60
Infrared Spectroscopy Marianne L. McKelvy,* Thomas R. Britt, ² Bradley L. Davis, ² J. Kevin Gillie,* ,‡ Felicia B. Graves, ² and L. Alice Lentz ² Analytical Sciences Laboratory, The Dow Chemical Company, U.S.A., Midland, Michigan 48667, and Applied Extrusion Technologies, 15 Reads Way, Newcastle, Delaware 19720 Review Contents Overview of Analytical Infrared Spectroscopy 119R Books and Reviews 119R Databases, Software, and Algorithms 120R Infrared Accessories and Sampling Techniques 122R Quantitative Analysis 122R Spectra-Structure Correlation 124R Hypenated Techniques 125R Time-Resolved Infrared Spectroscopy 126R Reflectance Techniques 127R Single-Crystal and Bulk Analysis Applications 127R Thin-Film Applications 127R Interfacial Applications 128R Adsorption and Surface Reaction Applications 128R Attenuated Total Reflectance 129R Diffuse Reflectance 130R Emission 130R Process and in Situ Analysis 131R Environmental Analysis 139R Carbon and Carbon Complexes 141R Chemical Reactions/Organic Chemistry 142R Hydrogen-Bonding Studies 142R Catalysis Studies 143R Solvent/Matrix Effects 143R Organic Reactions/Characterization 144R Food and Agriculture 144R Biochemistry 146R Literature Cited 157R This review covers the published literature for the period November 1995 to October 1997 on aspects of infrared spectros- copy that are relevant to chemical analysis. Our review is directed to papers written in English or in certain aspects of IR spectros- copy that are of particular interest to one or more of the coauthors. Where some overlap may occur in a particular area, a few selected references to Raman or FT-Raman spectroscopy are included. OVERVIEW OF ANALYTICAL INFRARED SPECTROSCOPY Infrared radiation is commonly defined as electromagnetic radiation with frequencies between 14 300 and 20 cm -1 (0.7 and 500 μm). When a normal molecular motion such as a vibration, rotation, rotation/vibration, or lattice mode or a combination, difference, or overtone of these normal vibrations results in a change in the molecule’s dipole moment, a molecule absorbs infrared radiation in this region of the electromagnetic spectrum. The corresponding frequencies and intensities of these infrared bands, the infrared spectrum, may be used to characterize the material. Infrared spectral information may be used to identify the presence and amount of a particular compound in a mixture. Different classes of chemical compounds contain structural units that absorb infrared radiation at essential similar frequencies and intensities within that class of compound. These bands are called “group frequencies”. The infrared spectroscopist uses knowledge of these group frequencies to predict the structures of unknown molecules when standard infrared spectra are not available. Sample collection and presentation accessories exist which allow the analyst to collect spectra as solids, liquids, and vapors and in solution, at various temperatures, and while undergoing mechanical deformation. Experiments conducted under such conditions assist the spectroscopist in the determi- nation of the structures of molecules in different phases as well as structure-property relationships of materials. Modern instrumentation allows the collection of infrared spectra of materials at low-picogram levels. The ability of infrared spectroscopy to examine and identify materials under such a wide variety of conditions has earned this technique the premier position as the “work horse” of analytical science. BOOKS AND REVIEWS A compilation of IR and Raman spectra of inorganic compounds was published (A1). A book regarding infrared spectroscopy of biomolecules provided a comprehensive review of this area (A2). This work contains references to studies of protein structures, nucleic acids, ultrafast spectroscopy, lipids, enzymes, and cell surface polysaccharides. A textbook prepared as an instructional aid in the study of vibrational spectroscopy was presented (A3). A book detailing applications of infrared spectroscopy in electro- chemistry was published (A4). Computerized applications of infrared spectroscopy, such as data manipulation, databases, multivariate techniques, and spectrometer networking, were detailed (A5). Internet sites that deal with infrared spectroscopy and instruc- tional issues were listed (A6). Group frequency assignments for the major bands in 20 common polymers were compiled (A7). Methods for obtaining characteristic group frequencies were reviewed (A8). Resources and references for interpretation of spectra were discussed (A9, A10). Several general reviews of vibrational spectroscopy were presented (A11-A13). The application of far-IR spectroscopy was reviewed (A14). The infrared spectroscopy of radicals was reviewed (A15). The role of step-scanning interferometers was reviewed by several authors for the study of polymeric systems (A16, A17) and for transition metal complexes (A18). Progress ² The Dow Chemical Co. Applied Extrusion Technologies. Anal. Chem. 1998, 70, 119R-177R S0003-2700(98)00006-7 CCC: $15.00 © 1998 American Chemical Society Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 119R Published on Web 04/24/1998

Infrared Spectroscopy - shaker.umh.esshaker.umh.es/docencia/aesma/Infrared_Spectroscopy.pdf · in the use of mid-IR optical fibers was presented (A19). Develop-ments in infrared microspectroscopy

Embed Size (px)

Citation preview

Infrared SpectroscopyMarianne L. McKelvy,*,† Thomas R. Britt,† Bradley L. Davis,† J. Kevin Gillie,*,‡ Felicia B. Graves,† andL. Alice Lentz†

Analytical Sciences Laboratory, The Dow Chemical Company, U.S.A., Midland, Michigan 48667, andApplied Extrusion Technologies, 15 Reads Way, Newcastle, Delaware 19720

Review Contents

Overview of Analytical Infrared Spectroscopy 119RBooks and Reviews 119RDatabases, Software, and Algorithms 120RInfrared Accessories and Sampling Techniques 122RQuantitative Analysis 122RSpectra-Structure Correlation 124RHypenated Techniques 125RTime-Resolved Infrared Spectroscopy 126RReflectance Techniques 127R

Single-Crystal and Bulk Analysis Applications 127RThin-Film Applications 127RInterfacial Applications 128RAdsorption and Surface Reaction Applications 128RAttenuated Total Reflectance 129RDiffuse Reflectance 130R

Emission 130RProcess and in Situ Analysis 131REnvironmental Analysis 139RCarbon and Carbon Complexes 141RChemical Reactions/Organic Chemistry 142R

Hydrogen-Bonding Studies 142RCatalysis Studies 143RSolvent/Matrix Effects 143ROrganic Reactions/Characterization 144R

Food and Agriculture 144RBiochemistry 146RLiterature Cited 157R

This review covers the published literature for the periodNovember 1995 to October 1997 on aspects of infrared spectros-copy that are relevant to chemical analysis. Our review is directedto papers written in English or in certain aspects of IR spectros-copy that are of particular interest to one or more of the coauthors.Where some overlap may occur in a particular area, a few selectedreferences to Raman or FT-Raman spectroscopy are included.

OVERVIEW OF ANALYTICAL INFRAREDSPECTROSCOPY

Infrared radiation is commonly defined as electromagneticradiation with frequencies between 14 300 and 20 cm-1 (0.7 and500 µm). When a normal molecular motion such as a vibration,rotation, rotation/vibration, or lattice mode or a combination,difference, or overtone of these normal vibrations results in achange in the molecule’s dipole moment, a molecule absorbsinfrared radiation in this region of the electromagnetic spectrum.The corresponding frequencies and intensities of these infrared

bands, the infrared spectrum, may be used to characterize thematerial. Infrared spectral information may be used to identifythe presence and amount of a particular compound in a mixture.

Different classes of chemical compounds contain structuralunits that absorb infrared radiation at essential similar frequenciesand intensities within that class of compound. These bands arecalled “group frequencies”. The infrared spectroscopist usesknowledge of these group frequencies to predict the structuresof unknown molecules when standard infrared spectra are notavailable. Sample collection and presentation accessories existwhich allow the analyst to collect spectra as solids, liquids, andvapors and in solution, at various temperatures, and whileundergoing mechanical deformation. Experiments conductedunder such conditions assist the spectroscopist in the determi-nation of the structures of molecules in different phases as wellas structure-property relationships of materials.

Modern instrumentation allows the collection of infraredspectra of materials at low-picogram levels. The ability of infraredspectroscopy to examine and identify materials under such a widevariety of conditions has earned this technique the premierposition as the “work horse” of analytical science.

BOOKS AND REVIEWSA compilation of IR and Raman spectra of inorganic compounds

was published (A1). A book regarding infrared spectroscopy ofbiomolecules provided a comprehensive review of this area (A2).This work contains references to studies of protein structures,nucleic acids, ultrafast spectroscopy, lipids, enzymes, and cellsurface polysaccharides. A textbook prepared as an instructionalaid in the study of vibrational spectroscopy was presented (A3).A book detailing applications of infrared spectroscopy in electro-chemistry was published (A4). Computerized applications ofinfrared spectroscopy, such as data manipulation, databases,multivariate techniques, and spectrometer networking, weredetailed (A5).

Internet sites that deal with infrared spectroscopy and instruc-tional issues were listed (A6). Group frequency assignments forthe major bands in 20 common polymers were compiled (A7).Methods for obtaining characteristic group frequencies werereviewed (A8). Resources and references for interpretation ofspectra were discussed (A9, A10).

Several general reviews of vibrational spectroscopy werepresented (A11-A13). The application of far-IR spectroscopy wasreviewed (A14). The infrared spectroscopy of radicals wasreviewed (A15). The role of step-scanning interferometers wasreviewed by several authors for the study of polymeric systems(A16, A17) and for transition metal complexes (A18). Progress

† The Dow Chemical Co.‡ Applied Extrusion Technologies.

Anal. Chem. 1998, 70, 119R-177R

S0003-2700(98)00006-7 CCC: $15.00 © 1998 American Chemical Society Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 119RPublished on Web 04/24/1998

in the use of mid-IR optical fibers was presented (A19). Develop-ments in infrared microspectroscopy were discussed (A20).Emission spectroscopy was reviewed (A21). Reflection-absorp-tion spectroscopy and its applications were discussed (A22).Other infrared techniques for the analysis of surfaces were alsoexplored (A23). The applications of microcolumn LC/FT-IR werediscussed (A24).

A comprehensive review of infrared and Raman spectroscopiesof polymeric systems was published (A25). This publicationcovers the entire field of analytical chemistry of polymer systems;no other attempt will be made within the format of the currentreview to expand on this treatment of polymer systems. Severalreviews with summaries of the application of mid-IR spectroscopyto particular industries or product areas were presented for thefollowing: dyes (A26), wood products (A27, A28), textiles (A29),petrochemicals (A30), pharmaceuticals (A31-A33), medicine(A34), materialography (A35), and ionomers (A36).

A tutorial on the use of quantitative analysis via spectroscopicdata, with emphasis on sensitivity and selectivity measurements,was published (A37). Chemometric procedures for quantitativeanalysis via infrared spectroscopy were reviewed (A38-A40).Quantitative analysis of glass structure and properties was sum-marized (A41).

General applications of near-IR spectroscopy were reviewed(A42-A45). Applications of this technique to analysis of agri-cultural products (A46) and the food industry were presented(A47-A50). Biological and medical applications were alsoreviewed (A51). A comparison of near-IR and mid-IR proceduresfor process analysis along with a discussion of the fundamentalsof these techniques was offered (A52). The use of multivariatetechniques as an aid to spectral interpretation was extensivelyreviewed (A53). Interpretation of near-IR spectra was discussed(A54). Calibration models and standardization of near-IR instru-ments were reviewed (A55).

A review of the use of thermo-IR spectroscopy to study theinteraction between organic pollutants and clay minerals waspresented (A56). Open-path IR to monitor volcanic plumes wasdiscussed (A57).

Ab initio calculations of unstable organic molecules andreactive intermediates were discussed (A58). The use of spec-troscopic methods in the study of carbohydrate chemistry wasreviewed (A59). The role of infrared spectroscopy in thecharacterization of surface colloids at solid-liquid interfaces waspresented (A60). The literature pertaining to the use of IRspectroscopy to study ion solvation and ion association wasreviewed (A61).

Protein structure analysis was discussed (A62-A64). Isotope-edited infrared spectroscopy for the study of biomolecules wasdiscussed (A65, A66). An extensive review of the IR spectra oflipids was presented (A67). The use of IR to study liposomesand biomembranes was presented (A68). Biomedical applications,such as diagnosis of disease states and tissue analysis, werereviewed (A69). Infrared measurement techniques for theanalysis of biofluids were compared (A70). Analysis of steroidswith spectroscopic methods was reviewed (A71). Reviews of theapplication of IR to the study of photosynthetic reaction centerswere presented (A72). Studies of the spectroscopic determinationof bacterial cell structure were discussed (A73).

A review of spectroscopic techniques for characterization ofcatalysts was presented, with discussion as to technologicalimprovements in this area (A74). Catalyst intermediate studieswere reviewed (A75). Reviews of infrared spectra of inorganicnitrides were presented (A76, A77). Characterization of zeolitesby spectroscopic techniques was summarized (A78-A80). Theapplication of spectroscopic techniques in the study of metalcomplexes was discussed (A81-A85). Metal oxide catalysts werethe basis of several reviews (A86, A87). The spectroscopy ofmaterials adsorbed on metal surfaces was reviewed (A88, A89).Infrared spectroscopic techniques used to characterize metal-electrolyte interfaces were presented (A90). Characterization ofGrignard reagents was summarized (A91).

The role of infrared and Raman spectroscopy in the study ofsemiconductor alloys was reviewed (A92). Identification of defectsin semiconductor materials as monitored by IR microspectroscopywas discussed (A93). Gap states in superconductors were studiedby infrared spectroscopy (A94).

DATABASES, SOFTWARE, AND ALGORITHMSA review of databases associated with UV-visible, NMR, IR,

Raman, and mass spectral databases has been reported (B1). Alsoincluded was a brief discussion of Moessbauer, NQR, XPS, andCD databases. A strategy for knowledge acquisition in thecollection of IR spectra involving automated generation of cor-relation tables has been reported. These tables are convertedinto rules that can be used to infer the existence of molecularsubstructures from the IR spectrum of an analyzed compound(B2). Two computer programs have been designed for aidingthe library handing and microbial identification from IR spectra.The programs run on IBM-PC compatibles (B3). Other reviewson IR characterization included obtaining group frequency char-acterization (B4) preprocessing methods and data transformations(B5) and automatic spectrum interpretation techniques (B6). Themain features of GEISA-PC, an IBM-PC software package designedfor the use and management of large scaled databases of theatmosphere physics and spectroscopy interests, were presented(B7).

The performance of an IR library search system has beenexamined using four different similarity measures for spectralsearch (B8). A combinatorial library of catalyst candidates, eachconsisting of a different metal element supported on alumina, hasbeen screened for hydrogen oxidation catalytic activity. Thismethod offers some promise for screening and optimizing catalystformulations more efficiently than current methods (B9). A novelmethod for searching spectral libraries with spectra of mixtures,using a mix-match search algorithm, was tested extensively withgood results (B10).

Several articles have been published in relationship to thedevelopment of IR spectral databases or to enhancement of theeffectiveness of these databases to the spectroscopist. A knowl-edge base has been proposed that adopts a set of rules thatexpress the laws of spectra interpretation and the experience ofspecial field experts in order to imitate the reasoning process ofthe human brain in relation to the group frequency correlation oforganophosphorus compounds (B11). A strategy for the auto-matic generation of correlation tables for IR spectral interpretationhas been proposed (B12). A combination of the IDIOTS algorithm

120R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

with the algorithm by Blaffert has been used to improve comput-erized structure elucidation (B13). Hierarchical organization ofa knowledge base with IR spectral bands has been used to improveexpert system spectral interpretation (B14). Computerized IRband assignment programs have been developed. One programemploys information from 700 functional groups to develop itsknowledge database (B15). A basis for simulating IR- and Raman-active spectra of large-molecule systems has been developed usingthe internal coordinate correlation based on molecular dynamicsalgorithms and an autocorrelation function (B16). The develop-ment of a computerized IR spectral library from scanned anddigitized IR spectra has been discussed (B17). A review coveringtwo strategies used in discriminate high-dimensional spectral dataanalysis has been written. One method involves a preprocessingmethod followed by a low-dimensional classifier. The othermethod involves a high-dimensional classifier capable of handlinglarge numbers of variables (B18).

Nonparametric piecewise linear discriminant analysis (PLDA)has been employed to develop an automated detection schemefor FT-IR remote sensing interferogram data (B19). A methodhas been developed for the simple and effective approximation ofthe optical constants of neat liquids (B20). The issues of cross-validation and missing data have been investigated relative to thepartial least-squares (PLS) algorithm. Both a full EM algorithmand a reduced EM algorithm are discussed (B21). A comparisonof PLS and artificial neural networks in the prediction of concen-trations of compounds involved in the fermentation process ofethanol has been reported (B22). The use of calculations ofabsorption bands and absorption intensities in conjunction withpresent day theoretical methods have been used in the quantitativeIR analysis of compounds (B23). An algorithm for passive FT-IRhas been developed for implementation in air-monitoring systems,with specific emphasis on military gases as measured from ahelicopter or tank (B24). An adaptation on an algorithm for plumesignature data analysis has been examined for open-path FT-IRdata reduction (B25). A new information content-based look-uptable technique for the fast computation of near-monochromaticatmospheric transmittance in the IR that is well suited for satelliteand airplane observations has been developed (B26). A self-modeling mixture analysis has been demonstrated using theSimplisma and Tsimplisma approaches (B27). Computer simula-tion of the IR spectra of substituted bicyclic and tricyclic amidines,hexahydroimidazo[1,2-a]pyrazine-3,6-diones, and hexahydroimi-dazo[1,2-a]imidazo[1,2-d]pyrazine-3,8-diones has been verifiedusing GC/FT-IR/MS (B28). Using a second derivative with PLStechniques, NIR diffuse reflectance spectroscopy (NIRS) was usedto determine the active compounds in a pharmaceutical prepara-tion (B29). A software-based digital signal processing methodhas been used to demodulate the photoacoustic responses of step-scan FT-IR photoacoustic measurements without any additionalhardware (B30). The interpretation of multivariate calibration andrule induction classification models can be significantly improvedby adopting a new representation of data profiles containingidentifiable peaks using nonlinear curve fitting (B31). A meth-odology has been developed for the in situ IR monitoring andanalysis of solid-phase organic reactions (B32). A simple PC-based scientific spreadsheet has been used to construct a mathsoftware package which provides a compliant solution to a design

problem for thermal imager performance (B33). A method forthe measurement of concentrations of an analyte present in abiological fluid has been developed using NIR and an outlierdetection method (B34). An algorithm for the NIR-based portabletissue oximeter has been developed and tested (B35). Animproved simulation of vibrational spectra for larger moleculesthat removes artifacts has been developed by a direct transfer ofCartesian molecular force fields and electrical property tensorsinstead of internal coordinates (B36).

Passive FT-IR remote sensing techniques have been used inthe automated detection of trichloroethylene vapor in the presenceof a variety of IR background signatures. Using piecewise lineardiscrimination developed in this study, successful detection oftrichloroethylene was achieved in 96% of the cases studied (B37).An automated method for calculating the IO spectrum of open-path FT-IR spectra has been developed and implemented tocorrect for totally absorbing atmospheric species and instrumentdrifts (B38). A rationing algorithm has been developed for thequantitative analysis of the passive FT-IR spectrum of chemicalplumes. The algorithm removes the background, eliminates thespectrometer internal signature, and enables quantitative examina-tion of the spectral transmission (B39). A special algorithm forthe analysis of a cross structure of the temperature and concentra-tion of emitting components for nonuniformly heated gas flowsusing radiometric measurements in the IR band of a spectrumhas been proposed (B40). Testing of the MOPITT algorithm testradiometer (MATR) has been done to provide support for theprelaunch testing of the data retrieval algorithms for the MOPITTsatellite instrument (B41). Improvements have been made in theNimbus 7 limb IR monitor algorithms to improve the predictionsof ozone levels in the lower altitudes (B42). Stratospheric atlasesof high-resolution IR absorption spectra have been prepared fromballoon-borne spectrometer systems by the University of Denver.These atlases contain spectra at 0.02- and 0.002-cm-1 resolutions(B43). Observations of solid-state absorption features due to H2Oice, CO ice, and silicate dust have been reported in the study ofthe Herbig-Haro nebula in the R Coronae Australis dark cloud(B44). A computer program for the interpretation of IR spectraof organic compounds has been developed (B45). Solvent-inducedfrequency shifts have been modeled using a continuum definedby its static and high-frequency dielectric constants and applicationto formaldehyde has been demonstrated (B46). A computerprogram has been developed for automatic assignment of an IRspectrum to create a knowledge database containing the informa-tion of 700 functional groups (B47). The integrated spectrum ofinterstellar metal-rich globular clusters has been synthesized usingthe HR diagram and a stellar library (B48).

A method for accurate film thickness measurement has beendeveloped that separates the effects of interference and absorptioneffectively (B49). FT-IR has been used as a continuous emissionmonitor for on-line measurements of most volatile organics andsome inorganic compounds. This instrumentation can be usedfor the monitoring of stack emissions and thermal treatmentprocesses (B50). A review of structural and spectroscopicproperties of transition metal compounds covering a variety ofmodeling topics has been written (B51).

The problem with discontinuities in piecewise direct standard-ization (PDS) has been identified and a procedure for its elimina-

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 121R

tion has been proposed (B52). A genetic algorithm has beenapplied to optimization of PLDA with specific application to remotesensing data (B53). A joint neural network has been developedby combining gas-phase IR spectra with mass spectral data topredict 26 different molecular substructures from multispectralinformation. The combined database gives better prediction offunctional groups than either the IR or MS databases alone (B54).A comparison of direct-deposition FT-IR and supercritical fluid FT-IR spectra of quinones and barbiturates showed significant enoughvariations of these spectra with KBr disk IR spectral libraries toproduce occasional incorrect identifications (B55). An IR spectrallibrary was prepared for the characterization of 55 nerve agenthomologues using GC/FT-IR spectroscopy (B56). Resolutionenhancement of the IR linear dichroic (IR-LD) spectra of partiallyoriented molecules in a liquid crystal has been studied usingreference Fourier self-deconvolution (RFSD) (B57). Applicationof an analog-digital converter to measurements made with acharge-coupled device (CCD) has enabled a resolution enhance-ment in the spectral features without limiting the measuring rangeof the CCD (B58). NIR and NIT for use in the agriculture andfood industries have been developed by which the instrumentscan be calibrated at the factory and can be used the day theinstrument is received (B59). Genetic algorithms have beenimplemented in automated wavelength selection procedures tobuild multivariate calibration models based on partial least-squaresmethods for NIR (B60). A modification of the standardizationmethod of Shenk and Westerhaus for calibration model transfersbetween NIR instruments has shown an improvement by use oflocally weighted regression (B61). Standardization of near-IRspectrometric instruments using the piecewise direct standardiza-tion method has been improved by modification of the algorithms(B62). NIR pattern recognition has been improved using thewavelet packet transform (B63). A recommendation has beenmade that offers some improvement on the discrepancies ob-served on NIR analysis of living tissues (B64). A patternrecognition algorithm has been combined with near-IR reflectancespectroscopy to function as a nondestructive analytical techniquefor identifying dyes present in textiles (B65). Application of aforward selection in the subsets selected by a genetic algorithmfor linear regression of near-IR spectroscopic data has been shownto overcome some the selection of irrelevant variables (B66). Adetailed study of 13 conflicting patterns of change in cytochromec oxidase redox status from near-IR spectroscopy have identifiedpossible sources of error that could cause the discrepancies (B67).A multivariate calibration procedure based on the use of a geneticalgorithm to guide the coupling of band-pass digital filtering andPLS regression has been applied to near-IR spectroscopy for theanalysis of glucose in biological matrixes, resulting in bettercorrelation of results (B68). The vibrational spectra of (FeSi2 hasbeen calculated by molecular dynamics simulations with a tightbinding potential and verified by IR measurements on smallmonocrystals (B69). NIR and NIT instruments for use in theagriculture and food industry have been shown to be useble onthe same day as delivery by using a precalibration procedure.Recommendations for enhancing the accuracy of the instrumentwere also presented (B70). The spatial resolution of IR systemsused in IR thermography has been enhanced by use of a digitalimage restoration technique based on the accurate determination

of the optical transfer function (B71). A recommendation of theuse of a weighted optimization for numerical correction ofspectrometric data has been proposed for resolution improvementtechniques (B72). A process to use multivariate signal responsesto analyze a sample has been proposed (B73). Principle compo-nent analysis (PCA) has been applied to discriminate rapidlybetween extractable compounds that are indigenous to papers andnonindigenous compounds using SFE/SFC/FT-IR techniques(B74). Infrasoft International (ISI) has developed NIR spectros-copy programs that have been used in the determination of water,oil, and protein content in food and agricultural products (B75).A software-based method has been developed to remove spikesin NIR spectra measured with Ge detectors (B76). NIR has beenused in refractive index modeling with PLS for hydrotreated gasoils (B77).

A review has been published on the use of chemometrics inNIR calibrations with emphasis on criteria and procedures for thetransfer of methods between instruments (B78).

INFRARED ACCESSORIES AND SAMPLINGTECHNIQUES

Articles were published on the use of Teflon tape (C1) anddisposable cards (C2, C3) as sample supports for IR spectroscopy.A universal sampling tool for analysis of liquids and solids by IRwas described (C4). The use of rotational casting for preparationof thin polymer films for IR analysis was discussed (C5). Newcells reviewed in the literature include a micro-FT-IR cell (C6), ahigh-pressure IR cell for studying the interactions of polymersand supercritical fluids (C7), modified NIR powder reflectancecells (C8), a fiber-optic transmission cell for on-line SFE/FT-IR(C9), and a channel flow cell for attenuated total reflectance(ATR)/FT-IR measurements of species at an electrode (C10). Ascanning near-field IR microscope (C11) and a design enhance-ment to increase the spatial resolution of FT-IR microscopes (C12)were reported.

A review described four sample devices for NIR (C13). Thedevices included a fiber-optic system, a robotic system, the useof HPLC vials for scanning liquids in a sealed container, and amoving blend cell. The use of an adapted FT-IR microscope tofollow a photoinitiated polymerization reaction was discussed(C14). A ceramic sample heater for variable-temperature diffusereflectance FT-IR analysis of solids was described (C15). Themechanochemical reactions that take place during preparation ofalkali halide disks were discussed in a review (C16). A new FT-IR imaging technique has been developed by combining a focalplane array detector with a step-scan Fourier transform interfer-ometer (C17). The use of a movable two-dimensional Hadamardmask and an FT-IR spectrometer for chemical mapping wasdescribed (C18). Portable IR analyzers used for repetitive analysiswere reviewed (C19).

QUANTITATIVE ANALYSISA review has been written related to FT-IR emission spectros-

copy of solids. Also included in this review were a correctionequation for the single-beam emission spectra, proper datamanipulation procedures, and the use of a linear emission intensityscale for quantitative work. Also included was a discussion onmultilayer samples (D1). A review of the application of quantita-tive FT-IR spectroscopy to aqueous solutions has been written

122R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

(D2). This review was targeted at the evaluation of the ATRtechnology. A variety of instrumentation and parameters wereused in the analysis. Results of these variations on the end resultsare discussed. The examination of glasses with IR spectroscopyhas been reviewed with emphasis on obtaining information onstatic dielectric constants and the calculation of semiempiricalcalculations of vitreous solids’ IR spectra (D3). A review has alsobeen written on the use of multivariate quantitative infraredanalysis (D4). This review is focused at providing a tool to assessquantitative methods and evaluate their conformity to ASTMpractices. A review of several methods for quantitative analysisof gas-phase samples using FT-IR has focused on particularadvantages and disadvantages (D5). A review of the trends inchemometrics as applied to NIR spectroscopy has been reportedwith discussion of building databases of calibration samples,regression models, and calibration transfer (D6).

A method has been developed for the utilization of syntheticcalibration spectra in calibration of instrumentation to providequantitative analysis of gas-phase IR spectra (D7). This methoduses the multiple atmospheric layer transmission (MALT) pro-gram to create synthetic spectra that closely approximate realmeasured spectra. This technique has proven useful in lung open-path and solar FT-IR spectroscopy. A nonlinear multivariateinfrared analysis method has been used to research octanenumber (RON) and other physical properties (D8). FT-IR withcurve fitting has been used in conjunction with NMR for thequantitation of various components in rolling oils without theirseparation (D9). FT-IR was used for quantitation of mineral oildeposition on plant leaves (D10). FT-IR has been used inconjunction with solid-state NMR (13C-SP/MAS) to determinestructural parameters of low-rank Czech coals (D11). An FT-IRmethod has been developed to rapidly screen soil samples forhazardous waste site (D12). The method was originally developedto identify and quantify microgram concentrations of explosivesin soil samples, but offers promise to detection of volatiles,semivolatiles, and pesticides. A method has been developed forthe quantitative analysis of multicomponent mixtures with un-known individual spectra (D13). This method involves a two-step optimization procedure which allows for high precisionresults. A scanning IR polariscope with high spatial resolutionhas been developed for the inspection of residual strains in III-Vcompound wafers (D14). FT-IR has been used to determinequantitative equilibrium constants between CO2 and Lewis bases(D15). Step-scan FT-IR photoacoustic spectroscopy has been usedto quantify the content of brivudine and dithranol in a petrolatum/drug ointment (D16). The FT-IR extinction/scattering techniquehas been used to evaluate fuel vapor concentration in various sprayconditions (D17). FT-IR has been used to quantitatively analyzelevels of NH3 and HCN in hot combustion gases taken from thecombustion chamber of boilers fueled by coal (D18). An FT-IRmethod has been developed for measuring norditerpenoid alka-loids in larkspurs. The method was calibrated using high-pressureliquid chromatography and gravimetric methods (D19). A com-bination of remote infrared differential absorption lidar experi-ments with a computational approach has been used to measurefour organic gases (D20). A fully automated procedure has beendeveloped for FT-IR determination of caffeine in soft drinks.

Detection limits with relative standard deviations were reported(D21).

A calibration model based on DRIFT spectroscopy has beendeveloped for the rapid estimation of the chemical compositionof radiata pine wood samples. The model has been shown topredict extractives, lignin, and carbohydrates (D22). Attenuatedtotal reflectance FT-IR spectroscopy has been used to monitorthe epoxidation of indene to indene oxide using multivariatestatistical methods (D23).

A methodology has been developed for selection of the bestcalibration sample subset for principle component regressionanalysis (D24). This method has been applied to both UV-visiblespectroscopy and near-IR spectroscopy effectively with a consider-able reduction in cost. A calibration strategy has been proposedfor dealing with difficult calibrations using NIR spectroscopy(D25). A preprocess step, dubbed piecewise mutiplicative scattercorrection (PMSC), has been successfully applied to NIR calibra-tion spectra for the analysis of homogenized beef samples (D26).This technique has shown up to 52% improvement on predictionerror. A noninvasive NIR quantitative measurement instrumenthas been developed with removable finger inserts of various sizesto enable variable sample size insertion for analysis (D27). Amethod has been developed for the quantitative NIR spectroscopicanalysis of biological liquids without the use of any detectionreagents (D28). NIR spectroscopy with multivariate calibrationhas been used in the quantitative determination of glucose,fructose, sucrose, citric acid, and malic acid in dried orange juicesamples (D29). An FT-NIR instrument equipped with a fiber-opticprobe has been used to measure levels of resorcinol in waterbetween 9 and 35% independent of temperature (D30). A PLSmethod has been developed for NIR in the analysis of orangejuices (D31). Using NIR with a partial least-squares model, amethod has been developed for the simultaneous determinationof ethanol, glycerol, fructose, glucose, and residual sugars inbotrytized grape sweet white wines (D32). A NIR method hasbeen developed for the quantitative determination of resorcinolin aqueous solutions for industrial applications (D33). A NIRtechnique has been developed using artificial neural networks tostudy tobacco nicotine (D34). The application of FT NIR forquantitative and qualitative analysis has been discussed (D35).Quantitative determination of hemoglobin in turbid medium hasbeen demonstrated using NIR spectroscopy (D36). Statistical andartificial network pattern recognition techniques have been appliedto NIR spectra of soy sauce samples and related to differences infood flavorings (D37). A rapid FT-NIR spectroscopic method hasbeen developed for quantitative determination of peroxides inedible oils. The method is based on a PLS calibration model andoffers an alternative to the iodometric method, avoiding the solventand reagent disposal problems (D38). A method and apparatusfor the noninvasive measurement of intravascular ketone bodyconcentration has been reported (D39). A patent application hasbeen filed for a method to determine tissue hemoglobin levelsusing NIR spectroscopy (D40). A method of variable selectionfor quantitative NIR determination of glucose concentrations hasbeen shown to reduce the number of calibration samples with noloss in reliability (D41). The combination of NIR and mid-IRspectra has been shown to provide improvements in calibrationresults in the assay of lignin, cell wall digestibility, and dry matter

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 123R

digestibility on a variety of samples (D42). A PLS calibrationmethod has been successfully applied to NIR spectroscopy forthe measurement of malt quality constituents in whole grain(D43). The use of toluene as a test for the calibration of an FT-NIR spectrometer in the analysis of the hydroxyl content ofethoxylated fatty acid produced a stable calibration over 120 days(D44). A procedure to standardize across a network of instru-ments has been proposed (D45). PCA has been applied to thestudy of the dissociation process of oleyl alcohol using FT-NIRspectroscopy (D46).

A comparison of the quantitative properties of IR vibrationalcircular dichroism (VCD) and Raman optical activity (ROA) hasbeen done in the analysis of trans-pinene, cis-pinane, R-pinene,and â-pinene (D47). Correlation was observed for the twotechniques for the strongly chiral and strongly achiral vibrationalmodes. The use of quantitative VCD in the analysis of proteinshas been discussed with specific reference to effects of spectralresolution, sample concentration, cell selection, and spectralnormalization (D48).

FT-IR with PLS techniques has been used in the simultaneouson-line determination of gases in smoke from burning textiles(D49). The compounds determined using this technology includethe following: water, CO2, CO, NO, NO2, SO2, C3H4O, HCl, HBr,HCN, and HF. The shelf life of nitrocellulose containing single-base propellants has been determined using FT-IR and PLScalibration techniques (D50). A PLS method has been developedusing transmission FT-IR spectroscopy for the analysis of aldehydeformation and anisidine value of thermally stressed oils (D51). APLS method has been developed for the quantitative FT-IR analysisof fatty acid esters (D52). A multiple model approach has beenused to evaluate polyolefin formulations using discriminantanalysis with process, chemistry, and spectroscopic information(D53, D54).

Using principle component regression (PCR) and PCA, aclassification method has been developed for the analysis of sugarcane juices (D55). This method allows for the qualitativeclassification of spectra without knowledge of their chemicalcomposition. The effect of PCA on mid-IR spectroscopy data hasbeen examined to determine the effects of instrumental instabilityon results (D56).

FT-IR spectroscopy has been used to monitor gases generatedduring chemical inhibition of fuel pool fires burning in the air(D57). This technique was used in the analysis of acid gasesformed when Halon 1301 was used to extinguish fires. FT-IRspectroscopy has been utilized in the study of nitric acid icesformed from vapors containing water (D58). Passive FT-IRremote sensing has been used in the analysis of effluent plumes,such as controlled gas releases, power plant emission stacks, andchemical manufacturing facilities (D59).

Reflectance FT-IR spectroscopy has been used to examine theelectrochemical mechanism for ethylene glycol oxidation bypolycrystalline platinum (D60). IR spectroscopy has been usedin the study of fullerene (D61). Information on intermolecularinteractions are also discussed.

Oxidation of mesocarbon microbeads has been followed bythermogravimetric and FT-IR spectroscopic techniques (D62). Thequantitative determination of fluconazole has been demonstratedusing KBr pellets of the material and the transmission technique

(D63). FT-IR spectroscopy has been used for the quantitativedetermination of dodecylbenzenesulfonate and tripolyphosphatein solid compound samples of detergents (D64).

A gas flow equilibrium vapor cell has been shown to allow forthe quantitative analysis of vapor-phase species using Beer’s law(D65). Using an equilibrated vapor cell with a closed-loopcirculation, vapor-air mixtures of volatile organic compounds inwater were examined. Mixtures of methanol, ethanol, 2-propanol,acetone, and 2-butanone were found to follow Beer’s law at lessthan 50 Torr (D66). An FT-IR classical computational methodhas been applied to the direct quantitation of multicomponent gasmixtures of organic compounds. The method has been used tocharacterize mixtures of up to 10 compounds (D67).

FT-IR microspectroscopy has been used for the quantitativestudy of solid-phase resin-bound chemical reactions of speciescontaining deuterium (D68). An artificial coalification series hasbeen analyzed by FT-IR microscopy using a diamond anvilcompression cell. The method has been applied to Mahakam coal(type III organic matter) (D69).

FT-IR in conjunction with gravimetric methods has been usedin the quantitative analysis of CO chemisorbed on Pt surfaces(D70). FT-IR spectroscopy has also been used in the study ofantiepileptic medications (D71). A combination of IR and MStechniques have been used to determine the extinction coefficientsof adsorbed CO on Rh/SiO2 catalyst (D72). Water adsorptionon H-ZSM-5 zeolite has been evaluated using FT-IR spectroscopy(D73). IR spectroscopy analysis has been used in conjunctionwith nuclear reaction analysis in characterizing molar absorptivityof hydroxyl bands in high-hydroxyl-content silica glasses (D74).A nondestructive pulsed IR quantitative evaluation of defects inmetal surfaces has been developed for the inspection of aluminum,steel, and turbine blades (D75).

SPECTRA-STRUCTURE CORRELATIONThe SO2 stretching vibration in metal saccharinates for Na,

Mg, Mn, Fe, Co, Ni, Zn, Cd, and Pb have been studied using IRspectroscopy (E1). An IR spectral study was made of kaolinitesamples before and after dehydroxylation and rehydration. Thesurface areas of the samples were observed to effect the OHstretching frequencies (E2). IR spectroscopy has been used tointerpret structural changes in silica glasses. Shifts in the Si-Ostretching band was used to monitor changes in average Si-O-Si bond angles (E3). IR and Raman spectroscopy have been usedin the study of 1,3,5-tri-tert-butylpentalenes (E4). NMR and IRspectroscopies have been used to characterize the effects ofphysical surroundings and chemical structure information ofcarbonyl stretching frequencies in various solvents (E5). Densityfunctional theory has been applied to the investigations ofharmonic force fields, vibrational frequencies, and IR intensitiesof transition metal complexes (E6). The IR spectra of TiO2,sodium titanates, and natisite have been examined, and differencesin the IR spectra have been correlated with structural features(E7). The IR bands of cis- and trans-CHdCH and vinyl CHdCH2

groups of model compounds and polybutadienes have beencompared (E8). Group frequency assignments have been com-piled for major IR bands observed in 20 common polymers (E9).In a review article, some methods of obtaining characteristic groupfrequencies, including empirical correlations, were discussed

124R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

(E10). Two-dimensional FT-IR correlation analysis was appliedto both the mid-IR and NIR regions to investigate changes in thesecondary structure of â-lactoglobulin in D2O solvent systems. Amechanism for the change from the â sheet to the R helix wasproposed (E11). A review has been written on the two-dimensional FT-IR and NIR correlation spectroscopies in thestudies of temperature-dependent spectral variations of self-associated molecules (E12). The theory of fuzzy sets has beenapplied to specific IR spectrum-structure correlations (E13).Grazing-angle FT-IR spectroscopy has been used to study themonolayer structure of self-assembly molecules with novel amidolinkages (E14). The secondary structure of photosystem IIreaction centers isolated from pea has been deduced fromquantitative analysis of the component bands of the IR amide Ispectral region determined by FT-IR (E15). A method fordetermining the orientation of individual bonds within complexmacromolecules from polarized IR measurements on orientedsingle crystals has been described (E16). The peroxide bond ofinorganic and organic peroxides have been studied by IR andRaman spectroscopies. The results of the study are a narrowerrange of frequencies for the vibration (845-875 cm-1) (E17). Theexperimental vibrational frequencies of s-trans-1,3-butadiene wereused to determine the scale factors for its quantum mechanicalforce field. This information was then used to determine thelocation of the s-gauche rotamer band in the IR spectrum of thegas phase (E18). The spectral structure arising from the pucker-ing vibration of perfluorocyclobutane has been modeled with aquadratic-quartic potential (E19). Two-electron correlation theo-ries, second-order Moller-Plesset perturbation, and d functionalmethods have been adopted to obtain fully optimized structuresof styrene, trans-stilbene, and cis-stilbene. The relationship ofintermolecular and intramolecular forces was discussed (E20).The IR spectra of some hydroxy aromatic Schiff bases have beenrecorded. The bands due to CdN and OH groups were assignedand discussed in terms of molecular structure (E21). Thestructures of the size-selected hydrogen-bonded phenol-(H2O)n

clusters were investigated by analyzing the OH stretchingvibrational spectral in S0, S1, and the ionic states. The charac-teristics of the different states were discussed (E22). The spectralcharacteristics of absorption bands of free and bound H-bondedmolecules of substituted anilines in solution were determined byFT-IR spectroscopy (E23). Solvent effects on N-(3-chloro-2-benzo-[b]thienocarbonyl)-N′-ethylthiourea were studied by examining thechanges in the IR bands belonging to the NH and CO bonds(E24). Spectral deconvolution, using a specially developedprogram, was used to characterize Co adsorbed onto alumina-supported bimetallic catalysts containing either Fe or Ni (E25).A review on matrix IR spectroscopy of intermediates with low-coordinated carbon, silicon, and germanium atoms has beenwritten (E26). An FT-IR study of the bonding of methoxy on Ni-(100) has been used to evaluate the effects of coadsorbed sulfur,carbon monoxide, and hydrogen. Differences observed wereattributed to changes in the metal-oxygen bond (E27). The FT-IR spectra of six para-substituted aniline deriviatives and nine 1-p-aminophenylazoles and benzazoles have been recorded (E28). Thefundamental IR absorption band for CO in solution in fourchlorinated solvents has been reported. The changes in solute-solvent interaction were discussed (E29). The IR spectra of Fe

and Ru 5-cyclopentadienyl carbonylmetallocarboxylates wereobtained in THF at -78 °C. The effect of the counterions on CO2

complexation was discussed (E30).

HYPHENATED TECHNIQUESGC/FT-IR was used in the study of trimethylsilyl derivatives

of 10 hydroxy- and methoxyhydroxyflavonoid compounds. Thecorrelation between retention and gas-phase IR data was shownto be useful in structural identification of compounds with verysimilar chromatographic behavior. The carbonyl frequencies wereshown to give information on the presence of substituting agents(F1). GC/MS and direct-deposition GC/FT-IR were applied atthe same level of sensitivity to the study of minute concentrationsof volatiles in green leaves (F2). The IR spectra of six monomericgaseous aromatic N-methyleneamines were reported from GC/FT-IR experiments (F3). Gas chromatography/matrix isolation/FT-IR (GC/MI/FT-IR) were used to confirm the identities oftrimethylsilyl derivatives of trichothecene mycotoxins found ingrains (F4). A comparison of pyrolysis GC and FT-IR spectros-copy indicated the latter was able to discriminate fiber makeupbetter (F5). FT-IR and gas chromatography were used to studymodel samples containing various petroleum products and fieldsamples of the Vltava River. This study showed IR and GC to besuitable to determine concentrations of 10-102 mg/L of lowerand middle petroleum fractions in water (F6). GC/FT-IR has beenused in the qualitative and quantitative determination of 1,2-propanediol in Acyclovir cream (F7). Diffuse reflectance FT-IRspectroscopy has been used to qualitatively and quantitativelydetermine drugs (heroin, cocaine, codeine) separated by thin-layer chromatography (F8). GC/FT-IR has been used as a rapidmethod to distinguish cis and trans R,R-disubstituted piperidinesand pyrrolidines (F9). GC/FT-IR has been used to identify 42monosaccharides as their trimethylsilyl ethers (F10). GC/MSand GC/FT-IR have been used to determine ferrocenes (F11).GC/FT-IR has been successfully used in the identification ofdisaccharides after conversion to their methylsilyl ethers (F12).GC/FT-IR and CCD Raman spectroscopy has been used todifferentiate cyclopentane- and cyclohexane-containing com-pounds. The GC/FT-IR was viewed as a method to determineindividual naphthenes while the CCD Raman was viewed as ameans to measure bulk mixture properties (F13). GC/FT-IR hasbeen used to identify various fatty acids (F14). The total olefinsin gasoline can be determined on-line by process GC or FT-IRspectroscopy. The FT-IR method uses PLS correlation calibrationand takes approximately 0.2 min per determination (F15).Continuous FT-IR monitoring in conjunction with off-line pyrolysisGC/MS was used to evaluate the oxidation of fossil organic matterin Miocene and Silurian sediments. The oxidation of the organicmatter in the two sediments was compared (F16). The identifica-tion of volatile organic compounds generated during polymerprocessing has been performed by the use of TG-GC/IR-MSspectroscopy (F17). A review on the application of multidimen-sional GC/MS and GC/FT-IR to the analysis of components incomplex matrixes has been written (F18). The analysis ofdimethylphenanthrenes by direct-deposition GC/FT-IR has beenreported with quantitative procedures described (F19). GC/FT-IR has been shown useful in the determination of the stereochem-istry of carbon-carbon double bonds conjugated with a vinyl

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 125R

group (F20). Off-line pyrolysis GC/MS/FT-IR was used toinvestigate oxidation of fossil organic matter in Miocene andSilurian sediments (F21). The photochemical degradation ofdichoroprop and 2-naphthoxyacetic acid in water has been studiedby GC/MS and GC/FT-IR. The photodegradation pathways weredescribed (F22). An aqueous smoke flavoring employed in thefood industry has been studied using GC/MS/FT-IR spectroscopy.The components were identified and discussed (F23). HeadspaceGC/FT-IR has been used to study the in situ thermal decomposi-tion products of O-ethyldithiocarbonate on mineral surfaces (F24).DRIFTS has been coupled with GC to correlate changes in theIR spectrum of a zeolite with the composition of the gas phase(F25).

On-line trace enrichment combined with column LC/FT-IRmicrospectroscopy has been used in the identification of herbi-cides in river water. The identification limits for the herbicidesstudied were reported (F26). Reversed-phase liquid chromatog-raphy has been used with FT-IR by means of a solvent eliminationinterface. Features studied included postcolumn band broadening,phase separation efficiency, evaporation efficiency, and extractionyield. This technique was applied to phenylureas and quinones.FT-IR detection was demonstrated at the submicrogram permilliliter level (F27). Reversed-phase liquid chromatography withsolvent elimination and FT-IR microscopy have been applied tothe characterization of additives in PVC and polypropylene at thelow-nanogram range (F28). HPTLC/FT-IR has been used on-line to identify LSD, MBDB, and atropine in an in situ measure-ment (F29). A review on microcolumn liquid chromatographyFT-IR has been written with attention to various approaches (F30).Size exclusion chromatography (SEC) has been used with FT-IRspectroscopy in studies of compositional distribution in copoly-mers, impurity profiling, and branching in polyolefins (F31). Filmmorphology of polymer systems (polyethylene-polystyrene blends)have been studied by SEC-FT-IR (F32). A particle-beam LC/FT-IR interface has been employed in the investigation of the effectof chromatographic conditions, such as mobile-phase composition,elution process, and stationary phase, on protein secondarystructure. Qualitative and semiquantitative measurements werepossible (F33). The applicability of IR spectrometric detectionin liquid chromatography, based on solvent elimination prior toIR scanning, has been enlarged to gradient separations byadaptation of a capillary column switching system and additionof a postcolumn makeup liquid (F34). A mobile-phase eliminationinterface originally designed for liquid chromatography IR spec-troscopy has been shown to perform exceedingly well for packed-column SFC/FT-IR. The technique was used in the separationof Irganox 1076 (F35). Principle component analysis was appliedto discriminate rapidly between extractable compounds that areindigenous to papers and nonindigenous compounds on the basisof their IR spectra. This method was applied with on-line SFE/SFC/FT-IR spectroscopy to yield an automated analysis ofcompounds that can be extracted from very complex matrixes(F36). The orthogonal projection approach has been applied tothe analysis of a reaction product by HPLC and LC/FT-IR in whichoverlapping peaks were observed. The resolution of the overlap-ping peaks into individual chromatograms and IR spectra werediscussed (F37).

