracles

Abdominalspiracle

Dorsallongitudinaltrunk

Dorsaltransverseconnec-ves

Nowletslookatthetrachealsysteminabitmoredetail.Thisisthetrachealsystemofacockroach.Itgivesagoodoverviewofallthebasiccomponentsoftheinsect’strachealsystem.TheleWsideistheventralviewandtherightsideisthedorsalviewofthedissectedcockroach.Sothemaincomponentsofthetrachealsystemarethespiracles,whichyoucanseeassociatedwitheachsegment,andthesethenleadtolongitudionaltrachealtrunkswhicharethesetrachealtubeswhichrunthelengthoftheinsect.Branchingfromtheselongitudinaltrunksaretracheoles–thefinerbranchesofthetrachealsystem,andairsacks,theselargeexpandedtrachealbranches.Thelongitudinaltrunkswhichlinkupalltheinsect’sspiracles,andtheair‐sacksplayavitalroleinven-la-ngthetrachealsystem–whichissomethingI’lltalkaboutlater.

Page 7: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Thetrachealsystem

Waterboatman1stinstar:Agraptocorixaeurynome

Thisisjusttoshowyouanactualtrachealsystemwithintheinsect.Thisisadorsalviewoftheheadandthoraxofanaqua-chemipteran,abugcalledawaterboatman.Thisisanewlyhatchedfirstinstar.Itscuc-cleistransparent,andyoucanclearlyseethelongitudinaltrunksbranchingintothefinertracheoles.

Page 8: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Thetrachealsystem

Tracheoles

Tracheae

Waterboatman1stinstar:Agraptocorixaeurynome

Zoominginhere,youcanseetheseblind‐endingtracheolesbranchingofffromthemaintrachealtrunkandlyinginamongsttheinsect’scells.

Page 9: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Spiracles

Thoracicspiracle(speckledcockroachNauphoetacinerea)

Abdominalspiracle(RhinocerosbeetleXylotrupesulysses)

Hereareacoupleofotherpicturesshowingsomedifferenttypesofspiracularstructures.OntheleWthereisapictureofathoracicspiracleofacockroach–youcanseeitprotrudesfromthesideoftheinsectlikeamouth.Andontherightyoucanseeanabdominalspiraclefromarhinocerosbeetle.Youcanseequiteclearlythatthespiracleconsistsoftwosegmentswithanopeningbetweenthem.Musclesareabachedtooneofthesesegments,andbycontrac-ngitcanpullthesegmentsapart,openingthespiracleandallowinggasexchangebetweenthetrachealsystemandenvironment.Thisishowinsectscontroltheirrespira-on:byopeningandclosingtheirspiracles.Youcanalsoseethattherearelotsofhairseffec-velycoveringthespiracle.Thisispartofafiltra-onmechanismtopreventdirt,dustandpoten-allyparasites,fromcloggingupthespiracle.Mostinsectsactuallypossessaspiracularatrium–ahairlinedpit,withthespiraclelocatedatthebobom.These arepar-cularlywelldevelopedininsectsfromaridareaswheredustislikelytobemoreofaproblem,andinsectswhichparasi-seanimals,astheyaremorelikelytoencounteroilsandlotsoffinepar-culatemateriallikedander(effec-velyjustanimaldandruff)astheycrawlaroundananimal’sskin.Someaqua-cinsectshaveevenmoreeffec-vespiracleprotec-on,sincetheyrisktheirspiraclesfloodingwhileunderwater.Somanyaqua-cinsectshaveahydrophobicsieveplate–effec-velyaporousplatewhichsitsabovethespiracle,therebyprotec-ngthespiraclevalvebeneath.