Thermogravimetric analysis (TGA) FT-IR spectroscopy hasbeen used in the characterization of the reaction mechanism ofPb(Zr, Ti)O3 (F38). Thermogravimetric FT-IR methods wereapplied to characterization of used turbine engine lubricantsduring a reclamation effort. A themogravimetric/secondaryoxidation/FT-IR method was developed to determine trace levelsof chlorinated contamination. The detection limit was reportedas 300 ppm (w/w) (F39). TGA/FT-IR has been used to studythe thermal degradation of PMMA (F40). A review has beenwritten on the applications of thermogravimetric analysis com-bined with FT-IR spectroscopy. This review covers characteriza-tion of coal, source rock, heavy hydrocarbons, biomass, wastematerials, and plastics (F41). Thermogravimetry/IR/mass spec-trometric analysis (TG/IR/MS), a relatively new technology, hasbeen applied to the analysis of paper mill deposits as a rapid meansof identifying contamination sources (F42). Thermogravimetry/FT-IR spectroscopy have been used in the analysis of recycledcellulose pulps (F43). TC/FT-IR spectroscopy has been used inthe study of the incineration and pyrolysis of polyethylene, PVC,and PET (F44). TG/MS/FT-IR has been applied to the study ofpost-cross-linking and decomposition of a phenolic resin (F45).A TG/FT-IR system was used in the study of modified phenolichardeners and curing of an epoxy resin. The technique was usedin the study of the evolved gases during the decomposition of2,6-dimethylol-o-cresol and the product modification with hexahy-drophthalic acid anhydride (F46).

TIME-RESOLVED INFRARED SPECTROSCOPYA time-resolved IR double-resonance technique involving the

use of two CO2 lasers was employed in a study of the transfer ofvibrational energy between ozone and oxygen or nitrogen at 200-300 K (G1). Oxidation of the lubricant in the ring pack of arunning diesel engine was detected by time-resolved FT-IR (G2).Time resolution of 200 fs was achieved during time-resolved IRand UV-visible spectroscopy by means of an ultrafast laserapparatus (G3). Time-resolved FT-IR was used in a comparisonbetween cytochrome P-450cam carbon monoxide complex boundwith (1R)-camphor and same complex bound with (1S)-camphor(G4). A review was given on time-resolved diode laser IRreflection-absorption spectroscopy (G5). The reaction initiatedby pulse radiolysis of SF6/NO gas mixtures was investigated bytime-resolved IR and UV spectroscopy (G6).

Femtosecond time-resolved IR spectroscopy was used to detectthe reactive intermediates in an alkane C-H bond activation byorganometallic compounds at room temperature (G7). A reviewof the application of time-resolved IR spectroscopy for the studyof organometallic photochemicals in solution was presented (G8).The use of time-resolved IR spectroscopy to probe excited statesof transition metals was discussed (G9). Time-resolved infraredspectroscopy was used to study the photolysis of 2-(methoxycar-bonyl)phenyl azide and Cr(CO)4(2,2′-bipyridine) (G10, G11). Thephotochemistry of certain metal carbonyl species dissolved insupercritical noble gases or carbon dioxide was the focus of astudy using time-resolved IR and UV spectroscopy (G12). Time-resolved IR spectroscopy was applied to the study of thephotochemical rearrangement of a rhenium dimetallacyclobutene(G13). The propargyl radical produced by the UV photolysis ofallene was detected by time-resolved IR diode laser spectroscopy

126R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

(G14). The products produced by the photochemical ring openingof 1,3-cyclohexadiene were investigated by time-resolved step-scanFT-IR spectroscopy (G15). The experimental results for one- andtwo-dimensional time-resolved FT-IR spectroscopy of liquid crys-tals were presented (G16). Time-resolved FT-IR was used tomonitor behavior of ferroelectric liquid crystals in an electric field(G17). A nematic solution of 2-naphthaldehyde in an electric fieldwas studied by time-resolved step-scan FT-IR (G18). A multi-channel FT-IR spectrometer for single-event time-resolved spec-troscopy was described (G19). Attenuated total reflection surface-enhanced IR absorption spectroscopy combined with time-resolvedIR spectroscopy were used in monitoring electrochemical reac-tions (G20). Step-scan time-resolved FT-IR emission spectroscopywas used to study the photodissociation of ethylene at 193.3 nm(G21).

A nanosecond time-resolved IR spectrometer with a photovol-taic MCT detector was described (G22). A review was publishedthat encompasses both experimental and theoretical studies ofthe vibrational relaxation of small molecules in solution (G23).The bacteriorhodopsin photocycle was measured by time-resolvedATR/FT-IR spectroscopy (G24). Nanosecond time-resolved FT-IR spectroscopy was also used to study the early stages of thebacteriorhodopsin photocycle (G25). Time-resolved FT-IR wasapplied to the investigation of the last steps of the photocycles ofGlu-204 and Leu-93 mutants of bacteriorhodopsin (G26). Pico-second tunable IR pulses were used in a time-resolved spectro-scopic experiment to study the vibrational energy transfer innitromethane explosives (G27). Time-resolved impulse photo-acoustic measurements of gases and solids were obtained with astep-scan FT-IR spectrometer (G28). Picosecond time-resolvednear-IR was used to study the excited states of C70 (G29).

The release of ATP from “caged ATP” and partial reactions ofthe Ca2+-pumping cycle of Ca2+-ATPase were followed by time-resolved FT-IR spectroscopy (G30-G32). A review discussed theuse of time-resolved infrared spectroscopy to follow events inprotein folding (G33). The IR chemiluminescence of the productsfor the NO + NCO reaction was monitored with time-resolvedFT-IR (G34). The intermediates in the migratory insertion of COinto the metal-alkyl bond of manganese carbonyls were detectedby time-resolved FT-IR spectroscopy (G35).

REFLECTANCE TECHNIQUESSymmetry, selection rules, and nomenclature in surface spec-

troscopies was reviewed (H1). The application of FT-IR, diffusereflectance, and attenuated total reflectance techniques toward theanalysis of soil materials was discussed (H2). A review describedthe investigation of molecular chemisorption at single-crystal metalsurfaces by reflection absorption IR spectroscopy (H3). Recentadvances in the use of IR and Raman spectroscopies for thecharacterization of polymer/polymer and polymer/substrate in-terfaces was reviewed (H4). The theory and practice of externalIR reflection absorption spectroscopy as applied to films at theair/water interface were described (H5). Time-resolved diodelaser IR reflection-absorption spectroscopy and its application wasdiscussed (H6). A book described the theory and practice ofattenuated total reflectance spectroscopy of polymers (H7), whilea review discussed the analysis of adhesives, sealants, and coatingsby the same technique (H8). The use of diffuse reflectance FT-

IR spectroscopy in heterogeneous catalysis studies was reviewed(H9). The use of synchrotron radiation for reflection absorptionstudies of surfaces was described (H10). New data on waterincorporation in glass as determined by IR reflectance spectros-copy were reviewed (H11). The Raman and IR reflection spectraof AlN (H12), BN (H13), GaN (H14) were reviewed. The analysisof photocopy toners by diffuse reflectance, attenuated totalreflectance, microscopic reflection-absorption, and microscopicIR techniques was evaluated (H15).

Single-Crystal and Bulk Analysis Applications. Thecrystal field transitions for Nd3+ were studied by Raman and far-IR reflectance spectroscopies (H16). Polarization-dependent far-IR reflectivity measurements were made on single crystals ofanatase TiO2 (H17). The relaxation effect of IR reflectance spectraof nanocrystalline composite oxides was investigated (H18).Raman and IR reflectivity spectroscopies were used to study theTeO2 crystal (H19) and the GaN crystal (H20). Hexagonal bariumtitanate was studied by Raman and IR reflectivity spectroscopies(H21). Polarized IR reflection spectra of TlClO4, TlBF4, and NH4-BF4 single crystals were analyzed (H22). Bismuth disproportion-ation in BaBiO3 was studied by infrared and visible reflectancespectroscopies (H23). Yttrium and lanthanide copper oxides werestudied by X-ray diffraction and IR reflectance spectroscopy (H24).The far-IR reflectance spectra of bismuth cuprates were analyzed(H25). Phase transition dynamics in layered crystals wereinvestigated by IR reflectance and Raman spectroscopies (H26).Cobaltite spinels were characterized by IR reflectance spectros-copy (H27). The formation and characterization of Si/SiO2

multilayer structures by oxygen ion implantation into silicon wasstudied by FT-IR reflectance spectroscopy (H28).

Cofacially stacked phthalocyanines doped with iodine werestudied by IR reflectance spectroscopy and X-ray diffraction (H29).The application of reflectance micro-FT-IR spectroscopy to analyzecoal macerals was described (H30). Protonated and deuteratedices compressed under high pressure showed IR reflectanceevidence of a phase transition (H31). The application of infraredreflectance spectroscopy to mineral exploration was described(H32). The coordination states of molybdenum and the natureof copper ion sites in superionic glasses was investigated (H33).Far-IR reflectance investigations of lead borate and lead alumi-noborate glasses were described (H34). FT-IR microreflectancemeasurements of the CO3

2- ion content in glasses were discussed(H35). Polymer characterization by specular reflectance usingan FT-IR microscope was evaluated (H36). Microreflectance FT-IR techniques for the forensic examination of documents wasdiscussed (H37). The application of real-time reflectance IRspectroscopy to the study of photopolymerization reaction ratesof stereolithography resins was developed (H38). Aspects ininterpreting results of reflectance and attenuated total reflectancespectra of semiconductor systems were discussed (H39). Amethod was developed for the in situ investigation of corrosionof copper in a gaseous environment (H40). The potential of IRreflection-absorption spectroscopy for the study of high-temper-ature oxidation of metals and alloys was demonstrated (H41).

Thin-Film Applications. Reflectance FT-IR spectroscopywas used as a tool for surface inspection and contaminationdetection (H42, H43). A method was developed that eliminatedthe problem of interference fringes in reflection spectra of

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 127R

photoresist films (H44). The current approach in using IRreflectance spectroscopy for thin-film measurement in the semi-conductor industry was outlined (H45). Semiconducting ironsilicide films were characterized (H46). Polarized IR reflectionspectroscopy was used to identify boron nitride film phases (H47).FT-IR spectra of borophosphosilicate films obtained by metal-backed configurations were compared to those obtained byconventional transmission (H48). IR reflectance and transmit-tance spectra of chalcogenide glass layers were analyzed (H49).Cupric oxide in thin-film form was studied by IR reflectancespectroscopy (H50). Thin carbon films constructed from orientedcarbon nanotubes were studied (H51). Molecular association inthin films of mesogenic cyanophenyl derivatives was investigatedby reflection IR spectroscopy (H52). The infrared spectra of oxidefilms were modeled for microstructural analysis (H53). Siliconoxynitride thin films were characterized (H54). Thin films oflubricating oils on metal surfaces were examined by polarizationmodulation reflection-absorbance spectroscopy (H55). Ironoxide films deposited on a magnesium oxide substrate wereexamined (H56). IR reflection-absorption spectra of aluminumhydrides on a silicon oxide surface were done using a buried metallayer substrate (H57). A spectroscopic study was done on theself-assembling processes of organophosphates on evaporatedsilver films (H58). The optimization of IR reflection spectroscopyfor the quantitative determination of borophosphosilicate glassparameters was described (H59). FT-IR reflection-absorptionspectroscopy was used for in situ observation of photoinducedvapor deposition polymerization of N-vinylcarbazole (H60, H61).The redox-induced orientation change of a self-assembled mono-layer of 11-ferrocenyl-1-undecanethiol was studied (H62). The roleof hydrogen bond and metal complex formation in amino acidmonolayers was investigated using IR reflection-absorbancespectroscopy (H63). The effects of substrates on the IR spectraof Langmuir-Blodgett films was discussed (H64). Structuredisordering during surface pressure relaxation of Langmuir filmsof stearic acid was studied (H65). The structure and phasetransitions in a Langmuir monolayer of tetracosanoic acid wasmeasured (H66). Stearic acid and cadmium stearate films werecharacterized by external reflection IR at various angles ofincidence (H67). Monolayer and multilayers of ferroelectric liquidcrystals were characterized by polarization-modulated IR reflec-tion-absorption spectroscopy (H68). The vibrational spectros-copy of thin films of water adsorbed on metal surfaces underultrahigh vacuum were discussed (H69).

Interfacial Applications. Samples at air/water and air/metalinterfaces were measured by differential polarized reflectancespectroscopy (H70). The molecular order of chiral monolayersat the air/water interface was determined by infrared reflection-absorption spectroscopy (H71). Monolayers of behenic acidmethyl ester at the air/water interface and air/deuterated waterinterface were used for the quantitative determination of chaintilt angles (H72). Interfacial molecular interactions betweenferroelectric liquid crystal and poly(vinyl alcohol) films wereinvestigated by IR reflection-absorption spectroscopy (H73).Electromodulated FT-IR reflectance spectroscopy was used toinvestigate the interaction of tetramethylthiourea with a polycrys-talline gold electrode (H74). Partial chain deuteration was usedas a probe of conformational order of different regions in

hexadecanoic acid monolayers at the air/water interface (H75).The interfacial behavior of water molecules at a gold electrodesurface was analyzed (H76).

Adsorption and Surface Reaction Applications. Infraredreflection-absorption spectroscopy has been used extensively tocharacterize adsorbed molecules on a variety of substrates andto monitor surface reactions. Butene isomer reaction productsevolved during the course of a surface reaction were identified(H77). The photolytic decarbonylation of iron pentacarbonyladsorbed on a silica film was studied (H78). Adsorption andreactions of formic acid on nickel surfaces was investigated (H79).The reactions of water and ethanol with a silicon surface werestudied (H80). Copper corrosion products formed by atmosphericcorrosion were characterized (H81). Nitroglycerin photodecom-position on titania surfaces was measured (H82). The catalyticdecomposition of 2-propanol was studied over molybdenum-ironoxide catalysts (H83). The chemisorption of hydrogen at a siliconsurface was studied (H84). The mode of deactivation and cokeformation in H-SSM-5 zeolite during ethylbenzene dispropor-tionation was investigated (H85). The infrared spectra of neutraland ionic hydrogen-bonded complexes formed by interaction ofa series of bases with H-Y, H-ZSM-5, and H-mordenite werecompared with analogous adducts formed on H-Nafion (H86).The dehydrocyclization of submonolayer coverages of 1-hexeneto benzene on a copper single-crystal surface was reported (H87).The nitridation of GaAs surfaces was observed (H88). Theinteraction of amyl xanthate with chalcopyrite, tetrahedrite, andtennantite was studied (H89). Nitrous oxide generated by thereduction of nitrite on a platinum electrode was monitored (H90).In situ infrared measurements of the reductive and oxidativeremoval of a nonanethiol monolayer from a gold single crystalwere made (H91). The adsorption and oxidation of carbonmonoxide on palladium was studied (H92). Kinetic studies of thereactivity of ethylene on platinum surfaces were done (H93). Anin situ study was done of the electrooxidation of methanol on Pt-Ru electrodes (H94). Mixed self-assembled monolayers wereused as a model surface to study the adsorption of dimethyl-methylphosphonate and water vapor (H95). Reflection-absorp-tion IR spectroscopy was used to study the H/D scramblingreactions during the conversion of ethylene to ethylidyne incoadsorbed layers on platinum (H96). The melting of orderedmonolayers of n-hexane, n-octane, and n-decane adsorbed onplatinum was studied (H97). The chemical adsorption of 1-hexeneon ruthenium was studied (H98). The bonding and orientationof L-alanine on copper was determined (H99). Adsorption ofethene on clean and ethylidyne-covered platinum surfaces wasinvestigated (H100).

The reflection-absorption IR spectra of chlorine adsorbed ona silver surface were characterized (H101). Several adsorbateson a copper surface were investigated at cryogenic temperatures(H102). The chemisorptive behavior of CO on several monome-tallic and bimetallic Pd, Cu, and Au catalysts was investigated(H103). The various phases occurring in dichlorodifluoromethanephysisorbed on graphite were studied (H104). Thin films of nitricacid hydrates and ammonium nitrate adsorbed on gold foil werecharacterized (H105). Isotopic characterization was done of NOadsorption, dissociation, and coadsorption with CO on platinum(H106), as well as reduction of NO (H107). The spectrum of

128R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

iron pentacarbonyl adsorbed on gold surfaces was characterized(H108). The spectra of 1-prooxide and a set of deuterated1-propoxides on a copper surface were obtained and characterized(H109). The adsorption of NO on a polycrystalline platinum foilwas studied (H110). Two types of linear CO were observedadsorbed on a copper electrode, while only one type was observedon a silver electrode (H111). The adsorption and reactivity ofNO on copper was studied (H112). In situ and ex situ infraredstudies of the nature and structure of thiol monolayers adsorbedon cuprous sulfide were done (H113). Surface chemistry occur-ring during electroreduction of CO on electrodes modified withconducting polymer and inorganic conductor films was measured(H114). The spectrum of 2,5-dihydroxybenzyl mercaptan ad-sorbed on gold electrodes was obtained using attenuated totalreflectance and reflection-absorption techniques (H115). Far IRspectra of copper and platinum electrode surfaces were studied(H116). The adsorption and reduction of nitrate ions on gold andplatinum electrodes was studied (H117). The coordination,bonding, and configurational transitions for benzene and pyridineadsorbed on platinum and copper were studied by reflection-absorption IR spectroscopy (H118). Silicon surfaces treated withan HF solution were used to study the behavior of adsorbed Fatoms (H119). Reflectance absorbance spectra of methyl andethyl formates chemisorbed on nickel were found to be consistentwith surface coverage-dependent rotational isomerization (H120).

The orientation of adsorbed deuterated and isotopic ethoxideson a copper surface was measured (H121). The adsorption ofcyclohexane on clean and O-modified nickel surfaces was studied(H122). A study was done of D2O ice deposited on self-assembledalkanethiolate monolayers to measure cluster formation andsubstrate/adsorbate interaction (H123). A thin film of poly(o-phenylenediamine) coated on a platinum electrode was character-ized (H124). The molecular structures of self-assembled bimo-lecular films on gold and silicon surfaces were studied (H125).The orientation effects in physisorbed multilayers on copper wereinvestigated (H126). An in situ study of 4-cyanopyridine adsorp-tion on a gold electrode was done (H127). Propyne chemistryon nickel and copper surfaces was characterized, using analogieswith ethyne adsorption (H128). A study was carried out on thecoadsorption of D2O with preadsorbed K on cobalt (H129).Monolayers of octadecylsiloxane were formed on silicon and glasssurfaces and studied by polarization- and angle-dependent externalreflection IR spectroscopy (H130). An in situ study measuredthe coadsorption of perchlorate and bisulfate ions with adsorbedTl on platinum (H131). In situ IR reflection spectroscopy wasused in the qualitative and quantitative evaluation of heteroge-neous adsorbed monolayers on a semiconductor electrode (H132).The adsorption of methanol on nickel oxide grown on nickel wasstudied (H133). The adsorption of ethylene on nickel was studied(H134).

Attenuated Total Reflectance. A review was given on effortsto find spectroscopic evidence for or against the formation ofbilayer islands of adsorbed surfactants (H135). A technique fordepth profiling using multiple-angle ATR FT-IR was described(H136). A potential problem due to dispersion effects on infraredspectra in attenuated total reflectance was described (H137).Variable-angle ATR spectroscopy was used for depth profiling ofstratified layers (H138). Spectra of copy toners were obtained

using microscopical internal reflection spectroscopy (H139). Theuse of diamond in an ATR design for analysis of highly corrosiveliquids was reported (H140). The evaluation of collector adsorp-tion phenomena by infrared internal reflectance spectroscopy oftransferred Langmuir-Blodgett films (H141). A new chemicalsensor based on ATR FT-IR spectroscopy was fabricated bycoating an ATR crystal with a hydrophobic mesoporous silica filmwhich can extract hydrophobic analytes (H142).

ATR was used to monitor the decontamination reactions ofchemical warfare agents (H143). The developmental changes inthe content of carbohydrates and nitrogen-containing compoundsin amaranth plants was measured (H144). The effects of pH andmetal ions on the conformation of bovine serum albumin inaqueous solution was studied (H145). Diffusion coefficients ofsodium p-aminosalicylate in sheep nasal mucosa and dialysismembranes were determined (H146). The skin barrier functionwas evaluated by measuring the rate of transepidermal water lossby an in vivo ATR method (H147). The kinetics of adenosine5′-triphosphate hydrolysis was measured (H148). The infraredspectra of aqueous solutions of acetohydroxamic acid in soil andgroundwater, and of suspensions of goethite with adsorbedacetohydroxamic acid, were measured (H149).

Thin amorphous silicon layers on crystalline silicon substrateswere characterized by infrared multiple internal reflection spec-troscopy (H150). Surface processes occurring during chemicalvapor deposition of silica through tetraethoxysilane onto GaAswere monitored by ATR (H151). Amorphous silicon monohydridefilms were characterized before and after reaction with atomicdeuterium (H152). The hydrogen-bonding features of reactingfilm surfaces during hydrogenated amorphous silicon depositionwere investigated (H153). Dissociative adsorption of methyliodide on silicon was followed by multiple internal reflectionspectroscopy (H154). In situ real-time measurements of chemicaletching processes were made on silicon surfaces in ammoniumfluoride solution (H155). The interfacial water near the hydro-philic surface of a silicon single-crystal internal reflection element,and the hydrophobic surface of a polymer-coated germaniumsingle-crystal reflection element was characterized (H156, H157).An FT-IR ATR method was described for quantitative in situanalysis of the adsorption and rinsing removal of surfactants fromsilicon surfaces (H158).

In situ ATR investigations of water, HSiCl3, and Co2(CO)8 onzinc selenide surfaces were done (H159). The nature of acid sitespresent in cation-exchanged montmorillonite was studied by ATR(H160). Bonding mechanisms of salicylic acid adsorbed onto illiteclay were examined (H161). Hydration processes at the bentonitesurface were studied (H162). The adsorption of polyamine, poly-(acrylic acid), and poly(ethylene glycol) on montmorillonite wasinvestigated (H163). The interaction mechanism of sodiumdodecyl sulfonate with mineral fluorite was studied by ATR(H164). The chelation of titanium oxide, zirconium oxide, andaluminum oxide surfaces by catechol, 8-quinolinol, and acetylac-etone was studied by a new in situ ATR spectroscopic method(H165). Real-time monitoring of electrochemical reactions byattenuated total reflectance/surface-enhanced IR spectroscopy wasdescribed (H166). An order-disorder process in Langmuir-Blodgett films of dioctadecyldimethylammonium chloride wasstudied (H167). Trace levels of organic impurities in hydrofluoric

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 129R

acid solutions were measured using a clean silicon ATR crystalto extract the organic impurities (H168). DMSO self-associationin acetonitrile solutions was investigated (H169). The hydrolysisof trimethyl phosphate in aqueous solutions was studied (H170).Polarized infrared ATR spectroscopy was used for the three-dimensional structural analysis of long-chain compounds (H171).The adsorption of acetic acid on n-CdTe photoelectrodes inaqueous and nonaqueous solutions was studied (H172). Real-time in situ ATR monitoring of mesoporous silicate syntheses wasperformed (H173). The extent of adsorption and the spatial chainorientation of adsorbed alkyl phosphate surfactants on aluminawere studied (H174). The poly(p-phenylene vinylene)/chromiuminterface was characterized by ATR (H175). The electrochemicaldoping and protonation processes of polyaniline were describedusing in situ FT-IR-ATR (H176). In situ FT-IR-ATR spectros-copy was used to characterize the reduced form of polyaniline(H177, H178).

Diffuse Reflectance. An investigation was done to determinewhether increasing the scanned sample area would improveresults obtained by diffuse reflectance FT-IR spectroscopy (H179).Diffuse reflectance was combined with gas chromatography as acoupled technique for the characterization of catalysts (H180).Diffuse reflectance was used to evaluate cleanliness of roughsurfaces (H181). Solid-phase reactions of solid resin beads wereinvestigated using diffuse reflectance spectroscopy (H182). Thesurface composition of AlN samples exposed to atmospheric airwas analyzed as a function of their preparation method (H183).The structure of hydroxylated alumina surfaces were characterized(H184). The use of diffuse reflectance for the nondestructiveinspection of organic films on sandblasted metals was discussed(H185). The application of diffuse reflectance in the preservationof historical monuments by monitoring salt migration was de-scribed (H186). Determination of the anti-sap-stain chemicaldidecyldimethylammonium chloride on wood surfaces by diffusereflectance was shown to be effective (H187). In situ analysiswas performed on catalytic surfaces of membrane electrodeassemblies in working fuel cells (H188, H189). A study was doneon the reversibility of CdGeON sensors toward oxygen (H190).The modifications afforded by chemical treatments to the mainfunctional groups of a bituminous coal were characterized (H191).The catalytic removal of soot from diesel exhaust gases wasstudied (H192). Diffuse reflectance spectra of explosives werestudied (H193). A comparison of several FT-IR sampling tech-niques, including diffuse reflectance, was investigated for thecharacterization of cement systems (H194).

The structural nature of polyacrylates adsorbed on aluminafrom aqueous solution was investigated (H195). Adsorptioninteractions of bipyridines with the surfaces of different alumina-pillar interlayered clays were studied (H196). The photochemistryof nitrates with alkali halides was studied (H197). The thermalderivatization of porous silicon was measured using diffusereflectance spectroscopy (H198). The formation of ethyl tert-butylether on H-modenite was measured (H199). A series of dealu-minated hydrogen mordenites were investigated with and withoutprobe molecules CO and H2 (H200). The analysis of volatileorganic chemicals adsorbed onto bentonitic clays was discussed(H201).

The application of diffuse reflectance FT-IR spectroscopytoward heterogeneous catalyst studies was reviewed (H202). Thestate of palladium on the surface of titanium dioxide-based carrierswas investigated (H203). The interaction of cobalt cations withcoordinated molecular oxygen species on Co-ZSM-5 emissioncontrol catalysts was studied (H204). The adsorption of paraffinson simple oxides was studied (H205). Acid-base properties ofthe surface of zirconia and zirconia modified with yttria werestudied (H206). A kinetics and diffuse reflectance study of low-temperature carbon monoxide oxidation over Au-TiO2 catalystswas done (H207). In situ temperature-programmed diffusereflectance studies of V2O5/TiO2 catalysts were described (H208).The active surface species and the reaction mechanism werestudied in the vapor-phase hydroformylation of ethene over Co/SiO2 promoted with various noble metals (H209). The reactionmechanism of catalytic reduction of nitrogen oxides by propenein the presence of oxygen has been studied (H210). TiO2-supported W- and Mo-selective catalytic reduction catalysts werestudied before and after poisoning with As3+ oxide (H211).Colloidal hematite adhered onto silver and mercury electrodeswas studied (H212). Evidence of alloy formation was observedin a study of CO adsorption on a bimetallic Pt-Pd catalystsupported on NaY zeolite (H213). The direct thermal interactionof elemental fluorine with hydrogenated and oxidized diamondsurfaces was investigated (H214). Diffuse reflectance spectros-copy was used to characterize the adsorbed species when zirconiais exposed to aqueous oleate and oleic acid over a range of pH(H215). Adsorption complexes of triacylglycerol and oleic acidon silica gel and synthetic magnesium silicate were observed(H216). The thermal and adsorbed-water effects of a (3-amino-propyl)triethoxysilane layer modified onto the surface of silica gelwere examined (H217). Boron nitride films deposited on steelsfrom borazine were investigated (H218). The properties ofdifferent chromium oxide phases in the catalytic reduction of NOby NH3 was studied (H219).

EMISSIONThe use of FT-IR emission spectroscopy as a tool for the study

of chemical reactions was reviewed (I1). Another review dis-cussed the use of FT-IR emission spectroscopy in observingelectronic, rotational-vibrational, and pure rotational transitions(I2). The potential of near-IR emission spectroscopy for real-timemonitoring of gas-phase molecules was described (I3).

The means to detect, visualize, and survey different kinds ofgases within industrial and energy processes, technologicalinfrastructure, landfill bodies, and indoor and outdoor environ-ments were discussed (I4). Exhaust gases from aircraft engineplumes were analyzed through remote sensing using FT-IRemission spectroscopy (I5-I7). A new technique was describedthat makes possible the laboratory IR emission study of gases ofatmospheric interest, specifically CFC-12 (I8). A design for anopen-path atmospheric monitor that uses both emission andabsorption spectroscopies was discussed (I9). Remote sensingFT-IR emission spectroscopy was applied to the study of Freon-12 thermal fragmentation in an alcohol/air flame (I10). FT-IRemission spectroscopy was used to measure nitric acid and ozonein the winter polar atmosphere (I11).

130R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

The cure chemistry and kinetics of aerospace epoxy resinsand prepregs were measured in real-time by FT-IR emissionspectroscopy (I12). The in situ analyses of reaction intermediatesand adsorbed species during chemical vapor deposition of silicon-based films by infrared emission spectroscopy were described(I13). The sulfidation of molybdenum oxide has been studiedby XPS and IR emission spectroscopy (I14). The dehydroxylationof a series of the kaolinite clay minerals has been investigated byFT-IR in situ emission spectroscopy (I15, I16).

The FT-IR emission spectra of several different molecularspecies have been studied. These include the OH and OD stretchof HOI and DOI (I17), the vibration-rotation bands of ND (I18),the vibration-rotation bands of the CD radical (I19), and thespectra of ScH and ScD (I20). Similarly, the emission spectra ofCoH (I21), BN (I22), Ge-As-S and Ge-Ga-S glasses dopedwith Dy3+ (I23), and LaH and LaD (I24) were studied. Theemission spectrum of FeF was observed in the near-infrared region(I25), while the radiative decay of hot two-dimensional plasmonsin AlO‚3GaO‚7As/GaAs heterostructures was studied by far-infrared emission spectroscopy (I26). The far-infrared laseremission spectra of ammonia isotopomers were reported (I27).The blackbody infrared radiative dissociation of bradykinin andits analogues was measured (I28).

The vibrational relaxation of isomerizing alkyl halide complexesof perylene were measured by stimulated emission spectroscopy(I29). Plasmas of fluorinated hydrocarbons under conditionssimilar to those used in semiconductor surface processing wereanalyzed using time-resolved FT-IR emission (I30). The time-resolved FT-IR absorption and emission spectra of speciesproduced in hollow cathode molecular discharges were character-ized (I31). A new method was described that obtains time- andenergy-resolved emission spectra using a step-scan FT spectrom-eter combined with correlational analysis techniques, providingsuperior dynamics and signal-to-noise ratios (I32). The quantita-tive aspects of FT-IR emission spectroscopy and the simulationof emission-absorption spectra were reviewed (I33).

PROCESS AND IN SITU ANALYSISFT-IR spectroscopy has been used in conjunction with in situ

ellipsometry to characterize the deposition of amorphous hydro-genated silicon from a remote argon/hydrogen plasma. The FT-IR results indicated a hydrogen content of 9-25 atom % (J1). IRtransmission spectra with submonolayer resolution of the initialgrowth of amorphous hydrogenated Si deposited by F2 laserchemical vapor deposition (CVD) have been reported. Thetechnique allows for the evolution of the H content and bondingconfiguration on a Si substrate to be monitored during nucleationand growth (J2). The H content and stoichiometry of siliconsuboxides in a plasma parallel PECVD system have been deter-mined by FT-IR spectroscopy (J3). In situ IR spectroscopy hasbeen used to confirm the formation of gold-tetramethylthiourea(TMTU) complexes from the etching of Au(111) electrodesurfaces in the presence of TMTU (J4). In situ FT-IR spectroscopyhas been used in the study on the nature of the metal complex-immobilized polyaniline/Prussian blue-modified electrode in theelectroreduction of CO2 in an aqueous solution (J5). Neutral H2Oand H3O+ adsorbed on a Pt(111) electrode from acid solutionshave been identified by in situ IR spectroscopy (J6). The

interfacial oxides formed under steady-state anodic polarizationof p-silicon in fluoride electrolytes has been studied usingdifference in situ IR spectroscopy (J7). The promoted electrooxi-dation of aqueous sulfur dioxide at platinum electrodes has beenstudied in acidic medium with the aid of cyclic voltammetry andin situ FT-IR spectroscopy (J8). The five oxidation states ofosmium carbonyl clusters have been characterized in the elec-trochemical redox processes using in situ FT-IR (J9). Theactivation and reduction of CO2 on a functional dual-film electrodehas been studied by in situ FT-IR spectroscopy (J10). In situ far-IR spectra of the surface films on Cu and Pt in aqueous solutionshave been obtained using a synchrotron source (J11, J12). Acomparison of static linear polarization selection and a new real-time technique has been done for the in situ FT-IR spectroelec-trochemical studies of copper electrodes. The species analyzedin this comparison were the thiocyanate ion, imidazole, andglucose (J13). In situ FT-IR spectroscopy has been employed inthe study of the electrode/electrolyte solutions at pH values of1.2-3.4. The adsorbate associated with the anomalous peaks inthe cyclic voltammetry of Pt(111) in sulfate- and bisulfate-containing solution was examined (J14). In situ FT-IR has beenused to examine the effects of incorporating redox-active pendant[Ni(tetraazamacrocycle)]2+ in poly(3-methylthiophenol) on Ptelectrodes (J15). The underpotential deposition (UPD) of copperand thallium on a Pt(111) electrode in a sulfuric acid solution wasstudied by time-resolved in situ IR spectroscopy and electrochemi-cal scanning tunneling microscopy. Surface changes were re-ported (J16). In situ electrochemical FT-IR spectroscopy has beenextended to the study of a real carbon-supported platinum-ruthenium catalyst. Results of the electrooxidation of methanolat bulk Pt, Pt particles, and carbon black-supported Pt-Ruelectrodes were discussed (J17). The oxidation of propene inaqueous HClO4 solution was studied on polycrystalline Auelectrodes using differential electrochemical mass spectroscopy(DEMS) and in situ FT-IR spectroscopy. Reaction pathways andproducts were discussed (J18). In situ FT-IR spectroscopy hasbeen used in the study of the oxidation of 2-propanol on Pt(111),Pt(110), and Pt(100) electrodes. The reaction intermediates werecharacterized for functional groups (J19). Linear polarizationabsorption ratios were determined from data for carbon monoxideand bisulfate anion adsorbed on Pt single-crystal electrodes (J20).The adsorption of sulfate species at polycrystalline gold electrodeswere studied with in situ FT-IR spectroscopy in a HF/KF buffersolution of pH 2.8. This method allowed for the clear distinctionbetween adsorbate and solution features (J21). The redoxprocesses of poly(thiophene-3-methanol)-modified Pt electrodeswere studied by cyclic voltammetry, in situ optical beam deflection,and FT-IR techniques. FT-IR results were used to study theinsertion and release of ions into and from the polymer films (J22).The electrochemical oxidation of thiourea on a Pt electrode wasstudied at different potentials using voltammetry and in situ FT-IR spectroscopy. The chemical changes during the reaction werediscussed (J23). The coadsorption of nitriles and CO on Cu-ZSM-5 were studied using in situ FT-IR spectroscopy (J24). Thevibrational properties of CN-pseudohalide ions adsorbed on aPt(110) single-crystal electrode in aqueous neutral solution werestudied using in situ visible-IR sum frequency generation. Theadsorption behavior of both ions depends drastically on the

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 131R

electrode potential and on the immersion potential (J25). Theadsorption of nitrate ions on Au and Pt electrodes in acid solutionswas studied in acidic solution using in situ FT-IRS. Coordinationon the Au electrodes and reaction products was discussed (J26).Under- and overpotential deposition of hydrogen on polycrystallineplatinum, Pt(100), Pt(110), and Pt(111) surfaces in sulfuric acidicmedium was monitored by IR-visible sum-frequency generation(J27). The urea adlayers formed at the surface of Pt(100)electrodes immersed in urea-containing solutions were character-ized in situ by cyclic voltammetry and FT-IR spectroscopy. Thebonding orientation of the urea at the surface of the electrodewas discussed (J28). The ethanol electrooxidation on a coelec-trodeposited Pt-Ru catalyst was studied by in situ FT-IR spec-troscopy. Only CO2 was detected under the experimental con-ditions that produced acetaldehyde, acetic acid, and CO2 for a Ptcatalyst (J29). In situ FT-IR spectroscopy was used to characterizedoped films of poly(5-amino-1-naphthol) electrodes. These elec-trodes were effective in the reduction of chlorate anions (J30).The electrosorption of CO and CO2 from aqueous solutions ofvarious pH values on polycrystalline Ni and Pd electrodes hasbeen studied using in situ IR spectroscopy techniques. Variousadsorbed species were identified (J31). With the help of in situmultistep FT-IR spectroscopy, two types of adsorbed geminal COhave been observed for the first time at an electrochemicallymodified Rh electrode (J32). The adsorption of CO and interme-diate species in the electrochemical reduction of CO2 to hydro-carbons on a Cu electrode was examined using in situ IRspectroscopy (J33).

The interaction of hydrogen with ZrO2 at high temperatureshas been studied by in situ FT-IR spectroscopy. A proposedmechanism for the uptake of hydrogen by the surface of thezirconia was proposed (J34). The role of surface hydrides andfluorides in the Si-CVD process was studied by in situ FT-IRspectroscopy (J35). The electrochemical reduction of CO2 byelectrogenerated 4,4′-dimethyl-2,2′-bipyridine-Ni and 1,10-phenan-throline-Ni complexes was studied by in situ FT-IR spectroscopy.The reactions of the carbonyl species with these complexes werediscussed (J36). In situ FT-IR has been employed to study theformation of NH3 during reduction of NOx with propane on H/Cu-ZSM-5 in the presence of excess oxygen (J37). A photogravi-metric analyzer with FT-IR has been developed for the monitoringof removal of nitroglycerin from a reaction process. The FT-IRwas used to analyze the nitroglycerin photodecomposition prod-ucts on the surface of immobilized titania (J38). In situ FT-IRspectroscopy has been used for the investigation of the interactionof chlorinated ethylenes (vinyl chloride, 1,1-dichloroethylene,trichloroethylene, and perchloroethylene with the surface ofchromium-exchanged zeolite Y (Cr-y) catalyst. The analysis wasperformed at different temperatures between 25 and 300 °C (J39).In situ FT-IR spectroscopy has been used to study the effect oftemperature on the acid-bridged OH groups of mordenite zeolitewith Si/Al ratios between 5.56 and 23.60 (J40). The initial activityof chromia/alumina catalyst in butane dehydrogenation wasstudied in a flow reactor using on-line FT-IR gas analysis. Thetime resolution for this analysis was on the order of seconds (J41).The mixed-valence isopolyanion Mo6O193

- was investigated bymeans of cyclic voltammography, in situ FT-IR, and UV-visible/near-IR spectroelectrochemical methods. The characteristics of

the anionic species were discussed (J42). The decompositionreaction of methyltrichlorosilane was investigated by an in situIR spectroscopic method. The decomposition products werecharacterized (J43). In situ IR spectroscopy has been used tostudy the interaction of polypeptides and proteins with monomo-lecular films of phospholipids (J44). FT-IR spectroscopy has beenused in the study of new molecular precursors of titanium oxidefor the sol-gel process (J45). In situ FT-IR has been applied tothe study of the conversion of methane to methanol in a gasmixture with Fe-Al-P-O catalysts (J46). The absorptions ofSO2 and CO2 to fresh and aged forms of CaO and Ca(OH)2 havebeen investigated using in situ IR spectroscopy. This studyfocused on the chemistry of SO2 with the deterioration ofcalcareous stone monuments (J47). In situ time-resolved FT-IRspectroscopy was used to study particulate formation in radiofrequency discharges in mixtures of silane, Ar, and N. Anexplanation of the results was discussed (J48). FT-IR was usedto probe the nanostructures of novel polymer/organically modifiedsilicon oxide hybrids obtained from sol-gel reactions of mixturesof tetraethoxysilane and diethoxydimethylsilane in perfluorosul-fonic acid films (J49). FT-IR spectroscopy was used to study thegas-phase thermal decomposition of [Y(TMHD)3], [CU(TMHD)2],and [Ba(TDFND)2‚tetraclyme] under vacuum and at high tem-peratures (J50). In situ IR spectroscopy has been used in thedetermination of high-pressure phase diagrams of methane/heavyhydrocarbon mixtures (J51). In situ FT-IR spectroscopy has beenemployed in the monitoring of the SiC deposition in an industrialCVI/CVD reactor. The gaseous species observed were discussed(J52). In situ FT-IR spectroscopy was used to study syndiotacticpoly(methyl methacrylate) films exposed to high pressure andsupercritical CO2. The effect of mobility changes on spectralfeatures was discussed (J53). The electrochemical reduction ofCO2 by electrogenerated LNi(0), where L was 4,4′-dimethyl-2,2′-bipyridine or 1,10-phenanthroline, was studied using in situ FT-IR spectroscopy (J54). Activation and reduction of CO2 on thebis(1,8-dihydroxynaphthalene-3,6-disulfonato)iron(II) complex-fixed polyaniline/Prussian blue-modified electrode was studied byin situ FT-IR spectroscopy. The site of attachment of the CO2

was discussed (J55). FT-IR has been integrated with a samplingsystem and control software as a continuous emission monitorfor the analysis of volatile organic materials and some inorganiccompounds (J56). In situ FT-IR has been used to characterizethe oxidative degradation of working polymeric light-emittingdevices with active layers of poly[2-methoxy-5-(2′ethoxyhexoxyl)-1,4-phenylenevinylene] (J57). The electrooxidation of methanolon single-crystal surfaces was characterized by the formation ofstrongly adsorbed intermediates. Adsorbed species from thisreaction were detected by in situ FT-IR spectroscopy (J58). Thereactions of acetaldehyde on the surface of CeO2, Pd/CeO2, Co/CeO2, and Pt/Co/CeO2 were examined by FT-IR spectroscopy.Identification of the reaction products was discussed (J59). IRspectroscopy has been used in the analysis of the uniform dryingprocess of the paper process. This analysis gives informationabout temperature distributions along the paper track, supplyingbetter process control (J60). Toluene alkylation with methanolover zeolites has been studied using FT-IR (J61). FT-IR spec-troscopy of CO adsorbed at liquid nitrogen temperatures on zeoliteK-L has aided in the understanding of the interaction of the CO

132R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

with the zeolite surface (J62). IR measurement of single layersand coextruded plastic films has been reported. The applicationof this to measure film thickness has been discussed (J63).

ATR FT-IR was used in the analysis of the in situ adsorptionof alkyl- and (perfluoroalkyl)trichlorosilane molecules on Sisubstrates. The information from this analysis was used todetermine the Gibbs surface excess of adsorbed surfactants (J64).Real-time ATR FT-IR monitoring of M41S-type mesoporous silicatesyntheses were performed which allowed the observation ofsimultaneous changes in both the organic and inorganic phasesof the mixtures (J65). The chemistry of Si(100) and -(111)surfaces during immersion in dilute HF solutions was studied bymultiple internal reflection IR spectroscopy (J66). In situ real-time ATR IR measurements of chemical-etching processes onSi(111) and Si(100) surfaces in NH4F solutions have been carriedout for the first time (J67). The chemical nature of the Si(100)and Si(111) surfaces during immersion in dilute HF solution wasinvestigated using ATR FT-IR spectroscopy (J68, J69). Thedissolution of silicon oxides in hydrofluoric acid at the surface ofa chemically oxidized silicon surface has been characterized byATR IR with a spectrochemical cell (J70). A new ATR FT-IR setuphas been used for the in situ spectroscopic study on the ZnSecrystal surfaces in the range of 600-4000 cm-1. This techniquewas used to study very thin water films on the crystal surfaceand the formation of polysiloxane films with Si-H bonds at thesurface (J71). The vibrational properties of 2,5-dihydroxybenzylmercaptan irreversibly adsorbed on gold electrodes were exam-ined in 0.1 M HClO4 by ATR FT-IR and by FT-IR RAS techniques.The surface features were discussed (J72). In situ FT-IR/internalreflection spectroscopy has been used to study interfacial waternear the hydrophilic surface of a Si single-crystal internal reflectionelement. A depth profile of the H2O structure was examined andreported (J73). In situ ATR FT-IR spectroscopy was used theexamine the extent of adsorption and spatial chain orientation ofadsorbed alkyl phosphate surfactant molecules on alumina. Theeffects on surface properties were discussed (J74). In situcylindrical internal reflection FT-IR (CIR-FT-IR) was used toexamine the behavior of subcritical and supercritical hydrocarbonsprocessing over a Y-type zeolite at high temperatures andpressures (J75). The effect of coke formed by the conversion ofethylbenzene as well as ethylene on the sorption capacity anddiffusivity of benzene and ethylbenzene in H-ZSM-5 was inves-tigated by an in situ FT-IR technique. The coke species formedduring this test were characterized (J76). Using in situ FT-IR ATRspectroscopy, the electrochemical polymerization process of 2,2′-thienylpyrrole monomer in electrolytes containing LiClO4,Bu4NClO4, Bu4NBF4, and Bu4NPF6 was studied (J77). Theinvestigation of the base-acid transition process of emeraldine(polyaniline) has been carried out by in-situ FT-IR spectroscopicmethods (J78). ATR FT-IR spectroscopy, in conjunction with FT-Raman, was used to elucidate the mechanism of the reaction ofbenzonitrile and hydrogen peroxide in alkali medium (J79). Insitu high-resolution FT-IR spectroscopy was used to study thephotopolymerization of C60 film. A C60 dimer structure waspostulated from the results of this analysis (J80). In situ high-resolution FT-IR spectroscopy was used to study the orientationphase transition of a H2O-free C60 film by examining thetemperature dependence of line shift, half-width, and integrated

absorbance of the four fundamental IR-active modes in the high-resolution IR spectrum (J81). In situ FT-IR spectroscopy was usedto monitor the production of air toxics during the pyrolysis andcombustion of benzene and o-dichlorobenzene. The effects oftemperature and Cl concentration on the formation of polynucleararomatic hydrocarbons were discussed (J82). In situ FT-IR wasused to study the polynuclear peroxo complexes formed in aH2O2- cerium(IV) decatungstate ion-reacting system. The effectof H2O2 concentration on complexes and reactions was discussed(J83). The polymerization of 2,2′-thienylpyrrole and the redoxbehavior of the resulting polymer film electrodes were studiedby FT-IR ATR experiments. The polymerization process wasstudied in aqueous solutions of different pH containing NaClO4,LiClO4, and NaBF4 (J84). The electrochemical redox processesof poly(thienylpyrrole) in acetonitrile solutions containing Bu4-NClO4 or Bu4NPF6 were investigated using FT-IR-ATR spectros-copy (J85). The effect of moisture on a model silane couplingagent-modified adhesive bond was studied using FT-IR ATRspectroscopy. The silane studied was vinylbenzyl(trimethoxysilyl)-propylethanediamine hydrochloride (J86). In situ FT-IR ATRspectroscopy has been used to gain a picture of the base-acidtransition of leucoemeraldine, the reduced form of polyaniline inelectrolytes containing KPF6/HPF6, NaClO4/HClO4, and NaReO4/HReO4 (J87, J88). The electrochemical doping and protonationprocess of polyaniline processes have been described using in-situ FT-IR-ATR spectroscopy (J89). In situ FT-IR MIR spectros-copy has been used in the study of the electrosynthesis and redoxprocess of poly(1,5-diaminonaphthalene) (J90). Analytical expres-sions have been derived within the Leveque approximation, forthe steady-state concentration profile of a reactant or stableproduct generated via first-order kinetics at an electrode in achannel-type electrochemical cell under fully developed laminarflow. This study has implications on the application of quantitativeATR FT-IR in a channel-type spectrochemical cell (J91). Theadsorption of acetic acid on the n-CdTe photoelectrode in aqueousand nonaqueous solutions has been studied using ATR FT-IRspectroscopy (J92). Theoretical aspects of the application of in-situ attenuated total reflectance infrared spectroscopy to the studyof a channel-type spectrochemical cell have been developed (J93).The in situ FT-IR internal reflectance spectroscopy (FT-IR IRS)analysis of interfacial water near hydrophilic and hydrophobicsurfaces has led to a better understanding of the water structurenear these regions (J94). In situ ATR FT-IR spectroscopy hasbeen used to investigate the polymerization of aniline on the p-Sielectrode. From this work, a mechanism of the polyanilinesynthesis has been proposed (J95). An ATR IR sensor has beendeveloped and constructed to monitor the progression of chemicalreactions during processing (J96). A model-assisted feedbackcontrol algorithm was developed to manipulate the mold temper-ature and control the curing during liquid composite molding ofsiloxane (J97). In situ IR spectroscopy has been used to studyand model the hydrogenation steps in ethylene hydroformylationon 4 wt % Rh/SiO2 (J98).

The adsorption of phosphate species on the well-orderedAu(111) single-crystal surfaces has been studied with in situ FT-IR spectroscopy. The spectral features of the adsorbed H2PO4

-,HPO4

2-, and PO43- have been identified (J99). The surface

roughness and porosity during the photoelectrochemical etching

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 133R

process has been studied by in situ FT-IR spectroscopy usingmultiple internal reflection techniques (J100, J101). TiO2 singlecrystals were studied in aqueous electrolyte with in situ FT-IR.Both photoinduced evolution of oxygen from the water and theoxidation of model organic compounds can be followed with thistechnique (J102). The role of surface hydrides and fluorides inthe Si CVD process has been studied by in situ FT-IR spectros-copy. The conditions for replacement of hydrides by fluoridesand subsequent etching were reported (J103). The anodicdissolution of p-Si in fluoride media has been studied using insitu IR spectroscopy for various compositions of the electrolyte.The IR spectra of the oxide layer revealed information on thedisorder of the oxide in the current plateau (J104). In situ FT-IRspectroscopy was used to study the adsorption of NO and thereaction of NO with O2 on H-, NaH-, CuH-, and Cu-ZSM-5

zeolites. Decomposition of NO was observed for all catalysts, butthe rates were observed to differ significantly for the differentmaterials (J105). The adsorption of acetone and its coadsorptionwith CO were studied on a solid-state ion-exchanged Cu-ZSM-5

catalyst using in situ FT-IR spectroscopy. Changes in the C-Ostretching vibrational frequencies of the adsorbed species werecharacterized (J106). The adsorption of MeCN and its coadsorp-tion with CO on a solid-state ion-exchanged Cu-ZSM-5 catalystwere studied by FT-IR spectroscopy (J107). In situ IR absorbancespectra of NaVO3 was obtained at pressures up to 300 kbar. Twodistinct phase transformations were observed (J108). In situ FT-IR microscopy has been utilized in the study of the nature,strength, and reactivity of the sorption sites of single crystals ofthe microporous gallophophate cloverite. Two kinds of structuralhydroxyl groups were identified (J109). Dehydrated Cd-ex-changed zeolite HY reacted with H2S to give (CdS)4 in zeolite hostshas been studied by IR spectroscopy. The coordination aroundthe Cd atoms was discussed (J110). The characterization of thecoordination geometry or Cu ions included within zeolites wascarried out with in situ XAFS, photoluminescence, and IR mea-surements (J111). The adsorption of phosphate species onPt(111) and Pt(100) has been monitored by FT-IR spectroscopy(J112). The adsorbed residue originating from the contact of SO2

with smooth platinum electrodes was characterized by in situ FT-IR and cyclic voltammtery in 1 M HF solutions. A potentialdependent spectral feature ranging between 980 and 1020 cm-1

was reported (J113). FT-IR spectroscopy has been employed toinvestigate the effect of both the deposition parameters andsubsequent thermal processing on phosphosilicate glass (J114).In situ IR has been used to study ethylene hydroformylationcatalyzed by silica-supported [Rh12(CO)3O]2- cluster anions. Thecounterions in the study were Li+, Na+, K+, and Zn2+ (J115). Insitu IR studies of the oxydehydrogenation reaction of propane overVPO/TiO2 catalyst indicated the Lewis acid sites are linked toCOx formation and Brønsted sites to propene formation (J116,J117). The reactivity of adsorbed CO toward H on Rh/SiO2

catalyst has been examined by IR spectroscopy. The effect oflinear CO and bridged CO on the reaction was discussed (J118).In situ FT-IR was used to study the oxygen adspecies on SrF2/La2O3 catalyst during the oxidative coupling of methane (J119).The electrooxidation of CO adsorbed on polycrystalline Pt, Ru,Pt0.5Ru0.5, and Pt0.7Ru0 was studied by in situ IR spectroscopy(J120). Internal reflection spectroscopy has been used to obtain

the in situ IR spectra of ruthenium(II) bipyridyl dicarboxylic acidadsorbed to Degussa P25 and sol-gel TiO2 films. The siteadsorption structure was discussed (J121). The adsorption of COon the Au(332) surface was studied by LEED, surface potentialmeasurements, temperature-programmed desorption, and IRspectroscopy. The IR band at 2120 cm-1 was observed to moveto lower wavenumbers with increasing coverage (J122). Theadsorption and reaction of CO on La2O3 has been examined withUV reflectance and FT-IR spectroscopy. The structural featuresof this interaction were discussed (J123). The stretching fre-quency of adsorbed CO (IR) and the 195Pt NMR of Pt catalysts onzeolite-NaY have been correlated. The chemisorption results ofthis study indicate that a steric effect as well as an electronic effectwas operating (J124). FT-IR spectroscopy has been used to studythe protonic sites of HXSM-5 zeolite effects on adsorption ofmethane at low temperatures. These sites are the active sitesfor methane conversion at high temperatures (J125). The phy-sisorption of CO at low temperatures on a catalyst of H-mordeniteembedded into an amorphous silica alumina matrix was investi-gated by FT-IR. The technique provides a means of characterizingthe porosity of the catalyst (J126). The low-temperature methaneadsorption and coadsorption of methane and CO on HZSM-5 andMo/HZSM-5 were investigated by FT-IR spectroscopy. Theassignment of observed bands was discussed (J127). Thecoordination geometry of Cu ions within zeolites was studied usingphotoluminescence and IR spectroscopy (J128). Gravimetricmeasurements with FT-IR analysis were used in the quantitativeanalysis of CO chemisorption on Pt/H zeolites (J129). Thereactivity of Pt metal clusters supported on KL zeolite toward COwas studied by FT-IR spectroscopy at various pressures (J130).The interaction of CO and N2 with ferrisilicate MFI-type zeoliteshas been studied by FT-IR spectroscopy. The surface chemistryof the interaction was discussed (J131). The chemistry of theinteraction of dimethyl ether with H-ZSM-5 zeolites has beenstudied using in situ IR spectroscopy (J132). The effects ofstructural defects and alloying of Pt/ZnO on adsorbed COchemistry have been studied using FT-IR spectroscopy (J133).The surface reactions of CCl4 with zeolites have been examinedby FT-IR spectroscopy. The Fermi resonance observed wasexplained by reaction intermediates (J134). The IR spectra of COadsorbed at 77 K on ZnO ex-carbonate, on CoO and on CoO-ZnO solid solutions have been characterized (J135). The adsorp-tion and oxidation of CO over gold supported on ZnO and TiO2

were studied by FT-IR and mass spectroscopy. Two kinds of siteson the particles were identified (J136). The structure of adsorbedCO on nanostructured Pt-Ru electrode surfaces has beenexamined by FT-IR spectroscopy (J137). IR spectroscopy hasbeen used in the study of metal support interactions in theadsorption of CO on supported platinum in Pt/LTL and Pt/SiO2

catalysts (J138). CO adsorption on high-loading Ni/MgO samplestreated at 800 and 900 °C was studied by IR spectroscopy. Linearand bridged monocarbonyls were characterized (J139). IRspectroscopy was used in the study of the CO stretching modewith respect to Brønsted and Lewis acidity of dealuminated acidZSM 5, ultrastable Y, fluorinated USY, and Y zeolites. Changesin the OH IR bands on the surface of the zeolites were discussed(J140). The measurement of the shift in the stretching frequencyof Brønsted hydroxyl groups on adsorption of a weak base has

134R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

been proposed as a quantitative measurement of the strength ofacid sites in zeolites. This information might prove useful in thedevelopment of catalysts (J141). The IR spectrum of CO adsorbedon Ni(100) has been shown to display an additional high-frequencyband at approximately 2200 cm-1. This absorbance has beenattributed to the internal stretching mode of CO molecules weaklybonded to the Ni surface atoms (J142). The picosecond mid-IRpump-probe experiments were used to study vibrational relax-ation of CO bound to synthetic metalloporphyrins with differentmetal atoms (Fe, Ru, Os), different axial nitrogenous ligands, anddifferently substituted porphyrins (J143). Ag clusters wereprepared by either gas aggregation or matrix aggregation. Theclusters were embedded in CO and CO/Ar matrixes, and the COstretch frequency of the monolayer coverage was discussed(J144). The structure and hydrogen bonding of solid N1-alkyl-arylthioureas was studied by 13C CP/MASS and IR spectroscopy.It was concluded that, with the exception of cyclic dimers of N1

propenethioureas, hydrogen bonding occurs at N1 and N2 of thestructure (J145). The electrooxidation of CO adsorbed onpolycrystalline Pt, Ru, and Pt-Ru alloys has been studied by insitu IR spectroscopy. The effects of increased Ru content on theIR spectrum of the CO stretch vibration were discussed (J146).The Cu2+ ion sites in copper-exchanged ZSM-5 for activation andmethanol synthesis have been studied by XPS and FT-IR spec-troscopy (J147). The adsorption of CO and the coadsorption ofCO and H2 on Ni/Al2O3 catalyst were studied by FT-IR. Theinteraction of the CO molecules with the surface was described(J148). The adsorption of CO2 and CO2/H2 on SiO2-supportedCs-doped Cu catalyst has been examined by FT-IR spectroscopy.Two forms of adsorbed carboxylate were identified also (J149).The adsorption of CO, NO, and C2H4 and reaction of CO+H2 onwell-dispersed FeOx/TIO2 and FeOx/Al2O3 catalysts were studiedwith pulse adsorption and temperature-programmed desorptionof NO and FT-IR. The adsorption properties and reaction productsof the study were discussed (J150). Some Ru and Co carbonylclusters in zeolite pores were prepared by a ship-in-bottletechnique and characterized by FT-IR and EXAFS (J151). SomeCu and Cu-Ni-on-silica catalysts were characterized by IRspectroscopy of adsorbed CO. The interactions of surface specieswere discussed (J152). The adsorption of CO and CO2 on twoseries of palladium-based catalysts was compared by IR spectros-copy (J153). The adsorption of Co on CuO/SiO2 and Cu-ZSM-5

catalysts was studied by IR spectroscopy (J154). The vibrationfrequencies of adsorbed CO molecules on Pd/MgO(100) havebeen examined by fast FT-IR spectroscopy (J155). Both linearand bridged forms of adsorbed CO on Pt/ZrO2 catalyst have beenobserved using FT-IR spectroscopy (J156). IR spectroscopy hasbeen used to study the decomposition of CO2 on a copper-containing methanol catalyst (J157). The transient nature ofadsorbates for the reaction of NO with CO over a 4 wt % Rh/SiO2

catalyst has been studied by in situ IR spectroscopy combinedwith pulse transient techniques (J158). The reactivity of adsorbedCO toward H has been studied using a temperature-programmedreaction technique coupled with IR spectroscopy. This combina-tion provided information on the structure and reactivity ofadsorbates, activation energy, and kinetic data for the COhydrogenation reaction (J159). The adsorption of CO on theMgO(100) surface prepared in situ was studied using polarization

FT-IR spectroscopy. The IR spectra from p- and s-polarizationwere discussed (J160). Physically adsorbed acetonitrile, THF,diethyl ether, and methanol-d in supercritical SO2 on silica gelwere studied by FT-IR at pressures up to 15 MPa (J161). Theacid properties of pure and sulfated zirconias were studied by FT-IR spectroscopy of adsorbed CO and NH3 probe molecules. Twotypes of Brønsted acidic centers and two types of Lewis acidcenters were identified (J162). The oxidation state of Rh/Al2O3

catalyst was investigated by XPS and IR spectroscopy of adsorbedCO (J163). The dynamics of adsorbed species on Rh/SiO2 catalystduring CO hydrogenation to form methane was studied by in situIR spectroscopy combined with steady-state isotopic transient andpulsing CO methods (J164). In situ MIR IR studies of semicon-ducting electrode surfaces have provided information of surfacechemistry of HF-rinsed silicon (J165).

The adsorption and decomposition of N2O over ZrO2 has beenstudied in situ by in situ diffuse reflectance IR Fourier transformDRIFT, TPD, TPR, and XPS. The surface chemistry was dis-cussed (J166). An in situ DRIFTS technique was used in the studyof the active surface species and the reaction mechanism of thevapor-phase hydroformylation of ethene over Co/SiO2 promotedwith various noble metals (J167). DRIFT spectra of two humicsodium salts have been recorded to study structural changescaused by heating (J168). In situ DRIFT spectroscopy has beenintroduced as a method for studying the catalytic surfaces ofmembrane electrode assemblies in working fuel cells (J169). Thecatalytic surfaces of membrane electrode assemblies in directmethanol/oxygen fuel cells were investigated in situ by FT-IRdiffuse reflection spectroscopy. Possible mechanisms for metha-nol, formaldehyde, and formic acid oxidation at the anode surfaceswere discussed (J170). In situ DRIFT spectroscopy was used tostudy both the adsorbed and desorbed species produced on high-surface-area anodes (Pt-Ru, Pt black) and cathodes (Pt black)of direct methanol/oxygen fuel cells (J171). In situ DRIFTspectroscopy has been used in the study of chromia on titaniacatalysts containing different chromium oxide phases used for thelow-temperature selective catalytic reduction of nitric oxide byammonia (J172). In situ DRIFT spectroscopy has been utilizedin the high-temperature study of OD stretching vibrations on thesurface of various Li ceramics. The frequency of the stretchingvibration of the OD group has a strong correlation with the LI/Oratio of the ceramics (J173). Hydroxyl groups on the surface ofLi2O were studied by DRIFTS at high temperatures undercontrolled D2O and D2 partial pressures (J174). Temperature-programmed DRIFT spectroscopy has been proposed to followin situ temperature-programmed reduction and the temperature-programmed programmed desorption experiments of catalystsystems. TPDRIFTS studies of desorption and reduction of aconventional V2O5/TiO2 catalyst have been carried out (J175). Thereaction mechanism of catalytic reduction of nitrogen oxides bypropene in the presence of O2 has been studied by in situ DRIFTspectroscopy (J176). In situ FT-IR ATR spectroscopy with massspectroscopy were used in the kinetic investigation of the reactionmechanism of CO2 methanation over a catalyst (J177). Theoxygenation functions issued from the oxidative thermal treatmentof mesocarbon microbeads at 320 °C were investigated byDRIFTS. Some information about the reaction kinetics andmechanism were discussed (J178).

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 135R

In situ reflection IR spectroscopy with electrochemical modula-tion was used to study the coadsorption of anions for the systemTlads/Pt(111) in dilute H2SO4 and HClO4. Possible structures ofthe Tl-ClO4 and Tl-HSO4 adlayers at Pt(111) were discussed(J179). The potential-dependent structural change and irreversibleanodic decomposition of the self-assembled monolayers of 3-mer-captopropanenitrile and of 8-mercaptooctanenitrile on gold elec-trode were studied by SNIFTIRS (J180). SNIFTIRS has been usedin the study of the structure of the double layer for the systemPt(hkl)/acetonitrile with tetraethylammonium perchlorate andsodium perchlorate electrolytes (J181). The SNIFTIRS resultsobtained on polyaniline films containing heteropoly anions in acidicsolutions have been reported. The report focused on the behaviorof the anions during the redox switching of the polymer (J182).SNIFTIRS has been used to probe the concentration change ofthe perchlorate anion in the electrochemical double layer atAu(100) (J183). SNIFTIRS and two internal reflectance modeshave been used in the study of the surface chemistry of Lielectrodes and nonactive electrodes polarized to low potentialsin LiC(SO2CF3)3 solutions in 1,3-dioxolane and THF (J184). Theelectrooxidation of hypophosphite ions on polycrystalline nickelin alkaline solutions was studied using cyclic voltammetry,chronoamperometry, and in situ IR spectroscopy (J185). SNIF-TIRS studies on the electrooxidation of hypophosphite at poly-crystalline and single-crystal Ni electrodes indicated a processdependent upon the structure of the crystal plane exposed forthe electrolyte (J186). The subtractively normalized interfacialFT-IR technique has been applied to the in situ IR spectroscopicstudy of electrochemical doping of poly(N-vinylcarbazole). Thedoping of ClO4

- anion was shown to be limited by cross-linkingof the polymer (J187). Subtractive normalized FT-IR spectroscopystudies were performed on the electroreduction of CO2 at a Cuelectrode, using isotopically labeled CO2 and HCO3

- in H2O andD2O (J188).

In situ external reflection FT-IR spectroscopy was performedduring cyclic voltametric polymerization of poly(p-phenylene) films(J189). Nitridation of GaAs(001) surfaces grown by MBE wasobserved by detection of reflectance change caused by theformation of Ga-N and As-N bonds by reflection FT-IR spec-troscopy (J190). In situ external reflection absorption FT-IRspectroscopy was used to understand the dynamics of the organic/inorganic interface during crystal growth. The dynamics oftemplate-directed calcite crystallization were studied (J191). Insitu reflectance FT-IR spectroscopy has been used to study theadsorbed species, reactive intermediates, poisoning intermediates,and reaction products of the electrocatalytic oxidation of methanolon Pt-Ru electrodes (J192). In situ IR reflectance spectroscopycombined with spectral simulation has been applied to the studyof the supramolecular structure of ethyl xanthate (C2H5OCS2-)species on cuprous sulfide. The identity of adsorption productswas discussed (J193). External reflectance FT-IR spectroscopywas used to study the electrochemical deposited poly(o-phen-ylenediamine) on a Pt electrode. The film was doped with ClO4

-

and the resulting features were characterized (J194). IR reflec-tance spectroscopy for thin-film measurement has been appliedin the semiconductor industry. This technique has been usedfor the multilayer thickness and doping concentration determina-tions (J195).

The potential-dependent structure change and irreversibleanodic decomposition reaction of a 2-(11-mercaptoundecyl)hy-droquinone monolayer on a gold electrode surface in 0.1 mol/LHClO4 solution was studied by electrochemical in situ FT-IRreflectance absorbance spectroscopy (J196). The effects of Ar,H2/AR, and H2/O2/Ar downstream microwave plasmas on thesurface structure and properties of poly(vinyl chloride) films havebeen studied using in situ IR reflection-absorption spectroscopy(J197). Real-time IR reflectance spectroscopy has been employedto identify the hydrogen incorporation and release process thatcontrol the final hydrogen content of hydrogenated amorphoussilicon films (J198). In situ IR reflectance absorbance spectros-copy has been used to detect reaction products resulting fromthe etching of Si in Cl2 plasmas. The species in the gas phaseand at the surface were characterized (J199). The electrochemicalbehavior of an azobenzene containing a self-assembled monolayer,10-[4-(phenylazo)phenoxy]decane-1-thiol, was examined by in situFT-IR reflection absorption spectroscopy. The process andarchitecture were discussed (J200). In situ reflectance IR spec-troscopy was used in the real-time monitoring of the metallorganicvapor-phase epitaxy growth of InGaAsP films (J201). In situ IRellipsometry was used to demonstrate the efficiency of severalplasmas in the removal of hydrocarbon contamination frommetallic surfaces prior to film deposition (J202). In situ IRreflection spectroscopy has been combined with spectral simula-tion in the study of monolayers of ethyl xanthate formed at acontrolled potential on cuprous sulfide (J203). An approach tothe use of IR reflectance spectroscopy for thin-film measurementin the semiconductor industry has been described. The multilayerthickness and doping concentration of IC wafers can be deter-mined by a single-angle, unpolarized IR reflectance measurementusing an FT-IR spectrometer (J204). Reflectance IR spectra oftungsten oxide films have been used to determine the refractiveindex and extinction coefficients (J205). The behavior of diethylcarbonate electrolyte on lithium with a surface film was examinedby in situ FT-IR spectroscopy. Solvent penetration of the film andreaction with the lithium was observed (J206). In situ IRabsorption spectroscopy was measured for a hot-filament diamondgrowth process. Absorptions of CH4 and C2H2 were detected(J207). In situ IR absorption was used to monitor diamond filmsprepared by hot-filament CVD. The presence of C2H2 in thediamond film was proposed as the active radical in diamondgrowth (J208). The enhancement of copper growth in thechemical vapor deposition of Cu(II) by auxiliary reagents has beenmonitored by FT-IR spectroscopy (J209). In situ IR reflection-absorption spectroscopy has been used for conformational analysisof different regions of partially deuterated fatty acid and phos-pholipid Langmuir films (J210). A versatile, thin-layer cell toperform in situ IR spectroelectrochemistry has been used tomonitor the electrochemical reaction of oxyhalide electrolytes(J211). The interaction of hydrophobic and hydrophilic speciesat the surface of minerals has been studied using in situ FT-IRreflection spectroscopy and ATR FT-IR spectroscopy (J212). Insitu IR spectroscopy was used to monitor the adsorptive andcatalytic events occurring at the gas/solid interfaces during2-propanol decomposition over pure and MnOx-modified aluminas(J213). The atomic layer controlled deposition of silicon nitridehas been studied by FT-IR reflection absorption spectroscopy

136R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

(J214). The real-time in situ observation of deposition and re-evaporation of N-vinylcarbazole polymer on a Ag-coated glass platewas performed using FT-IR RA spectroscopy (J215). Real-timein situ FT-IR RA spectroscopy has been used to evaluate the vapordeposition polymerization of N-vinylcarbazole (J216). ReflectanceFT-IR spectroscopy was used to study the abnormal optic proper-ties of adsorbed CO on a dispersed Pt layer on different substrates(J217). Reflectance absorbance IR spectroscopy has been usedto study the adsorption and oxidation of CO on Pt(110) (J218).Reflectance absorbance IR spectroscopy has been used to ob-served the reversible phase transition between chemisorbed COon Cu(100) with physisorbed overlayers (J219). FT-IR RA spectraobtained for a set of D- and isotopic carbon-labeled ethoxidesadsorbed on the Cu(111) surface have been used to determinethe orientation of the adsorbed ethoxide (J220). The thermaldesorption of CO and NO on MO2C has been studied usingreflectance absorbance IR spectroscopy (J221). The adsorptionand desorption of CO and hydrogen on K-modified Ir(111) hasbeen studied using reflectance absorbance IR spectroscopy (J222).Polarization modulation IR reflectance absorption spectroscopyhas been applied for the first time to the study of the adsorptionof CO on Co(001) (J223). RAIRS has been used to identify andcharacterize three distinct coverage-dependent phases for CO onCo(1010). The orientation of the CO on the surfaces wasdiscussed (J224). The adsorption of cyclohexane on clean andO-modified Ni(111) surfaces was studied by RAIRS. The orienta-tion of the cyclohexane at the surface was discussed (J225).Adsorption of CO on Ni(100) surfaces has been studied byreflectance absorption IR spectroscopy (J226). In situ reflectanceFT-IR has been used for the evaluation of the photoinducedreaction at an aqueous solution/semiconductor interface of a (S)-lysine solution (J227). The coadsorption of H2O and SO3

molecules on Pt(111) has been studied by reflectance-absorptionIR spectroscopy. The structure at the surface of the electrodewas shown to be a double layer (J228). Reflectance-absorbanceIR spectroscopy in conjunction with scanning tunneling micros-copy has been used to study the structure of irreversibly adsorbedcyanide adlayers on a Pt(111) electrode (J229). The nitrous oxidegenerated by the electrochemical reduction of nitrite on apolycrystalline platinum electrode in aqueous HClO4 was moni-tored by in situ FT-IR reflection adsorption spectroscopy. IRobservations were found to agree with on-line mass spectrometry(J230). The interfacial behavior of water molecules at a polycrys-talline gold electrode surface in aqueous sodium halide solutionswas studied by in situ FT-IR reflection absorption spectroscopy.Frequency shift dependence on the electrolyte anion was observed(J231).

The acidity of cloverite was studied by in situ FT-IR microscopyof sorption of probe molecules with varying basicity. Changes inthe cloverite lattice were discussed (J232). Spatially resolved IRmicroscopy was used in conjunction with the contact method toconduct in situ diffusion experiments of photocured polymer-dispersed liquid crystals (J233). In situ diffusion and miscibilitystudies of polymer-dispersed liquid crystals dissolved in a polymermatrix were carried out using FT-IR microscopy. This techniquewas used to study the miscibility of a liquid crystal (E7) in poly-(butyl methacrylate) (J234). Single-bead FT-IR microscopy wasused for the real-time monitoring of the catalytic oxidation of

alcohol to aldehydes and ketones on resin support (J235).Methodology for the in situ IR monitoring and analysis of solid-phase organic reactions has been developed. This technique hasbeen applied to the analysis of solvent diffusion into and subse-quent washout from aminomethyl polystyrene beads (J236). Theinteraction of allylbenzene with oxide catalyst surfaces havingdifferent surface characteristics has been investigated by FT-IRspectroscopy (J237).

A prototype FT-IR-based measurement system designed forcontinuous emission monitoring has been tested in full-scale andpilot plant-scale fossil fuel-fired combustors. The results of theseapplications are discussed (J238, J239). IR absorption spectra ofmolecular clusters formed in a supersonic free jet expansion weremeasured at various conditions. Cluster size and distribution werediscussed (J240). Emission IR spectroscopy has been demon-strated to be an effective technique for in situ analysis of reactionintermediates and adsorbed species during chemical vapor deposi-tion of Si-based films at high temperatures (J241). In situ IRspectroscopy was used to study the intermediates of the reactionof NOx reduction with propane in excess O2 on Cu-ZSM5- zeolites(J242). FT-IR technology has been successfully applied to themonitoring of emission gases from an oil refinery. This techniquemonitors CO2, SO2, NOx, NH3, and HCl in the presence of H2O(J243). Gas-phase FT-IR has been applied to the on-line analysisof effluents containing trimethylamine and methanol quantitativelyusing PLS (J244).

NIR spectroscopy has been used to develop a method for thedetermination of lubrication properties of oils (J245). On-line NIRmonitoring to a polyol process resulted in a decrease in productionof out-of-specification material and increased the plant throughput(J246). A proposal for the use of mid-IR spectroscopy to providelinear calibration numbers to calibrate on-line NIR monitors withnonlinear features has been suggested (J247). On-line NIR inhostile environments has been shown to be advantageous in manyincidents. The calibration problems have been noted, but thehighly precise results from the NIR is a strong drawing point(J248). A report has been written on the practicality of keepingNIR working in an industrial environment. Calibration modeltransfer and maintenance were two topics covered (J249). NIRspectroscopy has been applied to the noninvasive on-line detectionof cortical spreading depression in the pentobarbital-anesthetizedrat (J250).

An automated system for the on-line monitoring of powderblending processes has been developed and applied to give a real-time determination of blend homogeneity (J251). NIR spectros-copy has been evaluated as an on-line technique to monitor thehomogeneity of a pharmaceutical blend containing 10% sodiumbenzoate, 39% microcrystalline cellulose, 50% lactose, and 1%magnesium stearate. The experiments were carried out usingfiber optics, a commercially available NIR spectrometer, and ablender (J252).

The suitability of diffuse reflectance NIR spectroscopy as anon-line method to monitor process streams was tested in a pilotplant-scale oil sand extraction plant. The feasibility of monitoringfeed stream conditions was demonstrated by principal componentanalysis of the measured spectra (J253). Diffuse reflectance NIRspectroscopy was applied in an at-line process analytical interfaceto determine moisture content in bulk hard gelatin capsules. No

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 137R

sample pretreatment was required, and the analytical time was1-2 min (J254).

The need for stable, high-quality process NIR and IR spectro-scopic analysis has been discussed. Steps to condition thesamples prior to analysis have been presented (J255). A methodhas been developed for the NIR monitoring of the crackingproperty of a feed to a steam cracking process (J256, J257). NIRusing a ripple calibration technique has been described andapplied to the characterization of web thickness and coatingmonitoring (J258). A new on-line process control spectrometerfor measurements from the UV to the IR has been developed andtested in combustion gas analysis of a waste incineration plant(J259). A high-pressure and temperature in situ transmission IRreactor cell has been developed and applied to the study ofadsorbates in CO hydrogenation and NO-CO reaction on Rh/SiO2 (J260). A transmission IR cell of simple construction hasbeen developed to study heterogeneous catalysis in situ. The cellwas demonstrated on the catalytic NOx removal (J261). Ageneralized mathematical treatment has been developed thatenables the quantitative analysis of various in situ spectroscopicexperiments involving detection of solution-phase species gener-ated at the surface of a rotating disk and ring disk, channel, andtube-type electrodes under steady state (J262). An attempt atapplication of modern IR spectroscopy as a noncontact-nonde-structive technique for evaluation of chemical processes has ledto an improved sample handling system. Use of this has beenrecommended for off-line as well as on-line applications (J263). Afixed-volume sample of a reaction mixture of a chemical processhas been injected into a liquid carrier stream. The stream waspassed through an IR detector which was used to monitor aspecies of the reaction mix (J264). Chemometrics has beenapplied to the NIR monitoring of the manufacturing of ethylglucoside fatty ester (J265).

A closed loop on-line NIR spectrometer has been used in theanalysis of the gasoline blending process. This has enabled theoperation to gain tighter control of the octane number of theirprocess (J266). On-line prediction of 10 gasoline propertiesincluding research and motor octane numbers, vapor pressure,API gravity, and aromatic contents were carried out using NIRspectroscopy and fiber optics (J267). NIR spectroscopy with fiberoptics has been used in on-line determination of hydrocarbongases at a petrochemical plant in mixtures of ethane, ethene,propane, and propene (J268). Fiber-optic FT-IR spectroscopy hasbeen applied to the in situ monitoring of input partial pressuresof organometallic precursors in a vertical rotating-disk OMVPEreactor (J269). A novel H2O-cooled mid-IR fiber-optic probe withcalcogenide fibers and a ZnSe internal reflection element has beenuse in the in situ analysis of an acid-catalyzed esterification reactionin toluene at 110 °C (J270). An IR fiber-optic sensor has beendeveloped for the in situ detection of chlorinated hydrocarbonsand other pollutant species in water (J271). NIR process applica-tions focused on the use of fiber optics and probes to interface tothe process have been carried out in single-point and multiple-point NIR process analysis. The technique has been reported toproduce a result in 45 s or less (J272). NIR spectroscopy usingfiber optics has been applied as a monitor of homogeneous andheterogeneous reactions. This technique has been applieddirectly to full-size chemical reactors (J273).

Imaging NIR radiometry has been employed successfully forradiance measurements of the closed coupled atomization of nickelbase superalloys. The technique provides opportunities for real-time process control feedback (J274). A spatially resolved IRimaging technique has been developed to monitor the linearadsorbed CO coverage on supported catalyst surface to betterunderstand the dynamics of spatitemporal patterns on heteroge-neous catalyst (J275).

NIR spectroscopy has been used as a process monitor for theanionic polymerization of styrene and isoprene in cyclohexane andin THF (J276). In situ real-time NIR monitoring has beendemonstrated in the reaction of phenyl glycidyl ether with anilineand bisphenol A diglycidyl ether with 1,8-diaminonaphthalene inand epoxy resin-amine reactions (J277). The esterificationreaction between acid or anhydride and an alcohol has beenmonitored by NIR spectroscopy for both small molecules (J278)and polyesters (J279). NIR has been used to measure and controlproperties of polyamide formation in the manufacturing of poly-amide yarn (J280). The application of IR and UV photometers inthe continuous monitoring of product purity has been discussed(J281). The thermal elimination of NaCl from sodium chloro-acetate, a polymerization reaction that takes place between 150and 200 °C in the solid state, has been monitored by in situ IRspectroscopy. The polymerization process, intermediates, endgroups, and byproducts have been explained from these results(J282). Direct control of fermentation by on-line NIR spectroscopyhas been described (J283). NIR spectroscopy has been shownto provide tighter process control, greater process knowledge,and improved product quality assurance in fermentation processanalysis (J284). NIR spectroscopy has been applied to the processcontrol of antithrombin III production using a partial least-squaresalgorithm (J285). NIR spectroscopy has been applied to thepostconsumer package identification. A correct classification rateof better than 97% for six major types of packages in householdgarbage was reported (J286).

An aqueous supercritical fluid extraction (SFE) FT-IR spec-troscopy technique was used to monitor dodecane in waterranging from 200 to 12.5 ppm (J287). A simple on-line SFE FT-IR transmission cell has been used to obtain both qualitative andquantitative information about analytes in supercritical fluids(J288).

A review has been written on the available spectroscopictechniques for the in situ study of combustion chemistry occurringin an internal combustion engine chamber (J289).

FT-IR spectroscopy has been used in the study of fluorinedopant levels in plasma-enhanced chemical-deposited fluorinatedsilica glasses. The effects of dopant levels on peak positions,areas, film thickness, and physical properties were reported (J290).FT-IR spectroscopy has been used to monitor exhaust gasesproduced from the plasma-supported gas-phase cleaning ofPECVD facilities (J291).

A list of Internet sites has been presented which may be ofinterest to anyone dealing with IR and near-IR spectrochemicalanalysis (J292). A new mathematical correction method has beendeveloped for on-line film thickness determination for FT-IRanalysis incorporating both optical interference and absorptionmethods (J293). FT-IR spectroscopy has been applied to theanalysis of pollution prevention systems in ceramic processing

138R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

(J294). FT-IR has been applied to the determination of chemicalconcentrations of constituent classes of hydrocarbon feed to acatalytic cracking process (J295). Discriminant analysis usingprinciple components of mid-IR spectral data has been shown tobe a powerful quality validation tool for manufacturing processes(J296). Initial studies on open-path FT-IR for measurements at arefinery, chemical plant, and natural gas processing facility haveproven promising. The effects of water vapor interference havebeen reduced using software algorithms (J297). The open-pathFT-IR technology was applied for a four-week period around theprocess area of an industrial chemical facility. Methods for dealingwith background collection, quality assurance techniques, predic-tion modeling, and data storage, presentation, and retrieval werediscussed (J298). The translational energy of CO2 produced fromCO oxidation on Pd foil at 600 K was studied using high-resolutionIR chemiluminescence spectroscopy. The rotational structure ofcertain vibrational transitions was fully resolved using a FT-IRspectrometer operating at 0.006-cm-1 resolution (J299). Thistechnique has also been applied to the catalytic oxidation of COon Pt(110), Pt(111), and polycrystalline Pt surfaces. The vibra-tional temperatures of the resulting products were discussed(J300). A combined IR and MS technique has been used todetermine extinction coefficients of adsorbed CO on the 4% Rh/SiO2 catalyst. The procedure provides a fast and accurate methodfor the determination of extinction coefficients of adsorbed surfacespecies (J301). The structure of a triruthenium ketenylidenecluster deposited on MgO, SiO2, and SiO2-Al2O3 has beenexamined by FT-IR and Raman spectroscopy (J302). A cell andoptics design for in situ far-IR spectroscopy study of electrodesurfaces using synchrotron radiation has been discussed. Precau-tions necessary for good results were also discussed (J303).Explanations on application of interferometer- and grating-basedIR spectrometers on process analysis with calibration strategieshave been published (J304).

Octane number has been calibrated successfully with accuracyand precision sufficient for ASTM conformance using an acous-tooptic process spectrometer (J305). Oxidation of CO over apalladium/zirconia catalyst obtained from an amorphous Pd25Zr75

precursor was investigated by time-resolved FT-IR spectroscopy(J306). Two types of adsorbed geminal CO have been observedfor the first time at an electrochemically modified Rh electrodeusing in situ multistep FT-IR spectroscopy (J307). The reactionof dimethylaluminum hydride with photochemically depositedhydrogenated amorphous silicon was studied in situ with polariza-tion modulation IR spectroscopy (J308, J309).

ENVIRONMENTAL ANALYSISA review of the environmental applications of near-IR spec-

troscopy was presented (K1). The use of FT-IR for monitoringprocesses at coal-fired power plants was reviewed (K2). FT-IRwas included along with other spectroscopic techniques in areview of methods for studying combustion chemistry in aninternal combustion engine chamber (K3). The use of IRtechniques such as DRIFT and ATR for soil analysis was describedin a review (K4).

FT-IR, NMR, and chromatographic techniques were used inthe differentiation of chlorinated dibenzo-p-dioxin isomer pairs(K5). Seven tetrachlorobutadiene isomers were identified using

ab initio calculations and GC/MS/FT-IR (K6). The absorptionof SO2 and CO2 on CaO and Ca(OH)2 was studied by in situ IR(K7). Results from this study may aid in understanding howpolluted air can lead to the deterioration of stone monuments andbuildings. IR and X-ray diffraction methods for determination ofquartz in coal and airborne dust were compared (K8).

Motor oil contamination in sandy loam was determined usingnear-IR reflectance spectroscopy (K9). Hazardous organic com-pounds were detected in sandy soil using IR fiber-optic sensors(K10). An IR method to screen soil samples from waste sites forexplosives, pesticides, and some volatile or semivolatile organicswas discussed (K11). Explosives in soils were detected via thepyrolysis products using tunable infrared laser differential absorp-tion spectroscopy (TILDAS) (K12). An FT-IR spectrometer andfiber-optic probe were used for real-time analysis of soil for organiccontaminants (K13). FT-IR was among the techniques used toinvestigate the inorganic compounds present in coal ash frompower plants (K14). The use of a polypropylene filter and IR forthe quantitative determination of respirable cristobalite in airbornedust was reported (K15).

Chemometrics and a near-IR analyzer that uses acoustooptictunable filter (AOTF) spectrometry were employed to identifyorganic contaminants in pretreated wastewater (K16). Volatileorganic compounds (VOCs) were detected in water using solid-phase microextraction of the VOCs into Parafilm and IR analysisof the Parafilm (K17). Chlorinated pesticides in water wereconcentrated into a chloroparaffin-plasticized PVC coating on anATR element or optical fiber and analyzed by FT-IR (K18). ATeflon-coated silver halide optical fiber was evaluated as a sensorfor the FT-IR analysis of chlorinated hydrocarbons in water (K19).Herbicides in river water were identified by liquid chromatogra-phy/FT-IR (K20). Low concentrations of hydrocarbons in waterwere detected by coupling an aqueous supercritical fluid extractionvessel to an FT-IR spectrometer (K21). An evanescent fieldabsorbance sensor operating in the near-IR region was used forthe detection of hydrocarbons in water (K22). A filter-basedinfrared analyzer for measurement of oil contaminants in waterwas described (K23). Reports were published on the evaluationof IR sensors capable of detecting oil spills on water at night (K24,K25). The nondispersive IR organic carbon analyzer and the CO2

coulometer were compared as methods for the determination ofdissolved inorganic carbon (DIC) in water (K26).

Examples were given to illustrate how process analysismonitors can be used for pollution control (K27). The desorptionof greenhouse gases (CO2, N2O, H2O) from a thin film of poly-(methyl methacrylate) was followed by FT-IR (K28). The impactof the ban on the manufacture of Freon 113 was discussed inrelation to the IR analysis of water or soil for hydrocarbons (K29).A paper was published that describes the design and use of amicromachined, integrated optical bench for a carbon dioxide IRsensor (K30). Quality assurance measurements for consistentinstrument operation and performance prediction of passive FT-IR data collection systems for air analysis were developed (K31).In another paper, the quality assurance aspects for FT-IR analysisusing a short cell and high concentrations of gases wereconsidered (K32).

Gas analysis is an important aspect of monitoring the environ-ment. A number of devices for the analysis of gases by IR

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 139R

spectroscopy were described in various papers. These include atubular IR waveguide sensor with a functionalized self-assembledmonolayer (K33), fiber-optic sensors for on-line gas monitoring(K34), a portable FT-IR, real-time, gas analyzer (GASMET) (K35),an IR imaging volatile organic carbon field sensor (K36), anintercavity diode laser near-IR spectrometer (K37), and a dual-cell extractive FT-IR ambient air monitor (K38).

Sources of noise in FT-IR instruments used for trace gasanalysis were the subject of an investigation (K39). Heatedextractive FT-IR was used for the analysis of volatile emissionsfrom production facilities (K40). Fugitive emissions (carbontetrachloride, 1,3-butadiene, propane) from piping componentswere analyzed with a portable IR analyzer (K41). Trace gasanalysis was carried out by means of a Midac FT-IR equippedwith a multipass cell and Grams/386 software (K42). FT-IR wasused for time-resolved air monitoring for methyl bromide con-centrations after fumigation of buildings (K43). Ammonia andHCl were detected in flue gases using a GASMET gas analyzer(K44). The IR spectra of 18 hydrochlorofluorocarbons andhydrofluorocarbons were measured and used to calculate radiativeforcing and global warming potentials (K45). A portable FT-IRwas used for the measurement of hexahydrophthalic anhydridein air at a manufacturing site (K46). Volatile organic compoundsand some inorganic compounds were detected on-line using anFT-IR spectrometer as a continuous emission monitor (K47). IRspectroscopy and gas correlation techniques were used for thevisualization of gas flows (K48). FT-IR was used for the deter-mination of consumer exposure to solvents during paint strippingoperations (K49). An algorithm was developed for quantitativeanalysis of the FT-IR spectrum of a chemical plume (K50).

Several papers outlined the use of FT-IR spectroscopy for theanalysis of emissions from the burning of coal (K51-K54). FT-IR has also been used as a continuous emission monitor for stackgas at an oil refinery (K55) and incinerator (K56). In situ andextractive FT-IR techniques for the analysis of compounds fromincineration of chlorinated hydrocarbons were discussed (K57).Quantitative analysis of the toxic gases produced during chemicalquenching of JP-8 fuel fires was performed using FT-IR spectros-copy (K58). FT-IR spectroscopy and a chemometric technique(partial least squares) were investigated as a means to obtain theconcentrations of compounds in the smoke from burning textiles(K59).

Sampling techniques and FT-IR methods for analysis ofnonmethane organic gases in automotive exhaust were presented(K60). The gases from aircraft engine exhaust were analyzed byan on-board FT-IR spectrometer (K61). An emission FT-IRtechnique was used to detect water, carbon dioxide, and carbonmonoxide in aircraft engine exhaust (K62). Nitric oxide, nitrogendioxide, and water were measured in aircraft engine exhaust witha tunable IR diode laser system (K63). FT-IR spectroscopy wasused in a study of vehicle exhaust emissions from oxygenatedfuel blends (K64). Four analyzers are normally used to testvehicle emissions for CO, CO2, NOx, and total hydrocarbons forthe IM240 inspection test. The results from an FT-IR analyzerwere compared to those of the four analyzers (K65). FT-IR wasused in studying the catalytic conversion of NOx (K66).

The use of IR spectrometry for the analysis of certain gases(such as ClO, NO, and HCl) in the upper atmosphere was

reviewed for the period from 1969 to 1992 (K67). Chlorinemonoxide was detected in the lower stratosphere via FT-IRmeasurements (K68). Ground-based FT-IR was used in thedetermination of the concentration of ozone in the atmosphere(K69-K71). A passive remote IR sensing system for monitoringatmospheric pollution was discussed (K72). The CO columnabundance in the atmosphere over Tokyo was measured by IR(K73). Column densities of various trace gases were obtainedby high-resolution FT-IR solar absorption spectrometry (K74).Considerations for using IR to determine the distributions of nitricacid and nitric oxides in the Earth’s atmosphere were discussed(K75). The use of a ground-based FT-IR spectrometer as a remotemonitoring device for pollutants such as CFCs was reported (K76).The influence of aerosols and cloud absorption on the FT-IRdetermination of atmospheric pollutants was studied (K77). Mid-IR measurements of the atmosphere above the South Pole yieldedinformation about water vapor content, trace gases, temperatureprofiles, and aerosols (K78). Trace gases in the atmosphere(including HCl and ClONO2) were detected from a high-resolutionFT-IR spectrometer operating from a stabilized balloon gondola(K79). A high-resolution FT-IR spectrometer carried on an aircraftand used for remote sensing of atmospheric emission wasdescribed (K80). The HBr profile in the stratosphere wasmeasured via far-IR emission spectroscopy (K81). A reviewcovered the remote sensing of Earth’s atmosphere from spacevia IR (K82). Another review discussed far-IR remote monitoringof the atmosphere (K83). An FT-IR that will be placed on asatellite (CESAR) and used to monitor trace gases in theatmosphere was described (K84). A review discussed the use ofmid-IR tunable diode lasers for monitoring trace gases in theatmosphere and remote sensing of exhaust gases (K85). Anairborne tunable diode laser IR spectrometer (FLAIR) was usedin the measurement of trace gases in the troposphere (K86).

NIR tunable diode laser systems that use fiber optics weredescribed. The instruments can be used for stack monitoring(K87). An IR emission spectrometer carried on an aircraft wasused to monitor a number of gases from wildfires in the westernUnited States (K88). Methods for achieving background sup-pression to facilitate FT-IR monitoring of volatile organic com-pounds were discussed (K89). Fourier transform near-IR spec-troscopy was used for remote monitoring of volatile organiccompounds (K90). Remote sensing of smoke stack plumes wasachieved with high-resolution FT-IR spectroscopy (K91, K92). Thefeasibility of remote measurement of HNO3 and SO2 in aircraftexhaust gases was investigated through computer modeling ofthe IR spectra of the exhaust plume (K93). Industrial fugitiveemissions of hydrocarbons were measured by the FT-IR tracermethod (FTM) (K94). A new remote optical fiber sensor for near-IR detection of CO2 was reported (K95). Near-IR vapor sensorswere developed that depend on the detection of compoundsadsorbed on thin-layer chromatography plates (K96). An in situmonitor for underground waste sites uses an FT-IR system and afiber-optic reflectance probe (K97). A fiber-optic IR reflectanceprobe was also used in the remote detection of trichloroethylenein soil (K98). Band-pass digital filtering and linear discriminantanalysis were applied to portions of the interferogram data froma passive FT-IR system in order to detect trichloroethylene vaporin the presence of other chemicals (K99). The reactions of

140R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

alumina powder with halomethanes were studied by in situ FT-IR as part of an investigation of the impact of alumina from solid-propellant rocket motors on the chemistry of the stratosphere(K100).