Page 10: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

DiffusionHigh concentration low concentration

High concentrationlow concentration

O2

O2

O2O2

O2

O2 O2

O2

O2

O2 CO2

CO2CO2

CO2

CO2

CO2

CO2

CO2CO2

CO2

Sonowyouknowthestructureoftheinsect’strachealsystem,howdoesitsupplyoxygentotheinsect’s-ssueswhileelimina-ngcarbondioxide?Therearetwotransportphenomenawhichdrivetheallimportantmovementofoxygenandcarbondioxidebetweentheinsectanditsenvironment.Thefirstwe’lllookatisdiffusion.Allmoleculeswithatemperatureaboveabsolute0possesskine-cenergythatcausesthemtomovearoundandbumpintoeachother.Diffusionistherandommovementofthesemoleculeswhichoccursduetothiskine-corthermalenergy.Diffusionresultsinthenetmovementofmoleculesfromaregionofhighconcentra-ontolowconcentra-on–thatistosay,thereisnetmovementofmoleculesdownaconcentra-ongradient.Inthisdiagramyoucanseeaboxwhichisdividedbyapar--on.TheontheleWareoxygenmoleculesandontherightarecarbondioxidemolecules.Sothereexistsahighconcentra-onofoxygenmoleculesintheleWsideoftheboxandalowconcentra-onontheright,andahighCO2concentra-onontheright,andlowontheleW.Itisimportanttono-cethatthereisnopressuredifferencebetweenthetwocompartmentsasthereisanequalnumberofmoleculesonbothsides.

Page 11: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

DiffusionEqual concentration

O2 O2

O2

O2

O2

O2 O2

O2

O2

O2

CO2

CO2

CO2CO2

CO2

CO2

CO2

CO2

CO2

CO2

Equal concentrationIfaholeisthencutinthepar--on,therandomlymovinggasmoleculeswouldbouncearound,collidingwitheachotherandthewallsofthebox,diffusingdowntheirrespec-veconcentra-ongradientsresul-nginanetincreaseinoxygenmoleculesontherightsideoftheboxandanetdecreaseontheleW,andviceversaforcarbondioxide.Givenenough-me,eventuallythemoleculeswoulddistributethemselvesequallyineachcompartmentastheyrandomlybouncedaround,un-ltheywereinequalconcentra-ononbothsidesofthepar--on,atwhichpointtherewouldnolongerbeaconcentra-ondifferencedrivingnetdiffusion.Thismeansthatwhilemoleculeswoulds-llbefreetomoveacrossthepar--on,therewouldeffec-velybenoincreaseordecreaseinoxygenorcarbondioxideoneithersideofthepar--on.Becausediffusionoccursduetoindividualmoleculesbouncingaroundandcollidingwitheachother,itisfastovershortdistances,butasthediffusiondistanceincreases,the-metakenforamoleculetodiffuseoverthatdistanceincreaseswiththesquareofthedistance:Sodiffusion-meincreasesexponen-allywithdistancetravelled.Thisisbecausethemolecularmovementisrandom,itisn’tinanypar-culardirec-on.Sowhileitmightonlytake10‐4(0.0001)secondsforanoxygenmoleculetodiffuseacrossa1micrometerdistance,todiffuseten-mesfurther(10micrometers)wouldtake100-meslonger(10squaredor.01seconds),andover1mm,or1000-mesfurther,itwouldtakeonemillion-meslonger(100seconds1000squared).Sothisshowsyouthatwhilediffusionisveryfastovershortdistances,itisreallyonlyfastenoughtobebiologicallyrelevantoverdistancesinthemicrotomillimetrerange.

Page 12: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Fick’sLawofdiffusion

LengthRateofdiffusion=K (Conc.gradient)