The application of open-path FT-IR at three Shell Oil sites wasdiscussed (K101). An automated open-path FT-IR system wasused to monitor volatile organics from a wastewater treatmentplant (K102). The gases produced from controlled biomass fireswere detected by open-path FT-IR at 0.12-cm-1 resolution (K103).The use of open-path near-IR tunable diode lasers for the detectionof fugitive emissions was reported (K104, K105). Air pollutantsin a petrochemical industrial park were measured with open-pathFT-IR remote sensing techniques (K106, K107). Indoor tracergas concentration profiles were obtained with an open-path FT-IR spectrometer and computed tomography (K108). These twotechniques were also used to obtain two-dimensional maps of airpollutants (K109). Open-path FT-IR analysis of emissions fromvolcanoes and extractive FT-IR analysis of gases from pollutedgroundwater were discussed in a study describing the use of FT-IR for environmental monitoring (K110). Open-path FT-IR incombination with synthetic calibration was found to be useful forthe analysis of smoke from biomass fires (K111). The effects ofspectral resolution on open-path FT-IR measurements wereinvestigated (K112-K114). The U.S. EPA has contracted thedevelopment of standardized procedures (document TO-16) forobtaining quantitative data from FT-IR remote sensors. Thecontents of these procedures were described (K115). Detailswere provided on methods for estimating emission rates fromnonhomogeneous fugitive sources using open-path FT-IR (K116).The results of an open-path FT-IR field study of air pollutants bythe API and U.S. EPA were presented (K117). Both FT-IR andUV systems were used at a Superfund site in an evaluation ofopen-path fenceline monitoring and emission rate estimation(K118). Open-path FT-IR and UV were also used to monitorvolatile organics during excavation at a petroleum refining site(K119). Modeling techniques to estimate emissions from airpollution sources by open-path FT-IR were reported (K120).Quality assurance programs for open-path FT-IR air monitoringat 20 U.S. industrial plants and waste sites were reviewed (K121).A fence line FT-IR monitoring system around the perimeter of anindustrial facility was described (K122). An exposure chamberwas used in the evaluation of the accuracy of an open-path FT-IRspectrometer (K123). The use of open-path FT-IR for measure-ment of air pollutants in industry and agriculture was discussed(K124). The design of an open-path atmospheric monitor contain-ing an acoustooptic tunable filter for emission spectroscopy andlasers for mid-IR and far-IR absorption spectroscopy was described(K125). The methodology used in open-path FT-IR monitoringof a process area was presented along with recommendations forimprovement (K126). The results of open-path FT-IR measure-ments at a Kodak industrial complex and the Hanford site werereported (K127, K128). A paper detailed the use of a program tocalculate open-path FT-IR reference spectra for temperatures atwhich no spectra are available (K129). A report was presentedon the methods used in a training course in Taiwan on open-pathFT-IR technology (K130). Calibration of an open-path FT-IRspectrometer via multipass cells was described (K131, K132).

CARBON AND CARBON COMPLEXESCarbon cluster anions, trapped in an Ar matrix, were studied

spectroscopically. New bands found in the IR spectra wereassigned to asymmetric stretching modes of the C3, C5, C7, andC9 anions (L1). The IR spectra of neutral linear carbon clusterswere studied in Ne, Ar, and Kr matrixes. Thermal annealing andhigh-level ab initio and density functional theory calculations wereused to locate unknown bands of C8 and C9 clusters (L2). Then7 stretching mode of the linear C9 carbon cluster has beenobserved at 1601.0 cm-1. Comparison to isotopic shifts andtheoretical calculations confirm the assignment (L3). Two previ-ously identified fundamentals, n4 of the linear C7 cluster, wereconfirmed using 13C isotopic shifts and theoretical calculations(L4).

New assignments for the silent-mode vibrational frequenciesin C60 are proposed that are consistent with the Raman and IRspectra, isotopically induced frequency shifts, and theoreticalcalculations (L5). The room-temperature IR and Raman spectrafor the pressure-induced rhombohedral, tetragonal, and orthor-hombic C60 polymers and the C60 photopolymer have beenexplored (L6-L8). Fluorinated C60 fullerenes were examinedspectroscopically (L9). A quantitative IR method has beenestablished for the determination of C60/C70 concentrations inmixtures (L10).

The influence of the method of deposition on the atomic scalestructure of amorphous hydrogenated carbon has been analyzedusing IR spectroscopy and inelastic neutron spectroscopy (L11).The bonding configurations of hydrogen in hydrogenated amor-phous carbon (a-C:H) has been studied using IR spectroscopyand thermal effusion experiments (L12). IR spectroscopy wasused to examine thin solid films of hydrogenated amorphouscarbon under conditions near decomposition (L13). Structuralchanges induced by nitrogen doping amorphous hydrogenatedcarbon films hacw been investigated using IR and photolumines-cence spectroscopy (L14). An IR analysis of amorphous hydro-genated carbon films has been performed to determine the sp3/sp2 ratio (L15).

Infrared and Raman spectroscopies were used to characterizethe structural changes that occurred in hydrogenated diamond-like carbon film upon implantation with heavy energetic ions(L16). The interactions of hydrogen and methyl radicals withdiamond (C111) surfaces were examined using IR-visible sum-frequency vibrational spectroscopy (L17).

The interactions between acetone and pure carbon surfacesand carbon surfaces doped with cations (Ni2+, Cu2+, Cr3+) wereexplored. The IR spectra indicate that acetone can be bothphysisorbed and chemisorbed on the pure carbon surfaces.Acetone can also be used to probe the surface for Lewis acidicsites (L18).

The measurement of C13/C12 ratios in carbon samplesconverted to CO2 gas can be accomplish using IR spectroscopy(L19). Pressure broadening of the 2350-cm-1 band permittedisotope ratio differences of 0.02 at. % above the natural abundanceof 1.11 at. % to be detected (L20).

The far-IR spectra of carbon disulfide under high pressure ina diamond anvil cell did not reveal a solid-state phase transition.The intramolecular bonding weakens at high pressure and theintermolecular bonding increases at the pressures studied (L21).

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 141R

The distribution of functional groups in coal macerals can beexamined using reflectance IR microspectroscopy. The techniqueyielded information on the character of aliphatic chains of vitriniteand liptinite macerals from high-volatile bituminous coal and canbe used to study the degree of oxidation and reactivity of vitriniteand semifusinite (L22). Specular reflectance IR microspectros-copy was also used to account for reflectance anomalies seen inthe Brent coal series of the North Sea. The variations in thechemistries of the vitrinites and oxidation biased the reflectancemeasurements (L23). Self-deconvolution and curve-fitting of theIR spectra of coal varying in rank were used to gain additionalinformation on structural changes that occur during coalification(L24). Chemical treatment modification of coal samples wasfollowed using diffuse reflectance IR spectroscopy (L25). Theweathering process in stockpiled coals, including zones wheresigns of high oxidation and self-ignition, were studied using IRspectroscopy (L26).

The coal properties of volatile matter, fixed carbon, ash, carbon,hydrogen, and vitrinite reflectance could be successfully deter-mined from models based on derivative diffuse reflectance IRspectroscopy (L27). Compressed infrared data from osculatingpolynomials gave slightly better correlations for these sameproperties of coal (L28).

The middle oil fractions of high-temperature coal tar wereexamined and chemical components identified using gas chro-matography/infrared spectroscopy (L29).

Chemical changes that occurred during thermal decompositionof rockrose to produce char and activated carbon have beenexamined using IR spectroscopy (L30). IR spectroscopy has beenused in a comprehensive program to elucidate the structure andreactivity of carbon black (L31). Multicomponent absorptionkinetics of gases in activated carbon was studied by a batchabsorber IR technique and compared to a model for predictingmulticomponent dynamics in a differential adsorption bed system(L32).

CHEMICAL REACTIONS/ORGANIC CHEMISTRYHydrogen-Bonding Studies. Infrared studies of the hydra-

tion of di-, tri-, tetra-, and pentamethonium halides supported theformation of planar hydrate clusters (M1, M2). The hydrogen-bonded complexes between N-methylsuccinimide and phenolswere investigated (M3). The associative interactions of hydrop-eroxides to form hydrogen-bonded dimers and complexes withcycloalkanones were studied (M4). Hydrogen bonding in imida-zolium salts was studied, and the implications for the structureand solvent properties of the ionic liquids were discussed (M5).The infrared spectra of associated molecules of N-methylacetamidewere calculated and compared with experimental data (M6). Theintra- and intermolecular H bonds between the H on the N andthe ferrocenyl for N-methylferrocene aniline compounds werestudied (M7). The FT-IR spectra of the H-bonded complexesbetween HCl and substituted pyridines, benzimidazole, purine,and 4-aminopyrimidine were investigated (M8). Crown ethercomplexes with urea and thiourea showed significant differencesin their respective interactions (M9). The influence of hydrogenbonding in 3-hydroxyazabicyclo[2.2.2]octane pentachlorophenolatewas described (M10). The geometry and complexing ability of

aminoquinolines in carbon tetrachloride solutions were examined(M11).

Near-infrared was used to study the hydrogen bondingbetween thioacetamide and N,N-disubstituted benzamide deriva-tives in CCl4 (M12). The hydrogen-bonding influence on themolecular vibrational spectra of liquid methanol was studied bymolecular dynamics simulation (M13). The IR bending vibrationalband of water in aqueous haloethanol mixtures was studied as ameasure of hydrogen-bonding strength (M14). FT-IR studies ofhydrogen bonding between unsaturated esters and several alco-hols were correlated with the enthalpy of hydrogen bond forma-tion (M15). The infrared absorption spectra of acetone andmethanol mixtures in a solid argon matrix showed H-bondinteractions (M16). The integrated intensities of bent hydrogenbonds in o-dialkylaminomethyl phenols and deuterated analogueswere measured (M17). An infrared study was done of intramo-lecularly hydrogen-bonded aromatic carbonyl-containing com-pounds in various solvents (M18). The hydrogen bonds indifferent crystal phases and melts were determined for a groupof alcohols derived from 2,2-dimethylpropane (M19). Substituenteffects on hydrogen bonding were measured for ortho-substitutednitrobenzenes and 2,4-dinitrobenzenes in chloroform and aceto-nitrile (M20). Complexes of five pyridines and nine pyridineN-oxides with 2,6-dichloro-4-nitrophenol were studied by infraredspectroscopy (M21). The far-infrared hydrogen bond vibrationwas studied as a function of the pKa of the donor or acceptormolecules for systems of complexes (M22).

The self-assembling properties of pyridone and the structure-breaking effects of organic solvents were investigated (M23). Theself-association of several N-urethanyl-L-amino acids in carbontetrachloride was investigated by FT-IR (M24). A potassium saltof acetylenedicarboxylic acid was used as a model to study astrongly hydrogen-bonded system (M25). The hydrogen bondstructure in benzoic acid solutions was investigated (M26). Theinfluence of intramolecular hydrogen bonding on the structureand photoisomerization of urocanic acid derivatives was studied(M27). The hydrogen bond energies of crystalline carboxylic acidsalts were determined (M28). Differences in the types ofhydrogen bonding occurring in oxamic, malonamic, and succi-namic acids in the solid state were investigated (M29, M30).Hydrogen bond structures of partially methylated p-tert-butylcalix-[6]arenes were investigated in both solution and the solid stateby FT-IR (M31). Infrared was used to characterize the crystaland molecular structure of new diketone enols designed to haveknown packing features (M32). The interaction by hydrogenbond formation of 1,1,1-trichloro-2-methyl-2-propanol with someethers and acetone in CCl4 was investigated (M33).

An infrared study was done in the region of the fundamentalNH stretching vibration for six N-methylbenzamide-aromaticdonor systems (M34). The infrared spectra of butyl halidesdissolved in CCl4 and deuterated DMSO were investigated todetermine the degree of hydrogen bonding occurring (M35).Intramolecular hydrogen bonding in 8-hydroxy-N,N-dimethyl-1-naphthylamine was studied (M36). An FT-IR study of the protonpolarizability and Fermi resonance effects as a function oftemperature for hydrogen-bonded systems in Mannich bases of2,2′-biphenol was done (M37). The temperature effects onhydrogen-bonded complexes of NH donors with proton acceptors

142R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

were studied (M38). Peak shifts in the infrared spectrum ofbenzoic acid crystals when compressed with methylated additiveswere investigated (M39). The equilibrium kinetics and vibrationalenergy transfer between the free acid Et3SiOH and its 1:1hydrogen-bonded complex with acetonitrile were studied usingpicosecond time-resolved IR double-resonance spectroscopy (M40).

Catalysis Studies. The infrared spectral methods of studyingcatalysis mechanisms were reviewed (M41). Acetonitrile adsorp-tion onto hydroxylated zirconium dioxide and the mechanism ofhydrolysis were studied by in situ FT-IR spectroscopy (M42). Thehydration of acetonitrile toward acetamide by a silica-supportedrhodium catalyst was investigated (M43). A study was made ofthe interconversion of isomeric unsaturated C4 nitriles overstrongly basic Na/NaY (M44). The cracking of 1,3,5-triisopro-pylbenzene over deeply dealuminated Y zeolite was monitoredby infrared spectroscopy (M45). The IR spectra of species formedfrom the adsorption of butene isomers on 12-tungstophosphoricacid showed primarily saturated C-C bonds (M46). The selectivesynthesis of 2-methylnaphthalene over a variety of zeolites wasstudied (M47). Infrared was used to characterize zinc-promotedH-ZSM-5 catalysts used for conversion of propane to aromatics(M48). A diffuse reflectance study was used to monitor the stateof an H-mordenite catalyst during ethyl tert-butyl ether synthesis(M49). Methanol adsorption and dehydrogenation over stoichio-metric and nonstoichiometric hydroxyapatite catalysts werecharacterized (M50). IR spectroscopic investigations were per-formed of the adsorption and surface reactions of CH3Cl overacidic, basic, and neutral zeolite catalysts (M51). Kinetic studiesusing in situ FT-IR characterized the mechanism of methanolsynthesis over a zirconia-supported catalyst (M52). The H/Disotope-exchange reactions of adsorbed formate and methoxyspecies with D2 on zirconia were investigated (M53). The low-temperature adsorption of methyl chloride and methyl iodide onsilica-supported Pt catalysts was studied (M54). The conversionof methyl radicals to methanol and formaldehyde over vanadiumoxide catalysts was confirmed by infrared spectroscopy (M55).Infrared spectroscopy and temperature-programmed desorptionwere used to investigate the chemistry of methyl iodide adsorbedon silica-supported copper nanoparticles (M56). The interactionof propene and butenes with a butene oxydehydrogenation catalystwas studied (M57). The decomposition of perfluorodiethyl etheron alumina was studied at 300 and 500 K (M58). An infraredstudy of chromium carbonyl complexes on silica-alumina showedligand loss resulting in an active ethene polymerization catalyst(M59). Infrared studies of methylation of pyridine over zeoliteswere performed to understand the correlation between catalystacidity and activity/selectivity for the reaction (M60). Thereaction products from acetone decomposition on silver wereidentified by infrared spectroscopy (M61). Infrared was used tostudy the interaction of Ge(n-C4H9)4 with the surface of partiallydehydroxylated alumina and silica-alumina (M62). The adsorp-tion of 4,4′-bipyridine on the surfaces of silica, alumina, and titaniawas characterized by infrared spectroscopy (M63).

The mechanisms in the oxidation and dissociative chemisorp-tion of ethanol on platinum electrodes were characterized byinfrared spectroscopy (M64). Infrared was used to study theadsorption and oxidation of propene on multiphase Bi, Mo, andCo catalysts (M65). The mechanisms of light alkane catalytic

oxidation and oxydehydrogenation for n-butane conversion overmagnesium chromate and a magnesium-vanadate catalyst werecharacterized (M66). The interaction of propane and propene andof C1-3 oxygenates on cobalt oxide surfaces was studied (M67).In situ FT-IR spectroscopy was used to study oxygen-adsorbedspecies over SrF2/Nd2O3 (M68). The selective oxidation ofnitrosobenzene to nitrobenzene by metal oxides was studied(M69). The adsorption, decomposition, and oxidation of methylchloride on tin oxide catalysts were investigated (M70). Infraredspectroscopy was used in characterizing the bonding geometryof the carbonyl group during hydrogenation on Pd/SiO2 catalysts(M71). The hydrogenation of propyne on a range of supportedpalladium catalysts was investigated (M72). The hydrogenationand dehydrogenation of isobutene on platinum were monitored(M73).

Several infrared studies have characterized the adsorption,reaction mechanism and products of NO and NOx reduction overa variety of catalysts (M74-M83). The products and mechanismof the gas-phase reaction of NO3 radicals with 2-butyne in purifiedair were investigated (M84). The chemical transformations ofsilica-supported iron rhodium complexes and the catalysis ofpropylene hydroformylation were investigated (M85). The inter-actions of supported RhO and Co- and Fe-promoted RhO with thesilica surface were studied by infrared spectroscopy (M86). Theadsorption of methanol and formaldehyde on rhodium-containingcatalysts was studied (M87). The skeletal isomerization of buteneby alumina-supported tungsten oxide catalysts was studied (M88).Infrared studies characterized the isomerization of methyl formateand ethyl formate chemisorbed on nickel (M89).

Solvent/Matrix Effects. The conformational behavior oftrimethyl phosphate was studied by infrared spectroscopy in theliquid phase and as 1% solutions in a wide range of solvents (M90).Rotational isomerism of desyl chloride in solvents of varieddielectric constants was examined by infrared spectroscopy (M91).Conformational isomerism and self-association of calixarene innonpolar solution were studied by FT-IR (M92). The molecularstates of alkali metal acetates in glacial acetic acid were investi-gated (M93). Solvation of lauric acid was investigated in differentsolvents by infrared and Raman (M94). Aqueous ATR FT-IRspectra of 24 aliphatic monocarboxylates were correlated with thepKa values of these acids (M95). An infrared study of R-haloaceticacids in solution was done (M96). The infrared spectra of cyclicand noncyclic ureas in solution were interpreted with respect tostructures and interactions with a variety of solvents (M97). Usingmodel spectra of toluene and cyclohexane and variable-tempera-ture spectra of chlorocyclohexane, curve resolution of infraredprofiles from nonconformational mixtures and conformationalequilibria is discussed (M98). The tautomeric (enol-keto) anddimeric equilibria of 2-hydroxypyridines and 1,3-cyclohexanedi-ones in chloroform and/or CCl4 solutions were studied by FT-IR(M99). The interactions in binary mixtures of acetone andchloroform-d were studied by infrared and Raman spectroscopies(M100). The dynamics of the carbonium ion solvated by molec-ular hydrogen was studied (M101, M102). The solvent-inducedshift of the fundamental vibrational mode of the carbonyl groupin 2-butanone was measured in 27 solvents (M103). Self-association of medium-chain alcohols in n-decane solutions wasstudied by the infrared absorption of the fundamental OH

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 143R

stretching vibration (M104). An experimental and theoreticalstudy of the structure and aggregation of diphenylguanidine innonpolar and low-polarity solvents was performed (M105). In-frared measurements of N-acetyl- and N-benzoylaminopyridinesin a set and in mixtures of solvents were discussed in terms ofbulk and solute-solvent interactions (M106). The solvation of2-hydroxypentylphosphonates was studied (M107). Liquid mix-tures of pyridine with carbon disulfide, benzene, and carbontetrachloride were studied in the far-infrared region as a functionof concentration and temperature (M108). The solvation ofamides and peptides was studied by infrared and NMR (M109).Solute/solvent interactions of 1-substituted 2-pyrrolidinones andrelated compounds in a variety of solvents were studied by infraredspectroscopy (M110). Infrared spectroscopy of the OH stretchingvibrations of hydrogen-bonded tropolone complexes was discussed(M111). Tautomerism of thioguanine was studied using matrixisolation infrared spectroscopy (M112). The infrared spectra ofsome hydrogen halide salts of methamphetamine were observedto display significant variations dependent upon the alkali halidematrix in which the salt was dispersed for analysis (M113).

Organic Reactions/Characterization. A review describedthe use of ab initio infrared spectra in the identification of highlyreactive organic molecules and intermediates (M114). Changesoccurring in the infrared spectrum of ethylene-CO alternatingcopolymer as a function of temperature were analyzed (M115).The reaction products generated by pulsed flash pyrolysis of2-ethynyl-1,1,1-trimethyldisilane were characterized by matrixisolation IR spectroscopy (M116). Isomeric silylenes were gener-ated by pulsed flash pyrolysis and identified by matrix isolationIR spectroscopy (M117). The methane elimination during silationof partially dehydroxylated alumina was studied (M118). Thekinetics and products of the gas-phase reactions of silanes andsiloxanes with hydroxyl radical and atomic chlorine were studiedby FT-IR and mass spectrometry (M119). The highly substitutedcyclohexane derivatives synthesized from the Michael-Michaelaldol condensation of chalcones with cyanoacetylurea and cy-anoacetylpiperidine were characterized by IR and NMR (M120).The interconversion of isomeric unsaturated C4 nitriles in thepresence of butyllithium was investigated by means of FT-IR andUV-visible spectroscopy (M121). FT-IR spectroscopic studieswere performed on the mechanisms of the halogen atom-initiatedoxidation of haloacetaldehydes (M122). The products and mech-anisms for the gas-phase reactions of the nitrate radical andhaloethenes were studied (M123). The hydrothermolysis kineticsand pathways of guanidinium nitrate and urea in were describedas examples of the use of IR spectroscopy for determining therates and pathways of hydrolytic decomposition reactions oforganic and inorganic compounds in aqueous media in conditionsup to 400 °C and 350 atm (M124). Quantitative characterizationof protolytic reactions of o,o′-dihydroxyphenylazonaphthyls usingIR spectroscopy was described (M125). The reaction of ketenesin pyridine matrixes to form ketene--yridine ylides was observedby IR spectroscopy (M126). The decomposition products ofethylenediammonium dinitrate through hydrothermal reactionswere studied (M127). The results of studies on the protonationof a series of sulfinamides using IR and NMR were reported(M128).

The ab initio MO method was used to study the decompositionof carbamic acid and its thio and sila derivatives (M129). Diffusereflectance FT-IR was used to study two humic sodium salts andstructural changes caused by heating (M130). The thermaldecomposition of acetic anhydride was monitored by vacuum-UVabsorption and IR emission (M131). The evolved products fromthe melting, vaporization, and thermal decomposition of alkyl- andarylureas were analyzed by IR spectroscopy (M132). Thedecomposition reaction of methyltrichlorosilane was investigatedby in situ IR spectroscopy (M133). The analytical capacity of FT-IR for the analysis of works of art was discussed (M134). Themineralization of cellulose and protein fibers was investigatedusing FT-IR microscopy (M135). Motor oil degradation wascharacterized by IR spectroscopy (M136).

The stabilization of water-soluble surfactants at the air/waterinterface with gegenion complexation was studied by IR spec-troscopy (M137). A Raman/IR spectroscopic study investigatedthe stoichiometry and conformation of the azacrown moiety insodium complexes of azacrown ethers (M138). Near-infraredabsorption was used to characterize and measure the associationconstants of the inclusion complexes between aromatic com-pounds and cyclodextrins (M139). IR spectroscopy was used inestablishing the structure of complexes of phenols with com-pounds containing SOx groups (M140). The formation of com-plexes of picric acid with hexamethylbenzene, 2-iodoaniline, and1-aminoanthracene was examined using FT-IR spectroscopy(M141). The interaction of 2-chloro-3,5-dinitropyridine with anilineand its derivatives and the structure of the formed complexes werestudied using IR and electronic absorption spectroscopy (M142).Several 1:1 chloranilic acid-amine complexes were studied byIR, UV, and NMR (M143). The complex formation betweeno-cresol and propionitrile was investigated by FT-IR (M144).Complexes formed by phenols with 1,3,4,6,7,8-hexahydro-1-methyl-2H-pyrimido[1,2-a]pyrimidine were studied as a function of thepKa of the phenols by FT-IR (M145). Infrared measurements ofthe kinetics and decomposition pathways of aqueous urea andguanidinium nitrate were described (M146).

Infrared spectroscopic studies of photoinduced reactions ofmethyl radical in solid para-hydrogen were described (M147). Theultraviolet photolysis of acetyl and propionyl radicals was studiedby infrared emission spectroscopy (M148). The composition ofaerosol generated in the photooxidation of 1,3,5-trimethylbenzenewas investigated in a smog chamber experiment using IRspectroscopy (M149). IR characterization of the UV photoinducedreactions of matrix-isolated 1-diazido-1-germacyclopent-3-ene wasdescribed (M150). The photochemistry of phenyl azides bearing2-hydroxy and 2-amino groups was studied by matrix isolationspectroscopy (M151).

FOOD AND AGRICULTURENear-IR spectroscopy continues to be a focus of application in

the food and agricultural industries. The proceedings from twoconferences provide a good review of the varied applications (N1,N2). A review of infrared spectroscopy and microspectroscopyas related to food applications has been presented (N3). Applica-tion of photoacoustic spectroscopy in the near-IR and mid-IRregions to determination of the principal components of food hasalso been reviewed (N4).

144R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

Mid-IR and near-IR spectroscopy techniques have been appliedin the dairy industry. By using the second derivative of the IRspectrum, simplified models could be developed to determine thefat and protein contents of raw milk (N5). Determination of fat,protein, casein, and noncasein in milk by near-IR (N6) is reported.Fermented milk composition was also examined using near-IRspectroscopy (N7). Mid-IR techniques have been adapted todetermine microorganisms (especially Clostridium) in dairy (N8).The composition of cheese was examined using optothermal near-IR and mid-IR attenuated total reflectance (N9) and near-IRreflectance spectroscopy (N10).

The examination of sugars for composition and quantitationusing mid-IR and near-IR has been reported. A multivariateanalysis of the infrared spectra of biological samples allows forthe quantitation of a mixture of sucrose, fructose, and glucose(N11). The theoretical recoverable sugar (TRS) can be predictedfrom near-IR spectra and can be used to assess the quality of caneand beet sugar sources (N12). Sucrose can be determined inraw sugar cane juices using spectral data from mid-IR attenuatedtotal reflectance (N13). The thermal degradation of sugar canebagasse through to carbonization has been studied using mid-IRspectroscopy (N14). Sugar refinery streams can be analyzedusing near-IR spectroscopy (N15, N16).

Edible oils and fats have been analyzed using IR spec-troscopies. A review of the application of mid-IR to edible oilanalysis stresses key elements associated with developing suitablefat and oil analysis (N17). IR spectroscopy is compared tochromatographic techniques for the determination of trans fattyacids in oils and fats (N18-N20). Supercritical fluid extractionof oils in food samples coupled to a high-pressure flow cell hasbeen used to monitor the vinylic C-H band to determine theamount of unsaturated fat (N21). Near-IR spectroscopy isdemonstrated for determination of palmitic, oleic, and linoleic acidsin edible oils (N22). Classification of edible oils and fats withregard to their origin can be accomplished using mid-IR spec-troscopy (N23). A mid-IR spectroscopic technique for determiningthe solid fat index of oils and fats was developed (N24).

Fruit, fruit juices, and vegetables have received the attentionof mid-IR and near-IR spectroscopies. Determination of sugarsand acid in a variety of fruit juices has been accomplished (N25-N28). Sesquiterpene hydrocarbons in citrus essential oils havebeen identified using cryofocusing GC/IR (N29). Adulterationof raspberry purees can be detected using mid-IR spectroscopyand attenuated total reflectance sampling (N30). A nondestructivemethod for determination of soluble solids in tomatoes based onnear-IR spectroscopy has been demonstrated (N31). The growthperiod of Japanese pear fruit was monitored using the constituentsugar concentrations (N32). Biochemical changes in peachesassociated with ripening during storage were followed using mid-IR (N33).

Identification and detection of adulteration of coffees using bothmid-IR and near-IR spectroscopy have been reported. DRIFT andATR sampling techniques are suggested as alternatives to wetchemical methods (N34, N35). Partial success was demonstratedin using near-IR to discriminate between coffees prepared fromseveral different beans (N36).

The components of sausage products were simultaneouslydetermined using near-IR transmission with precision as good as

reference methods (N37). Near-IR spectroscopy can also beapplied to the analysis of oil and moisture (N38) and fat contentof salmon (N39).

The prediction of total dietary fiber in cereal and grain products(N40) and the effect of residual moisture on total dietary fiber incereals (N41) have been examined using near-IR reflectancespectroscopy.

Infrared microspectroscopy has been used to elucidate themicrostructural details of phase-separated polysaccharide-proteinmixtures (N42). Near-IR reflectance spectroscopy can provide anondestructive method to predict the solubility and digestibilityof protein heated under high pressure (N43). Determination ofheme and nonheme iron in raw muscle meats is possible usingnear-IR spectroscopy (N44). Pressure-induced changes in foodcomponents measured using a diamond anvil cell and mid-IRspectroscopy were compared to temperature-induced gel forma-tion (N45). The adsorption of triacylglycerol and oelic acid onsynthetic magnesium silicate was studied using diffuse reflectanceFT-IR spectroscopy and compared to magnesium silicates usedto treat degraded frying oil (N46). It is possible to perform starchcontent determination on digestive samples using near-IR spec-troscopy (N47).

The temperature effects and calibration methods have beenstudied to demonstrate the feasibility of using mid-IR spectroscopyfor determination of major compounds of alcoholic fermentation(N48).

The ability to differentiate meat speciation, the detection offrozen or thawed meat, and semiquantitative analysis of meatmixtures using mid-IR ATR have been demonstrated (N49). Near-IR is also suggested as a technique for differentiating frozen andunfrozen beef (N50). The phospholipid content of intramuscularfat can be determined using the band between 1282 and 1020 cm-1 (N51). Polarized IR microspectroscopy can be used to assessthe orientation of the mineral and matrix components of calcifiedtissue (N52).

Near-IR spectroscopy has been used to screen the crudeglycinin fraction and the effects of growing temperature andgenotype on this fraction (N53). The effects of bound water onthe mid-IR spectrum of glycinin was also studied (N54). Theruminal protein content in roasted soybeans can be estimated fromthe near-IR spectrum (N55). Near-IR spectroscopy can be usedto quantitate moisture, protein, and starch in buckwheat floursbut failed to correlate with the amylose and tannin content (N56).Several quality characteristics in rice by analysis of whole-grainmilled samples can be measured using near-IR reflectancespectroscopy (N57).

Determination of forage composition was not improved byusing models based on a combination of both mid-IR and near-IRspectra over models based on just a single spectral range (N58).The value of Leucaena, a fast-growing tree used in the tropics forforage, can be evaluated using near-IR spectroscopy with differ-ences observed between species, varieties, and hybrids (N59).The prediction of energy value of compound feeds for swine andruminants based on near-IR spectroscopy is slightly better thanother analytical methods (N60). Partial success in determiningthe composition of biomass feedstock has been accomplishedusing near-IR spectroscopy (N61).

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 145R

Near-IR spectroscopy can be used as a rapid-scanning tech-nique for the determination of chemical compositions of plantationeucalypti woods (N62). Residues and extracts from eucalyptuswood have been characterized by IR spectroscopy, UV spectros-copy, and HPLC (N63).

It is possible to determine the resistance of sugarcane tosugarcane borer infestation using predictive models based on thenear-IR spectrum of stalk surface wax (N64). External andinternal insect infestation in stored wheat grain could be detectedusing near-IR reflectance spectroscopy (N65). Mid-IR spectros-copy has shown that significant differences may exist within theplasma membrane ATPase of corn roots (N66).

A sensor based on a polymer-coated attenuated total reflectanceelement of a silver halide optical fiber and mid-IR spectroscopyhas achieved a 2 ppm limit of detection for atrazine and alachlorin water (N67). The use of infrared techniques applied to organicand inorganic soil materials has been reviewed (N68).

BIOCHEMISTRYTo determine the effects of age on bone quality, human bone

tissue taken from adult subjects deceased from violent death wasanalyzed by means of FT-IR in the diffuse reflectance mode (O1).FT-IR and FT-Raman spectra of human brain tissue are presentedin this article (O2). This paper describes a nondispersive IRspectrometer for the measurement of the 13CO2/12CO2-ratio inbreath samples (O3). Untreated and bleached hair samples wereanalyzed by FT-IR spectroscopy for cysteic acid and cysteineS-thiosulfate using different data manipulations and varioussampling techniques (O4). Absorption spectra of human teethsections were measured by FT-IR to identify absorption peaks foramides I, II, and III, carbonate, and phosphate (O5). To establishage-related lipid composition-membrane structure relationships,the hydrocarbon chain structure of lipid membranes from thehuman lens cortex and nucleus was examined by infrared andnear-infrared spectroscopies (O6). The feasibility of obtainingreproducible spectra of skin oils from individuals with a verysimple, noninvasive technique is reported (O7). Direct vaporgeneration FT-IR spectrometry is a new procedure proposed fora direct determination of ethanol in plasma and whole blood (O8).The secondary structure of myelin basic protein in reconstitutedcentral nervous system myelin was studied FT-IR spectroscopy(O9). A new method of IR spectroscopic imaging is describedand applied to the instantaneous, noninvasive mapping of themolecular constituents of unprocessed brain tissue (O10). Asimple and rapid method for the analysis of poly(ethylene glycol)-400 (PEG-400) in human urine is described using FT-IR spec-trometry (O11). Mid- and near-IR spectra of viable and clippedhuman finger nails are presented (O12). Toluene and a mixtureof the isomeric xylenes are common organic solvents that havebeen implicated in false ethanol results produced by older modelsof the Intoxilyzer 5000, a breath alcohol analyzer that uses IRspectrophotometry to quantitate ethanol in breath samples (O13).This review with 87 references is of experiments in which thephotoreactions of the visual pigments rhodopsin and octopusrhodopsin were investigated by FT-IR spectroscopy (O14). Thispaper reviews a study to analyze the IR spectra of a liquid-simulating simulating food and an artificial saliva followingexposure to resin composites (O15).

This symposium report with three references discusses themolecular structure of penicillin transition metal complexes (O16).This paper describes the interference of volatile anesthetics withinfrared analysis of carbon dioxide and nitrous oxide tested inthe Draeger Cicero EM using sevoflurane (O17). From the twowagging frequencies of the para amino group identified by IR andlaser Raman spectroscopy in the local anesthetic benzocaine, theinversion barrier height and optimum inversion angle of this groupwere calculated and reported (O18). The interaction of calfthymus DNA with aspirin is investigated in aqueous solution, andFT-IR and laser Raman difference are used to determine drugbinding sites, sequence preference, and DNA secondary structure,as well as the structural variations of aspirin-DNA complexes inaqueous solution (O19). This paper discusses in situ FT-IR andcalorimetric studies of the preparation of a pharmaceuticalintermediate (O20). Raman and FT-IR were used to analyze theinteraction of the antibiotic lasalocid with DPPC membranes(O21). The mechanism of action of Timolor, used in the treatmentof ocular hypertension in glaucoma, was studied using FT-IRspectroscopy (O22). The equilibria and structures of someazobarbiturate and benzylidene barbituate compounds wereinvestigated based on different spectral and pH-metric methods(O23). This work presents FT-IR spectra of tetracycline andampicillin, the major drugs used for the treatment of fatal bacillaryand coccal infections (O24). FT-IR, along with DCS, has beenused to study the interaction between a new antineoplastic drugand diastearoylphosphatidylcholine bilayers (O25).

FT-IR spectroscopy has been applied to the investigation ofsynovial fluids aspirated from arthritic joints (O26). Glycogenlevels in the tissue samples obtained from carcinomas and normalsections of the human lungs were studied by measuring the IRband intensities due to glycogen (O27). This review with 44references has been written on the use of IR spectroscopy fordiagnosis and determination of prognosis of malignant neoplasiasuch as breast and endometrial carcinomas (O28). This paperdescribes the analysis of urinary calculi by infrared spectroscopy(O29). Tumor progression to the metastatic state involvesstructural modifications in DNA markedly different from thoseassociated with primary tumor formation. These modificationsalter vibrational and rotational motion and are discussed in thisarticle (O30). FT-IR microscpectroscopy, combined with principalcomponent analysis, was applied in the study of exfoliated cervicalcells to investigate the techniques feasibility as a biodiagnostictool for cervical cancer (O31). Newly developed FT-IR spectro-scopic analysis techniques were applied to the diagnosis ofadulthood disease and to reveal the role of unsaturated fatty acidsin neuronal function (O32). Determination of whewellite, uricacid, weddellite, dahllite, and struvite in their mixtures was studiedby X-ray diffraction and IR spectroscopy (O33). The IR spectraof organic constituents of urine from cancerous bladders of somepatients were recorded and classified (O34). The secondarystructure and the thermal stability of human liver and heart fattyacid-binding proteins were analyzed, in the absence and in thepresence of oleic acid, by FT-IR spectroscopy (O35). The authorsdetermined the structural changes in the bladder carcinoma cellline J82-NVB induced by navelbine using FT-IR spectroscopy(O36). The anticoagulant effect of tungstophosphoric acid saltwas studied by IR spectroscopy (O37). FT-IR spectra of 75

146R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

biopsies from 55 cases of breast carcinoma were studied incomparison with histomorphometry and were found to be verydifferent from the spectra of normal tissues (O38). The transmis-sion IR spectra of exfoliated endocervical mucin-producing co-lumnar epithelial cells and the ATR IR spectra of the single-columnar cell layer on the endocervical tissues has been measuredand compared with the corresponding IR spectra of the ectocer-vical squamous cells and squamous epithelium (O39). Theauthors report the conformation of intersubunit region from threeserotypes of influenza A virus and the MAP-1 peptide, with andwithout the fusion peptide, as revealed by comparative CD andFT-IR spectroscopy measurements (O40).

FT-IR and laser Raman difference spectroscopic techniqueswere used to establish correlations between spectral modificationsand drug binding mode, sequence specificity, DNA melting, andconformational changes, as well as structural variations of calfthymus drug-DNA complexes in aqueous solution (O41). Thesecondary structure of P2 protein, isolated from bovine peripheralnervous system myelin, in reconstituted myelin was studied usingFT-IR spectroscopy (O42). Unoriented films of calf thymus NaDNA were prepared and studied by Raman and IR spectroscopy(O43). FT-IR spectroscopy, along with X-ray diffraction andelectron microscopy, was used to study apatite crystals isolatedfrom chicken and bovine calcified cartilage (O44). This articledescribes the spectroscopic analysis of the FT-IR spectra of pigcitrate synthase using the factor analysis method (O45). Aqueousdispersions of dipalmitoyl phosphatidylcholine, calf lung surfactant,and an organic solvent extract of calf surfactant were examinedby FT-IR spectroscopy in the presence and absence of calcium(O46). This paper discusses the possibility of detecting in asemiquantitative manner alterations in the collagen content ofheart tissue following myocardial infarction (O47). Infrared wasused to study the effects of pH and KCl on the conformations ofcreatine kinase from rabbit muscle (O48). The authors applyhigh-fidelity FT-IR imaging to noninvasively generate imagecontrast in sections of monkey brain tissue and to relate thesedata to specific lipid and protein fractions (O49). The interactionof diethylstilbestrol with calf thymus DNA was investigated withFT-IR and Raman spectroscopy (O50). The interaction of calfthymus DNA was studied with Al and Ga cations using FT-IRspectroscopy (O51). FT-IR spectroscopy was used to investigatethe secondary structure of boar sperm proacrosin to determinestructural changes following protein autoactivation to â-acrosinand to study the effect of suramin binding on protein secondarystructure (O52). FT-IR was used to study the conformationaldifferences of ovine and human corticotropin releasing hormone(O53). FT-IR was used to obtain conformational data on themonomeric form of insulin, which is believed to be the physi-ologically active form of the hormone (O54). The secondarystructure of human fibrin from normal donors and from bovineand suilline plasma was studied by FT-IR and a quantitativeanalysis of its secondary structure was suggested (O55). FT-IRspectroscopy combined with a resolution enhancement techniquehas been used to characterize pressure-induced structural changesin bovine pancreatic trypsin inhibitor (O56).

The goal of this work was to develop a portable and rapid laser-based air sampler for detection of specific chemical contrabandand to compile a spectral database in both the near- and mid-IR

of sufficiently high quality to be useful for gas-phase spectroscopicidentification of chemical contraband (O57). A review with 13references has been written on technique, drug distribution andsampling homogeneity for drug hair analysis (O58). FT-IR wasused to survey and compare heroin seized throughout Israel in1992 to detect salt forms and additives and compare the powdersfor intelligence and investigation purposes (O59). A review hasbeen written on the use of IR spectrometry in the analysis ofnarcotics (O60).

Preliminary investigations of solvent and temperature effectsupon the IR spectra of organophosphorus pesticides were carriedout and are discussed in this article (O61). This article discussesthe use of IR spectrometry to determine the configurations ofwater molecules absorbed in isolated plant cuticles (O62). Theauthors discuss FT-IR and Raman spectroscopic evidence for theincorporation of cinnamaldehydes into the lignin of transgenictobacco plants with reduced expression of cinnamyl alcoholdehydrogenase (O63). The IR absorption characteristics of ahighly alkaline soil and its derivatives were studied, and effortswere made to detect polluting metals in the soil by studying thecharacteristics of their IR curves (O64). This article discusses aFT-IR investigation of the structural differences between two lipidbinding proteins extracted from plants (O65). Eleven actino-mycete melanins from Brazilian soils were characterized by IRanalysis (O66).

This paper focuses on the increasing use of FT-IR spectroscopyfor the analysis of biomacromolecules (O67). The effect oftemperature on the secondary structure of â-lactoglobulin wasstudied by FT-IR (O68). The polymorphic phase behavior of ahomologous series of saturated 1,2-diacylphosphatidylglycerolswas studied by FT-IR, DSC, and NMR (O69). The secondarystructure of apolipoprotein B-100 in low-density lipoprotein sub-fractions was analyzed by FT-IR spectroscopy (O70). FT-IRdifference spectroscopy with self-deconvolution and second-derivative methods as well as curve-fitting procedures are appliedto the interaction of Al and Ga cations with proteins of thephotosystem II-enriched membranes in order to determine thecation binding mode, the protein conformational changes, and thestructural properties of metal-protein complexes (O71). The FT-IR spectra of adenosine in the polycrystalline state were recordedas part of a series of normal coordinate analyses of nucleic acidcomponents and their analogues (O72). A review has beenwritten with 20 references on bioorganometallic chemistry inreceptorology and analysis (O73). FT-IR and molecular modelinghave been used to characterize the interaction of Ca2+ withhydroxy and non-hydroxy fatty acid species of cerebroside sulfate(O74). FT-IR spectroscopy has been used to determine the cationcontent of alginate thin films (O75). The FT-IR spectrum of theoxygen-evolving center was analyzed by using spinach PSIImembranes perturbed in various ways such as calcium depletion,chloride depletion, H-D exchange, and 15N-labeling (O76).Comparison of the effects of amikacin and kanamycins A and Bon dimyristoylphosphatidylglycerol bilayers was investigated byFT-IR spectroscopy (O77). The QA and the QB binding sites ofRhodobacter sphaeroides R26 reaction centers have been investi-gated by FT-IR spectroscopy (O78). A review with many refer-ences has been written covering applications of the separationand characterization of peptides and proteins by liquid chroma-

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 147R

tography, mass spectrometry, FT-IR spectroscopy, CD, and NMR(O79). A review with 30 references has been written on thepotentially powerful technique for determining the interactionconfigurations of water molecules in macromolecular systems(O80). The aim of this study was to analyze the Raman and IRspectra of eight common mammalian bile acids in order to identifyintermolecular interactions between hydroxyl and carbonyl groups(O81). An infrared spectroscopic study was conducted on theconformational fluctuation and ion permeation of lipid bilayersdoped with azobenzene derivative (O82). The reconstitution ofthe retinal-containing protein bacteriorhodopsin from the apopro-tein and retinal has been studied by FT-IR difference spectroscopy(O83). This article focuses on the recent advances in IRspectroscopy that have made it possible to study structural anddynamic properties of biomembranes and model systems at themolecular level by spectral analysis (O84). Conformational studiesof the cyclic L,D-lipopeptide surfactin were investigated by FT-IRspectroscopy (O85). Structural changes of R-lactalbumin inresponse to pH, ionic strength, sugars, and heat treatment wereinvestigated by DSC and FT-IR spectroscopy (O86). FT-IRspectroscopy was used to characterize the stretching vibrationsof the ester carbonyl groups and the amide I vibration of the amidegroup of N-acylphosphatidylethanolamine bilayers (O87). FT-IRspectroscopy of dry, multilayer films has been used to study γradiation and UV-C light-induced lipid peroxidation in 1,2-dilinoleoyl-sn-glycero-3-phosphocholine liposomes (O88). Thesecondary structures of two forms of Saccharomyces cerevisiaepalsma membrane H+-ATPase were examined by FT-IR spectros-copy (O89). The vibrational modes of photoactive yellow proteinand its photoproduct were studied by FT-IR spectroscopy (O90).FT-IR spectroscopy was used to identify the molecular sites invesicles constituted of phosphatidylglycerol (PGV) and photosys-tem II (PSII) that determine the formation of the PSII-PGVcomplex and the sites affected by Mg(II) (O91). The kineticbehavior of human serum albumin adsorbed on a reversed-phasesupport was studied by FT-IR spectroscopy and chromatographicmethods (O92). The results of Raman and IR spectroscopicinvestigations of the vibrational model of dimethyl phosphorothio-ate anion are reported (O93). This review with 32 referencespresents different techniques of FT-IR spectroscopy to investigatemicroorganisms in biofilms (O94). This review has many refer-ences and summarizes the main conformation-sensitive regionsof phospholipid IR spectra and details three recent applicationsof new FT-IR methods that provide quantitative information aboutphospholipid microphase separation and acyl chain conformation(O95). Two computer programs were designed for helping inlibrary handling and microbial identification by means of their IRspectra (O96). The hydration of ω-gliadins and partially deami-dated and esterified ω-gliadins was studied by FT-IR spectroscopy(O97). Results obtained by FT-IR spectroscopy on the influenceof Ca2+ binding on the secondary structure of calsequestrin arereported (O98). FT-IR spectra were reviewed for glycine oligo-mers and polyglycine (O99). The conformational variability ofthe basic subdomain of c-Jun was assessed through the study ofthe secondary structure of its N-terminal peptide and C-terminalpeptide fragments using FT-IR spectroscopy (O100). FT-IRspectroscopy using principal component analysis and principalcomponent regression were used for the determination of K+ ions

in biological solutions by investigating interactions between thecation and sucrose molecules (O101). The secondary structureof native D-glyceraldehyde-3-phosphate dehydrogenase was com-pared with its partially folded intermediate and aggregated statesobtained during guanidine hydrochloride denaturation usingtransmission FT-IR and micro-FT-IR measurements (O102).Environmental chemicals are known to induce a higher degreeof hydroxyl radical-mediated damage in DNA. FT-IR and principalcomponents analysis were used to test the hypothesis that thisexposure leads to new forms of DNA (O103). FT-IR spectroscopywas applied to cytochrome P 450 to analyze the protein secondarystructure (O104). FT-IR spectra have been obtained from solidegg white lysozyme (O105). An IR spectroscopic study has beenconducted on the structure and phase behavior of long-chaindiacylphosphatidylcholines in the gel state (O106). Pilot experi-ments were performed to analyze the potential of FT-IR spectros-copy for classification and identification of actinomycetes (O107).The author has recently reported the use of a combination ofmultidimensional statistical analysis and FT-IR spectroscopy forthe quantitative determination of sugars in a biological sample(O108). A spectroscopic study was conducted on polymer/proteininteractions in composite films (O109). FT-IR studies have beencarried out to investigate the secondary structure and thermalstability of hen egg white avidin and its complexes with biotinand with a biotinylated lipid derivative (O110). A review with 32references has been written on the use of FT-IR spectroscopy indetermining analytes in blood and characterization of diseasestates (O111). Differences in conformational dynamics of bovinepancreatic RNase A and RNase S were investigated using 1H-2Hexchange in conjunction with FT-IR spectroscopy (O112). Thesecondary structure of the black-eyed pea trypsin/chymotrypsininhibitor was analyzed from the FT-IR spectrum of the protein inD2O solution (O113). The conformation and stability of recom-binant tetrameric human tryrosine hydroxylase isoenzyme 1 wasstudied by IR spectroscopy (O114). Highly purified adenylatekinase was characterized by FT-IR spectroscopy. Analysis of theFT-IR spectra and estimation of secondary structure revealed aglobal protein structure similar to that of other adenylate kinaseenzymes (O115). This paper reports the spectroscopic charac-terization of two de novo peptides (O116). The effect of H/Dexchange on a FT-IR difference spectrum between the S1 and S2states of the oxygen-evolving center in photosystem II has beeninvestigated (O117). A review with many references has beenwritten discussing the main conformation-sensitive regions ofphospholipid FT-IR methods that provide quantitative informationabout phospholipid microphase separation and acyl chain confor-mation (O118). A three-component model for the lipid barrier ofthe stratum corneum consisting of ceramide III, cholesterol, andperdeuterated palmitic acid has been characterized by FT-IRspectroscopy (O119). FT-IR spectroscopy demonstrates thatlyophlization alters the secondary structure of recombinant humangrowth hormone (O120). Thermal denaturation processes ofchicken egg white ovomacroglobulin and human serum R-2-macroglobulin with and without chymotrypsin have been studied(O121). An FT-IR spectroscopic study was conducted to deter-mine protonation, conformation, and hydrogen bonding of nico-tinamide adenine dinucleotide (O122). Grouping of Spherobactermitis strains grown on two different growth media was made by

148R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

FT-IR spectroscopy (O123). Effects of R-tocopherol and R-toco-pheryl acetate on dipalmitoylphosphatidylcholine multilayers havebeen investigated by FT-IR and Raman spectroscopies (O124).Changes in conformation of oligosaccharides, and the constraintsimposed by hydrogen bonding with the solvent, were studied bymeans of FT-IR and Raman (O125). A review with manyreferences has been written outlining four approaches, FT-IR,Raman, CD and calorimetry, to probing protein and peptideproperties (O126). This paper describes a spectrophotometerdedicated to the polarization modulation IR reflection-absorptionspectroscopic study of monolayers spread at the air/waterinterface (O127). FT-IR measurement disclosed formation of athiol ester bond between a cysteine of arylmalonate decarboxylaseand an active site-directed inhibitor strongly suggesting that theenzyme initially activates the substrates in a similar mechanism(O128). The thermotropic phase behavior of aqueous dispersionsof dipalmitoylphosphatidylcholine and its analogues was examinedby DSC, and the organization of these molecules in those hydratedbilayers was studied by FT-IR spectroscopy (O129). This reviewwith 83 references was written on the properties of lipid vesiclesstudied by FT-IR spectroscopy (O130). Examination of L-tyrosinespectra by various IR techniques allows some conclusions on themolecular interactions in the examined systems (O131). A reviewwith 23 references has been written on the relative advantagesand disadvantages of various spectroscopic techniques for identify-ing and measuring concentrations of multicomponent mixtures(O132). The authors discuss infrared spectroscopic studies ofvancomycin and its interactions with N-acetyl-D-Ala-D-Ala and N,N′-diacetyl-L-Lys-D-Ala-D-Ala (O133). This paper discusses spectro-scopic characterization of the interferon-γ and analogue II inhydroorganic solution or adsorbed on an hydrophobic chromato-graphic support (O134). The secondary structures of staphylo-coccal nuclease have been assigned and semiquantitativelyestimated from the deconvoluted FT-IR spectrum (O135). FT-IRspectroscopy has been used to investigate the structure andtemperature stability of the acetylcholinesterase from Torpedocalifornica (O136). The cyanide complex of iron(II) myoglobinwas studied by FT-IR spectroscopy and compared with complexesof microperoxidase and hemoglobin (O137). FT-IR spectroscopyhas been used to investigate the structural properties of thechannel-forming integral membrane protein present in phospho-lipid vesicles suspended in aqueous media (O138). The plantgrowth hormone auxin and its natural analogue, as well as theirsynthetic congeners, were studied by FT-IR spectroscopy (O139).FT-IR spectroscopy was used to investigate the local structurearound the chromophore of rhodopsin and its change uponphotoisomerization (O140). Chemical changes in the medium,induced by the fermentative species Lactobacillus plantarum andLactobacillus brevis and by the enzymic action of a proteolytic,spoilage species, were analyzed using FT-IR spectroscopy (O141).A complete set of vibrational spectra obtained from severalspectroscopic techniques has been used in order to assign thevibrational modes of uracil on the basis of an ab initio scaledquantum mechanical force field (O142). FT-IR has been used toanalyze protein conformational stability on surfaces (O143).Structural differences between two genetic variants of bovineâ-lactoglobulins in aqueous solutions were characterized usingFT-IR and CD spectroscopies (O144). The FT-IR spectra of

several coiled coil proteins have been shown to possess unusualfeatures in the amide I′ region (O145). The authors of this paperused FT-IR to measure secondary structures of isolated domainsof types III and IV intermediate filament proteins and of thesolution tetramers and the filaments formed by type III intermedi-ate filament proteins (O146). A review with 142 references hasbeen written on the determination of protein secondary structure,IR spectrometry measurement of H-D exchange in proteins, andprobing protein structure at the level of individual chemical groups(O147). This article discusses the use of 13C-labeled moleculesin the conformational analysis of proteins by FT-IR spectroscopy(O148). FT-IR spectroscopy has been used to compare S-cis andS-trans conformations of planar dithiooxamides (O149). A reviewwith 20 references has been written on an IR spectroscopy-basedmulticomponent assay of biofluids such as whole blood, urine,and synovial fluid (O150). The redox reactions of the cytochromec oxidase from Paracoccus denitrificans were investigated in a thin-layer cell designed for the combination of electrochemistry underanaerobic conditions with UV-visible and IR spectroscopies(O151). Hydrated sites in biogenic amorphous calcium phos-phates have been studied by infrared spectroscopy (O152).Similarities in the architecture of the active sites of Ni hydroge-nases and Fe hydrogenases have been detected by means ofinfrared spectroscopy (O153). The adsorption of a membraneprotein of flagellar FliF and its derivatives onto chemicallymodified surfaces has been studied by FT-IR spectroscopy (O154).FT-IR spectra of a dilute solution of N-acetyl-Pro-Leu-Gly-NH2 havebeen measured and reported (O155). Changes in the secondarystructure of adsorbed IgG and F(ab′)2 was studied by FT-IRspectroscopy (O156). An unusually high hydrogen-deuteriumexchange of the CHIP28 protein (aquaporin) from red blood cellswas observed by FT-IR spectroscopy (O157). Cyanide bindingto the heme-copper binuclear center of bo-type ubiquinol oxidasefrom Escherichia coli was investigated with FT-IR and EPRspectroscopies (O158). A combination of CD and IR spectroscopyhelps to build a molecular picture of the thermal denaturation andconformational changes of â-lactoglobulin (O159). An FT-IRspectroscopy study was conducted to determine conformationalorder of phospholipids incorporated into human erythrocytes(O160). A new method for the determination of R-amylase activityin aqueous solutions and human serum by FT-IR spectroscopy isproposed (O161). The authors of this paper synthesized andstudied by FT-IR spectroscopy monosalts of diamides as modelsfor the active site of aspartic proteinases (O162). In situ and exsitu structural analysis of phospholipid-supported planar bilayerswas studied using infrared spectroscopy and atomic force micros-copy (O163). A comparative study using IR spectroscopy wasconducted to determine the interaction of two lipid bindingproteins with membrane lipids (O164). FT-IR and FT-Ramanspectra of 5′-dAMP were determined and a normal coordinateanalysis of the mononucleotide was carried out (O165). The aimof this study is to demonstrate the reliability of the use of FT-IRspectroscopy to monitor conformational changes when a proteinis adsorbed under chromatographic conditions on silica material(O166). Variants of recombinant staphylokinase were investigatedby FT-IR spectroscopy for a correlation between thermal stabilityand structural features of staphylokinase and the selected mutants(O167). FT-IR spectroscopy studies of lipoxygenase showed

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 149R

changes in the amide I′ band which correlate to structural changesof the enzyme (O168). Free amphipathic peptides and peptidesbound to dimyristoylphosphatidylcholine were studied directly atthe air/water interface using polarization modulation IR reflectionabsorption spectroscopy (O169). The possibility of using FT-IRspectroscopy to detect subtle differences in the molecular dynam-ics in biomembranes is discussed (O170). This paper reports thespectroscopic characterization of two de novo peptides (O171).Mid-IR pump-probe experiments were used to study vibrationalrelaxation of CO bound to synthetic heme and porphyrin com-plexes with different metal atoms and different promixal ligands(O172). Mitochondrial F1 ATPase from beef heart was treatedwith different buffers to modulate the nucleotide content of theenzyme and then analyzed by FT-IR spectroscopy (O173). Theinteraction between superoxide dismutase and dipalmitoylphos-phatidylglycerol bilayer was studied with FT-IR spectroscopy(O174). The structure, water absorbability, and mechanicalproperties of the blend membranes of regenerated silk fibroin inpoly(vinyl alcohol) were studied by FT-IR spectroscopy (O175).The detection and structure of water molecules inserted inbiomembranes by FT-IR spectroscopy is discussed and an exampleis given of the study of the structures of the two main types ofwater molecules that are found in leaf cuticles (O176). The useof isotope-enhanced FT-IR spectroscopy and ESR spin-labeling toexamine the conformation of the 23-residue peptide of theN-terminal fusion peptide of the HIV-1 gp41 protein were examined(O177). FT-IR spectroscopy was used to study the effects ofTriton X-100 treatment on the purple membrane of Halobacteriumhalobium ET1001 (O178). FT-IR and optical spectroscopy havebeen used to characterize the binding of NO to the oxidized formof the heme cd1 nitrite reductase from Pseudomonas stutzeri JM300(O179). FT-IR spectroscopy was used to study thermally inducedH exchange in RNase A, RNase T1, and various RNase T1 mutantsin relation to the melting transition of the protein (O180). FT-IRand surface plasmon resonance spectroscopy were used to studythe interaction of C-reactive protein from Limulus polyphemus withphosphorylcholine groups both in aqueous solution and im-mobilized on solid supports (O181). FT-IR spectroscopy is shownto be a rapid method for the identification of Candida at the specieslevel (O182). FT-IR has been used to study the thermotropicphase behavior of mixed vesicles made up by lipopolysaccharidesand phospholipids (O183). The FT-IR difference spectra of4-amidinophenylmethanesulfonyl-thrombin and -trypsin com-plexes are discussed (O184). The interaction of cisplatin and itsanalogues with the phospholipid molecules of human erythrocytemembranes was studied using IR and NMR methods (O185). Theauthors discuss a method for the classification of biological FT-IR spectra prior to quantitative analysis (O186). The secondarystructure of calmodulin from Brassica campestris pollen wasstudied by FT-IR spectroscopy and the CD method (O187). Theapplication of IR to an analysis of yeast cytochrome oxidase isdiscussed (O188). This review with four references discusses astudy of enzyme-ligand binding of chymotrypsin with amino acidderivatives using infrared spectroscopy (O189). The thermallyinduced denaturation of three chymotrypsin complexes, acyl-enzyme cinnamoyl chymotrypsin, phenylmethylsulfonyl chymo-trypsin, and proflavin chymotrypsin, was examined (O190). Shortlinear peptides were synthesized and studied to investigate the

influence of conformational equilibrium of the matrixes on excited-state processes, which in turn can provide information on thestructure and dynamics in solutions of these materials (O191).FT-IR spectroscopy was used to investigate the kinetics ofsecondary structure formation during refolding of small globularproteins triggered by temperature jump or fast denaturant dilution(O192). FT-IR difference spectroscopy was used to study thebehavior of native rhodopsin and its mutants expressed in DOScells solubilized in dodecyl maltoside and reconstituted into lipids(O193). FT-IR spectroscopy has been used to study the thermallyinduced exchange characteristics of those backbone amideprotons which persist in H-D exchange at ambient conditions inRNase A, in wild-type RNase T1 and some of its variants, and inthe histone-like protein Hbsu (O194). This review with 51references is of the development over the past thirty years of IRspectroscopic investigations of natural and synthetic melanins(O195). Vibrational CD and FT-IR methods for prediction ofprotein secondary structure are systematically compared usingselective regression analysis (O196). FT-IR spectra were obtainedfor mammalian calmodulin and two of its fragments produced bylimited proteolysis (O197). The authors investigated Raman andIR spectra of the Watson-Crick type of the guanine‚cytosine basepair and of the individual guanine and cytosine nucleic acid basesby ab initio Hartree-Fock theory (O198). The effect of the natureof the third-strand sugar on the geometry and stability of triplehelixes with a pyrimidine motif was studied by FT-IR spectroscopy(O199). FT-IR was used to study the proper orientation ofmembranes containing nicotinic acetylcholine receptors on crys-tals (O200). FT-IR spectroscopy has been used to investigate thesecondary structure, disulfide reduction, and thermal behavior ofrecombinant human granulocyte-macrophage colony-stimulatingfactor in aqueous solution (O201). This review with 149 refer-ences is of applications of FT-IR spectroscopy to the structuralstudy on the function of bacteriorhodopsin (O202). High-resolution two-dimensional NMR complemented by FT-IR and CDhas been employed for the elucidation of three-dimensionalsolution structure of several synthetic peptides corresponding tothe calcium binding domains of the 148 residue protein calmodulin(O203). IR spectra of helical poly(â-phenethyl-L-aspartate) in1,1,2,2-tetrachloroethane were observed as a function of temper-ature (O204). This paper discusses the selective enhancementand subsequent subtraction of atmospheric water vapor contribu-tions from FT-IR spectra of proteins (O205). The conformationof puroindoline-a and -b, two basic lipid-binding proteins isolatedfrom wheat seedlings, has been studied for the first time by IRand Raman spectroscopy (O206). FT-IR spectroscopic studies ofhydration of such as phosphatidylcholines are discussed (O207).FT-IR spectra of collagen films set in a vacuum chamber havebeen measured as a function of time (O208). Resonance Ramanand FT-IR spectra are reported for free-base tetraphenylbacterio-chlorin and its isotopomers (O209). FT-IR has been used toquantitatively examine the secondary structure of imprintedproteins in anhydrous media (O210). This review with 135references discusses the IR spectroscopy of lipids (O211). Themetastability of dimyristoylphosphatidylethanolamine has beenstudied by FT-IR spectroscopy, both in the absence and in thepresence of R-tocopherol (O212). Structural changes in thecomplex formation between transducin and metarhodopsin II, the

150R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

activated form of photolyzed rhodopsin, in the visual transductionprocess were analyzed by FT-IR spectroscopy (O213). Thephotooxidation of the primary electron donor in several photo-system I-related organisms has been studied by light-induced FT-IR difference spectroscopy (O214). FT-IR spectroscopy was usedto quantitatively assess the secondary structure of proteins inaqueous-organic mixtures ranging from pure water to a puresolvent (O215). The influence of hydration and hydrostaticpressure on the conformation and local interactions of phosphati-dylinositol has been investigated using IR spectroscopy (O216).The FT-IR spectra of photocycle intermediates of sensory rhodop-sin II from Natronobacterium pharaonis were measured (O217).FT-IR spectra indicate that the pressure-induced liquid crystal-to-gel transition of dioleoylphosphatidylglycerol involves a confor-mational change making the glycerol Csn-1-Csn-2 bond moreparallel to the bilayer surface and resulting in increased carbonylgroup hydrogen bonding (O218). FT-IR spectroscopy has beenused to characterize Langmuir-Blodgett films of purple mem-branes deposited on Ge crystals at different surface pressures(O219). The secondary and tertiary structures of the choline-dependent major pneumococcal autolysin LytA amidase and ofits COOH-terminal domain have been investigated by CD and FT-IR spectroscopy (O220). A selective solubilization process ofbehenic acid in mixed Langmuir films by 2-propanol was demon-strated by IR spectroscopy (O221). A review with 24 referencesfocuses on FT-IR and Raman spectroscopies in the study ofproteins and other biological molecules (O222). This paperdiscusses the IR analysis of protein unfolding caused by disulfidereduction (O223). Infrared studies of the types of coordinationof the side-chain carboxylate anion to a metal cation have beenstudied for protein-metal interactions (O224). The authorsdiscuss the first systematic structural and conformational char-acterization of a complete family of diribonucleotide analogues inaqueous solution by Raman and IR spectroscopies (O225). Theauthors studied the spectral variation of mixed and separatedhomopolymeric RNA and DNA systems under conditions that leadto conformational variation using FT-IR and CD (O226). Hydrogen-bonding formation between guanine and cytosine was studied byvibrational spectroscopy (O227). Fluorescence and FT-IR spec-troscopic studies were used to define the role of the disulfide bondin the calcium binding in the 33-kDa protein of photosystem II(O228). Light-induced FT-IR difference spectra of P840 upon itsoxidation have been measured with the reaction center complexfrom the green sulfur bacterium Chlorobium tepidum (O229). Mid-IR spectra of pure sucrose solutions and of biological solutionscontaining sucrose and potassium ions were investigated byprincipal component analysis (O230). Conformational disorderin liquid alkenes and in the L R and H phases of some unsaturatedphospholipids has been monitored by FT-IR spectroscopy (O231).Upon the removal of water, proteins undergo a major, reversiblerearrangement of their secondary structure, as revealed by FT-IR spectroscopy (O232). The hydration of 1,2-dioleoyl-sn-glyc-erophosphoethanolamine has been studied by FT-IR spectroscopyapplied to macroscopically oriented films in comparison to relatedphospholipids (O233). FT-IR (ATR) was used to probe thekinetics of hydrogen/deuterium exchange in Manduca sextaapolipophorin-III (O234). IR spectroscopy was applied to theinvestigation of normal and oxidatively modified hepatic nuclei

(O235). This review is of structures of cell surface polysaccha-rides as determined by FT-IR spectroscopy (O236). A review hasbeen written of the use of IR spectroscopy in identifying the basecomposition of nucleic acids, polymorphism of duplex DNA, etc.(O237). A review with references has been written of variousapplications of FT-IR spectroscopy to the study of hydrated lipidassemblies and biomembranes (O238). This review is of acomputational IR procedure for simulating the amide I bandenvelopes in globular proteins, transition dipoles, etc. (O239). Areview with 75 references is presented on the use of FT-IRspectroscopy for the study of enzyme systems (O240). Thisarticle is the first one of a series aimed at determining thenumerous interaction configurations adopted by water moleculesin macromolecular systems using FT-IR spectrometry (O241).Model systems for the hydrogen-bonded chain in the active centerof maltodextrinphosphorylase are synthesized and studied by FT-IR spectroscopy (O242). FT-IR was used with other analyticaltechniques to analyze the structural organization and thermalstability of two spermhesins (O243). A study was undertaken ofthe interaction of the Mg ion with the anionic phosphatidylglyc-erol, and FT-IR was used to identify the Mg(II) binding sites(O244). FT-IR and site-directed isotope labeling has been usedas a probe of local secondary structure in the transmembranedomain of phospholamban (O245). The experimental and theo-retical investigation of the vibrational spectra of cytosine andprotonated cytosine was performed (O246). IR spectroscopy hasbeen used to determine gel-state miscibility in long-chain phos-phatidylcholine mixtures (O247). FT-IR and EXAFS spectroscopictechniques have been used to characterize Cu and Zn complexeswith deoxycholate, a derivative of deoxycholic acid which is animportant physiological bile acid (O248). FT-IR spectroscopy wasapplied to investigate the conformational aspects of syntheticpolynucleotides upon binding of berenil and pentamidine (O249).FT-IR spectra have been recorded both as a function of time andafter prolonged exposure to buffer to study the structural changesthat lead to both the ligand- and lipid-dependent channel-inactivestates of the nicotinic acetylcholine receptor (O250). FT-IRspectroscopy was used to investigate interactions of the cryopro-tective agents glycerol and DMSO with Bradyrhizobium japonicum(O251).

Gas chromatography/Fourier transform infrared spectroscopywas used to examine a selection of 42 monosaccharides andrelated compounds obtaining unambiguous identification (O252).The results of an international trial proficiency test are described.Compounds relevant to the Chemical Weapons Convention wereanalyzed in rubber, paint and two soil samples using GC, GC/MS, and GC/FT-IR (O253). Direct-deposition GC/FT-IR, alongwith GC/MS, was used to identify trace components of plantsubstances (O254). GC/FT-IR, along with other chromatographytechniques, was used to identify R-phenylethylamine in judicialsamples (O255). Purge-and-trap PLOT capillary GC/FT-IR wasused to identify volatile organic compounds in blood samples(O256). The use of GC/FT-IR of methylsilyl ethers of disaccha-rides to positively identify disaccharides is reported (O257). Thispaper examines the photochemical transformations of dichloro-prop and 2-naphthoxyacetic acid in aqueous solution by combinedGC/MS and GC/FT-IR analyses (O258).

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 151R

This paper focuses on the time-resolved infrared and steady-state Fourier transform infrared spectroscopy of native and mutantreaction centers of R. sphaeroides (O259). Time-resolved FT-IRspectroscopy was used to characterize the structure and dynamicsof the last step in the photocycle of the light-driven proton pumpbacteriorhodopsin (O260). Two bathointermediates of the bac-teriorhodopsin photocycle were distinguished by nanosecond time-resolved FT-IR spectroscopy (O261). Rapid-scan FT-IR spectros-copy and time-resolved single-wavelength IR spectroscopy havebeen applied to study the mechanism of the photochemical releaseof ATP from its P3-[1-2-nitrophenyl)ethyl] ester (caged ATP)(O262). Infrared absorbance changes of the sarcoplasmic reticu-lum Ca2+-ATPase arising from three partial reactions of its Ca2+-pumping cycle were triggered by the photochemical release ofATP from caged ATP and were followed in real time using rapid-scan FT-IR spectroscopy (O263). Changes in the vibrationalspectrum of sarcoplasmic reticulum Ca2+-ATPase in the courseof its catalytic cycle were followed in real time using rapid-scanFT-IR spectroscopy (O264). This paper details a comparativeanalysis of the refolding kinetics of RNAse A by time-resolvedFT-IR spectroscopy (O265). This review and discussion focuseson fast events in protein folding initiated by laser-induced tem-perature jump and probed by time-resolved infrared spectroscopy(O266). Time-resolved FT-IR difference spectroscopy was usedto characterized the amplitude, frequency, and kinetics of theabsorbance changes induced in the IR spectrum of sarcoplasmicreticulum Ca2+-ATPase by Ca2+ binding at the high-affinitytransport sites (O267).

A review and discussion has been written that covers applica-tions to biological membranes and to surface chemistry (O268).ATR was used to investigate the structure of purified P-glycopro-tein functionally reconstituted into liposomes. A quantititativeevaluation of the secondary structure and kinetics of 2H/Hexchange of the P-glycoprotein were performed both in thepresence and in the absence of Mg-ATP, Mg-ATP-verapamil, andMg-ADP (O269). Examination of intact living bacterial cells wasmade by ATR spectroscopy. Typical examples demonstrate thatATR FT-IR spectroscopy makes it possible to classify and dif-ferentiate between microorganisms in vivo (O270). ATR was usedto elucidate the hydration behavior and molecular order ofphospholipid/ganglioside bilayers (O271). A method of measur-ing fecal lipids by ATR that requires no solvents was developedusing partial least squares (O272). The secondary structure andorientation of the viral fusion protein hemagglutinin reconstitutedin planar members was found to assume a tilted conformationduring membrane fusion as determined by ATR (O273). Polarizedattenuated total internal reflectance was applied to study the IRdichroism of the amide I transition moment in gramicidin A in asupported phospholipid monolayer and Ac-Lys2-Leu24-Lys2-amidein oriented multibilayers (O274). ATR was used to investigatethe secondary structure of the plasma membrane H+-ATPase ofcorn roots and compare it to the FT-IR spectra of the Neurosporacrassa plasma membrane H+-ATPase and the H+-ATPase and theH+/K+-ATPase from hog stomach (O275). This paper describesa new analytical technique for the study of adsorption of sarco-sinate surfactants on live human skin as evidenced by the presenceof spectral bands at frequencies characteristic of C-D bonds fromthe deuterio surfactant upon examination by ATR IR (O276). ATR

difference spectroscopy was combined with the step-scan tech-nique and compared to conventional transmission spectra ofbiological matter (O277). ATR FT-IR was used to study the effectof phosphatidylglycerol on the percutaneous penetration of drugsthrough the dorsal skin of guinea pigs in vitro and analysis of themolecular mechanism (O278). The secondary structure of fi-bronectin (FN) adsorbed to polymer surfaces was investigated ina quantitative manner using FT-IR ATR techniques (O279).Amide hydrogen/deuterium exchange rates were recorded on thinlysozyme films by ATR FT-IR spectroscopy as a function of thepH of the solution from which the films were prepared (O280).The stratum corneum structure was examined by ATR FT-IR andX-ray scattering after prolonged in vitro iontophoresis. ATR FT-IR studies showed that iontophoresis induced an important andreversible increase in the hydration of the outer layers of stratumcorneum, but no increase in lipid fluidity could be detected(O281). Representative values for amide I absorptivities wereobtained for 15 different films of globular proteins spread fromwater solutions (O282). Attenuated total reflection FT-IR spec-troscopy was used to follow the adsorption of the globular proteinlysozyme from aqueous (D2O) solution onto a silicon surface(O283). This paper discusses and illustrates amide hydrogen/deuterium exchange kinetics in protein films recorded by attenu-ated total reflection infrared spectroscopy (O284). An ATR FT-IR spectroscopic technique was developed for the estimation ofthe methoxy poly(ethylene glycol) 5000 content of the methoxypoly(ethylene glycol) 5000-modified protein bovine copper-zincsuperoxide dismutase (O285). Attenuated total reflectance FT-IR difference spectroscopy was used in the study of the formationof metarhodopsins (O286). A combination of ATR and FT-IR wasused to measure the bacteriorhodopsin photocycle (O287). Thispaper discusses the influence of gangliosides on phospholipidmodel membranes as studied by ATR FT-IR spectroscopy and thestructural information obtained (O288). ATR FT-IR, along withangle-dependent XPS and AFM, was used to investigate musseladhesive protein adsorption on polystyrene and poly(octadecylmethacrylate) (O289). ATR FT-IR was used to investigate theeffects of 10 phospholipids on the in vitro percutaneous penetrationof prednisolone through the dorsal skin of guinea pigs (O290).The sorption of the plasma proteins human serum albumin (HSA)and human fibrinogen (FIB) onto hemodialysis cellulose sub-strates was investigated by the surface sensitive ATR FT-IRspectroscopy (O291). The effects of pH and the presence of metalions An2- and Cd2+ on the conformation of bovine serum albuminwere investigated using ATR FT-IR spectroscopy (O292). Fouriertransform IR horizontal-attenuated total reflectance (FT-IR/IR/H-ATR) spectroscopy was employed to determine the diffusioncoefficients of sodium p-aminosalicylate (PAS) in sheep nasalmucosae and dialysis membranes (O293). Attenuated totalreflection FT-IR spectroscopy in conjunction with statisticalmethods has been used as a new approach to rapidly discriminatethree isogenic strains of Pseudomonas aeruginosassusceptible, lesssusceptible, and highly resistant to imipenemsand to follow thestructural modifications related to an outer membrane imperme-ability (O294).

DRIFTS was used as an in situ detection method for thequalitative and quantitative analysis of heroin, cocaine, and codeineafter separation by thin-layer chromatography (O295). DRIFTS,

152R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

along with scanning electron microscopy and other chemicalanalyses, was used to study the fungal degradation of Eucalyptusgrandis (O296). Fourier transform powder diffuse reflectanceinfrared spectroscopy was used to evaluate particle size of bulkpowders in pharmaceutical preparations (O297). This studyreports a quantitative correlation between specific FT-IR absorp-tion peak intensity of phenytoin to its particle size in the bulk aswell as in powder blends of pharmaceutical preparations (O298).This paper reports the use of DRIFTS to determine the concentra-tions of surface-adsorbed organics present as mixtures on ben-tonitic clays (O299). DRIFTS was used to rapidly identifyStreptococcus and Enterococcus species (O300). This paperdescribes the quantitation of cefepime‚2HCl dihydrate in cefepime‚2HCl monohydrate by DRIFTS and powder X-ray diffractiontechniques (O301).

A review with 140 references has been written of biomedicalapplications of FT-IR and Raman microspectroscopy, spectralimaging, and mapping (O302). Fourier transform IR microscopywas used to monitor spatial variations in the quality and quantityof the mineral phase in calcified turkey tendon (O303). A methodhas been developed to obtain large red crystals of cytochromebc1 complex from beef heart mitochondria and the structure ofthe complex by micro-FT-IR spectroscopy has been investigated(O304). Synchrotron FT-IR microspectroscopy has been used forin situ characterization of â-amyloid in human Alzheimer’s diseasetissue (O305). Fourier transform IR microspectroscopy wasapplied to in situ detection of cholesterol ester stored in athero-sclerotic plaques in New Zealand white rabbits (O306). This paperdetails the FT-IR microspectroscopy of three distinct types of planttissues, nutshells, bamboo, and potato tubers (O307). The abilityof FT-IR microscopy to analyze crystal deposits in tissues,especially in biopsy samples, was test and reported (O308). Thispaper details the use of FT-IR microscopy to study solute (drugand protein)/polymer interactions that affect solute diffusion inand subsequent release from swellable dosage forms based onenvironmentally responsive, pH-sensitive polymer networks (O309).A newly developed microscopic FT-IR spectrometry combinedwith differential scanning calorimetry has been used to investigatesimultaneously the thermal response and IR spectral changes inprotein structure in porcine stratum corneum after pretreatmentwith skin enhancers (O310). FT-IR microspectroscopy has beenused to study the changes in mineral and matrix content andcomposition replicate biopsies of nonosteoporotic human osteonalbone (O311). Using FT-IR microspectroscopy, the averagetranslational diffusion coefficients of bile salt-lecithin mixedmicelles diffusing in amylopectin gel of varying concentration weremeasured (O312). FT-IR microscopy was used to detect mineralchanges in a mouse model of osteogenesis imperfecta, aninheritable disease characterized by skeletal deformities and brittlebones (O313). FT-IR microscopy has been used to deduce therole of type X collagen in endochondral ossification (O314).

This paper reports a completely noninvasive measurement ofblood glucose using near-infrared waves (O315). In this article,near-IR spectroscopic measurements of hemoglobin concentrationin whole blood, which are potentially useful in a pulse oximetermodified for noninvasive hemoglobinometry, are presented (O316).This paper discusses the hemoglobin content of whole blood beingmeasured with a simple light-transmittance procedure using a

single-term derivative ratio calibration (O317). The authors ofthis paper discuss their investigation of the development of asensor suitable for continuous noninvasive monitoring of bloodglucose concentrations in diabetic patients (O318). This paperfocuses on selective calibration models generated for glucose overthe 1-20 nM concentration range by use of partial least-squaresregression analysis of near-IR spectra from 5000 to 4000 cm-1

(O319). Calibration models have been generated and evaluatedfor the measurement of glucose, glutamine, ammonia, lactate, andglutamate in aqueous solutions by near-infrared spectroscopy(O320). The authors of this article describe a multivariatecalibration procedure that is based on the use of a geneticalgorithm to guide the coupling of band-pass digital filtering andpartial least-squares regression (O321). This paper explores thecomplications of determining the concentration of glucose in vivoby near-IR spectroscopy due to the effects of optical changescaused by fluctuations in temperature, tissue water content, andconcentration of other analytes. An investigation was conductedto determine the magnitude of the changes in diffuse reflectanceand transmittance from changes in glucose (O322). A variableselection method that reduces prediction bias in single factorpartial least-squares regression models was developed and appliedto near-IR absorbance spectra of glucose (O323).

Near-IR reflectance spectra of numerous frozen sections ofcarcinomatous tissue and frozen sections of normal surroundingfibroglandular tissue from patients with breast cancer are pre-sented and discussed (O324). The authors of this study demon-strate the possibility of using near-IR absorption and excitationspectroscopy as accurate and rapid techniques to distinguishbetween normal and cancer breast tissues (O325). This paperillustrates how near-IR spectroscopy can discriminate betweennormal and carcinomatous human breast tissues (O326). In thisstudy, the authors have attempted to use near-IR reflectance tomap the variability in water content across the stratum corneumin vivo (O327). A new NIR technique based on a pseudorandommodulation/correlation method is being developed for noninvasivetissue diagnosis applications (O328). This paper discusses thecharacterization of biological tissues using Fourier transform near-infrared spectroscopy. Changes in the skin due to sunlight andother environmental factors are reported (O329). The results ofthis study clarify the influence of probe geometry on near-infraredspectroscopic measurements obtained from the surface of a turbidbiological tissue (O330). This paper focuses on determining thefeasibility of near-IR analysis for quantitating urea, creatinine, andprotein in urine (O331).

Using continuous near-IR spectroscopy, the oxygenated stateof hemoglobin and the redox state of cytochrome c oxidase inthe cerebral tissue of newborn piglets were studied (O332). Thispaper examines noninvasive methods for determination of thehemoglobin content of arterial blood and the water content of skin(O333). The authors of this paper used near-IR spectroscopy tostudy noninvasive changes in cerebral hemoglobin oxygenationin the frontal and parietal cortex during performance of a verbalfluency task in patients with Alzheimer’s disease (O334). Acuteresponses of brain oxygenation were studied during posturalchange using near-IR spectroscopy. NIRS is shown to be usefulto monitor cerebral oxygenation during postural change inhumans (O335). This paper focuses on the use of a combination

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 153R

of near-IR spectroscopy and discrete wavelength near-IR imagingto noninvasively monitor the forearm during periods of restrictedblood outflow and interrupted blood inflow (O336). A review hasbeen written that discusses the relationship between spectral dataand â-lipoprotein content determined by routine turbidimetry(O337). The objective of this study was to explore whethermeasurements in the near-IR spectral region can be related tohemoglobin content of the human whole blood (O338). Thispaper focuses on a clinical study comparison where near-IR spectraand analyte reference data were collected on serum samples froma mixed diabetic/nondiabetic population. The objective of thestudy was to compare calibrations developed from spectral datasets collected by different operators under the same experimentalconditions but separated in time (O339). This investigationfocuses on the availability of oxygen in the human vastus medialismuscle and the tympanic, skin forehead, quadriceps, and rectaltemperatures during exercise test and postexercise with nonin-vasive near-IR spectroscopy (O340). Near-IR was used to studynoninvasively the influence of aging on changes in the localconcentration of oxygenated hemoglobin, reduced hemoglobin,and total hemoglobin during activation of brain function (O341).This study focuses on the assessment by near-IR on the consump-tion of oxygen for the vastus medialis muscle that workssupporting the weight of the human body (O342). The authorsof this paper have used second-differential near-IR spectroscopyof water to determine the mean optical path length of the neonatalbrain (O343). This report outlines the use of near-IR spectroscopyto measure cerebral hemoglobin oxygenation after hepatic trans-plantation (O344). The aim of this study was to evaluate theefficiency, validity, and practicability of near-IR reflectance analysiscompared with standard methods for measurement of fecalcarbohydrates (O345). This paper describes a novel, noninvasivemethod for measuring peripheral venous oxygen saturation innewborn infants using near-IR spectroscopy with venous occlusion(O346). The principle and possibility of bone tissue analysis bynear-IR spectroscopy are described (O347). This paper exploresthe potential of near-IR spectroscopy in the clinical laboratory.Potential in vitro applications of NIR spectroscopy include analysisof serum, whole blood, plasma, breast milk, feces, bone, urine,cerebrospinal fluid, and tissue for analytes. In vivo applicationsof NIR spectroscopy include measurement of brain and tissueoxygenation and cerebral blood volume and flow characteristics,oximetry measurements, quantitation of cytochrome, and bodyfat composition. The possibility of measuring blood analytesnoninvasively is also discussed (O348). Investigation of rapidnear-IR spectroscopy in combination with fiber optics for biomedi-cal sensing is presented in this paper (O349). This review with16 references focuses on biological and medical applications ofnear-IR spectrometry (O350). This paper describes functionalbrain mapping using multichannel NIRS by applying motorstimulation in humans (O351). The authors of this paper studiedcerebral oxygen metabolism during hypoxia to demonstratewhether the redox state of cytochrome aa3, as measured by near-IR spectrophotometry, reflects the brain energy level (O352). FT-NIR spectra have been measured for native and thermal denaturedpepsin in a solid state to find a marker band for the secondarystructure of proteins (O353). Near-IR spectroscopy has beeninvestigated as a tool for determining the amount of nitrogen in

feces since the well-known Kjeldahl method is rather complex,time-consuming, and expensive (O354). The purpose of this studywas to determine whether the initial rate of hemoglobin andmyoglobin deoxygenation during immediate postexercise is-chemia, a reflection of muscle O2 consumption, can be a quantita-tive measure of muscle oxidative metabolism (O355). This papercompares three methods for fecal fat measurement in the presenceof long- and medium-chain triglycerides and fatty acids (O356).This paper describes a method for estimating the cerebral bloodvolume and transit time in neonates from quick oxygen increasesmeasured by near-infrared spectrophotometry (O357). Theauthors of this paper describe the use of second derivative near-IR spectroscopy to measure absolute deoxyhemoglobin concentra-tions in tissue (O358).

The authors of this paper explore the potential sources ofdiscrepancies between living tissue near-infrared spectroscopyalgorithms (O359). The analytical strategies are described forthe ferrylmyoglobin/ABTS radical monocation assay for measur-ing total antioxidant activity, which is a measure of the collectiveH-donating abilities of the antioxidants in the samples and is basedon the interaction between antioxidants in the sample with the2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical mono-cation, which is highly chromogenic (O360). Asparagine andglutamine concentrations were determined in binary aqueoussolutions with near-IR absorption spectroscopy and are describedin this paper (O361). This paper explores structure-basecalculations of the optical spectra of the LH2 bacteriochlorophyll-protein complex from Rhodopseudomonas acidophila (O362).Conflicting patterns of change in cytochrome c oxidase redoxstatus have been obtained between different near-IR spectropho-tometers when measurements were made during tissue ischemia.This study identifies possible sources of error that could be thecause of the discrepancy (O363). The potential of near-IRreflectance spectroscopy for nondestructively probing structuralchanges in protein during the process of denaturation wasinvestigated (O364).

This review with 111 references focuses on the photobiologicalapplication of nonlinear visible/NIR spectroscopic techniques,exemplified by the primary processes of bacterial photosynthesis(O365). A multichannel reflectance measurement system wasdeveloped that uses near-IR measurements for topographic imag-ing inside biological tissue (O366). Near-IR reflectance spectros-copy has been used for rapidly and reproducibly measuring theNIR spectra of mainstream smoke collected on Cambridge filterpads and quantifying the chemical composition from the spectraldata (O367).

The authors continuously measured hepatic absorbance ofindocyanine green using near-IR spectroscopy after iv bolusinjection in rabbits and their study suggests the advanced utilityas a comprehensive liver function test (O368). The aim of thisstudy was to examine the possibility for predicting purine nitrogenand total nitrogen content as a marker of microbial protein induodenal digesta samples of sheep by near-IR spectroscopy(O369). To examine the feasibility of optical monitoring of cellularenergy states with tissue-transparent near-IR light, the absorptionsand fluorescence characteristics of Rhodamine 800 in isolated ratliver mitochondria and hepatocytes were investigated (O370). Thispaper focuses on the simultaneous prediction of the concentrations

154R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

of glucose, glutamine, lactic acid, ammonia, and antibody in theculture broth of mouse-mouse hybridoma by near-infraredreflectance spectroscopy (O371). The objective of this work wasto determine whether the Dy content of ruminal digesta sampleslabeled by pulse-dosing intraruminally with Dy-labeled foragescould be determined by near-IR reflectance spectroscopy (O372).Rat carcass characteristics were determined by classical chemicalanalyses, near-IR reflectance, and total body electrical conductivity,with the aim to establish a rapid, reliable, and soft method fornumerous body composition predictions (O373). Near-IR spec-troscopy was applied to rat liver allografts for assessing nitric oxidesynthesis and tissue oxygenation as a means of monitoring therefection response following liver transplantation (O374). In thisstudy, near-IR spectroscopy was applied to the prediction of theconcentration of nutrients and products in culture broth of amouse-mouse hybridoma (O375). Near-IR transmission spec-troscopy has proven to be a more efficient and convenientanalytical method for the determination of poly(ethylene glycol)used as a flow rate marker for the liquid phase in rumen digestionkinetics studies (O376). Cortical spreading depression (CSD) hasbeen implicated in the migraine aura and in stroke. This studydemonstrates near-IR spectroscopy for the first time as capableof noninvasive on-line detection of CSD in the pentobarbital-anesthetized rat (O377). A continuous-wave near-IR spectroscopysystem co-operated with an NMR spectrometer has been devel-oped for the regional correlation of nitrosyl hemoglobin formationin gerbil head under hypoxia (O378). Near-IR, in conjunction withmeasurement of cerebral blood flow, was used in rabbits withexperimental bacterial meningitis to determine whether there wasevidence for cerebral energy depletion and alterations in thecerebral vascular bed with infection (O379). Cortical spreadingdepression was monitored noninvasively by near-IR spectroscopyin male Wistar rats (O380). The authors of this paper have shownthat an inexpensive dual wavelength near-IR tissue oxygen monitormay be very useful to detect myoglobin oxygenation in a volumeof tissue as small as the isolated buffer-perfused rat heart (O381).

The paper discusses near-IR depth-resolved measurement ofdrug concentrations during diffusion through a matrix (O382).This paper is a description of the analytical applications of near-IR spectroscopy in the pharmaceutical industry (O383). A studywas performed on the pharmaceutical components in tablets. Near-IR spectroscopy was shown to measure with satisfactory accuracyand reliability within the validity limits of calibration (O384). Near-IR spectroscopy was used for the on-line measurement of moistureduring granulation and drying of pharmaceuticals (O385). Near-IR spectroscopy was used to qualitatively assess the homogeneityof a typical direct compression pharmaceutical powder blendconsisting of hydrochlorothiazide, Fast-flo lactose, croscarmellosesodium, and magnesium stearate (O386). The authors of thispaper discuss a calibration line adjustment to facilitate the use ofsynthetic calibration samples in near-infrared spectrometric analy-sis of pharmaceutical production samples (O387). Near-IRspectrometry was used to quantify metoprolol succinate incontrolled-release tablets (O388). The viability of using principalcomponent analysis and soft independent modeling of classanalogy analysis of the near-IR reflectance spectra of illicitmethaqualone tablet formulations as an aid in sample differentia-tion was investigated (O389). This investigation focused on the

possibility of applying near-IR reflectance spectrometry to thecontrol of the production cycle of ranitidine hydrochloride tablets(O390). Investigation of rapid near-IR spectroscopy in combina-tion with fiber optics for biomedical sensing is investigated (O391).This review with 15 references was written on reflection andtransmission NIR spectrometry direct analyses of pharmaceuticalswithout the need of forming aqueous solutions (O392). This paperdemonstrates the use of near-infrared reflectance spectroscopyto identify pharmaceutical products by the direct measurementof tablets or capsules in a blister packing (O393). The authorsdemonstrate the use of near-IR spectroscopy for assessing theprogress of reactions leading to compounds for evaluation asantituberculosis drugs (O394).

This overview is given of the use of near-IR spectrometry forscreening characteristics of corn and soybean (O395). Near-IRtransmission spectroscopy was explored for single-seed oil de-termination of meadowfoam (Limnanthes spp.) (O396). Themimosine contents of Leucaena foliage, Acacia tannins, and totalphenols from leaf, bark, and pod were analyzed by a near-IRreflectance spectrophotometer (O397). The purpose of this studywas to investigate whether near-IR reflectance spectroscopy andchemometric methods can be used as a rapid and simpleprocedure to predict the leachability of pesticides from soilsamples (O398). A near-IR spectroscopic assay has been devel-oped for in situ monitoring of lipolysis in water-in-oil microemul-sions stabilized by soybean lecithin (O399). The authors of thispaper describe a method of control of fermentations by means ofon-line near-infrared spectrometry (O400).

The authors of this paper describe the applications of near-IRspectroscopy to fermentation process analysis (O401). By useof near-IR spectroscopy, simultaneous, multiple-constituent estima-tion of important bioprocess parameters can be obtained in a timeframe that was previously unattainable (O402). This articlediscusses the potential use of near-IR spectroscopy for analyzingstrongly absorbing highly light scattering samples for bioprocessanalysis (O403). The dynamics of electronic and thermal relax-ation of the heme in myoglobin have been determined fromsubpicosecond time-resolved near-IR absorbance spectra of pho-toexcited myoglobin (O404). Near-IR is used to determinecerebral blood volume and cerebrovascular CO2 reactivity (O405).

Light-induced release of ADP and ATP from respective cagednucleotides produced small distinct difference IR spectra ofcreatine kinase (CK), indicating that ADP and ATP binding toCK promoted different structural alteration (O406). FT-IR differ-ence spectroscopy has been used to probe structural changes inmembrane proteins (O407). The effects of both neutral andanionic lipids on the structure of the nicotinic acetylcholinereceptor have been probed using IR difference spectroscopy(O408). This paper examines FT-IR difference spectra of tyrosineD oxidation and plastoquinone QA reduction in photosystem II(O409). Redox FT-IR difference spectroscopy using cagedelectrons reveals contributions of carboxyl groups to the catalyticmechanism of heme-copper oxidases (O410). FT-IR differencespectroscopy and 13C-labeled bicarbonate techniques investigatebicarbonate binding to the none-heme iron of photosystem II(O411). The photocycle of 124-kDa phytochrome A from Avenasativa was studied by FT-IR at low temperatures. Differencespectra between the parent and the intermediates were obtained

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 155R

and show characteristic spectral features which allow a cleardistinction between the different intermediates (O412). Thetyrosine D radical FT-IR difference spectrum obtained in photo-system II membranes has been compared to FT-IR differencespectra of tyrosine and phenol radicals generated by UV irradiationat low temperature (O413). The photocycle of bacteriorhodopsin(BR) regenerated with all-trans-9-demethylretinal was investigatedby time-resolved rapid-scan FT-IR difference spectroscopy (O414).A review with 54 references has been written of light-induced FT-IR difference spectroscopy of the quinone vibrations in protein/quinone interactions in the bacterial photosynthetic reaction center(O415). FT-IR difference spectroscopy was used to investigateZ,E isomerization of the R-84 phycoviolobilin chromophore ofphycoerythrocyanin from Mastigocladus laminosus (O416). Light-induced FT-IR difference spectroscopy was used to investigateprotein and bacteriopheophytin response to QA reduction inphotosynthetic bacterial reaction centers from R. sphaeroides andRhodopseudomonas viridis (O417). Difference FT-IR spectra wererecorded for the formation of the photointermediates and isor-hodopsin from octopus rhodopsin at low temperatures (O418).Time-resolved FT-IR difference spectroscopy was used to char-acterize the amplitude, frequency, and kinetics of the absorbancechanges induced in the IR spectrum of sarcoplasmic reticulum(SR) Ca2+-ATPase by Ca2+ binding at the high-affinity transportsites (O419). Low-temperature FT-IR difference spectroscopy hasidentified a pH-dependent polarity change at the heme-copperbinuclear center of the aa3-type cytochrome c oxidase from R.sphaeroides (O420). Molecular reaction mechanisms of proteinshave been monitored by nanosecond step-scan FT-IR differencespectroscopy (O421). This paper details the light-induced QA/QA FT-IR difference spectrum of the photoreduction of theprimary quinone (QA) in reaction centers from R. spaeroides(O422). An infrared difference spectroscopy investigation wasconducted of the conformational changes of arginine kinaseinduced by photochemical release of nucleotides from cagednucleotides (O423). FT-IR spectroscopy has been used to assessthe bonding interactions of the quinone carbonyls of QA (asym-metric binding) and QB (more symmetric) and compared to thoseproposed in the X-ray structures (O424). A combination of proteinelectrochemistry and spectroscopy was used to determine themidpoint potentials of the cofactors and the redox-induceddifference spectra of cyt b and cyt c1 (O425). The authors of thispaper report the first TyrDo/TyrD FT-IR difference spectrumobtained in spinach PS II membranes (O426). RNA/diethylstil-bestrol interactions were studied by FT-IR difference spectroscopy(O427). This paper examines the analysis of the polymer/antibody/antigen interaction in a capacitive immunosensor by FT-IR difference spectroscopy (O428). This review has been writtenwith many references related to light-induced FT-IR differencespectroscopy of the primary electron donor in photosyntheticreaction centers (O429).