Area

Area

Distance

Concentra-ongradient

Tracheae

Thatbeingsaid,thereareanumberoffactorsthataffectthespeedwithwhichdiffusionoccurs.Andthatbringsmetothisequa-on:Fick’slawofdiffusion.Basicallywhatissaysisthattherateofdiffusionispropor-onaltotheareaofthediffusionpathway(sothecross‐sec-onalareaofatracheole),inverselypropor-onaltothedistanceofthediffusionpathway(thelengthofthetracheole),andpropor-onaltotheconcentra-ongradientacrossthelengthofthetracheole.“K”isadiffusioncoefficientrela-ngdistancediffusedperunit-meperdifferenceinconcentra-on.Thisconstantisspecifictothemediumthroughwhichthemoleculeisdiffusion(thismediumisairinatracheole,andthediffusionconstantforoxygeninairisaround11cm2atm‐1min‐1.Ifthetracheoleswerefilledwithwatertherateofdiffusionwouldbearound320,000-messlower!Thisisanotherreasonwhybeingair‐filledallowsthetrachealsystemtorapidlyspplyoxygentotheinsect’s-ssues)Butthetakehomemessageofthisdiagramis:Increasingtheareaofthediffusionpathwayorincreasingtheslopeoftheconcentra-ongradientdrivingthediffusionwillincreasetherateofdiffusion.Decreasingthelengthofthediffusionpathwaywillalsoincreasetherateofdiffusion.

Page 13: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Diffusion

CO2 5 kPa

O2 4 kPaO2 21 kPa

CO2 0.03 kPa

PO2 Δ = 17 kPa

PCO2 Δ ≈ 5 kPa

The atmosphere At the ends of the tracheoles

Diffusion

Sohowdoesallthisphysicsapplytoaninsect?Wellaninsectisrespiringaerobically,soits-ssuesarealwaysconsumingoxygenandproducingcarbondioxide.Thismeansthatthereislessoxygenandmorecarbondioxideatthe-psofaninsect’stracheolesthanthereisoutinthesurroundingatmosphere.Sothereexistsaconcentra-ongradientdrivingthediffusionofoxygenintotheinsectdownitsconcentra-ongradient,whilecarbondioxidediffusesdownitsownconcentra-ongradientfromthetracheolesouttotheatmosphere.Andasoxygenisalwaysbeingremovedfromthe-psofthetracheoleswhileco2isadded,theseconcentra-ongradientswhichdrivediffusionalwaysexist–equilibriumisnotreached.Insteadtheatmosphereiseffec-velyaninfinitesourceofoxygenwhiletheinsectisanoxygensink,anddiffusionoccursdownthisgradient.

Page 14: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Convec-onEqual Pressures

Convec-onisthebulkmovementofmolecules:itisthemovementofamassofmoleculesfromaregionofhighpressuretoaregionoflowpressure.Thisiswhatyoudowhenyoubreatheinandout.Becausediffusioncouldnevermoveenoughoxygenintoyourlungsfastenoughtosupplyyourrespiratoryrequirements,youspeedtheprocessupbyven-la-ngyourlungsusingconvec-on:youbreatheairinandout.Thisisachievedbygenera-ngasub‐atmosphericpressureinyourchestwhenyourdiaphragmcontractsandrib‐cageriseswhichcausesairtomovebyconvec-on,fromthehigherpressureoftheatmospheretothelowerpressureintoyourlungs.Inthiswayyoumovealargervolumeofgasmorerapidlythanwouldbepossiblerelyingsolelyondiffusion.Andthatiswhatthisdiagramisshowing.Thereisamixedgasinthisboxwhichhasthesamepressureasthesurroundingatmosphere

Page 15: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Convec-onPositive Pressure

Ifaplungerthenexertsaforceonthegasinthebox,thegasiscompressedandnowhasahigherpressurethanthegasinthesurroundingatmosphere.

Page 16: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Convec-onEqual Pressure

Convec-on

Asmoleculesmovefromregionsofhighpressuretolowpressureinordertorestorepressureequilibrium,iftheboxisthenopened,therewouldbeamassflowofmolecules,aconvec-vemovementofgasoutoftheboxasthegasmovesfromhightolowpressure.Oncethepressurewithintheboxequalstheatmosphericpressure,theconvec-veflowstops.Sothisshowsthatinconvec-on,allmoleculesmovetogetheratthesamespeed,unlikeindiffusionwheremoleculesmoveaccordingtotheirindividualconcentra-ongradients.