This review with references is of techniques and applicationsof ultrafast IR spectroscopy to biomolecules, pulse-probe methodsin biology, etc. (O430). This article discusses the rapid advancesin the generation of intense tunable ultrashort mid-IR laser pulseswhich allow the use of ultrafast IR pump-probe and vibrationalecho experiments to investigate the dynamics of the fundamentalvibrational transition of CO bound to the active site of heme

proteins (O431). An ultrafast laser apparatus was developed thatallows time-resolved UV-visible and IR spectroscopy to beperformed with a time resolution of 200 fs (O432). The authorsof this paper present data from mutated photosynthetic reactioncenters where a change in the energetics of the special pair Pleads to a speed up of the electron-transfer step away from P(O433). Picosecond IR vibrational echo experiments on a protein,myoglobin-CO, are described in this article (O434, O435). In thisarticle, picosecond IR vibrational echo experiments on a mutantprotein, H64V myoglobin-CO, are described and compared toexperiments on wild-type myoglobin-CO (O436). The authors ofthis paper discuss the application of step-scan FT-IR spectroscopywith nanosecond time resolution to the photocycle of carbonyl-Hb (O437). A nanosecond step-scan FT-IR investigation of theKL to L transition in the bacteriorhodopsin photocycle is discussedin this article (O438). Femtosecond IR spectroscopy of low-lyingexcited states in the reaction center of R. sphaeroides are discussedin this paper (O439). These authors discuss femtosecond IRstudies of photosynthetic reaction centers (O440). The authorsof this paper present transient absorbance spectra of the reactioncenters from the bacterium R. sphaeroides (O441).

Marianne L. McKelvy is a Research Leader in the Spectroscopy Groupof the Analytical Sciences Laboratory of the Dow Chemical Co., U.S.A.She received her B.S. degree from the University of Detroit, Detroit, MI(1979) and the M.S. (1982) and Ph.D. (1985) degrees in polymerchemistry from Polytechnic University, Brooklyn, NY. She joined the DowChemical Co. in the Analytical Sciences Laboratory in 1984, where sheis involved in solving polymer problems using infrared spectroscopy. Herresearch interests involve the characterization of polymers using vibra-tional spectroscopy and infrared microspectroscopy. She is a member ofthe Coblentz Society, the Society for Applied Spectroscopy, and theAmerican Chemical Society.

Thomas R. Britt is a Project Leader in the Analytical Science Groupof the Louisiana Division of Dow Chemical Co., U.S.A. He received hisB.S. (1976) from Millsaps College, Jackson, MS, M.S. (1981) from theUniversity of Southern Mississippi, Hattiesburg, MS, and the Ph.D. (1981)from the University of Southern Mississippi, Hattiesburg, MS. He joinedDow in 1982 and has worked in new polymer development and on-lineanalyzer development. For the past 9 years, he has worked in theInstrumental Analysis group, applying FT-IR and FT-Raman spec-troscopies in the solution of production and research problems. Hisinterests are polymer characterization and the application of FT-IR andFT-Raman microspectroscopies to understanding polymers and theirprocesses.

Bradley L. Davis is a Research Leader in the Materials Science Groupof the Analytical Sciences Laboratory, The Dow Chemical Co., U.S.A.He received a B.A. degree from Rice University in 1972 and a M.A. fromThe University of Texas at Austin in 1974. He joined Dow in 1974 wherehe has been involved primarily in the application of infrared spectroscopytoward solving production and research problems. His research interestsinclude polymer characterization, determination of molecular structure,and characterization of polymer surfaces. He is a member of the Societyfor Applied Spectroscopy and the Coblentz Society.

J. Kevin Gillie is a Research Scientist in the Research and Developmentgroup at AET Films, located in New Castle, DE. His current responsibili-ties include directing the analytical sciences laboratory at AET Films.Since joining AET Films, he has focused on applying a variety of analyticaltechniques to the complex development, manufacturing, and applicationof oriented polypropylene films. He received a B.S. in chemistry fromJames Madison University in 1983 and a Ph.D. in physical chemistryfrom Iowa State University in 1989. Prior to joining AET Films, heworked in the Analytical Sciences Laboratory for The Dow Chemical Co.He has eight years of experience applying vibrational spectroscopy to solvecomplex industrial and materials problems.

Felicia B. Graves is a Research Specialist in the Molecular Spectros-copy Group with The Dow Chemical Company, U.S.A. She received herB.S. from Jackson State University, Jackson, MS in 1982, and M.S.(1988) and Ph.D. (1991) from the University of Southern Mississippi,Hattiesburg, MS. She joined the Dow Chemical Co. in the SeparationSciences group in 1991 and, in 1993, joined the Molecular Spectroscopygroup, where she has been involved primarily in applications of infraredand UV-visible spectroscopy. Her research interests included the develop-ment and applications of GC-IR-MSD for materials characterization.She is a member of the American Chemical Society, the Society for AppliedSpectroscopy, and the National Organization for the Professional Ad-vancement of Black Chemists and Chemical Engineers.

156R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

LITERATURE CITED

BOOKS AND REVIEWS

(A1) Nyquist, R.; Kagel, R.; Putzig, C.; Leugers, A. The Handbookof Infrared and Raman Spectra of Inorganic Compunds andOrganic Salts; Academic: San Diego, CA, 1996.

(A2) Mantsch, H. H., Chapman, D., Eds. Infrared Spectroscopy ofBiomolecules; Wiley-Liss: New York, 1996.

(A3) Stuart, B.; Ando, D. Modern Infrared Spectroscopy: AnalyticalChemistry by Open Learning; Wiley: Chichester, U.K., 1996.

(A4) Iwasita, T. Infrared Spectroscopy in Electrochemistry; Perga-mon: Oxford, U.K., 1996.

(A5) George, W., Steele, D., Eds. Computing Applications in Mo-lecular Spectroscopy; Royal Society of Chemistry: Cambridge,U.K., 1995.

(A6) Kraemer, E.; Lodder, R. Spectroscopy 1996, 11, 24-9.(A7) Noda, I.; Dowrey, A.; Marcott, C. In Physical Properties of

Polymers Handbook; Mark, J. E., Ed.; AIP Press: Woodbury,NY, 1996; pp 291-98.

(A8) Colthup, N. Am. Lab. 1996, 28, 60-8.(A9) Coates, J. Spectrscopy 1995, 10, 14-7.

(A10) Coates, J. Appl. Spectrosc. Rev. 1996, 31, 179-92.(A11) Steele, D. Spectrosc. Eur. 1996, 8, 34-6.(A12) Buijs, H. In Atomic, Molecular, & Optical Physics Handbook;

Drake, G. W. F., Ed.; AIP Press: Woodbury, NY, 1996; pp 467-72.

(A13) Koenig, J. Polym. Mater. Sci. Eng. 1997, 76, 142.(A14) Harbecks, B.; Heinz, B.; Offerman, V.; Theiss, W. Semicond.

Layers 1996, 203-286, 410-4.(A15) Rohrs, H.; Frost, G.; Ellison, G.; Richard, E.; Vaida, V. Adv.

Mol. Struct. Res. 1995, 1, 157-99.(A16) Palmer, R.; Jacobsen, R.; Fuji, A.; Chao, J. Polym. Mater. Sci.

Eng. 1994, 71, 2-3.(A17) Griffiths, P.; Manning, C. J. Polym. Mater. Sci. Eng. 1994, 71,

4.(A18) Schoonover, J.; Strouse, G.; Omberg, K.; Dyer, R. Comments

Inorg. Chem. 1996, 18, 165-88.(A19) Kellner, R.; Gobel, R.; Gotz, R.; Lendi, B.; Edl-Mizaikoff, B.;

Tacke, M.; Katzir, A. Proc. SPIE-Int. Soc. Opt. Eng. 1995, 2508,212-23.

(A20) Katon, J. Micron 1996, 27, 303-14.(A21) Bernath, P. Chem. Soc. Rev. 1996, 25, 111-5.(A22) Takenaka, T.; Unemura, J. Stud. Interface Sci. 1996, 4, 145-

80.(A23) Benziger, J. In Handbook of Surface Imaging and Visualization;

Hubbard, A. T., Ed.; CRC Press: Boca Raton, FL, 1995, pp265-76.

(A24) Jinno, K.; Fujimoto, C. Methods Chromatogr. 1996, 1, 199-211.

(A25) Smith, P.; Pasztor, A.; McKelvy, M.; Meunier, D. Froelicher,S.; Wang, F. Anal. Chem. 1997, 69, 95R-121R.

(A26) Matsuoka, M. Adv. Color Chem. Ser. 1995, 2, 75-95.(A27) Friese, M.; Banerjee, S. In Surface Analysis of Paper; Conners,

T. E., Banerjee, S., Eds.; CRC Press: Boca Raton, FL, 1995;pp 19-41.

(A28) Pope, J. In Surface Analysis of Paper; Conners, T. E., Banerjee,S., Eds.; CRC Press: Boca Raton, FL, 1995; pp 142-51.

(A29) Ghosh, S. Leaping Ahead Near Infrared Spectrosc., 6th 1994,450-9.

(A30) Pandey, G.; Kumar, A. J. Sci. Ind. Res. 1995, 54, 571-81.(A31) Kirsch, J.; Drennen, J. Appl. Spectrosc. Rev. 1995, 30, 139-

74.(A32) Baulsir, C.; Simler, R. Adv. Drug Delivery Rev. 1996, 21, 191-

203.(A33) Kerslake, E.; Wilson, C. Adv. Drug Delivery Rev. 1996, 21,

205-13.(A34) Jackson, M.; Mantsch, H. Adv. Spectrosc. 1996, 25, 185-215.(A35) Mueller, H.; Freeman, D. Mater. Charact. 1995, 35, 113-26.(A36) Barnes, D. Ionomers 1996, 107-34.(A37) Kalivas, J.; Lang, P. Chemom. Intell. Lab. Syst. 1996, 32, 135-

49.(A38) Workman, J.; Brown, J. Spectroscopy 1996, 11, 48-51.(A39) Workman, J.; Brown, J. Spectroscopy 1996, 11, 24-9.(A40) Mobley, P.; Kowalski, B.; Workman, J.; Bro, R. Appl. Spectrosc.

Rev. 1996, 31, 247-368.(A41) Efimov, A. J. Non-Cryst. Solids 1996, 203, 1-11.(A42) Fraci, B. Chem. Aust. 1995, 62, 12-3.(A43) Benson, I. Spectrosc. Eur. 1995, 7, 18-24.

(A44) Stark, E. Near Infrared Spectrosc.: Future Waves, Proc. Int. Conf.Near Infrared Spectrosc., 7th 1995, 700-13.

(A45) Benson, I. Near Infrared Spectrosc.: Future Waves, Proc. Int.Conf. Near Infrared Spectrosc., 7th 1995, 239-48.

(A46) Xiugin, W. Leaping Ahead Near Infrared Spectrosc., 6th 1994,189-93.

(A47) Kawano, S.; Iwamoto, M. Leaping Ahead Near Infrared Spec-trosc., 6th 1994, 270-6.

(A48) Mraci, M. Chem. Aust. 1996, 63, 554-6.(A49) Downey, G. Leaping Ahead Near Infrared Spectrosc., 6th 1994,

136-47.(A50) Edye, L.; Clarke, M. Publ. Technol. Pap. Proc. Annu. Meet.

Sugar Ind. Technol. 1996, 55, 1-8.(A51) Dempsey, R.; Davis, D.; Buice, R. Lodder, R. Appl. Spectrosc.

1996, 50, 18A-34A.(A52) Doyle, W. Adv. Instrum. Control 1995, 50, 209-25.(A53) Workman, J. Appl. Spectrosc. Rev. 1996, 31, 251-320.(A54) Workman, J. Near Infrared Spectrosc.: Future Waves, Proc. Int.

Conf. Near Infrared Spectrosc., 7th 1995, 6-13.(A55) Bouveresse, E.; Massart, D. Vib. Spectrosc. 1996, 11, 3-15.(A56) Yariv, S. Thermochim. Acta 1996, 274, 1-35.(A57) Chaffin, C.; Marshall, T.; Fately, W.; Hammaker, R. Spectrosc.

Eur. 1995, 7, 18-24.(A58) Hess, B.; Smentek, L. Int. J. Quantum Chem., Quantum Chem.

Symp. 1995, 29, 647-56.(A59) Ferrier, R. Carbohydr. Chem. 1995, 27, 287-300.(A60) Somasundaran, P.; Krishnakumar, S.; Kunjappu, J. ACS Symp.

Ser. 1995, No. 615, 104-37 (Surfactant Absorption andSurface Solubilization).

(A61) Barthel, J. J. Mol. Liq. 1995, 65/66, 177-85.(A62) Cooper, E.; Knutson, K. Pharm. Biotechnol. 1995, 7, 101-43.(A63) Wharton, C. In Proteins Labfax; Price, N. C., Ed.; Academic

Press: San Diego, 1996; pp 187-94.(A64) Carey, P.; Surewicz, W. In Protein Engineering and Design;

Carey, P. R., Ed.; Academic Press: San Diego, 1996; pp 231-263.

(A65) Fabian, H.; Chapman, D.; Mantsch, H. In Infrared Spectroscopyof Biomolecules; Mantsch, H. H., Chapman, D., Eds.; Wiley-Liss: New York, 1996; pp 341-52.

(A66) Haris, P.; Chapman, D. In Infrared Spectroscopy of Biomolecules;Mantsch, H. H., Chapman, D., Eds.; Wiley-Liss: New York,1996; pp 239-78.

(A67) Cast, J. In Developments in Oils and Fats; Hamilton, R. J., Ed.;Chapman & Hall: New York, 1995; pp 224-66.

(A68) McElhaney, R. Proc. Int. Symp. Controlled Release Bioact.Mater., 22nd 1995, 5-6.

(A69) Jackson, M.; Mantsch, H. In Infrared Spectroscopy of Biomol-ecules; Mantsch, H. H., Chapman, D., Eds.; Wiley-Liss: NewYork, 1996; pp 311-40.

(A70) Wang, J.; Sowa, M.; Mantsch, H.; Bittner, A.; Heise, H. TrAC,Trends Anal. Chem. 1996, 15, 286-96.

(A71) Kirk, D.; Gaskell, S.; Marples, B. In Steroid Analysis; Makin,H. L. J., Gower, D. B., Kirk, D. N., Eds.; Chapman and Hall:New Yor, 1995; pp 25-113.

(A72) Maentele, W. Adv. Photosynth. 1995, 2, 427-47.(A73) Naumann, D.; Schultz, C.; Helm, D. In Infrared Spectroscopy of

Biomolecules; Mantsch, H. H., Chapman, D., Eds.; Wiley-Liss:New York, 1996; pp 279-310.

(A74) Leofanti, G.; Tozzola, G.; Padovan, M.; Petrini, G.; Bordiga,S.; Zecchina, A. Catal. Today 1997, 34, 307-27.

(A75) Matyshak, V.; Krylov, O. Catal. Today 1995, 25, 223-37.(A76) Doll, G. EMIS Datarev. Ser. 1994, 11, 241-48.(A77) McNeil, L. EMIS Datarev. Ser. 1994, 11, 254-55.(A78) Howe, R. Stud. Surf. Sci. Catal. 1996, 102, 97-139.(A79) Zecchina, A.; Arean, C. Chem. Soc. Rev. 1996, 25, 187-97.(A80) Jackson, K.; Howe, R. Surf. Sci. 1996, 331-47.(A81) Kozlowski, H.; Micera, G. Handb. Metal-Ligand Interact. Biol.

Fluids: Bioinorg. Chem. 1995, 1, 566-82.(A82) Davidson, G. Spectrosc. Prop. Inorg. Organomet. Compd. 1996,

29, 283-329.(A83) Davidson, G. Spectrosc. Prop. Inorg. Organomet. Compd. 1996,

29, 204-47.(A84) Davidson, G. Spectrosc. Prop. Inorg. Organomet. Compd. 1996,

29, 248-82.(A85) Ueba, H. Electromagn. Waves 1995, 2, 211-305.(A86) Busca, G. Catal. Today 1996, 27, 323-52.(A87) Wachs, I. Catal. Today 1996, 27, 437-55.(A88) Guyot-Sionnest, P.; Harris, A. Adv. Ser. Phys. Chem. 1995, 5,

405-58 (Laser Spectroscopy and Photochemistry on MetalSurfaces, Pt. 1).

(A89) Beckerle, J. Adv. Ser. Phys. Chem. 1995, 5, 459-97 (LaserSpectroscopy and Photochemistry on Metal Surfaces, Pt. 1).

(A90) Iwasita, T.; Nart, F. Adv. Electrochem. Sci. Eng. 1995, 4, 123-216.

(A91) Chabot, P. Chem. Ind. 1996, 64, 93-102.(A92) Vogelgesang, R.; Mayur, A.; Sciacca, M.; Oh, E.; Miotkowski,

I.; Ramdas, A.; Rodriguez, S.; Bauer, G. J. Raman Spectrosc.1996, 27, 239-47.

(A93) Laczik, Z.; Booker, G. Proc.-Electrochem. Soc. 1995, 95-30,140-55.

L. Alice Lentz retired from the Analytical Sciences Laboratory, TheDow Chemical Co., U.S.A. on December 31, 1997, with the title ofResearch Associate. She received a B.A. in chemistry from Rice Universityin Houston, TX and joined Dow in 1961. Her career was focused on thefields of infrared and ultraviolet spectroscopy. While at Dow, her interestsincluded polymer analysis and the use of hyphenated techniques (gaschromatography/FT-IR and liquid chromatography/FT-IR) for the elu-cidation of molecular structure. In 1995, she received the Richard A.Nyquist Award from Dow for long-term contributions to analyticalchemistry. She is a member of the American Chemical Society, the Societyfor Applied Spectroscopy, and the Coblentz Society.

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 157R

(A94) Timusk, T.; Basov, D.; Homes, C.; Puchkov, A.; Reedyk, M. J.Supercond. 1995, 8, 437-40.

DATABASES, SOFTWARE, AND ALGORITHMS

(B1) Davies, A. N.; Mcintyre, P. S. In Computing Applications inMolecular Spectroscopy; George, W. O.; Steele, D., Eds.; RoyalSociety of Chemistry: Cambridge, U.K., 1995; pp 41-59.

(B2) Debska, B. J.; Guzowska-Swider, B. Comput. Chem. 1997, 21-(1), 51-9.

(B3) Maradona, M. Comput. Appl. Biosci. 1996, 12(4), 353-356.(B4) Colthup, N. Am. Lab. 1996, 28(12), 60, 62, 64, 66-8.(B5) Mobley, P.; Kowalski, B.; Workman, J.; Bro, R. Appl. Spectrosc.

Rev. 1996, 31(4), 347-68.(B6) Luinge, H. J. In Computing Applications in Molecular Spectros-

copy; George W. O.; Steele, D., Eds.; Royal Society ofChemistry: Cambridge, U.K., 1995; pp 87-103.

(B7) Chursin, A. A.; Golovko, V. N.; Bonet, B.; Scott, N. A. Proc.SPIE-Int. Soc. Opt. Eng. 1997, 3090 338, 343 (High-ResolutionMolecular Spectroscopy).

(B8) Penchev, P. N.; Sohou, A. N.; Andreev, G. N. Spectrosc. Lett.1996, 29(8), 1512-22.

(B9) Moates, F. C.; Somani, M.; Annamalai, J.; Richardson, J. T.;Luss, D.; Willson, R. C. Ind. Eng. Chem. Res. 1996, 35(12),4801-3.

(B10) Chen, C.; Li, Y.; Brown, C. Vib. Spectrosc. 1997, 14(1), 9-17.(B11) Meng, Z.; Ma, Y. Microchem. J. 1996, 53(3), 371-5.(B12) Debska, B. J.; Guzowska-Swinder, B. Comput. Chem. 1997

(Publ. 1996), 21(1), 51-9.(B13) Ehrentreich, F.; Dietze, U.; Meyer, U.; Abbas, s.; Schulz, H.

AIP Conf. Proc. 1995, 330, 604-9 (E.C.C.C. 1 ComputationalChemistry).

(B14) Andreev, G. N.; Argirov, O. K. Anal. Chim. Acta 1996, 321(1),105-11.

(B15) Garcia Triapaga, J.; Bermello, C.; Trapaga, C. G.; Cabrera Arias,M.; Langaney Tomey, M. Ciencia (Maracaibo) 1996, 4(2),115-24.

(B16) Yang, X. Sci. China, Ser. B 1995, 38(10), 1180-6.(B17) Sadeghi-Joradchi, H.; Butler, S.; Patterson, B.; Croft, D.

Spectrosc. Eur. 1996, 8(3), 8, 10, 12.(B18) Mallet, Y.; Coomans, D.; de Vel, O. Chemom. Intell. Lab. Syst.

1996, 35(2), 157-73.(B19) Shaffer, R.; Small, G. Anal. Chim. Acta. 1996, 331(3), 157-

75.(B20) Bertie, J.; Apelblat, Y. Appl. Spectrosc. 1996, 50(8), 1039-46.(B21) Raennar, S.; Geladi, P.; Lindgren. F.; Wold, S. J. Chemom.

1995, 9(6), 459-70.(B22) Fayolle, P.; Picque, D.; Perret, B.; Corrieu, G. Spectrosc. Biol.

Mol., Eur. Conf., 6th 1995, 615-6 (Merlin, J. C., Turrell, S.,Huvenne, J. P., Eds.).

(B23) Gribov, L. A.; Elyashberg, M. E.; Karasev, A.; Yu, Z. Anal.Chim. Acta 1995, 316(2), 217-4.

(B24) Grim, L.; Gruber, T.; Ditillo, J. Proc. SPIE-Int. Soc. Opt. Eng.1996, 2883, 443-54 (Optical Remote Sensing for Environ-mental and Process Monitoring).

(B25) Phillips, B.; Brown, D.; Russwurm, G.; Childres, J.; Thompson,E.; Lay, L. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2883, 455-68(Optical Remote Sensing for Environmental and ProcessMonitoring).

(B26) Strow, L. L.; Benson, R.; Hannon, S.; Motteler, H. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2830, 106-15 (Optical SpectroscopicTechniques and Instrumentation for Atmospheric and SpaceResearch II).

(B27) Windig, W. Chemom. Intell. Lab. Syst. 1997, 36(1), 3-16.(B28) Basiuk, V.; Navarro- Gonzalez, R. Proc. SPIE-Int. Soc. Opt. Eng.

1997, 3090, 372-6 (High-Resolution Molecular Spectros-copy).

(B29) Blanco, M.; Coello, J.; Iturriaga, H.; Maspoch, S.; de la Pezuela,C. Appl. Spectrosc. 1997, 51(2), 240-6.

(B30) Drapcho, D.; Curbelo, R.; Jiang, E.; Crocombe, R.; McCarthy,W. J. Appl. Spectrosc. 1997, 51(4), 453-60.

(B31) Alsberg, B.; Winson, M.; Kell, D. Chemom. Intell. Lab. Syst.1997, 36(2), 95-109.

(B32) Pivonka, D. E.; Russell, K.; Gero, T. Appl. Spectrosc. 1996,50(12), 1471-8.

(B33) Hong, H.; Leung, C.; Lu, F.; Sun, T. Int. J. Infrared MillimeterWaves 1997, 18(1), 203-15.

(B34) Price, J.; Long, J. PCT Int. Appl. WO 97 06, 418 (Cl. GO1J3/457), 20 Feb 1997, U.S. Appl. 1, 950, 07, Aug 1997.

(B35) Shiga, T.; Yamamoto, K.; Tanabe, K.; Nakase, Y.; Chance, B.Biomed. Opt. 1997, 2(2), 154-61.

(B36) Bour, P.; Sopokova, J.; Bednarova, L.; Malon, P.; Keiderling,T. J. Comput. Chem. 1997, 18(5), 646-59.

(B37) Bangalore, A.; Small, G.; Combs, R.; Knapp, R.; Kroutil, R.;Traynor, C.; Ko, J. Anal. Chem. 1997, 69(2), 118-29.

(B38) Jegla, J.; Richardson, R.; Griffiths, P. Proc. SPIE-Int. Soc. Opt.Eng. 1996, 2883, 323-32 (Optical Remote Sensing forEnvironmental and Process Monitoring).

(B39) Hall, J.; Polak, M.; Herr, K. Proc. SPIE-Int. Soc. Opt. Eng. 1996,2883, 435-42 (Optical Remote Sensing for Environmental andProcess Monitoring).

(B40) Vitkin; S.; Zhdanovich, O. IMechE Conf. Trans. 1996, 3, 137-45 (Optical Methods and Data Processing in Heat and FluidFlow).

(B41) Smith, M.; Shertz, S. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2820,78-86 (Earth Observing System).

(B42) Remsberg, E.; Burton, J.; Gordley, L.; Marshall, B.; Bhatt, P.;Miles, T. Geophys. Res., [Atmos] 1995, 100(D8), 16727-33.

(B43) Goldman, A.; Blatherwick, R. D.; Murcray, F. J.; Murcray, D.G. Appl. Opt. 1996, 35(16), 2821-7.

(B44) Whittet, D. C. B.; Smith, R. G.; Adamson, A. J.; Aitken, D. K.;Chiar, J. E.; Kerr, T. H.; Roche, P. F.; Smith, C. H.; Wright, C.M. Astrophys. J. 1996, 458(1, Pt. 1), 363-70.

(B45) Ehrentreich, F.; Dietze, U.; Meyer, U.; Schulz, H.; Kloetzer,H.-M.; Abbas, S.; Otto, M. J. J. Mol. Struct. 1996, 354(7-8),829-32.

(B46) Rivail, J.; Rinaldi, D.; Dillet, V. Mol. Phys. 1996, 89(5), 1521-9.

(B47) Garcia Trapaga, J.; Bermello Crespo, A.; Trapaga, C.; CabreraArias, M.; Langaney Tomey, M. Ciencia (Maracaibo) 1996,4(2), 115-24.

(B48) Santos, J. F. C., Jr.; Bica, E.; Dottori, H.; Ortolani, S.; Barbuy,B. Astron. Astrophys. 1995, 303(3), 753-60.

(B49) Wang, D.; Yang, Y.; Zou, J. Proc. SPIE-Int. Soc. Opt. Eng. 1996,2857, 12-20 (Advanced Materials for Optics and PrecisionStructures).

(B50) Mao, Z.; Demirgian, J.; Mathew, A.; Hyre, R. Waste Manage.1995, 15(8), 567-77.

(B51) Comba, P. Fundam. Princ. Mol. Model., [Proc. Int. Workshop]1995 (Pub. 1996), 167-87.

(B52) Gemperline, P.; Cho, J.; Aldridge, P.; Sekulic, S. Anal. Chem.1996, 68(17), 2913-5.

(B53) Shaffer, R.; Small, G. Chemom. Intell. Lab. Syst. 1996, 35(1),87-104.

(B54) Klawun, C.; Wilkins, C. J. Chem. Inf. Comput. Sci. 1996, 36(2),249-57.

(B55) Norton, K.; Haefner, A.; Makishima, H.; Jalsovszky, G.; Grif-fiths, P. Appl. Spectrosc. 1996, 50(9), 1125-33.

(B56) Soederstroem, M.; Ketola, R.; Kostiainen, O. Fresenius’ J. Anal.Chem. 1995, 352(6), 550-6.

(B57) Rogojerov, M. Vib. Spectrosc. 1996, 11(2), 85-92.(B58) Li, D.; Lai, S. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2894, 216-8

(Detectors, Focal Plane Arrays, and Applications).(B59) Shenk, J. S.; Westerhaus, M. O. Leaping Ahead Near Infrared

Spectrosc., [Proc. Int. Conf. Near Infrared Sepctrocopy.], 6th1994, 99-102.

(B60) Bangalore, A.; Shaffer, R.; Small, G.; Arnold, M. Anal. Chem.1996, 68(23), 4200-12.

(B61) Bouveresse, E.; Massart, D. L.; Dardenne, P. Anal. Chem.1995, 67(8), 1381-9.

(B62) Bouversse, E.; Massart, D. L. Chemom. Intell. Lab. Syst. 1996,32(2), 201-13.

(B63) Walczak, B.; van den Bogaert, B.; Massart, D. Anal. Chem.1996, 68(10), 1742-7.

(B64) Macnab, A.; Gagnon, R. Anal. Biochem. 1996, 236(2), 375-7.

(B65) Chen, C.; Brown, C.; Bide, M. Soc. Dyers, Colour. 1997,113(2), 51-6.

(B66) Jouan-Rimbaud, D.; Massart, D. L.; de Noord, O. E. Chemom.Intell. Lab. Syst. 1996, 35(2), 213-20.

(B67) Gagnon, R.; Gagnon, F.; Macnab, A. Eur. J. Appl. Physiol.Occup. Physiol. 1996, 74(6), 487-95.

(B68) Shaffer, R.; Small, G.; Arnold, M. Anal. Chem. 1996, 68(15),2663-75.

(B69) Miglio, L.; Meregalli, V. Mater. Res. Soc. Symp. Proc. 1996,402, 367-72 (Silicide Thin Films-Fabrication, Properties, andApplications).

(B70) Shenk, J. S.; Westerhaus, M. O. Leaping Ahead Near InfraredSpectosc., [Proc. Int. Conf. Near Infrared Spectrosc.], 6th 1994,99-102.

(B71) Bougeard, D.; Vermeulen, J. P.; Baudoin, B. Quantum InfraredThermogr. QIRT 94, Proc. Eurotherm Semin., 42nd 1994, 3-6.

(B72) Miekina, A.; Morawski, R. Z.; Podgorski, A. Conf. Proc.-Jt.Conf.: IEEEE Instrum. Meas. Technol. Conf. IMEKO Technol.Comm. 7 1996, 1, 58-61.

(B73) Alsmeyre, D.; Nicely, V. U.S. US 5,610, 836 (Cl. 364-498;GO1N33/00), 11 Mar 1997, Appl. 594, 217, 31 Jan 1996.

(B74) Yang, J.; Hasenoehrl, E.; Griffiths, P. Vib. Spectrosc. 1997,14(1), 1-8.

(B75) Shenk, J.; Westerhaus, M. Near Infrared Spectrosc.: FutureWaves, Proc. Int. Conf. Near Infrared Spectrosc., 7th 1995,198-202.

(B76) Oetliker, U.; Reber, C. Near Infrared Spectrosc. 1995, 3(2),63-71.

(B77) Zanier, N. Near Infrared Spectrosc.: Future Waves, Proc. Int.Conf. Near Infrared Spectrosc., 7th 1995, 662-7.

(B78) Campbell, B. Near Infrared Spectrosc.: Future Waves, Proc. Int.Conf. Near Infrared Spectrosc., 7th 1995, 218-20.

INFRARED ACCESSORIES AND SAMPLINGTECHNIQUES

(C1) Oberg, K. A.; Palleros, D. R. J. Chem Educ. 1995, 72(9), 857-9.

158R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

(C2) Dirksen, T. A.; Gagnon, J. E. Spectroscopy 1996, 11(2), 58-62.

(C3) Wigman, L. S.; Hart, E. E.; Gombatz, C. J. Chem. Educ. 1996,73(7), 677-8.

(C4) Coates, J. P. Spectroscopy 1997, 12(3), 16, 18-20.(C5) Cuthbert, K. B.; Herpst, R. D. Am. Lab. 1997, 29(5), 36EE-

36GG.(C6) Self, V. A.; Sermon, P. A. Rev. Sci. Instrum. 1996, 67(6), 2096-

9.(C7) Kazarian, S. G.; Vincent, M. F.; Eckert, C. A. Rev. Sci. Instrum.

1996, 67(4), 1586-9.(C8) Clavarella, S.; Batten, G. D.; Blakeney, A. B.; Marr, K. M.

Leaping Ahead Near Infrared Spectrosc., [Proc. Int. Conf. NearInfrared Spectrosc.], 6th 1994, 40-3.

(C9) Tilotta, D. C.; Heglund, D. L.; Hawthorne, S. B. Am. Lab. 1996,28(6), 36R-36T.

(C10) Barbour, R.; Wang, Z.; Bae, I. T.; Tolmachev, Y. V.; Scherson,D. A. Anal. Chem. 1995, 67, 4024-7.

(C11) Hong, M. K.; Erramilli, S.; Huie, P.; James, G.; Jeung, A. Proc.SPIE-Int. Soc. Opt. Eng. 1996, 2883, 54-63.

(C12) Sahlin, J. J.; Peppas, N. S. J. Appl. Polym. Sci. 1997, 63(1),103-10.

(C13) Hammond, S. V.; Axon, T. G.; Maris, S. J. Near InfraredSpectrosc.: Future Waves, Proc. Int. Conf. Near InfraredSpectrosc., 7th 1995, 100-6.

(C14) Bradley, G.; Davidson, R. S.; Howgate, G. J.; Mouillot, C. G.J.; Turner, P. J. J. Photochem. Photobiol., A 1996, 100(1-3),109-18.

(C15) Lin, R.; White, R. L. Instrum Sci. Technol. 1996, 24(1), 37-45.

(C16) Fernandez-Bertran, J.; Reguera, E. Solid State Ionics 1996,93(1, 2), 139-46.

(C17) Lewis, E. N.; Treado, P. J.; Reeder, R. C.; Story, G. M.; Dowrey,A. E.; Marcott, C.; Levin, I. W. Anal. Chem. 1995, 67, 3377-81.

(C18) Bellamy, M. K.; Mortensen, A. N.; Hammaker, R. M.; Fateley,W. G. Appl. Spectrosc. 1997, 51(4), 477-86.

(C19) Wilks, P. Am. Lab. 1996, 28(3), 52-53.

QUANTITATIVE ANALYSIS

(D1) Keresztury, G.; Mink, J.; Kristof, J. Anal. Chem. 1995, 67(20),3782-7.

(D2) Bartl, F.; Delgadillo, I.; Davies, A. N.; Huvenne, J. P.; Meurens,M.; Volka, K.; Wilson, R. H. J. Anal. Chem. 1996, 354(1), 1-5.

(D3) Efimov, A. M. J. Non-Cryst. Solids 1996, 203, 1-11 (Opticaland Electrical Properties of Glasses).

(D4) Workman, J.; Brown, J. Spectroscopy 1996, 11(9), 24, 26-9.(D5) Pottel, H. Fire Mater. 1996, 20(6), 273-91.(D6) Geladi, P. Near Infrared Spectrosc.: Future Waves, Proc. Int.

Conf. Near Infrared Spectrosc., 7th 1995, 165-73.(D7) Griffith, D. Appl. Spectrosc. 1996, 50(1), 59-70.(D8) Perry, B.; Brown, J. M. PCT Int. Appl. WO 96 18, 881 (Cl.

GO1N21/35, GO1J3/457) 20 Jun 1996, U.S. Appl. 354, 976, 13Dec 1994.

(D9) Chopra, A.; Sastry, M.; Kapur, G. S.; Sarpal, A. S.; Jan, S. K.;Srivastava, S. P.; Bhatnagar, A. K. Lubr. Eng. 1996, 52(4),279-84.

(D10) Hodgkinson, M.; Sagatys, D.; Mackey, A.; Smith G. Agric. FoodChem. 1995, 42(11), 2794-5.

(D11) Cerny, J.; Pavlikova, H. Coal Sci. Technol. 1995, 24, 111-4(Coal Science, Vol. 1).

(D12) Clapper, M.; Demirgian, J.; Robitaille, G. Spectroscopy 1995,10(7), 44, 46-9.

(D13) Antonov, L.; Nedeltcheva, D. Anal. Lett. 1996, 29(11), 2055-69.

(D14) Yamada, M.; Fukzawa, M. Semi-Insul. III-V Mater., Proc. Conf.,8th 1994, 95-8.

(D15) Meredith, J.; Johnston, K.; Seminario, J.; Kazarian, S.; Eckert,C. J. Phys. Chem. 1996, 100(26), 10837-48.

(D16) Neubert, R.; Collin, B.; Wartewig, S. Vib. Spectrosc. 1997,13(2), 241-4.

(D17) Adachi, M.; Tanaka, D.; Hojyo, Y.; Al-Roub, M.; Senda, J.;Fujimoto, H. JSAE Rev. 1996, 17(3), 231-7.

(D18) Kassman, H.; Abul-Milh, M.; Aamand, L. Proc. Int. Conv. Fluid.Bed Combust. 13th, 1995, 2, 1447-54.

(D19) Gardner, D.; Manners, G.; Ralphs, M.; Pfister, J. Phytochem.Anal. 1997, 8(2), 55-62.

(D20) Quagliano, J.; Stoutland, P.; Petrin, R.; Sander, R.; Romero,R.; Jolin, L. Appl. Opt. 1997, 36(9), 1915-27.

(D21) Daghbouche, Y.; Garrigues, S.; Vidal, M.; de la Guardia, M.Anal. Chem. 1997, 69(6), 1086-91.

(D22) Meder, R.; Gallagher, S.; Mackie, K.; Meglen, R. FRI Bull.1997, 201, 15-9.

(D23) Ge, Z.; Thompson, R.; Cooper, S.; Ellison, D.; Tway, P. ProcessControl Qual. 1995, 7(1), 3-12.

(D24) Ferre, J.; Rius, F. Anal. Chem. 1996, 68(9), 1565-71.(D25) Weyer, L. G. Proc. Int. Conf. Near Infrared Spectrosc., 6th 1994,

84-90.(D26) Isaksson, T. Proc. Int. Conf. Near Infrared Spectrosc., 6th 1994,

95-8.(D27) Quintana, R. U.S. Appl. 544.580, 27 Jun 1990; 6 pp. Cont.-in-

part of U.S. Ser. No. 106, 758.

(D28) Switalski, S.; Kissel, T. U.S. 5,536, 664, 16 Jul 1996; U.S. Appl.267, 086, 27 Jun 1994; 10 pp Division of U.S. Ser. No. 381,629.

(D29) Li, W.; Goovaerts, P.; Meurens, M. Agric. Food Chem. 1996,44(8), 2252-9.

(D30) Cinier, R.; Guilment, J. Vib. Spectrosc. 1996, 11(1), 51-9.(D31) Li, W.; Foulon, M.; Meurens, M.; Moreau, B. Near Infrared

Spectrosc.: Future Waves, Proc. Int. Conf. Near InfraredSpectrosc., 7th 1995, 416-21.

(D32) Garcia-Jares, C. M.; Medina, B. J. J. Mol. Struct. 1997, 357(1),86-91.

(D33) Yeboah, S.; Cinier, R.; Guilment, J. Near Infrared Spectrosc.:Future Waves, Proc. Int. Conf. Near Infrared Spectrosc., 7th1995, 279-87.

(D34) Hana, M. Qualitative and quantitative near-infrared analysisusing artificial neural networks (linar neuron, black propaga-tion, nicotine, tobacco). 1996. Avail. University Microfilms Int.,Order No. DA9710745. From Diss. Abstr. Int., B 1997, 57911),7067.

(D35) Wetzel, D. Near Infrared Spectrosc.: Future Waves, Proc. Int.Conf. Near Infrared Spectrosc., 7th 1995, 57-65.

(D36) Franceschini, M.; Fantini, S.; Barbieri, B.; Chance, B.; Gratton,E. Biomed. Opt. 1997, 2(2), 147-53.

(D37) Iizuka, K.; Aishima, T. J. Food Sci. 1997, 62(1), 101-4.(D38) Dong, J.; Ma, K.; van de Voort, F.; Ismail, A. AOAC Int. 1997,

80(2), 345-52.(D39) Yamasaki, Y.; Sakai, T.; Sakura, T.; Ashibe, E. Eur. Pat. Appl.

EP 762,108 (Cl. GO1N21/35, A61B5/00), 12 Mar 1997; JP Appl.95/246, 852, 30 Aug 1995.

(D40) Evans, P.; Barnett, N. Eur. Pat. Appl. EP 760,476 (Cl. GO1N21/31, GO1N21/47, A61B5/00), 05 Mar 1997, GB Appl. 95/17,366, 24 Aug 1995.

(D41) Mcshane, M.; Cote, G.; Spiegelman, C. Proc. SPIE-Int. Soc.Opt. Eng. 1997, 2982, 189-97 (Optical Diagnostics ofBiological Fluids and Advanced Techniques in AnalyticalCytology).

(D42) Reeves, J., III Near Infrared Spectrosc.: Future Waves, Proc.Int. Conf. Near Infrared Spectrosc. 7th 1995, 14-9.

(D43) Wheeler, J.; Freeman, P.; Jones, D. Near Infrared Spectrosc.:Future Waves, Proc. Int. Conf. Near Infrared Spectrosc., 7th1995, 229-35.

(D44) Buijs, H. Near Infrared Spectrosc.: Future Waves, Proc. Int.Conf. Near Infrared Spectrosc., 7th 1995, 66-71.

(D45) Shenk, J.; Westerhaus, M. Near Infrared Spectrosc.: FutureWaves, Proc. Int. Conf. Near Infrared Spectrosc., 7th 1995,112-5.

(D46) Liu, Y.; Miura, T.; Ozaki, Y.; Suzuki, M.; Iwahashi, M. J. NearInfrared Spectrosc. 1994, 2(3), 137-43.

(D47) Qu, X.; Lee, E.; Yu, G.; Freedman, T.; Nafie, L. Appl. Spectrosc.1996, 50(5), 649-57.

(D48) Pancoska, P.; Bitto, E.; Janota, V.; Keiderling, T. FaradayDiscuss. 1994 (Pub. 1995), 99(Vibrational Optical Activity:From Fundamentals to Biological Applications), 287-310.

(D49) Pottel, H. Fire Mater. 1995, 19(5), 221-31.(D50) Lindblom, T.; Christy, A.; Libnau, F. Chemom. Intell. Lab. Syst.

1995, 29(2), 243-54.(D51) Dubois, J.; van de Voort, F. R.; Sedman, J.; Ismail, A. A.;

Ramaswamy, H. R. J. Am. Oil Chem. Soc. 1996, 73(6), 787-94.

(D52) Haines, E.; Walmsley, A.; J. Waswell, S. Anal. Chim. Acta1997, 337(2), 191-99.

(D53) Van Every, K. W.; Elder, M. J. Annu. Technol. Conf.-Soc. Plast.Eng., 54th 2, 2400-5.

(D54) Van Every, K. W.; Elder, M. J. J. Vinyl Addit. Technol. 1996,2(3), 224-8.

(D55) Cadet, F. Appl. Spectrosc. 1996, 50(12), 1590-6.(D56) Defernez, M.; Wilson, R. Anal. Chem. 1997, 69(7), 1288-94.(D57) Modiano, S.; McNesby, K.; Marsh, P.; Bolt, W.; Herud, C. Appl.

Opt. 1996, 35(21), 4004-8.(D58) Tso, T. L.; Leu, M.-T. Anal. Sci. 1996, 12, 615-22.(D59) Polak, M.; Hall, J.; Scherer, G.; Herr, K. Proc. SPIE-Int. Soc.

Opt. Eng. 1996, 2883 58-66 (Optical Remote Sensing forEnvironmental and Process Monitoring).

(D60) Wieland, B.; Lanchaster, J.; Hoaglund, C.; Holota, P.; Tornquist,W. Langmuir 1996, 12, 2594-601.

(D61) Richter, A.; Sturm, J. Appl. Phys. A: Mater. Sci. Process. 1995,A61(2), 163-70.

(D62) Krzton, A.; Heintz, O.; Petryniak, J.; Koch, A.; Machnikowski,J.; Zimny, T.; Weber, J. V. Analusis 1996, 24(6), 250-3.

(D63) Atay, O.; Selcuk, F. Anal. Lett. 1996, 29(12), 2163-76.(D64) Ferrer, N.; Gomez, P.; Roura, M.; Baucells, M. Vib. Spectrosc.

1996, 10(2), 229-37.(D65) Field, P.; Combs, R.; Knapp, R. Appl. Spectrosc. 1996, 50(10),

1307-13.(D66) Field, P.; Combs, R.; Knapp, R. Proc. ERDEC Sci. Conf. Chem.

Biol. Def. Res. 1995, 209-15.(D67) Wang, J.; Clench, M.; Wang, T.; Chen, Z.; Luo, Y.; Mowthorpe,

D.; Cooke, M. Spectrosc. Lett. 1997, 30(1), 99-106.(D68) Russell, K.; Cole, D.; McLaren, F.; Pivonka, D. J. Am. Chem.

Soc. 1996, 118(34), 7941-45.(D69) Ruau, O.; Landais, P.; Bardette, J. Fuel 1997, 76(7), 645-53.(D70) Schuetze, F.-W.; Roessner, F. Z. Phys. Chem. 1995, 191(2),

271-6.

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 159R

(D71) Varenne, A.; Vessieres, A.; Salmain, M.; Durand, S.; Brossier,P.; Jaouen, G. Anal. Biochem. 1996, 242(2), 172-9.

(D72) Tan, C.; Ni, J. Chem. Eng. Data 1997, 42(2), 342-5.(D73) Wakabayashi, F.; Kondo, J.; Domen, K.; Hirose, C. Catal. Lett.

1996, 38(1, 2), 15-9.(D74) Davis, K. M.; Agarwal, A.; Tomozawa, M.; Hirao, K. J. Non-

Cryst. Solids 1996, 203, 27-36 (Optical and Electrical Proper-ties of Glasses).

(D75) Daniels, A. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2766, 185-201 (Thermosense XVIII: An International Conference onThermal Sensing and Imaging Diagnostic Applications).

SPECTRA-STRUCTURE CORRELATION

(E1) Jovanovski, G.; Tanceva, S.; Soptrajanov, B. Spectrosc. Lett.1995, 28(7), 1095-9.

(E2) Mitra, N. K.; Maitra, S. J. Indian Chem. Soc. 1996, 73(10),536-7.

(E3) Agarwal, A.; Tomozawa, M. J. Non-Cryst. Solids 1997, 209(1,2), 166-74.

(E4) Falchi, A.; Gellini, C.; Salvi, P.; Hafner, K. J. Phys. Chem. 1995,99(40), 14659-66.

(E5) Nyquist, R. A.; Streck, R.; Jeschek, G. J. Mol. Struct. 1996,377(2), 113-28.

(E6) Berces, A.; Ziegler, T. Curr. Chem. 1996, 182, 41-85 (DensityFunctional Theory III).