Page 17: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Convec-on

Convection

Increased pressure in the haemolymph exerts pressure on the walls of the tracheae, increasing the pressure of air inside it. Air then flows out to the atmosphere through open spiracles

+ve pressure

Insectsalsobreatheinandoutusingconvec-on,muchaswedo.Theydothisbyexpandingandcollapsingregionsoftheirtrachealsystemmuchasyouexpandandcollapseyourlungs.Theydothisbyincreasingpressureintheirbodycavitythroughmusculareffort:forexample,someinsectswillexpandandcontracttheirabdomen.Astheirabdomencontractsitincreasesthepressureoftheirbodyfluids/haemolymph,whichthenexertpressureonthewallsoftheirtrachealsystem.Thiscausessomesec-onsofthetrachealsystemtocollapse,par-cularlythelarge,soW‐walledairsacks,andtheairwithinthesestructuresisforcedoutofthetrahchealsystemthroughopenspiracles

Page 18: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Convec-on

Convection

-ve pressure

Haemolymph pressure drops, tracheae return to their previous shape, reinflating with air drawn from the atmosphere

Whentheirabdomenthenrelaxes,thetracheaeelas-callyre‐expandtotheirpreviousshape,andthisdrawsairinthroughopenspiracles.

Page 19: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Convec-on

The convective movement of air ventilates the tracheae between spiracles

Sobyperiodicallycompressingtheirtrachealsystemandinsectcanconvec-velyven-latesomepor-onsoftheirtrachealsystem.Youshouldalsonotethattheblind‐endingtracheolescannotbeven-latedconvec-vely,astheydonotdeform,andaircannotflowinthroughonebranchandouttheother,astheyaredead‐ends.Sodiffusionremainstheonlyprocessbywhichoxygenandcarbondioxidecanmovethroughthetracheoles.Ihaveputavideoontheblackboardwebsitewhichshowsconvec-veven-la-onactuallyoccurringinabeetle.Thevideowasmadebyplacingthebeetleinamachinecalledasyncrotronwhichproducesapowerful,focussedx‐raybeam.Thisallowedresearcherstosee,forthefirst-me,thatalmostallthelargetracheaecanbeexpandedandcollapsed,allowingthebeetletoconvec-velyven-latemuchofitstrachealsystem.

Page 20: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Unidirec-onalconvec-veven-la-on

Expira-onthroughabdominalspiracles

Inspira-onthroughthoracicspiracles

Manyinsectscanalsochanneltheconvec-veflowofairthroughtheirtrachelsystemby-mingtheopeningandclosingoftheirspiracles.Forexample,thelocustSchistocercagregariageneratesaunidirec-onalflowofairwhileitisatrestbyopeningitsthoracicspiraclesduringtheinhala-onphase,whilekeepingitsabdominalspiraclesshut.Itthenclosesitsthoracicspiraclesandopensitsabdominalspiracleswhilecompressingitstrachealsystem,thusforcingairoutthroughitsabdominalspiracles.Soby-mingtheopeningandclosingofthespiraclesonthedifferentbodysegmentswithconvec-vepumpingmovements,insectscandirecttheflowofairthroughtheirtrachealsystem.

Page 21: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Diffusiononly

Tracheoles

Tracheae

Waterboatman1stinstar:Agraptocorixaeurynome

Theadvantageofconvec-veven-la-onisthatitmovesfreshairthroughtheinsectstracheae,whichmeansthatdiffusiononlyoccursoververyshortdistancesinthetracheoles.Soifyoulookatthisdiagram,youcanimaginethatintheabsenceofconvec-veven-la-onoxygenwouldneedtodiffuseinthroughaspiracle,alongthetracheae,throughthetracheoles,andthenintothe-ssues.Diffusionwouldoccurquiteslowlyoverthisdistance

Page 22: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Convec-on+diffusion

Tracheoles

Tracheae

Waterboatman1stinstar:Agraptocorixaeurynome

Butwithconvec-veven-la-on,freshaircanbemovedenmassthroughthetracheae,sodiffusiononlyneedstooccuroverthemuchshorterdistanceofthetracheolesalone.Thismeansoxygenandcarbondioxidecanbemovedinandoutoftheinsectmuchmorerapidly.

Page 23: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Rela-veimportanceofdiffusionandconvec-on

2mmlong

Unknownclownbeetle:Histeridae

>50mmlong

Insectgasexchangebestdescribedbyamixofbothdiffusion/convec-on

RhinocerosbeetleXylotrupesulysses

Sowhichismoreimportanttoaninsect:diffusionorconvec-on?Wellthatdependsonhowlargeyouare.Asmallinsectlikeafairywaspdoesn’thavemuchdistancebetweenitsrespiring-ssuesandtheoutsideatmosphere.Thismeansthatitsrespiratoryrequirementswillbeeasilymetbydiffusion.Butwhathappenswhenyouaremuchbigger,likearhinocerosbeetle?Diffusioncannotoccurrapidlyenoughoverthelongerdistancesbetweentheirspiraclesandthe-psoftheirtracheoles.Sobiggerinsectstendtorelymoreonconvec-veven-la-ontomaintaingasexchange,andyouwilloWenseelargebeetlesandgrasshoppersac-velypumpingtheirabdomensinordertoven-latetheirtrachealsystems.

Page 24: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Autoven-la-on

FlyingCetoniidflowerbeetle,Cetonischemaaeruginosa

Gramforgram,flyinginsectshavethehighestratesofoxygenconsump-onintheanimalkingdom:3‐foldgreaterthanahoveringhummingbird,30‐foldgreaterthanahumanathlete

Flightmuscle

Airsack(expanded)

Whileconvec-onbecomesincreasinglyimportantwithsize,italsobecomesincreasinglyimportantwithhighmetabolicrateswhichdemandlargefluxesofoxygentothe-ssues.Thisispar-cularlytrueforflyinginsectswhichcanhavephenomenallyhighratesofaerobicrespira-on,thehighestintheanimalkingdom.Toensurethattheirflightmusclesreceiveenoughoxygen,manyinsectsuseautoven-la-on:Thisisbasicallywhereairsacksneartheflightmusclesarecompressedandexpandedwiththewingstroke.Thismeansthattheflightmusclesnotonlymovethewings,butincidentallypumpairintotheinsectstrachealsystemandkeepthemselvessuppliedwithoxygen.

Page 25: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Autoven-la-on

FlyingCetoniidflowerbeetle,Cetonischemaaeruginosa

Gramforgram,flyinginsectshavethehighestratesofoxygenconsump-onintheanimalkingdom:3‐foldgreaterthanahoveringhummingbird,30‐foldgreaterthanahumanathlete

Flightmuscle

Airsack(compressed)

Whileconvec-onbecomesincreasinglyimportantwithsize,italsobecomesincreasinglyimportantwithhighmetabolicrateswhichdemandlargefluxesofoxygentothe-ssues.Thisispar-cularlytrueforflyinginsectswhichcanhavephenomenallyhighratesofaerobicrespira-on,thehighestintheanimalkingdom.Toensurethattheirflightmusclesrecieveenoughoxygen,manyinsectsuseautoven-la-on:Thisisbasicallywhereairsacksneartheflightmusclesarecompressedandexpandedwiththewingstroke.Thismeansthattheflightmusclesnotonlymovethewings,butincidentallypumpairintotheinsectstrachealsystemandkeepthemselvessuppliedwithoxygen.