(E7) Peng, G.; Chen, S.; Liu, H. Appl. Spectrosc. 1995, 49(11),1646-51.

(E8) Nava, D.; Gonzalez, E.; Boscan, N.; de La Cruz, C. Spectrochim.Acta, Part A 1996, 52A(10), 1201-10.

(E9) Noda, I.; Dowrey, A. E.; Marcott, C. In Physical Properties ofPolymers Handbook; Mark, J. E., Ed.; AIP Press: Woodbury,NY, 1996; pp 291-8.

(E10) Colthup, N. Am. Lab. 1996, 28(12), 66-8.(E11) Sefara, N. L.; Magtoto, N. P.; Richardson, H. H. Appl. Spectrosc.

1997, 51(4), 536-40.(E12) Ozaki, Y.; Liu, Y.; Noda, I. Appl. Spectrosc. 1997, 51(4), 526-

35.(E13) Ehrentreich, F.J. Anal. Chem. 1997, 357(5), 527-33.(E14) Yu, H.; Wang, Y.; Cai, S.; Liu, Z. Ber. Bunsen-Ges. Phys. Chem.

1997, 101(2), 257-64.(E15) De Las Rivas, J.; Barber, J. Biochemistry 1997, 36, 8897-903.(E16) Sage, J. T. Appl. Spectrosc. 1997, 51(4), 568-73.(E17) Vacque, V.; Sombret, B.; Huvenne, J. P.; Legrand, P.; Suc, S.

Spectrochim. Acta, Part A 1997, 53A(1), 55-66.(E18) De Mare, G. R.; Panchenko, Y. N.; Vander Auwera, J. J. Phys.

Chem. A. 1997, 101(22), 3998-4004.(E19) Fischer, G.; Purchase, R. L.; Smith, D. M. J. Mol. Struct. 1997,

405(2-3), 159-67.(E20) Choi, C. H.; Kertesz, M. J. Phys. Chem. A 1997, 101(20), 3833-

41.(E21) Issa, Y. M.; Hindawey, A. M.; Issa, R. M. Delta J. Sci. 1993,

17(2), 64-77.(E22) Ebata, T.; Fujii, A.; Mikami, N. Int. J. Mass Spectrom. Ion

Processes 1996, 159, 111-24.(E23) Borisenki, B. E.; Morev, A. V.; Ponomarev, A. A. Spectrosc.

Lett. 1997, 30(1), 107-38.(E24) Hritzova, O.; Suchar, G.; Danihel, I.; Kutschy, P. Collect. Czech.

Chem. Commun. 1996, 61(11), 1620-6.(E25) Frunza, L.; Catana, G,; Stoenescu, D. N.; Vilcu, R. Rom. J. Phys.

1995, 40(6-7), 713-21.(E26) Korolev, V.; Nefedov, O. Adv. Phys. Org. Chem. 1995, 30,

1-61.(E27) Huberty, J. S.; Madix, R. J. Surf. Sci. 1996, 360(1-3), 144-

56.(E28) Elguero, J.; Gil, M.; Iza, N.; Pardo, C.; Ramos, M. Appl.

Spectrosc. 1995, 49(8), 1111-9.(E29) Bauder, S.; Idrissi, A.; Turrell, G. Can. J. Appl. Spectrosc. 1996,

41(3), 60-5.(E30) Pinkes, J.; Masi, C.; Chulli, R.; Steffey, B.; Cutler, A. Inorg.

Chem. 1997, 36(1), 70-9.

HYPHENATED TECHNIQUES

(F1) Horvath, E.; Mink, J.; Bottari, E.; Fest, M. R. Talanta 199542(7), 979-82.

(F2) Ferary, S.; Auger, J.; Touche, A. Talanta 1996, 43(3), 349-57.

(F3) Giumanini, A. G.; Perjessy, A.; Sojak, L.; Verardo, G.; Kubinec,R. Org. React. 1996, 30(1), 25-37.

(F4) Mossoba, M.; Adams, S.; Roach, J.; Trucksess, M. J. AOACInt. 1996, 79(5), 1116-23.

(F5) Challinor, J. M.; Collins, P. A.; Goulding, J. Adv. Forensic Sci.,Proc. Meet. Int. Assoc. Forensic Sci., 13th 1995, 4, 250-4.

(F6) Faehnrichy, J.; Popl, M.; Voznakova, Z.; Sorad, P. FreseniusEnviron. Bull. 1996, 5(3/4), 229-34.

(F7) Gilbert, A. S.; Moss, C. J.; Francis, P. L.; Ashton, M. J.; Ashton,D. S. Chromatographia 1996, 42(5/6), 305-8.

(F8) Mink, J.; Horvath, E.; Kristof, J.; Gal, T.; Veress, T. Mikrochim.Acta 1995, 119(1-2), 129-35.

(F9) Garraffo, H.; Simon, L.; Daly, J.; Spande, T.; Jones, T.Tetrahedron 1994, 50(39), 11329-38.

(F10) Veness, R. G.; Evans, C. S. J. Chromatogr. A 1996, 721(1),165-72.

(F11) Amenta, D. S.; DeVore, T. C.; Gallaher, T. N.; Zook, C. M. J.Chem. Educ. 1996, 73(6), 572-5.

(F12) Veness, R. G.; Evans, C. S. J. Chromatogr. A 1996, 750(1+2),311-6 (4th International Symposium on Hyphenated Tech-niques in Chromatography and Hyphenated ChromatographicAnalyzers).

(F13) Jegla, J.; Griffiths, P.; Klein, D. Prepr. - Am. Chem. Soc., Div.Pet. Chem. 1996 41(4), 663-6.

(F14) LeQuere, J. New Trends Lipid Lipoprotein Anal., [Proc. Int.Symp.] 1993, 232-41.

(F15) Bade, R.; Gallaher, K.; Hunt, S.; Combs, G.; Kesselhuth, E.Adv. Instrum. Control 1996, 51(Pt. 1), 33-42.

(F16) Cejka, J.; Sobalik, Z.; Kribek, B. Collect. Czech. Chem. Commun.1997, 62(2), 364-74.

(F17) McGuire, J. M. Annu. Technol. Conf.-Soc. Plast. Eng., 55th1997, 2, 2296-9.

(F18) Tomlinson, M. J.; Sasaki, T. A.; Wilkins, C. L. Mass Spectrom.Rev. 1996, 15(1), 1-14.

(F19) Fisher, S. J.; Alexander, R.; Ellis, L.; Kagi, R. I. PolycyclicAromat. Compd. 1996, 9(1-4), 257-64.

(F20) Svatos, A.; Attygalle, A. B. Anal. Chem. 1997, 69(10), 1827-36.

(F21) Cejka, J.; Sobalik, Z.; Kribek, B. Collect. Czech. Chem. Commun.1997, 62(2), 375-86.

(F22) Climent, M. J.; Miranda, M. A. J. Agric. Food Chem. 1997,45(5), 1916-9.

(F23) Guillen, M. D.; Manzanos, M. J. Adv. Food Sci. 1996, 18(3/4), 121-7.

(F24) Vreugdenhil, A. K.; Brienne, S. H. R.; Markwell, R. D.; Butler,I. S.; Finch, J. A. J. Mol. Struct. 1997, 405(1), 67-77.

(F25) Dossi, C.; Fusi, A.; Molteni, G.; Reccia, S.; Psaro, R. Analyst1997, 122(3), 279-82.

(F26) Somsen, G. W.; Jagt, I.; Gooijer, C.; Velthorst, N. H.; Brinkman,U. A. Th.; Visser, T. J. Chromatogr. A 1997, 756(1+2), 145-57.

(F27) Somsen, G. W.; Hooijschuur, E. W. J.; Gooijer, C.; Brinkman,U. A. Th.; Velthorst, N. H.; Visser, T. Anal. Chem. 1996, 68(5),746-52.

(F28) Somsen, G.; Rozendom, E.; Gooijer, C.; Velthorst, N.; Brink-man, U. Th. Analyst 1996, 121(8), 1069-74.

(F29) Pfeifer, A.; Kovar, K. Planar Chromatogr.-Mod. TLC 1995,8(5), 388-92.

(F30) Jinno, K.; Fujimoto, C. Methods Chromatogr. 1996, 1, 199-211 (Advances in Liquid Chromatography).

(F31) Willis, J.; Dwyer, J.; Liu, M. Charact. Copolym., Book Pap. One-Day Semin. 1995, 1-7.

(F32) Cheung, P.; Balke, S. T.; Schunk, T. C. Polym. Mater. Sci. Eng.1993, 69, 122-3.

(F33) Turula, V.; deHaseth, J. Anal. Chem. 1996, 68(4), 629-38.(F34) Visser, T.; Vredenbregt, M. J.; ten Hove, G. J.; de Jong, A. P.

J. M.; Somsen, G. W. Anal. Chim. Acta 1997, 342(2-3), 151-8.

(F35) Smith, S. H.; Jordan, S. L.; Taylor, L. T.; Dwyer, J.; Willis, J. J.Chromatogr. A 1997, 764(2), 295-300.

(F36) Yang, J.; Hasenoehrl, E. J.; Griffiths, P. R. Vib. Spectrosc. 1997,14(1), 1-8.

(F37) Cuesta, S. F.; Vanderginste, B. G. M.; Hancewicz, T. M.;Massart, D. L. Anal. Chem. 1997, 69(8), 1477-84.

(F38) Nouwen, R.; Mullens, J.; Granco, D.; Yperman, J.; Van Poucke,L. C. Vib. Spectrosc. 1996 10(2), 291-9.

(F39) Bonanno, A.; Bassilakis, R.; Serio, M. Prepr. Pap.-Am. Chem.Soc., Div. Fuel Chem. 1996, 41(1), 62-70.

(F40) Wilkie, C.; Mittleman, M. Polym. Mater. Sci. Eng. 1993, 69,134.

(F41) Serio, M.; Basilakis, R.; Solomon, P. Prepr. Pap.-Am. Chem.Soc., Div. Fuel Chem. 1996, 41(1), 43-50.

(F42) McGuire, J.; Lynch, C. Anal. Chem. 1996, 68(15), 2459-63.(F43) Devallencourt, C.; Saiter, J. M.; Capitane, D. Polym. Degrad.

Stab. 1996, 52(3), 317-34.(F44) Bhadare, P. S.; Lee, B. K.; Krishnan, K. Therm. Anal. 1997,

49(1), 361-6.(F45) Post, E.; Rahner, S.; Giblin, F. Annu. Technol. Conf.-Soc. Plast.

Eng., 55th 1997, 2, 2300-4.(F46) Boeschel, D.; Fedtke, M.; Geyer, W. Polymer 1997, 38(6),

1291-6.

TIME-RESOLVED INFRARED SPECTROSCOPY

(G1) Doyennette, L.; Menard-Bourcin, F.; Boursier, C.; Menard, J.An. Quim. Int. Ed. 1996, 92(5), 329-38.

(G2) Thompson, D. M.; Nattrass, S. R. Soc. Automot. Eng., SP 1996,SP-1205, 19-28.

(G3) Ye, T.-Q.; Arnold, C. J.; Pattison, D. I.; Anderton, C. L. Dukic,D.; Perutz, R. N.; Hester, R. E.; Moore, J. N. Appl. Spectrosc.1996, 50(5), 597-607.

(G4) Contzen, J.; Ristau, O. Jung, C. FEBS Lett. 1996, 383(1, 2),13-7.

(G5) Borguet, E.; Dai, H.-L. Adv. Ser. Phys. Chem. 1995, 5(Pt. 1),243-74.

(G6) Pagsberg, P.; Sillesen, A.; Jodkowski, J. T.; Ratajczak, E. ChemPhys. Lett. 1996, 249(5, 6), 358-64.

160R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

(G7) Lian, T.; Bromberg, S. E.; Yang, H.; Proulx, G.; Bergman, R.G.; Harris, C. B. J. Am. Chem. Soc. 1996, 118, 3769-70.

(G8) Ford, P. C.; Bridgewater, J. S.; Lee, B. Photochem. Photobiol.1997, 65(1), 57-64.

(G9) Turner, J. J.; George, M. W. Springer Proc. Phys. 1994, 74,109-12.

(G10) Sun, X.-Z.; Virrels, I. G.; George, M. W.; Tomioka, H. Chem.Lett. 1996, 12, 1089-90.

(G11) Virrels, I. G.; George, M. W.; Turner, J. J.; Peters, J.; Vlcek,A., Jr. Organometallics 1996, 15, 4089-92.

(G12) Sun, X.-Z.; George, M. W.; Kazarian, S. G.; Nikiforov, S. M.;Poliakoff, M. J. Am. Chem. Soc. 1996, 118(43), 10525-32.

(G13) Casey, C. P.; Boese, W. T.; Carino, R. S.; Ford, P. C.Organometallics 1996, 15, 2189-91.

(G14) Tanaka, K.; Harada, T.; Sakaguchi, K.; Harada, K.; Tanaka, T.J. Chem. Phys. 1995, 103(15), 6450-8.

(G15) Kauffmann, E.; Frei, H.; Mathies, R. A. Chem. Phys. Lett. 1997,266(5, 6), 554-9.

(G16) Toriumi, H. Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 1995,262, 1659-66.

(G17) Czarnecki, M. A.; Katayama, N.; Satoh, M.; Watanabe, T.;Ozaki, Y. J. Phys. Chem. 1995, 99, 9(38), 14101-7.

(G18) Jordanov, B.; Okretic, S.; Siesler, H. W. Appl. Spectrosc. 1997,51(3), 447-9.

(G19) Hashimoto, M.; Hamaguchi, H. Appl. Spectrosc. 1996, 50(8),1030-3.

(G20) Osawa, M.; Ataka, K.; Yoshii, K. Proc.-Electrochem. Soc. 1996,96-8, 108-18.

(G21) Green, M.; Ngyuen, N.; Wrobel, J. D.; Jackson, W. M. Proc.-NOBCChE 1995, 22, 193-203.

(G22) Kato, C.; George, M. W.; Hamaguchi, H. Springer Proc. Phys.1994, 74, 78-9.

(G23) Owrutsky, J. C.; Raftery, D.; Hochstrasser, R. M. Annu. Rev.Phys. Chem. 1994, 45, 519-55.

(G24) Zscherp, C.; Bueldt, G.; Heberle, J. Spectrosc. Biol. Mol., Eur.Conf., 6th 1995, 177-8.

(G25) Dioumaev, A. K.; Braiman, M. S. J. Phys. Chem. B 1997,101(9), 1655-62.

(G26) Kandori, H.; Yamazaki, Y.; Hatanaka, M.; Needleman, R.;Brown, L. S.; Richter, H.; Lanyi, J. K.; Maeda, A. Biochemistry1997, 36(17), 5134-41.

(G27) Hong, X.; Hill, J. R.; Diott, D. D. Mater. Res. Soc. Symp. Proc.1996, 418, 357-62.

(G28) Budevska, B. O.; Manning, C. J. Appl. Spectrosc. 1996, 50(7),939-47.

(G29) Watanabe, A.; Ito, O.; Watanabe, M.; Saito, H.; Koishi, M. J.Phys. Chem. 1996, 100(25), 10518-22.

(G30) Barth, A.; Hauser, K.; Maentele, W.; Corrie, J. E. T.; Trentham,D. R. J. Am. Chem. Soc. 1995, 117(41), 10311-6.

(G31) Barth, A.; Corrie, J. E. T.; Gradwell, M. J.; Maeda, Y.; Maentele,W.; Meier, T.; Trentham, D. R. J. Am. Chem. Soc. 1997,119(18), 4149-59.

(G32) Barth, A.; Germar, F. V.; Kreutz, W.; Maentele, W. Spectrosc.Biol. Mol., Eur. Conf., 6th 1995, 147-8.

(G33) Williams, S.; Causgrove, T. P.; Gilmanshin, R.; Dyer, R. B.;Woodruff, W. H.; Callender, R. H. Spectrosc. Biol. Mol., Eur.Conf., 6th 1995, 105-6.

(G34) Brownsword, R. A.; Hancock, G. J. Chem. Soc., Faraday Trans.1997, 93(7), 1279-86.

(G35) Ford, P. C.; Boese, W. T. Adv. Chem. Ser. 1997, No. 253,221-37.

REFLECTANCE TECHNIQUES

(H1) Bradshaw, A. M.; Richardson, N. V. Pure Appl. Chem. 1996,68(2), 457-67.

(H2) Piccolo, A. Trans., World Congr. Soil Sci., 15th 1994, 3a, 3-22.(H3) Raval, R. Surf. Sci. 1995, 331-3(Pt. A), 1-10.(H4) Yarwood, J. Spectrosc. Eur. 1996, 8(2), 8, 10, 12, 14, 16-17.(H5) Mendelsohn, R.; Brauner, J. W.; Gericke, A. Annu. Rev. Phys.

Chem. 1995, 46, 305-34.(H6) Borguet, E.; Dai, H.-L. Adv. Ser. Phys. Chem. 1995, 5, 243-

74 (Laser Spectroscopy and Photochemistry on Metal Surfaces,Pt. 1).

(H7) Urban, M. W., Ed. Attenuated Total Reflectance Spectroscopyof Polymers: Theory and Practice; American Chemical Soci-ety: Washington, DC, 1996.

(H8) Ishida, H. J. Adhes. Sealant Counc. 1996, 1(Nov), 521-33.(H9) Craciun, R.; Miller, D. J.; Dulamita, N.; Jackson, J. E. Prog.

Catal. 1996, 5(2), 55-76.(H10) Williams, G. P. Surf. Sci. 1996, 368(1-3), 1-8.(H11) Geotti-Bianchini, F.; De Riu, L. Glass Sci. Technol. 1995, 68(7),

228-40.(H12) McNeil, L. E. EMIS Datarev. Ser. 1994, 11, 249-51 (Proper-

ties of Group III Nitrides).(H13) Doll, G. L. EMIS Datarev. Ser. 1994, 11, 241-8 (Properties

of Group III Nitrides).(H14) McNeil, L. E. EMIS Datarev. Ser. 1994, 11, 252-3 (Properties

of Group III Nitrides).(H15) Merrill, R. A.; Bartick, E. G.; Mazzella, W. D. J. Forensic Sci.

1996, 41(2), 264-71.

(H16) de Andres, A.; Taboada, S.; Martinez, J. L.; Dietrich, M.;Litvinchuk, A.; Thomsen, C. Phys. Rev. B: Condens. Matter1997, 55(6), 3568-73.

(H17) Gonzalez, R. J.; Zallen, R.; Berger, H. Phys. Rev. B: Condens.Matter 1997, 55(11), 7014-7.

(H18) Li, X.; Zhang, H.; Li, S.; Zhao, M. Mater. Chem. Phys. 1996,45(1), 55-62.

(H19) Syrbu, N. N.; Cretu, R. V. Infrared Phys. Technol. 1996, 37(7),769-75.

(H20) Perlin, P.; Knap, W.; Taliercio, T.; Camassel, J.; Robert, J. L.;Suski, T.; Grzegory, I.; Jun, J.; Porowski, S.; Chervin, J. C. Inst.Phys. Conf. Ser., 1996, 142, 951-4 (Silicon Carbide andRelated Materials 1995).

(H21) Inoue, K.; Wada, M.; Yamanaka, A. J. Korean Phys. Soc. 1996,29, S721-4 (Suppl., Proceedings of the 2nd Japan-KoreaConference on Ferroelectrics, 1996).

(H22) Lutz, H. D.; Himmrich, J.; Schmidt, M. J. Alloys Compd. 1996,241(1-2), 1-9.

(H23) Lobo, R. P. S. M.; Gervais, F. Phys. Rev. B: Condens. Matter1995, 52(18), 13294-9.

(H24) Chryssikos, G. D.; Kamitsos, E. I.; Kapoutsis, J. A.; Patsis, A.P.; Psycharis, V.; Koufoudakis, A.; Mitros, Ch.; Kallias, G.;Gamari-Seale, E.; et al. Physica C 1995, 254(1&2), 44-62.

(H25) Hudakova, N.; Macko, D.; Knizek, K.; Plechacek, V.; Sed-midubsky, D. Supercond. Sci. Technol. 1996, 9(8), 653-8.

(H26) Burlakov, V. M.; Vinogradov, E. A. Ferroelectrics 1996, 175(1-2), 51-64.

(H27) Lefez, B.; Nkeng, P.; Lopitaux, J.; Poillerat, G. Mater. Res. Bull.1996, 31(10), 1263-7.

(H28) Hatzopoulos, N.; Siapkas, D. I.; Hemment, P. L. F.; Scorupa,W. J. Appl. Phys. 1996, 80(9), 4960-70.

(H29) Fujimoto, H.; Dann, A. J.; Fahy, M. R.; Le Quesne, J. P.; Willis,M. R. J. Mater. Chem. 1996, 6(8), 1361-7.

(H30) Mastalerz, M.; Bustin, R. M. Int. J. Coal Geol. 1996, 32(1-4), 55-67.

(H31) Concharov, A. F.; Struzhkin, V. V.; Somayazulu, M. S.; Hemley,R. J.; Mao, H. K. Science 1996, 273(5272), 218-20.

(H32) Bonner, R. G.; Hauff, P. L. Water-Rock Interact., Proc. Int.Symp., 8th 1995, 63-6 (Kharaka, Y. K., Chudaev, O. V., Eds.).

(H33) Varsamis, C. P.; Kamitsos, E. I.; Machida, N.; Minami, T. J.Phys. Chem. B 1997, 101(19), 3734-41.

(H34) Witke, K.; Harder, U.; Willfahrt, M.; Huebert, T.; Reich, P. GlassSci. Technol. 1996, 69(5), 143-53.

(H35) Grzechnik, A.; Zimmermann, H. D.; Hervig, R. L.; King, P. L.;McMillan, F. Contrib. Mineral. Petrol. 1996, 125(4), 311-8.

(H36) Chalmers, J. M.; Everall, N. J.; Ellison, S. Micron 1996, 27(5),315-28.

(H37) Andrasko, J. J. Forensic Sci. 1996, 41(5), 812-23.(H38) Chartoff, R. P.; Du, J. Solid Freeform Fabr. Symp. Proc. 1995,

298-304.(H39) Goncharenko, A. V.; Venger, E. F.; Vlaskina, S. I. Inst. Phys.

Conf. Ser. 1996, 142, 369-72.(H40) Itoh, J.; Sasaki, T.; Seo, M.; Ishikawa, T. Corros. Sci. 1997,

39(1), 193-7.(H41) Scheruebl, T.; Thomas, L. K. J. Anal. Chem. 1995, 353(5-

8), 589-93.(H42) Powell, G. L.; Smyrl, N. R.; Williams, D. M.; Meyers, H. M.,

III; Barber, E.; Marraro-Rivera, M. NASA Conf. Pub. 1995,3298, 563-71.

(H43) Burns, H. D. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2945, 55-61.

(H44) Gamsky, C. J.; Dentinger, P. M.; Howes, G. R.; Taylor, J. W.Proc. SPIE-Int. Soc. Opt. Eng. 1995, 2438, 143-52.

(H45) Liu, S.; Solomon, P.; Carpio, R.; Fowler, B.; Simmons, D.; Wang,J.; Wise, R.; Imper, G.; Riley, N. B.; et al. Mater. Res. Soc. Symp.Proc. 1995, 389, 269-74.

(H46) Dowscher, M.; Oertel, G.; Reinsperger, G. U.; Selle, B.; Sieber,I.; Troppenz, U. Mikrochim. Acta 1997, 125(1-4), 257-61.

(H47) Plass, M. F.; Fukarek, W.; Mandl, S.; Moeller, W. Appl. Phys.Lett. 1996, 69(1), 46-8.

(H48) Carpio, R. A.; Taylor, J. Proc. SPIE-Int. Soc. Opt. Eng. 1995,2638, 38-45.

(H49) Stetsun, A. I.; Indutnyl, I. Z.; Kravets, V. G. J. Non-Cryst. Solids1996, 202(1, 2), 113-21.

(H50) Lefez, B.; Souchet, R.; Kartouni, K.; Lenglet, M. Thin SolidFilms 1995, 268(1-2), 45-8.

(H51) Serebryakova, N. V.; Chernozatonskii, L. A.; Kosakovskaya,Z. Ya. Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. C 1996, 8(1-2), 27-30.

(H52) Shabatina, T. I.; Khasanova, T. V.; Vovk, E. V.; Sergeev, G. B.Thin Solid Films 1996, 284-285, 573-5.

(H53) Narducci, D.; Romanelli, C. Diffus. Defect Data, Pt. B 1996,51-52, 289-94.

(H54) Bonnelle, C.; Mayeux, A. J. Vac. Sci. Technol. 1996, 14(4),2488-92.

(H55) Palermo, T.; Giasson, S.; Buffeteau, T.; Desbat, B.; Turlet, J.M. Lubr. Sci. 1996, 8(2), 119-27.

(H56) Ahn, J. S.; Choi, H. S.; Noh, T. W. Phys. Rev. B: Condens.Matter 1996, 53(15), 10310-6.

(H57) Imaizumi, Y.; Zhang, Y.; Tsusaka, Y.; Urisu, T.; Sato, S. J. Mol.Struct. 1995, 352/353, 447-53.

(H58) Ando, H.; Nakahara, M.; Yamamoto, M.; Itoh, K.; Suzuki, M.Langmuir 1996, 12(26), 6399-403.

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 161R

(H59) Zhang, L.; Franke, J. E.; Niemczyk, T. M.; Haaland, D. M. Appl.Spectrosc. 1997, 51(2), 259-64.

(H60) Tamada, M.; Koshikawa, H.; Omichi, H. Thin Solid Films1997, 292(1-2), 164-8.

(H61) Tamada, M.; Koshikawa, H.; Omichi, H. Thin Solid Films1997, 293(1-2), 113-6.

(H62) Ye, S.; Sato, Y.; Uosaki, K. Langmuir 1997, 13(12), 3157-61.

(H63) Huehnerfuss, H.; Neumann, V.; Stine, K. J. Langmuir 1996,12(10), 2561-9.

(H64) Hasegawa, T.; Nishijo, J.; Kabayashi, Y.; Umemura, J. Bull.Chem. Soc. Jpn. 1997, 70(3), 525-33.

(H65) Sakai, H.; Umemura, J. Chem. Lett. 1996, (6), 465-6.(H66) Li, M.; Rice, S. A. J. Chem. Phys. 1996, 104(17), 6860-76.(H67) Umemura, J.; Hasegawa, T.; Sakai, H.; Takenaka, T. Trans.

Mater. Res. Soc. Jpn. 1994, 15A, 583-6.(H68) Payan, S.; Desbat, B.; Destrade, C.; Nguyen, H. T. Langmuir

1996, 12(26), 6627-31.(H69) Bensebaa, F.; Ellis, T. H. Prog. Surf. Sci. 1995, 50(1-4), 173-

85.(H70) Polavarapu, P. L.; Deng, Z. Appl. Spectrosc. 1996, 50(1), 91-

7.(H71) Huehnerfuss, H.; Gericke, A.; Neumann, V.; Stine, K. J. Thin

Solid Films 1996, 284-285, 694-7.(H72) Flach, C. R.; Gericke, A.; Mendelsohn, R. J. Phys. Chem. B

1997, 101(1), 58-65.(H73) Suzuki, Y.; Hasegawa, S.; Hatta, A. Mol. Cryst. Liq. Cryst. Sci.

Technol., Sect. A 1995, 264, 1-10.(H74) Port, S. N.; Horswell, S. L.; Raval, R.; Schiffrin, D. J. Langmuir

1996, 12(24), 5934-41.(H75) Gericke, A.; Mendelsohn, R. Langmuir 1996, 12(3), 758-62.(H76) Kitamura, F.; Ohsaka, T.; Tokuda, K. J. Electroanal. Chem.

1996, 412(1-2), 183-8.(H77) Weldon, M. K.; Friend, C. M. Rev. Sci. Instrum. 1995, 66(11),

5192-5.(H78) Sato, S.; Minoura, S.; Urisu, T.; Takasu, Y. Appl. Surf. Sci.

1995, 90(1), 29-37.(H79) Bandara, A.; Kubota, J.; Wada, A.; Domen, K.; Hirose, C. J.

Phys. Chem. B 1997, 101(3), 361-8.(H80) Struck, L. M.; Eng, J., Jr.; Bent, B. E.; Chabal, Y. J.; Williams,

G. P.; White, A. E.; Christman, S.; Chaban, E.; Raghavachari,K.; et al. Mater. Res. Soc. Symp. Proc. 1995, 386, 395-400.

(H81) Malvault, J. Y.; Lopitaux, J.; Delahaye, D.; Lenglet, M. J. Appl.Electrochem. 1995, 25(9), 841-5.

(H82) Muradoc, N. Z.; Raissi, A. T.; Jaganathan, S.; Painter, C. R.Proc., Annu. Meet.-Air Waste Manage. Assoc., 88th 1995, 4B,95-TP60P.05.

(H83) Al-Shihry, S. S.; Halawy, S. A. J. Mol. Catal. A: Chem. 1996,113(3), 479-87.

(H84) Roy, M.; Beitia, C.; Borensztein, Y.; Shkrebtii, A.; Noguez, C.;Del Sole, R. Appl. Surf. Sci. 1996, 104/105, 158-62.

(H85) Chen, W.-H.; Jong, S.-J.; Pradhan, A.; Lee, T.-Y.; Wang, I.; Tsai,T.-C.; Liu, S.-B. J. Chin. Chem. Soc. 1996, 43(4), 305-13.

(H86) Zeccvhina, A.; Bordiga, S.; Spioto, G.; Scarano, D.; Spano, G.;Geobaldo, F. J. Chem. Soc., Faraday Trans. 1996, 92(23),4863-75.

(H87) Teplyakov, A. V.; Bent, B. E. Catal. Lett. 1996, 42(1, 2), 1-4.(H88) Uwai, K.; Yamauchi, Y.; Kobayashi, N. Appl. Surf. Sci. 1996,

100/101, 412-6.(H89) Mielczarski, J. A.; Mielczarski, E.; Cases, J. M. Langmuir

1996, 12(26), 6521-9.(H90) Bae, I. T.; Barbour, R. L.; Scherson, D. A. Anal. Chem. 1997,

69(2), 249-52.(H91) Yang, D.-F.; Al-Maznai, H.; Morin, M. J. Phys. Chem. B 1997,

101(7), 1158-66.(H92) Fukui, K.-I.; Miyauchi, H.; Iwasawa, Y. J. Phys. Chem. 1996,

100(48), 18795-801.(H93) Zaera, F.; Janssens, T. V. W.; Oefner, H. Surf. Sci. 1996,

368(1-3), 371-6.(H94) Lamy, C.; Leger, J.-M.; Hahn, F.; Beden, B. Proc.-Electrochem.

Soc. 1996, 96-8, 356-70.(H95) Bertilsson, L.; Potje-Kamloth, K.; Liess, H.-D. Thin Solid Films

1996, 284-285, 882-7.(H96) Janssens, T. V. W.; Zaera, F. Surf. Sci. 1995, 344(1/2), 77-

84.(H97) Hostetler, M. J.; Manner, W. L.; Nuzzo, R. G.; Girolami, G. S.

J. Phys. Chem. 1995, 99(41), 15269-78.(H98) Ilharco, L. M.; Garcia, A. R.; da Silva, J. L. Surf. Sci. 1997,

371(2/3), 289-96.(H99) Williams, J.; Haq, S.; Raval, R. Surf. Sci. 1996, 368(1-3), 303-

9.(H100) Kubota, J.; Ichihara, S.; Kondo, J. N.; Domen, K.; Hirose, C.

Langmuir 1996, 12(7), 1926-7.(H101) Hollins, P.; Davis, A. A.; Slater, D. A.; Chesters, M. A.;

Hargreaves, E. C.; Parlett, P. M.; Wenger, J. C.; Surman, M.J. Chem. Soc., Faraday Trans. 1996, 92(5), 879-80.

(H102) Camplin, J. P.; Cook, J. C.; McCash, E. M. J. Chem. Soc.,Faraday Trans. 1995, 91(20), 3563-7.

(H103) Rainer, D. R.; Xu, C.; Holmblad, R. M.; Goodman, D. W. J.Vac. Sci. Technol., A 1997, 15(3, Pt. 2), 1653-62.

(H104) Nalezinski, R.; Bradshaw, A. M.; Knorr, K. Surf. Sci. 1995,331-333(Pt. A), 255-60.

(H105) Koch, T. G.; Holmes, N. S.; Roddis, T. B.; Sodeau, J. R. J. Chem.Soc., Faraday Trans. 1996, 92(23), 4787-92.

(H106) Magtoto, N. P.; Richardson, H. H. Surf. Interface Anal. 1997,25(2), 81-7.

(H107) Magtoto, N. P.; Richardson, H. H. J. Phys. Chem. 1996,100(20), 8482-6.

(H108) Sato, S.; Suzuki, T. J. Electron Spectrosc. Relat. Phenom. 1997,83(1), 85-91.

(H109) Street, S. C.; Gellman, A. J. Surf. Sci. 1997, 372(1-3), 223-38.

(H110) Levoguer, C. L.; Nix, R. M. Surf. Sci. 1996, 365(3), 672-82.(H111) Oda, I.; Ogasawara, H.; Ito, M. Langmuir 1996, 12(4), 1094-

7.(H112) Dumas, P.; Suhren, M.; Chabal, Y. J.; Hirshmugl, C. J.;

Williams, G. P. Surf. Sci. 1997, 371(2/3), 200-12.(H113) Mielczarski, J. A.; Mileczarski, E.; Zachwieja, J.; Cases, J. M.

Langmuir 1995, 11(7), 2787-99.(H114) Ogura, K.; Endo, N.; Nakayama, M.; Ootsuka, H. J. Electro-

chem. Soc. 1995, 142(12), 4026-32.(H115) Bae, I. T.; Sandifer, M.; Lee, Y. W.; Tryk, D. A.; Sukenik, C.

N.; Scherson, D. A. Anal. Chem. 1995, 67(24), 4508-13.(H116) Melendres, C. A.; Bowmaker, G. A.; Beden, B.; Leger, J. M.

Proc.-Electrochem. Soc. 1996, 96-9, 224-33.(H117) da Cunha, M. C. P. M.; Weber, M.; Nart, F. C. J. Electroanal.

Chem. 1996, 414(2), 163-70.(H118) Haq, S.; King, D. A. J. Phys. Chem. 1996, 100(42), 16957-65.(H119) Yamada, Y.; Ohshima, H. Shizuoka Daigaku Denshi Kogaku

Kenkyusho Kenkyu Hokoku 1995, 30(3), 35-40.(H120) Zahidi, E,; Castonguay, M.; McBreen, P. H. J. Phys. Chem.

1995, 99, 17493-9.(H121) Street, S. C.; Gellman, A. J. J. Chem. Phys. 1996, 105(16),

6634-44.(H122) Cooper, E.; Coats, A. M.; Raval, R. J. Chem. Soc., Faraday Trans.

1995, 91(20), 3703-8.(H123) Engquist, I.; Liedberg, B. J. Phys. Chem. 1996, 100(51),

20089-96.(H124) Lin, X.; Zhang, H. Electrochim. Acta 1996, 41(13), 2019-24.(H125) Brunner, H.; Vallant, T.; Mayer, U.; Hoffmann, H. Surf. Sci.

1996, 368(1-3), 279-91.(H126) Cook, J. C.; McCash, E. M. Surf. Sci. 1996, 365(3), 573-80.(H127) Chen, A. C.; Sun, S. G.; Yang, D. F.; Pettinger, B.; Lipkowski,

J. Can. J. Chem. 1996, 74(11), 2321-30.(H128) Roberts, A. J.; Haq, S.; Raval, R. J. Chem. Soc., Faraday Trans.

1996, 92(23), 4823-7.(H129) Toomes, R. L.; King, D. A. Z. Phys. Chem. 1997, 198(1/2),

19-41.(H130) Brunner, H.; Mayer, U.; Hoffmann, H. Appl. Spectrosc. 1997,

51(2), 209-17.(H131) Markinovic, N. S.; Fawcett, W. R.; Wang, J. X. J. Phys. Chem.

1995, 99(49), 17490-3.(H132) Mielczarski, J. A.; Xu, Z.; Cases, J. M. J. Phys. Chem. 1996,

100(17), 7181-4.(H133) Sanders, H. E.; Gardner, P.; King, D. A. Surf. Sci. 1995, 331-

333(Pt. B), 1496-502.(H134) Cooper, E.; Raval, R. Surf. Sci. 1995, 331-333(Pt. A), 94-9.(H135) Sperline, R. P.; Freiser, H. In Handbook of Surface Imaging

and Visualization; Hubbard, A., Ed.; CRC Press: Boca Raton,FL, 1995; pp 245-63.

(H136) Ekgasit, S.; Ishida, H. Appl. Spectrosc. 1996, 50(9), 1187-95.(H137) Belali, R.; Vigoureux, J.-M.; Morvan, J. J. Opt. Soc. Am. B

1995, 12(12), 2377-81.(H138) Shick, R. A.; Koenig, J. L.; Ishida, H. Appl. Spectrosc. 1996,

50(8), 1082-8.(H139) Bartick, E. G.; Merrill, R. A. Adv. Forensic Sci., Proc. Meet.

Int. Assoc. Forensic Sci., 13th, 1995, 3, 310-3 (Jacob, B.,Bonte, W., Eds.; Verlag Dr. Koester: Berlin, Germany).

(H140) Doyle, W. M.; Nadel, B. Spectroscopy 1996, 11(7), 35-6, 38-43.

(H141) Jang, W.-H. Trans. Soc. Min., Metall., Explor. 1995, 298, 8-15(Section 3).

(H142) Lu, Y.; Han, L.; Brinker, C. J.; Niemczyk, T. M.; Lopez, G. P.Sens. Actuators, B 1996, B36(1-3), 517-21.

(H143) Parchment, K. E.; Govan, N.; Anderson, D. W. Proc. ERDECSci. Conf. Chem. Biol. Def. Res. 1995, 863-9 (Berg, D. A, Ed.;National Technical Information Service: Springfield, VA).

(H144) Cherezov, S. N.; Zhirkova, E. Y.; Plemenkova, S. F.; Ozhiga-nova, G. U. Russ. J. Plant Physiol. 1997, 44(1), 77-82.

(H145) Qing, H.; Yanlin, H.; Fenlin, S.; Zuyi, T. Spectrochim. Acta, PartA 1996, 52A(13), 1795-1800.

(H146) Nardviriyakul, N.; Wurster, D. E.; Donovan, M. D. J. Pharm.Sci. 1997, 86(1), 19-25.

(H147) Tanojo, H.; Junginger, H. E.; Bodde, H. E. J. Controlled Release1997, 47(1), 31-9.

(H148) Bayada, A.; Lawrance, G. A.; Maeder, M. Inorg. Chim. Acta1997, 254(2), 353-9.

(H149) Holmen, B. A.; Tejedor-Tejedor, M. I.; Casey, W. H. Langmuir1997, 13(8), 2197-206.

(H150) Fameli, G.; della Sala, D.; Roca, F.; Pascarella, F.; Grill, P. J.Appl. Phys. 1995, 78(12), 7269-76.

(H151) Deshmukh, S. C.; Aydil, E. S. J. Vac. Sci. Technol., A 1995,13(5), 2355-67.

(H152) Lee, S. S.; Kong, M. J.; Bent, S. F.; Chiang, C.-M.; Gates, S.M. J. Phys. Chem. 1996, 100(51), 20015-20.

162R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

(H153) Miyoshi, Y.; Yoshida, Y.; Miyazaki, S.; Hirose, M. J. Non-Cryst.Solids 1996, 198-200(Pt. 2), 1029-33.

(H154) Kong, M. J.; Lee, S. S.; Lyubovitsky, J.; Bent, S. F. Chem. Phys.Lett. 1996, 263(1, 2), 1-7.

(H155) Nakmura, M.; Song, M.-B.; Ito, M. Electrochim. Acta 1996,41(5), 681-6.

(H156) Yalamanchili, M. R.; Atia, A. A.; Miller, J. D. Langmuir 1996,12(17), 4176-84.

(H157) Yalmanchili, M. R.; Atia, A. A.; Drelich, J.; Miller, J. D. Process.Hydrophobic Miner. Fine Coal, Proc. UBC-McGill Bi-Annu. Int.Symp. Fundam. Miner. Process., 1st, 1995, 3-16 (Laskowski,J. S.; Poling, G. W., Eds.; Canadian Institute of Mining,Metallurgy and Petroleum: Montreal, PQ).

(H158) Sperline, R. P.; Jeon, J. S.; Raghavan, S. Appl. Spectrosc. 1995,49(8), 1178-82.

(H159) Calzaferri, G.; Imhof, R. Spectrochim. Acta, Part A 1996,52A(1), 23-8.

(H160) Breen, J. B.; Breen, C.; Yarwood, J. Clay Miner. 1996, 31(4),513-22.

(H161) Kubicki, J. D.; Itoh, M. J.; Schroeter, L. M.; Apitz, S. E. Environ.Sci. Technol. 1997, 31(4), 1151-6.

(H162) Shewring, N. I. E.; Jones, T. G. J.; Maitland, G.; Yarwood, J. J.Colloid Interface Sci. 1995, 176(2), 308-17.

(H163) Billingham, J.; Breen, C.; Yarwood, J. Vib. Spectrosc. 1997,14(1), 19-34.

(H164) Gonzalez-Martin, M. L.; Bruque, J. M.; Gonzalez-Caballero, F.;Perea-Carpio, R.; Janczuk, B. Appl. Surf. Sci. 1996, 103(4),395-402.

(H165) Conner, P. A.; Dobson, K. D.; McQuillan, A. J. Langmuir 1995,11(11), 4193-5.

(H166) Osawa, M.; Ataka, K.-i.; Yoshii, K. Proc.-Electrochem. Soc.1996, 96-8, 108-18.

(H167) Kawai, T. Bull. Chem. Soc. Jpn. 1997, 70(4), 771-5.(H168) Chyan, O. M. R.; Chen, J.-J.; Xu, F.; Wu, J. Anal. Chem. 1997,

69(13), 2434-7.(H169) Fawcett, W. R.; Kloss, A. A. J. Chem. Soc., Faraday Trans.

1996, 92(18), 3333-7.(H170) Bayada, A.; Lawrance, G. A.; Maeder, M.; Molloy, K. J. Appl.

Spectrosc. 1995, 49(12), 1789-92.(H171) Kaneko, F.; Miyamoto, H.; Kobayashi, M. J. Chem. Phys. 1996,

105(11), 4812-22.(H172) Fan, Q.; Ng, L. M. J. Electroanal. Chem. 1995, 398(1-2), 151-

7.(H173) Calabro, D. C.; Valyocsik, E. W.; Ryan, F. X. Microporous Mater.

1996, 7(5), 243-59.(H174) Jeon, J. S.; Sperline, R. P.; Raghavan, S.; Brent Hiskey, J.

Colloids Surf., A 1996, 111(1/2), 29-38.(H175) Nguyen, T. P.; Jonnard, P.; Vergand, F.; Staub, P. F.; Thirion,

J.; Lapkowski, M.; Tran, V. H. Synth. Met. 1995, 75(3), 175-9.

(H176) Ping, Z.; Nauer, G. E.; Neugebauer, H.; Theiner, J.; Neckel,A. J. Chem. Soc., Faraday Trans. 1997, 93(1), 121-9.

(H177) Ping, Z.; Nauer, G. E.; Neugebauer, H.; Theiner, J.; Neckel,A. Electrochim. Acta 1997, 42(11), 1693-700.

(H178) Ping, Z.; Nauer, G. E.; Neugebauer, H.; Theiner, J. J. Electroa-nal. Chem.1997, 420(1-2), 301-6.

(H179) Reeves, J. B, III Appl. Spectrosc. 1996, 50(8), 965-9.(H180) Dossi, C.; Fusi, A.; Molteni, G.; Recchia, S.; Psaro, R. Analyst

1997, 122(3), 279-82.(H181) Pearson, L. H. NASA Conf. Publ. 1995, 3298, 573-81

(Aerospace Environmental Technology Conference, 1994).(H182) Chan, T. Y.; Chen, R.; Sofia, M. J.; Smith, B. C.; Glennon, D.

Tetrahedron Lett. 1997, 38(16), 2821-4.(H183) Benitez, J. J.; Centeno, M. A.; Capitan, M. J.; Odriozola, J. A.;

Viot, B.; Verdier, P.; Laurent, Y. J. Mater. Sci. 1995, 5(8),1223-6.

(H184) Tsyganenko, A. A.; Mardilovich, P. P. J. Chem. Soc., FaradayTrans. 1996, 92(23), 4843-52.

(H185) Powell, G. L.; Cox, R. L.; Barber, T. E.; Neu, J. T. Int. SAMPETechnol. Conf. 1996, 28, 1171-82.

(H186) Zeine, C.; Grobe, J. Mikrochim. Acta 1997, 125(1-4), 279-82.

(H187) Manville, J. F.; Nault, J. R. Appl. Spectrosc. 1997, 51(5), 721-32.

(H188) Fan, Q.; Pu, C.; Ley, K. L.; Smotkin, E. S. J. Electrochem. Soc.1996, 143(2), 121-3.

(H189) Fan, Q.; Pu, C.; Smotkin, E. S. Proc. Intersoc. Energy Convers.Eng. Conf., 31st 1996, 1112-6.

(H190) Benitez, J. J.; Centeno, M. A.; dit Picard, C. L.; Merdrignac,O.; Laurent, Y.; Odriozola, J. A. Sens. Actuators, B 1996,B31(3), 197-202.

(H191) Nosyrev, I. E.; Gruber, R.; Cagniant, D.; Krzton, A.; Pajak, J.;Stefanova, D.; Grishchuk, S. Fuel 1996, 75(13), 1549-56.

(H192) Mul, G.; Kapteijn, F.; Moulijn, J. A. Prepr. Pap. - Am. Chem.Soc., Div Fuel Chem. 1996, 41(1), 230-6.

(H193) Borg, R. A. Report 1994, DSTO-TR-0065; Order No. AD-A291130. Avail. NTIS. From: Gov. Rep. Announce. Index (U.S.)1995, 95(20), Abstr. No. 20-03, 196.

(H194) Delgado, A. H.; Paroli, R. M.; Beaudoin, J. J. Appl. Spectrosc.1996, 50(8), 970-6.

(H195) Lee, D. H.; Condrate, R. A., Sr.; Reed, J. S. J. Mater. Sci. 1996,31(2), 471-8.

(H196) Bagshaw, S. A.; Cooney, R. P. Appl. Spectrosc. 1996, 50(10),1319-24.

(H197) Vogt, R.; Finlayson-Pitts, B. J. J. Phys. Chem. 1995, 99(47),17269-72.

(H198) Kim, N. Y.; Laibinis, P. E. J. Am. Chem. Soc. 1997, 119(9),2297-8.

(H199) Larsen, G.; Lotero, E.; Marquez, M.; Silva, H. J. Catal. 1995,157(2), 645-55.

(H200) Jiang, M.; Karge, H. G. J. Chem. Soc., Faraday Trans. 1996,92(14), 2641-9.

(H201) Parker, R. W.; Frost, R. L. Clays Controlling Environ., Proc.Int. Clay Conf., 10th 1993, 300-3 (Churchman, G. J., Fitz-patrick, R. W.; Eggleton, R. A., Eds.; Commonwealth Scientificand Industrial Research Organization: East Melbourne, Aus-tralia).

(H202) Craciun, R.; Miller, D. J.; Dulamita, N.; Jackson, J. E. Prog.Catal. 1996, 5(2), 55-76.