Page 26: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Convec-on:thehornet’sAchillies’heel

Papachristoforou,Rortaisetal.2007Smotheredtodeath:HornetsasphyxiatedbyhoneybeesCurrentBiology17R795‐R796

PhotobyTakahasi,Wikipediacommons

Honeybeesswarmahornetina‘beeball’ Hornetwithbracedabdominaltergites

Theimportanceofconvec-veven-la-onininsectrespira-oncanalsobeseeninhowcyprianbeesdealwithanabackinghornet.Hornetspreyuponhoneybees,raidingtheirhivesandea-ngtheworkers.ButontheislandofCyprus,thehoneybeeshavedevelopedaneffec-vedefenceagainsttheiraback.Researchersno-cedthatwhenCyprianhornetsabackahoneybeehive,thebeeswouldswarmthehornet.Butinsteadofs-ngingittheywouldclusteralloverit,par-cularlyarounditsabdomen,andaWeranhourthehornetwouldbedead.Itturnsoutthatwhatthebeesweredoingwassuffoca-ngthehornet.Hornetsmustpumptheirabdomenstoconvec-velyven-latetheirtrachealsystem,andwhatthebeesweredoingwasgrabbingontothehornetsabdomenandkeepingitcompressed,preven-ngthehornetfromconvec-velyven-la-ng.Eventually,thiscausedthehornettosuffocate.Theresearchersalsoshowedthatifplas-cblockswereinsertedbetweentheabdominaltergitesofthehornet,whichiswhatthepictureontherightisshowing,thebeeswereunabletocompressthehornet’sabdomen,andsothehornetcouldsurvivebeingmobbedbythebeesforfarlonger.Sothisisjustaneatexampleofhowconvec-onisimportant,especiallyamongthebiggerinsects.

Page 27: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Isinsectsizelimitedduetodiffusionthroughthetrachealsystem?

Highoxygenlevels&giantinsects

Sowhilelargerinsectstendtouseconvec-onmoretoensuretheycandeliverenoughoxygentotheir-ssuesquicklyenough,therearesomepartsoftheinsectwhichcannotbeven-latedbyconvec-on,andwherediffusionmustsuffice.Forexample,insectlegsdon’tcontainairsacks,orloopsoftracheaethatwouldallowairtobepumpeddownonetracheaeandoutthroughtheother.Thismeansinsectlegsmustreceiveanadequatesupplyofoxygenbydiffusionalone.Ithasbeensuggestedthatthediffusionlimitsthelengththatthesediffusion‐onlysec-onsoftheinsectcanbe,andsothisconstrainstheuppermaximumsizeoftheinsect.Thispartlyexplainswhymostinsectsaresmall,andonlyaveryfewinsectsexistwhicharelargerthan10cen-metresorsoinlength.Thisideaofdiffusionlimi-nginsectsizeispartlybackedupbyevidencefromthegeologicalrecord.Some300millionyearsagoinaperiodcalledthecarboniferous,levelsofatmosphericoxygenweremuchhigherthantoday.Atthemomenttheearth’satmosphereisaround21%oxygen,butinthecarboniferousitwasprobablycloseto30%.Andduringthisperiodwefindfossilsofenormousinsects–proto‐dragonflieswithwingspansofover70cen-metres.Fromthiscorrela-onithasbeenarguedthatthesegiantinsectscouldgrowsolargebecausethegradientdrivingthediffusionofoxygenintotheinsectwasmuchlarger,andthusdiffusioncouldoccurrapidlyenoughinthishighoxygenatmospheretosustaintheinsect’srespira-on.

Page 28: Insect Respiration - Coming Soon folder/respiration/lectur… · Insect Respiration Philip G. D. Matthews Cetonischema aeruginosa. Insect Respiraon • Outcomes: –Be able to

Summary

• Thetrachealsystemiseffec-vebecause:– Oxygenandcarbondioxideareexchangeddirectlywiththeatmosphere–acirculatorysystemisnotrequired

– Tracheolesprovideadiffusionpathwaydirectlytorespiring-ssues

– Gasexchangeoccursduetobothdiffusionandconvec-on.Convec-onincreasinglyimportantinlargerinsects.Diffusionimportantinblind‐endingtracheoles

– Compressionandexpansionoftrachealsystemcombinedwithcoordinatedspiracularopening/closinggeneratesdirec-onalconvec-veflowsofair