(H203) Kovalenko, N. A.; Borovkov, V. Y.; Petkevich, T. S.; Egiazarov,Y. G. Kinet. Catal. 1995, 36(5), 688-93 (Transl. of Kinet.Katal.).

(H204) Sun, T.; Trudeau, M. L.; Ying, J. Y. J. Phys. Chem. 1996,100(32), 13662-6.

(H205) Davydov, A. A.; Budneva, A. A. Kinet. Catal. 1995, 36(5), 719-24 (Transl. of Kinet. Katal.).

(H206) Lunin, V. V.; Kharlanov, A. N. Kinet. Catal. 1996, 37(5), 645-50 (Transl. of Kinet. Katal.).

(H207) Bollinger, M. A.; Vannice, M. A. Appl. Catal., B 1996, 8(4),417-43.

(H208) Centeno, M. A.; Benitez, J. J.; Malet, P.; Carrizosa, I.; Odriozola,J. A. Appl. Spectrosc. 1997, 51(3), 416-22.

(H209) Takeuchi, K.; Hanaoka, T.-a.; Matsuzaki, T.; Sugi, Y.; Ogasawara,S.; Abe, Y.; Misono, T. Stud. Surf. Sci. Catal. 1995, 92, 269-74.

(H210) Okuhara, T.; Hasada, Y.; Misono, M. Catal. Today 1997,35(1-2), 83-8.

(H211) Lange, F. C.; Schmelz, H.; Knoezinger, H. Appl. Catal., B1996, 8(2), 245-65.

(H212) Andrade, E. M.; Molina, F. V.; Posadas, D. J. Colloid InterfaceSci. 1995, 176(2), 495-7.

(H213) Rades, T.; Borovkov, V. Y.; Kazansky, V. B.; Polisset-Thfoin,M.; Fraissard, J. J. Phys. Chem. 1996, 100(40), 16238-41.

(H214) Ando, T.; Yamamoto, K.; Kamo, M.; Sato, Y.; Takamatsu, Y.;Kawasaki, S.; Okino, F.; Touhara, H. J. Chem. Soc., FaradayTrans. 1995, 91(18), 3209-12.

(H215) Thistlethwaite, P. J.; Gee, M. L.; Wilson, D. Langmuir 1996,12(26), 6487-91.

(H216) Yates, R. A.; Caldwell, J. D.; Perkins, E. G. J. Am. Oil Chem.Soc. 1997, 74(3), 289-92.

(H217) Shimizu, I.; Okabayashi, H.; Taga, K.; Nishi, E.; O’Connor, C.J. Vib. Spectrosc. 1997, 14(1), 113-23.

(H218) Lei, M.-k.; Ma, T.-c.; Emel′kin, V. A. Chin. Phys. Lett. 1996,13(4), 309-12.

(H219) Schneider, H.; Maciejewski, M.; Kohler, K.; Wokaun, A.;Baiker, A. J. Catal. 1995, 157(2), 312-20.

EMISSION

(I1) Seakins, P. W. Adv. Ser. Phys. Chem. 1995, 6, 250-314(Chemical Dynamics and Kinetics of Small Radicals, Pt. 1).

(I2) Bernath, P. F. Chem. Soc. Rev. 1996, 25(2), 111-5.(I3) Williams, R. R.; Mosley, R. M. Leaping Ahead Near Infrared

Spectrosc., Proc. Int. Conf. Near Infrared Spectrosc, 6th 1994,24-26 (Batten, G. D., Ed.; NearInfrared Spectroscopy Group:North Melbourne, Australia).

(I4) Ljungberg, S.-A.; Kulp, T. J.; Mcrae, T. G. Proc. SPIE-Int. Soc.Opt. Eng. 1997, 3056, 2-19 (Thermosense XIX: An Interna-tional Conference on Thermal Sensing and Imaging DiagnosticApplications, 1997).

(I5) Heland, J.; Schaefer, K.; Haus, R. Proc. SPIE-Int. Soc. Opt. Eng.1995, 2506, 62-71 (Air Pollution and Visibility Measure-ments).

(I6) Heland, J.; Hau, R.; Schaefer, K. Proc., Annu. Meet. - Air WasteManage. Assoc. 87th 1994, 3A, 1-14 (Air Pollution Measure-ment Methods & Monitoring Studies).

(I7) Heland, J.; Schaefer, K.; Haus, R. Mitt. - Dtsch. Forschungssanst.Luft-Raumfahrt 1994, 94-06, 88-93 (Impact of Emissions fromAircraft and Spacecraft Upon the Atmosphere).

(I8) Evans, W. F. J.; Puckrin, E. Appl. Opt. 1996, 35(9), 1519-22.(I9) Taylor, L. H.; Suhre, D. R.; Mech, S. J. Proc. Annu. ISA Anal.

Div. Symp.1996, 29, 155-64.(I10) Wang, J.; Kang, J.; Chem. Z.; Huang, M.; Zhang, J.; Wang, T.

J. Environ. Sci. Health, Part A: Environ. Sci. Eng. Toxic Hazard.Subst. Control 1995, A30(10), 2111-22.

(I11) Becker, E.; Notholt, J. Proc. SPIE-Int. Soc. Opt. Eng. 1997,3106, 154-8 (Spectroscopic Atmospheric Monitoring Tech-niques).

(I12) George, G. A.; Cash, G. A.; Rintoul, L. Polym. Int. 1996, 41(2),169-82.

(I13) Panczyk, C.; Takoudis, C. G. Proc. - Electrochem. Soc. 1996,96-5, 183-8 (Chemical Vapor Deposition).

(I14) Weber, Th.; Muijsers, J. C.; van Wolput, J. H. M. C.; Verhagen,C. P. J.; Niemantsverdriet, J. W. J. Phys. Chem. 1996, 100(33),14144-50.

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 163R

(I15) Frost, R. L.; Vassallo, A. M. Clays Clay Miner. 1996, 44(5),635-51.

(I16) Frost, R. L.; Collins, B. M.; Finnie, K.; Vassallo, A. J. ClaysControlling Environ., Proc. Int. Clay Conf., 10th 1993, 219-24(Churchman, G. J.; Fitzpatrick, R. W.; Eggleton, R. A., Eds.;Commonwealth Scientific and Industrial Research Organiza-tion: East Melbourne, Australia).

(I17) Klaassen, J. J.; Lindner, J.; Leone, S. R. J. Chem. Phys. 1996,104(19), 7403-11.

(I18) Ram, R. S.; Bernath, P. F. J. Mol. Spectrosc. 1996, 176(2), 329-36.

(I19) Morino, I.; Matsumura, K.; Kawaguchi, K. J. Mol. Spectrosc.1995, 174(1), 123-31.

(I20) Ram, R. S.; Bernath, P. F. J. Chem. Phys. 1996, 105(7), 2668-74.

(I21) Ram, R. S.; Bernath, P. F.; Davis, S. P. J. Mol. Spectrosc. 1996,175(1), 1-6.

(I22) Ram, R. S.; Bernath, P. F. J. Mol. Spectrosc. 1996, 180(2), 414-22.

(I23) I23)Heo, J.; Shin, Y. B. J. Non-Cryst. Solids 1996, 196, 162-7.(I24) Ram, R. S.; Bernath, P. F. J. Chem. Phys. 1996, 104(17), 6444-

51.(I25) Ram, R. S.; Bernath, P. F.; Davis, S. P. J. Mol. Spectrosc. 1996,

179(2), 282-98.(I26) Hirakawa, K.; Yamanaka, K.; Grayson, M.; Tsui, D. C. Appl.

Phys. Lett. 1995, 67(16), 2326-8.(I27) Schatz, W.; Renk, K. F.; Fusina, L.; Izatt, J. R. Appl. Phys. B:

Lasers Opt. 1994, B59(4), 453-65.(I28) Schnier, P. D.; Price, W. D.; Jockusch, R. A.; Williams, E. R. J.

Am. Chem. Soc. 1996, 118(30), 7178-89.(I29) Smith, P. G.; Topp, M. R. Chem. Phys. Lett. 1994, 229(1, 2),

21-8.(I30) Hancock, G.; Sucksmith, J. P. J. Vac. Sci. Technol., A 1995,

13(6), 2945-9.(I31) Domingo, C.; de los Arcos, T.; Tanarro, I.; Sanz, M. M. Proc.

SPIE-Int. Soc. Opt. Eng. 1997, 3090, 308-13 (High-ResolutionMolecular Spectroscopy).

(I32) Thonke, K.; Baier, T.; Hamann, J.; Scheerer, O.; Sauer, R. Appl.Spectrosc. 1997, 51(4), 548-51.

(I33) Keresztury, G.; Mink, J.; Kristof, J. Anal. Chem. 1995, 67(20),3782-7.

PROCESS AND IN SITU ANALYSIS

(J1) Severens, R. J.; Brussaard, G. J. H.; Verhoeven, H., J. S. M.Van der Sande, M. C. M.; Schram, D. C. Mater. Res. Soc. Symp.Proc. 1995, 377, 33-8 (Amorphous Silicon Technology-1995).

(J2) Knobloch, J.; Hess, P. Appl. Phys. Lett. 1996, 69(26), 4041-3.(J3) Moreno, M.; Munoz, J.; Garrido, B.; Samitier, J.; Calderer, J.;

Dominguez, C. Adv. Sci. Technol. 1995, 5, 149-54 (Advancesin Inorganic Films and Coatings).

(J4) Bunge, E.; Port, S. N.; Roelfs, B.; Meyer, H.; Baumgaertel, H.;Schiffrin, D. J.; Nichols, R. J. Langmuir 1997, 13, 3(1), 85-90.

(J5) Ogura, K.; Nakayama, M.; Kusumoto, C. J. Electrochem. Soc.1996, 143(11), 3606-15.

(J6) Hirota, K.; Song, M.; Ito, M. Chem. Phys. Lett. 1996, 250(3,4), 335-41.

(J7) Fonseca, C.; Ozanam, F.; Chazalviel, J.-N. Surf. Sci. 1996,365(1), 1-14.

(J8) Quijada, C.; Rodes, A.; Vazquez, J. L.; Perez, J. M.; Aldaz, A. J.Electroanal. Chem. 1995, 398(1-2), 105-15.

(J9) Lin, W.; Wong, W.; Sun, S. J. Phys. Chem. 1996, 100(36),14904-7.

(J10) Ogura, K.; Nakayama, M. Proc. - Electrochem. Soc. 1996, 96-8, 303-14 (Electrode Processes).

(J11) Melendres, C. A.; Bowmaker, G. A.; Beden, B.; Leger, J. M.Proc.-Electrochem. Soc. 1996, 96-9, 224-33 (New Directionsin Electroanalytical Chemistry).

(J12) Melendres, C. A.; Bowmaker, G. A.; Leger, J. M.; Beden, B.Proc.-Electrochem. Soc. 1996, 96-18, 280-91 (Surface OxideFilms).

(J13) Richmond, W.; Faguy, P.; Jackson, R.; Weibel, S. Anal. Chem.1996, 68(4), 621-8.

(J14) Faguy, P.; Marinkovic, N.; Adzic, R. Langmuir 1996, 12(2),243-7.

(J15) Christensen, P. A.; Hamnett, A.; Higgins, S. J. J. Chem. Soc.,Faraday Trans. 1996, 92(5), 773-81.

(J16) Oda, I.; Shingaya, Y.; Matsumoto, H.; Ito, M. J. ElectroAnal.Chem. 1996, 409(1-2), 95-101.

(J17) Munk, J.; Christensen, P. A.; Hamnett, A.; Skou, E. J. ElectroA-nal. Chem. 1996, 401(1-2), 215-22.

(J18) Schmidt, V.; Pastor, E. Electrochem. Chem. 1996, 401(1-2),155-61.

(J19) Sun, S.; Lin, Y. Electrochem. Acta 1996, 41(5), 693-700.(J20) Faguy, P.; Marinkovic, N. Surf. Sci. 1995, 339(3), 329-36.(J21) Weber, M.; Nart, F. C. Langmuir 1996, 12, 2(7), 1895-900.(J22) Pohjakallio, M.; Sundholm, G.; Talonen, P.; Lopez, C.; Vieil, E.

J. Electroanal. Chem. 1995, 396(1-2), 339-48.(J23) Yan, M.; Liu, K.; Jiang, Z. J. Electroanal. Chem. 1996, 408(1-

2), 226-9.(J24) Sznayi, J.; Paffett, M. T. Mater. Res. Soc. Symp. Proc. 1996,

431, 153-7 (Microporous and Macroporous Materials).

(J25) Tadjeddine, A.; Peremans, A.; LeRille, A.; Zheng, W.; Tadjed-dine, M.; Flament, J. J. Chem. Soc., Faraday Trans. 1996,92(20), 3823-8.

(J26) Da Cunha, M. C. P. M.; Weber, M.; Nart, F. C. J. Electroanal.Chem. 1996, 414(2), 163-70.

(J27) Peremans, A.; Tadjeddine, A. J. Chem. Phys. 1995, 103(16),7197-203.

(J28) Climent, V.; Rodes, A.; Orts, J. M.; Feliu, J. M.; Perez, J. M.;Aldaz, A. Langmuir 1997, 13(8), 2380-9.

(J29) Souza, J.; Rabelo, F.; De Moreas, I.; Nart, F. J. Electroanal.Chem. 1997, 420(1-2), 17-20.

(J30) Phan, M. C.; Bouallala, S.; Le, L. A.; Dang, V. M.; Lacaze, P. C.Electrochim. Acta 1997, 42(3), 439-47.

(J31) Westerhoff, B.; Holze, R. Bull. Elecrochem. 1996, 12(9), 560-8.

(J32) Lin, W.; Sun, S. Electrochim. Acta 1996, 41(6), 803-9.(J33) Hor, Y.; Koga, O.; Yamazaki, H.; Matuso, T. Electrochim. Acta

1995, 40(16), 2617-22.(J34) Trunschke, A.; Hoang, D.; Lieske, H. J. Chem. Soc., Faraday

Trans. 1995, 91(24), 4441-4.(J35) Chung, C.; Rhee, S.; Moon, S. Proc. Electrochem. Soc. 1996,

96-5, 189-94 (Chemical Vapor Deposition).(J36) Christensen, P.; Hamnett, A.; Higgins, S.; Timney, J. J. Elec-

troanal. Chem. 1995, 395(1-2), 195-209.(J37) Poignant, F.; Saussey, J.; Lavalley, J.-C.; Mabilon, G. Catal.

Today 1996, 29(1-4), 93-7.(J38) Muradoc, N.; Raissi, A.; Jaganathan, S.; Painter, C. Proc., Annu.

Meet. - Air Waste Mange. Assoc., 88th 1995, 4B, 95-TP60P.05.(J39) Chintawar, P.; Greene, H. J. Catal. 1997, 165(1), 12-21.(J40) Shen, J.; Sun, T.; Yang, X.; Jiang, D.; Min, E. J. Phys. Chem.

1995, 99(32), 12332-4.(J41) Hakuli, A.; Kytokivi, A.; Krause, O., A.; Suntola, T. J. Catal.

1996, 161(1), 393-400.(J42) Sun, H.; Yang, G.; Zu, J.; Xu, J. Chem. Res. Chin. Univ. 1996,

12(1), 6-9.(J43) Leistner, S.; Baumann, S.; Marx, G. Organosilicon Chem. II

[Muench, Silicontage], 2nd 1994, 295-301.(J44) Pezolet, M.; Labrecque, J.; Subirade, M.; Desbat, B. Spectrosc.

Biol. Mol., Eur. Conf., 6th 1995, 363-6.(J45) Guilment, J.; Poncelet, O.; Rigola, J.; Truchet, S. Vib. Spectrosc.

1996, 11(1), 37-49.(J46) Wang, Y.; Otsuka, K.; Ebitani, K. Catal. Lett. 1995, 35(3, 4),

259-63.(J47) Elfving, P.; Panas, I. Atmos. Environ. Technol. 1996, 30(23),

4085-9.(J48) Kroesen, G. M. W.; den Boer, J. H. W. G.; Boufendi, L.; Vivet,

F.; Khouli, M.; Bouchoule, A.; de Hoog, F. J. J. Vac. Sci. Technol.A 1996, 14(2), 546-9.

(J49) Deng, Q.; Moore, R. B.; Mauritz, K. A. Chem. Mater. 1995,7(12), 2261-70.

(J50) Kovalgin, A. Y.; Chabert-Rocabois, F.; Hitchman, M. L.; Sham-lian, S. H.; Alexandrov, S. E. J. Phys. IV 1995, 5, C5-357-C5-364 (C5, Chemical Vapour Deposition, Vol. 1).

(J51) Marteau, Ph.; Tobaly, P.; Ruffier-Meray, V.; Barreau, A. FluidPhase Equilib. 1996, 119(1-2), 214-30.

(J52) Mosebach, H.; Hopfe, V.; Erhard, M.; Meyer, M. J. Phys. IV1995, 5, C5-97-C5-104 (C5, Chemical Vapour Deposition, Vol.1).

(J53) Kazarian, S.; Brantley, N.; West, B.; Vincent, M.; Eckert, C. Appl.Spectrosc. 1997, 51(4), 491-4.

(J54) Christensen, P.; Hamnett, A.; Higgins, S.; Timney, J. J. Elec-troanal. Chem. 1995, 395(1-2), 195-209.

(J55) Ogura, K.; Nakayama, M. Proc. - Electorchem. Soc. 1996, 96-8, 303-14 (Electrode Processes).

(J56) Mao, Z.; Demergian, J.; Mathew, A.; Hyrre, R. Waste Manage.1995, 15(8), 567-77.

(J57) Cumpston, B. H.; Parker, I. D.; Jensen, K. F. J. Appl. Phys.1997, 81(8, Pt. 1), 3716-20.

(J58) Xia, X. H.; Iwasita, T.; Ge, F.; Vielstich, W. Electrochim. Acta1996, 41(5), 711-8.

(J59) Idriss, H.; Diagne, c.; Hindermann, J. P.; Kiennemann, A.;Barteau, M. A. J. Catal. 1995, 155(2), 219-37.

(J60) Ekholm, A.; Santamaki, O. Proc. SPIE-Int. Soc. Opt. Eng. 1996,2766, 2-4 (Thermosense XVIII: An International conferenceon Thermal Sensing and Imaging Diagnostic Applications).

(J61) Eder-Mirth, G.; Wanzenbock, H.; Lercher, J. A. Stud. Surf. Sci.Catal. 1995, 94, 449-55 (Catalysis by Microporous Materials).

(J62) Palominio, G. T.; Arean, C. O.; Geobaldo, F.; Ricchiardi, G.;Bordiga, S.; Zecchina, A. J. Chem. Soc., Faraday Trans. 1997,93(1), 189-191.

(J63) Benson, I. Pop. Plast. Packag. 1995, 40(6), 49-56.(J64) Banga, R.; Yarwood, J.; Morgan, A.; Evans, B.; Kells, J. Thin

Solid Films 1996, 284-5.(J65) Calabro, D.; Valyocsik, E.; Ryan, F. Microporous Mater. 1996,

7(5), 243-59.(J66) Niwano, M.; Miura, T.; Tajima, R.; Miyamoto, N. Appl. Surf.

Sci. 1996, 100/101, 607-611 (Proceedings of the 13thInternational Vacuum Congress and the 9th Internationalconference on Solid Surface, 1995).

(J67) Nakamura, M.; Song, M.; Ito, M. Electrochim. Acta 1996, 41(5),681-6.

(J68) Niwano, M.; Miura, T.; Kimura, Y.; Tajima, R.; Miyamoto, N. J.Appl. Phys. 1996, 79(7), 3708-13.

164R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

(J69) Niwano, M.; Miura, T.; Kimura, Y.; Tajima, P.; Miyamoto, N.Mater. Res. Soc. Symp. Proc. 1997, 432, 277-82 (AqueousChemistry and Geochemistry of Oxides, Oxyhydroxides, andRelated Materials).

(J70) Watanabe, S. Surf. Sci. 1995, 341(3), 304-10.(J71) Calzaferri, G.; Inhof, R. Spectrochim. Acta, Part A 1996, 52A(1),

23-8.(J72) Bae, J. T.; Sandifer, M.; Lee, Y. W. Tryk; D. A.; Sukenik, C. N.;

Scherson, D. A. Anal. Chem. 1995, 67(24), 4508-13.(J73) Yalamanchili, M. R.; Atia, A. A.; Miller, J. D. Langmuir 1996,

12, 2(17), 4176-84.(J74) Jeon, J.; Sperline, R.; Raghavan, S.; Brent, H. J. Colloids Surf. A

1996, 111(1/2), 29-38.(J75) Suer, M.; Dardas, Z.; Ma, Y.; Moser, W. J. Catal. 1996, 162(2),

320-6.(J76) Karge, H. G.; Niessen, W.; Bludau, H. Appl. Catal. A 1996,

146(2), 339-49.(J77) Ping, Z.; Nauer, G. E. J. Electroanal. Chem. 1996, 416(1-2),

157-66.(J78) Ping, Z. J. Chem. Soc., Faraday Trans. 1996, 92(17), 3063-7.(J79) Vacque, V.; Dupuy, N.; Sombret, B.; Huvenne, J. P.; Legrand,

P. J. Mol. Struct. 1996, 384(2-3), 165-74.(J80) Onoe, J.; Takeuchi, K. Phys. Rev. B: Condens. Matter 1996,

54(9), 6167-71.(J81) Onoe, J.; Takeuchi, K. J. Phys. Chem. 1995, 99, 9(45), 16786-

91.(J82) Nelson, C.; Smith, J.; VanDell, R.; Bonanno, A.; Solomon, P.

Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2883, 628-39 (OpticalRemote Sensing for Environmental and Process Monitoring).

(J83) Shiozaki, R.; Nishio, E.; Morimoto, M.; Kominami, H.; Maekawa,M.; Kera, Y. Appl. Spectrosc. 1996, 50(4), 541-4.

(J84) Ping, Z.; Federspiel, P.; Gruenberger, A.; Nauer, G. E. Synth.Met. 1997, 84(1-3), 837-8.

(J85) Ping, Z.; Nauer, G. E. Synth. Met. 1997, 84(1-3), 843-4.(J86) McKnight, Steven H.; Gillespie, John W., Jr. J. Appl. Polym. Sci.

1997, 64(10), 1971-85.(J87) Ping, Z.; Nauer, G. E.; Neugebauer, H.; Theiner, J.; Neckel, A.

Electrochim. Acta 1997, 42(11), 1693-700.(J88) Ping, Z.; Nauer, G. E.; Neugebauer, H.; Theiner, J. J. Electroanal.

Chem. 1997, 420(1-2), 301-6.(J89) Ping, Z.; Nauer, G.; Neugebauer, H.; Thiener, J.; Neckel, A.

Chem. Soc., Faraday Trans. 1997, 93(1), 121-9.(J90) Phan, M. C.; Qulahyane, M.; Mostefai, M.; Lacaze, P. C. Synth.

Met. 1997, 84(1-3), 411-2.(J91) Tolmachev, Y.; Wang, Z.; Scherson, D. Proc. - Electrochem.

Soc. 1996, 96-9, 368-84 (New Directions in ElectroanalyticalChemistry).

(J92) Fan, Q.; Ng, Lily M. J. Electroanal. Chem. 1995, 398(1-2),151-7.

(J93) Tolmachev, Y.; Wang, Z.; Scherson, D. J. Electrochem. Soc.1996, 143(10), 3160-6.

(J94) Yalamanchili, M. R.; Atia, A. A.; Drelich, J.; Miller, J. D. Process.Hydrophobic Miner. Fine Coal, Proc. UBC-McGill Bi-Annu. Int.Symp. Fundam. Miner. Process., 1st 1995, 3-16.

(J95) Fan, Q.; Ng, L. Vac. Sci. Technol., A 1996, 14(3, Pt. 2), 1326-9.

(J96) Dunkers, J.; Flynn, K.; Parnas, R. Composites, Part A 1997,28A(2), 163-70.

(J97) Dunker, J.; Parnas, R. Ceram. Eng. Sci. Proc. 1995, 16(4), 201-8.

(J98) Brundage, M.; Chuang, S. C. J. Catal. 1996, 164(1), 94-108.(J99) Weber, M.; Nart, F. C. Electrochim. Acta 1996, 41(5), 653-9.

(J100) Rappich, J.; Lewerenz, H. J. Thin Solid Films 1996, 276(1-2), 25-8.

(J101) Rappich, J.; Lewerenz, H. J. Electrochim. Acta 1996, 41(5),675-80.

(J102) Shaw, K.; Christensen, P.; Hamnett, A. Electrochim. Acta 1996,41(5), 719-28.

(J103) Chung, C.; Moon, S.; Rhee, S. J. Vac. Sci. Technol.; A 1995,13(6), 2698-702.

(J104) Ozanam, F.; Da Fonseca, C.; Chazalviel, J. N. Proc. - IndianAcad. Sci., Chem. Sci. 1995, 107(6), 709-19.

(J105) Szanyi, J.; Paffett, M. J. Catal. 1996, 164(1), 232-45.(J106) Szanyi, J.; Paffett, M. Catal. Lett. 1997, 43(1, 2), 37-44.(J107) Szanyi, J.; Paffett, M. T. J. Chem. Soc., Faraday Trans. 1996,

92(24), 5165-75.(J108) Grzechnik, A.; McMillan, P. Solid State Commun. 1996, 99(12),

869-71.(J109) Mueller, G.; Eder-Mirth, G.; Kessler, H.; Lercher, J. A. J. Phys.

Chem. 1995, 99, 9(32), 12327-31.(J110) Qi, M.; Xue, Z.; Li, Q. Chin. Sci. Bull. 1995, 40(11), 916-20.(J111) Yamashita, H.; Matsuoka, M.; Tsuji, K.; Shioya, Y.; Anpo, M.;

Che, M. Phys. Chem. 1996, 100(1), 397-402.(J112) Weber, M.; Nart, F. C.; de Moraes, I. R.; Iwasita, T. J. Phys.

Chem. 1996, 100(51), 19933-8.(J113) Moraes, I. R.; Weber, M.; Nart, F. C. Electrochim. Acta 1997,

42(4), 617-25.(J114) Poenar, D. P.; van der Puil, N.; French, P. J.; Woffenbuttel, R.

F. J. Electrochem. Soc. 1996, 143(3), 968-73.(J115) Fusi, A.; Psaro, R.; Dossi, C.; Garlaschelli, L.; Cozzi, F. J. Mol.

Catal. A: Chem. 1996, 107(1-3), 255-61.(J116) Savary, L.; Saussey, J.; Costentin, G.; Bettahar, M. M.; Gubel-

mann-Bonneau, M.; Lavalley, J. C. Catal. Today 1996, 32, 57-

61 (1-4, Proceedings of the 5th European Workshop Meetingon Selective oxidation by Heterogeneous Catalysis, 1995).

(J117) Savary, L.; Saussey, J.; Costentin, G.; Bettahar, M. M.; Lavalley,J. C. Catal. Lett. 1996, 38(3, 4), 197-201.

(J118) Krishnamurthy, R.; Chuang, S. S. C. Thermochim. Acta 1995,262, 215-26.

(J119) Long, R.; Zhou, S.; Huang, Y.; Wang, H.; Wan, H.; Tsai, K. Chin.Chem. Lett. 1995, 6(8), 727-30.

(J120) Olligs, D.; Stimming, U.; Stumper, J. New Mater. Fuel Cell Syst.I, Proc. Int. Symp., 1st 1995, 677-87.

(J121) Duffy, N.; Dobson, K.; Gordon, K.; Robinson, B.; McQuillan,A. Chem. Phys. Lett. 1997, 266(5, 6), 451-5.

(J122) Ruggiero, C.; Hollins, P. J. Chem. Soc., Faraday Trans. 1996,92(23), 4829-34.

(J123) Bailes, M.; Bordiga, S.; Stone, F. S.; Zecchina, A. J. Chem. Soc.,Faraday Trans. 1996, 92(23), 4675-82.

(J124) Tong, Y. Y.; Billy, J.; Renouprez, A. J.; van der Klink, J. J. J.Am. Chem. Soc. 1997, 119(17), 3929-34.

(J125) Chen, L.; Lin, L.; Zin, Q.; Ying, P.; Cheng, M.; Xu, Z.; Zang, T.React. Kinet. Catal. Lett. 1995, 56(2), 267-72.

(J126) Noronha, Z.; Monteiro, J.; Gelin, P. Stud. Surf. Sci. Catal. 1995,97, 465-70 (Zeolites: A Refined Tool for Designing CatalyticSites).

(J127) Chen, L.; Lin, L.; Xu, Z.; Zhang, T.; Xin, Q.; Ying, P.; Li, G.Can. J. Catal. 1996, 161(1), 107-14.

(J128) Yamashita, H.; Matsuoka, M.; Tsuji, K.; Shioya, Y.; Anpo, M.;Che, M. J. Phys. Chem. 1996, 100(1), 397-402.

(J129) Schuetze, F.-W.; Roessner, F. Z. Phys. Chem. 1995, 191(2),271-6.

(J130) Stakheev, A. Yu.; Shpiro, E. S.; Jaeger, N. I.; Schulz-Ekloff, G.Catal. Lett. 1995, 34(3, 4), 293-303.

(J131) Zecchina, A.; Geobaldo, F.; Lamberti, C.; Bordiga, S.; TurnesPalomino, G.; Otero Arean, C. Catal. Lett. 1996, 42(1, 2), 25-33.

(J132) Jiang, X. Chin. J. Chem. 1996, 14(6), 497-505.(J133) Boccuzzi, F.; Chiorino, A.; Guglielminotti, E. Surf. Sci. 1996,

368(1-3), 264-9.(J134) Hannus, I.; Ivanova, I. I.; Tasi, Gy.; Kiricsi, I.; Nagy, J. B. Colloids

Surf., A 1995, 101(2/3), 199-206.(J135) Scarano, D.; Zeechina, A.; Spoto, G.; Geobaldo, F. J. Chem. Soc.,

Faraday Trans. 1995, 91(24), 4445-50.(J136) Boccuzzi, F.; Chiorino, A.; Tsubota, S.; Haruta, M. J. Phys. Chem.

1996, 100, 0(9), 3625-31.(J137) Friedrich, K. A.; Geyzer, K.-P.; Henglein, F.; Marmann, A.;

Stimming, U.; Unkauf, W.; Vogel, R. Proc. - Electrochem. Soc.1996, 96-8, 119-35 (Electrode Processes).

(J138) Mojet, B. L.; Kappers, M. J.; Miller, J. T.; Koningsberger, D.C. Surf. Sci. Catal. 1996, 101, 1165-74 (Pt. B, 11th Interna-tional Congress on Catalysis-40th Anniversary), 1996, Pt. B).

(J139) Martra, G.; Marchese, L.; Arena, F.; Parmaliana, A.; Coluccia,S. Top. Catal. 1994, 1(1, 2), 63-73.

(J140) Gruver, V.; Panov, A.; Fripiat, J. J. Langmuir 1996, 12(10),2505-13.

(J141) Frash, M.; Makarova, M.; Ribgy, A. M. J. Phys. Chem. B 1997,101(12), 2116-9.

(J142) Grossman, A.; Erley, W.; Ibach, H. Surf. Sci. 1996, 355(1-3),L331-4.

(J143) Dlott, D.; Fayer, M. D.; Hill, J.; Rella, C. W.; Suslick, K.; Ziegler,C. J. Am. Chem. Soc. 1996, 118(33), 7853-4.

(J144) Froben, F. W.; Rabin, I.; Ritz, M.; Schulze, W. Z. Phys. D.; At.,Mol. Clusters 1996, 38(4), 335-8.

(J145) Wawer, I.; Koleva, V. Magn. Reson. Chem. 1996, 34(3), 207-12.

(J146) Olligs, D.; Stimmings, U.; Stumper, J. New Mater. Fuel Cell Syst.I, Proc. Int. Symp., 1st 1995, 677-87.

(J147) Chen, H. Y.; Lin, J.; Tan, K. L.; Li, J. Inorg. Chem. 1997, 36(7),1417-23.

(J148) Hu, C.; Chen. Y.; Li, P.; Min, H.; Chen, Y.; Tian, A. J. Mol. Catal.A: Chem 1996, 110(2), 163-9.

(J149) Millar, G. J.; Rochester, C. H.; Waugh, K. C. Top. Catal. 1996,3(1, 2), 103-14.

(J150) Ji, W.; Chen, Y.; Shen, S.; Shikong, L.; Li, S.; Wang, H. Appl.Surf. Sci. 1996, 99(2), 151-60.

(J151) Shen, G.-C.; Liu, A.-M.; Shido, T.; Ichikawa, M. Top. Catal.1995, 2, 141-54 (1-4, Fischer-Tropsch and MethanolSynthesis).

(J152) Parentis, M. L.; Bonini, N. A.; Gonzo, E. E. Lat. Am. Appl. Res.1996, 26(1), 35-44.

(J153) Liotta, L. F.; Martin, G. A.; Deganello, G. J. Catal. 1996, 164(2),322-33.

(J154) Hadjiivanov, K. I.; Kantcheva, M. M. Klissurski, D. G. J. Chem.Soc., Faraday Trans. 1996, 92(22), 4595-600.

(J155) Goyhenex, C.; Croci, M.; Claeys, C.; Henry, C. R. Surf. Sci.1996, 352-4.

(J156) Coq, B.; Walter, C.; Brown, R.; McDougall, G.; Figureas, F.Catal. Lett. 1996, 39(3, 4), 197-203.

(J157) Gausemel, I.; Ellestad, O. H.; Nielsen, C. J. Catal. Lett. 1997,45(1, 2), 129-33.

(J158) Krishnamurthy, R.; Chuang, S. S. C. J. Phys. Chem. 1995, 99,9(45), 16727-35.

(J159) Krishnamurthy, R.; Chuang, S. S. C. Thermochim. Acta 1995,262, 215-26.

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 165R

(J160) Heidberg, J.; Kandel, M.; Meine, D.; Wildt, U. Surf. Sci. 1995,331-333(Pt. B), 1467-72.

(J161) Jin, D. W.; Mitta, T. J. Chem. Eng. Jpn. 1996, 29(4), 708-11.(J162) Spielbauer, D.; Mekhemer, G. A. H.; Zaki, M. I.; Knoezinger,

H. Catal. Lett. 1996, 40(1, 2), 71-9.(J163) Gruenert, W.; Wolf, D.; Buyevskaya, O. V.; Walter, K.; Baerns,

M. Z. Phys. Chem. 1996, 197(1/2), 49-5.(J164) Balakos, M. W.; Chuang, S. S. C.; Srinivas, G.; Brundage, M.

A. J. Catal. 1995, 157(1), 51-65.(J165) Ozanam, F.; Djebri, A.; Chazalviel, J. N. Electrochim. Acta 1996,

41(5), 687-92.(J166) Lin, J.; Chen, H. Y.; Chen, L.; Tan, K. L.; Zeng, H. C. Appl.

Surf. Sci. 1996, 103(3), 307-14.(J167) Takeuchi, K.; Hanaoka, T.; Matsuzaki, T.; Sugi, Y.; Ogasawara,

S.; Abe, Y.; Misono, T. Stud. Surf. Sci. Catal. 1995, 92, 269-74 (Science and Technology in Catalysis 1994).

(J168) Woelki, G.; Salzer, R. J. Anal. Chem. 1995, 352(5), 529-31.(J169) Fan, Q.; Pu, C.; Ley, K.; Smotkin, E. S. J. Electrochem. Soc.

1996, 143(2), L21-3.(J170) Fan, Q.; Pu, C.; Smotkin, E. Proc. Intersoc. Energy Convers. Eng.

Cong. 31st 1996, 1112-6.(J171) Pan, Q.; Pu, C.; Smotkin, E. S. J. Electrochem. Soc. 1996,

143(10), 3053-7.(J172) Schneider, H.; Maciejewski, M.; Kohler, K.; Wokaun, A.; Baiker,

A. J. Catal. 1995, 157(2), 312-20.(J173) Taniguchi, M.; Tanaka, S.; Yoneoka, T. J. Nucl. Mater. 1995,

226(1&2), 178-84.(J174) Taniguchi, M.; Tanaka, S.; Nose, Y.; Grishamanov, V. Fusion

Technol. 1995, 28(3, Pt. 2), 1284-9.(J175) Centeno, M. A.; Benitez, J. J.; Malet, P.; Carrizosa, I.; Odriozola,

J. A. Appl. Spectrosc. 1997, 51(3), 416-22.(J176) Okuhara, T.; Hasad, Y.; Misono, M. Catal. Today 1997, 35(1-

2), 83-8.(J177) Marwood, M.; Doepper, R.; Renken, A. Appl. Catal. A 1997,

151(1), 223-46.(J178) Krzton, A.; Heintz, O.; Petryniak, J.; Koch, A.; Machnikowski,

J.; Zimny, T.; Weber, J. V. Analusis 1996, 24(6), 250-3.(J179) Markinovic, N.; Fawcett, W.; Wang, J.; Adzic, R. J. Phys. Chem.

1995, 99, 9(49), 17490-3.(J180) Sato, Y.; Ye, S.; Haba, T.; Uosaki, K. Langmuir 1996, 12, 2(11),

2726-36.(J181) Marinkovic, N.; Hecht, M.; Loring, J.; Fawcett, W. Electrochim.

Acta 1996, 41(5), 641-51.(J182) Jones, V. W.; Kalaji, M. J. Electroanal. Chem. 1995, 395(1-

2), 323-6.(J183) Marinkovic, N.; Calvente, J.; Bovacova, Z.; Fawcett, W. J.

Electrochem. Soc. 1996, 143(8), L171-3.(J184) Aurbach, D.; Chusid, O.; Weissman, I.; Dan, P. Electrochim.

Acta 1996, 41(5), 747-60.(J185) Luisa, M.; Oliveira, Maria C.; Correia, Jorge P.; Bewick, Alan;

Kalaji, Maher J. Chem. Soc., Faraday Trans. 1997, 93(6),1119-25.

(J186) Abrantes, L. M.; Bewick, A.; Kalaji, M.; Oliveira, M. C. J. Chem.Soc., Faraday Trans. 1996, 92(23), 4663-7.

(J187) Li, Y.; Yang, J.; Xu, J. Appl. Polym. Sci. 1996, 61(12), 2085-9.(J188) Hernandez, R. Ricardo M.; Kalaji, Maher J. Chem. Soc., Faraday

Trans. 1996, 92(20), 3957-62.(J189) Damlin, P.; Kvarnstroem, C.; Ivaska, A. Analyst 1996, 121(12),

1881-4.(J190) Uwai, K.; Yamauchi, Y.; Kobayashi, N. Appl. Surf. Sci. 1996,

100/101, 412-6 (Proceedings of the 13th International VacuumCongress and the 9th International Conference on SolidsSurfaces, 1995).

(J191) Ahn, D.; Berman, A.; Charych, D. Phys. Chem. 1996, 100(30),12455-61.

(J192) Lamy, C., Leger, J.; Hahn, F.; Beden, B. Proc. - Electrochem.Soc. 1996, 96-8, 356-70 (Electrode Processes).

(J193) Mielczarski, J. A.; Xu, Z.; Cases, J. M. J. Phys. Chem. 1996,100(17), 7181-4.

(J194) Lin, X.; Zhang, H. Electrochim. Acta 1996, 41(13), 2019-24.(J195) Liu, S.; Solomon, P.; Carpio, R.; Fowler, B.; Simmons, D.; Wnag,

J.; Wise, R.; Imper, G.; Riley, N. B.; et al. Mater. Res. Soc. Symp.Proc. 1995, 389, 269-74 (Modeling and Simulation of Thin-Film Processing).

(J196) Ye, S.; Yashiro, A.; Sato, Y.; Uosaki, K. J. Chem. Soc., FaradayTrans. 1996, 92(20), 3813-21.

(J197) Lu, H.; Hess, D. Electrochem. Soc. 1996, 143(9), 2896-905.(J198) Katiyar, M.; Yang, Y. H.; Abelson, J. R. J. Appl. Phys. 1995,

77(12), 6247-56.(J199) Nishikawa, K.; Ono, K.; Tuda, M.; Oomori, T.; Namba, N. Jpn.

J. Appl. Phys., Part 1 1995, 34(7A), 3731-6.(J200) Wang, R.; Iyoda, T.; Tryk, D. A.; Hashimoto, K.; Fujishima,

Akira; Bae, I.; Scherson, D. A. Gaodeng Xuexiao Huaxue Xuebao1995, 16(11, Suppl.), 125-8.

(J201) Lum, R. M.; McDonald, M. L.; Bean, J. C.; Vanderberg, J.;Pernell, T. L.; Chu, S. N. G.; Robertson, A.; Karp, A. Appl. Phys.Lett. 1996, 69(7), 928-30.

(J202) Bertrand, N.; Drevillon, B. Vide: Sci., Technol. Appl. 1996,279 (Suppl.), 239-42 Proceedings, TATF′96, 5th InternationalSymposium on Trends and New Applications in Thin Films,1996).

(J203) Mielczarshi, J. A.; Mielczarski, E.; Zachwieja, J.; Cases, J. M.Langmuir 1995, 11(7), 2787-99.

(J204) Liu, S.; Solomon, P.; Carpio, R.; Fowler, B.; Simmons, D.; Wang,J.; Wise, R.; Imper, G.; Riley, N. B. Mater. Res. Soc. Symp. Proc.1995, 387, 87-92 (Rapid Thermal and Integrated ProcessingIV).

(J205) Nishide, T.; Mizukami, F. Sol-Gel Sci. Technol. 1996, 6(3),263-7.

(J206) Kanamura, K.; Takezawa, H.; Shiraishi, S.; Takehara, Z. Chem.Lett. 1997, (1), 41-2.

(J207) Cui, J.; Ma, Yurong; F. Rongchuan High Technol. Lett. 1996,2(1), 72-6.

(J208) Cui, J.; Su, X.; Hong, C.; Ma, Y.; Fang, R. Proc. Int. Conf. Surf.Sci. Eng. 1995, 586-9.

(J209) Kaloyeros, A.; Zheng, B.; Lou, I.; Lau, J.; Hellgeth, J. Thin SolidFilms 1995, 262(1-2), 20-30.

(J210) Gericke, A.; Grauner, J. W.; Erukulla, R. K.; Birrman, R.;Mendelsohn, R. Thin Solid Films 1996, 284-285, 428-31.

(J211) Mosier-Boss, P.; Newbery, R.; Szpak, S.; Lieberman, S.; Rovang,J. Anal.Chem. 1996, 68(18), 3277-82.

(J212) Mielczarshi, J.; Cases, J.; Barres, O. Colloid Interface Sci. 1996,178(2), 740-8.

(J213) Zaki, M. I.; Hussein, G. A. M.; Nohman, A. K. H.; Nashed, Y.E. Thermochim. Acta 1996, 273, 257-68.

(J214) Yokoyama, S.; Goto, H.; Miyamoto, T.; Ikeda, N.; Shibahara,K. Appl. Surf. Sci. 1997, 112, 75-81.

(J215) Tamada, M.; Koshikawa, H.; Omichi, H. Thin Solid Films 1997,293(1-2), 113-6.

(J216) Tamada, M.; Koshikawa, H.; Omichi, H. Thin Solid Films 1997,292(1-2), 164-8.

(J217) Lu, Guo-Q.; Sun, S.; Chen, S.; Li, N.; Yang, Y.; Tian, Z. Proc. -Electrochem. Soc. 1996, 96-8, 436-45 (Electrode Processes).

(J218) Fukui, K.; Miyauchi, H., Iwasawa, Y. J. Phys. Chem. 1996,100(48), 18795-801.

(J219) Cook, J. C.; Mc, E., M.; Cash Surf. Sci. 1996, 356(1-3), L445-9.

(J220) Stree, S.; Gellman, A. J. Chem. Phys. 1996, 105(16), 6634-44.(J221) Wang, J.; Castonguay, M.; McBreen, P. H.; Ramanathan, S.;

Oyama, S. T. In Chemistry of Transition Metal Carbides andNitrides; Oyama, S. T., Ed.; Chapman & Hall: New York, 1996;pp 426-38.

(J222) Schick, M.; Lauterbach, J.; Weinberg, W. H. J. Vac. Sci. Technol.,A 1996, 14(3, Pt. 2), 1448-52.

(J223) Beitel, G.; Laskov, A.; Oosterbeek, H.; Kuipers, E. J. Phys. Chem.1996, 100(30), 12494-502.

(J224) Toomes, R. L.; King, D. A. Surf. Sci. 1996, 349(1), 1-18.(J225) Cooper, E.; Coate, A.; Raval, R. J. Chem. Soc., Faraday Trans.

1995, 91(20), 3703-8.(J226) Kawai, M.; Yoshinobu, J. Springer Ser. Solid-State Sci. 1996,

121, 78-85 (Elementary Processes in Excitations and Reactionson Solid Surfaces).

(J227) Ohtani, B.; Yako, T.; Samukawa, Y.; Nishimoto, S.; Kanamura,K. Chem. Lett. 1997, (1), 91-2.

(J228) Shingaya, Y.; Ito, M. Chem. Phys. Lett. 1996, 256(4, 5), 438-44.

(J229) Stuhlmann, C.; Villegas, I.; Weaver, M. J. Report [D8REP4]1994, TR-147; Order No. AD-A276715. Avail. NTIS. From: Gov.Rep. Announce. Index (U. S.) 1994, (13), Abstr. No. 436, 052.

(J230) Bae, I.; Barbour, R.; Scherson, D. Anal. Chem. 1997, 69(2),249-52.

(J231) Kitamura, F.; Ohsaka, T.; Tokuda, K. J. Electroanal. Chem.1996, 412(1-2), 183-8.

(J232) Muller, G.; Eder-Mirth, G.; Lercher, J. A. Stud. Surf. Sci. Catal.1995, 97, 71-7 (Zeolites: A Refined Tool for DesigningCatalytic Sites).

(J233) Challa, S.; Wang, S.; Koenig, J. Appl. Spectrosc. 1996, 50(11),1339-44.

(J234) Challa, S.; Wang, S.; Koenig, J. Appl. Spectrosc. 1997, 51(3),297-303.

(J235) Yan, B.; Sun, Q.; Wareing, J.; Jewell, C. J. Org. Chem. 1996,61(25), 8765-70.

(J236) Pivonka, D. E.; Russell, K.; Gero, T. Appl. Spectrosc. 1996,50(12), 1471-8.

(J237) Meijers, S.; Onec, V.; Finocchio, E. Busca, G. J. Chem. Soc.,Faraday Trans. 1995, 91(12), 1861-9.

(J238) Bonanno, A. S.; Wojtowicz, M. A.; Nelson, C. M.; Solomon, P.R. Proc.-Annu. Int. Pittsburgh Coal Conf., 12th 1995, 429-34.

(J239) Bonanno, A.; Nelson, C.; Wojtowicz, M.; Knight, K.; Serio, M.;Solomon, P. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2883, 611-6(Optical Remote Sensing for Environmental and ProcessMonitoring).

(J240) Hashimoto, H.; Kotake, S. Therm. Sci. Eng. 1995, 3(3), 37-43.

(J241) Panczyk, C.; Takoudis, C. G. Proc. - Electrochem. Soc. 1996,96-5, 183-8 (Chemical Vapor Deposition).

(J242) Matyshak, V. A.; Baron, S. L.; Ukharskii, A. A.; Il′ichev, A. N.;Sadykov, V. A.; Korchak, V. N. Kinet. Catal. 1996, 37(4), 549-54 (Transl. of Kinet. Katal.)

(J243) Welch, G.; Herman, B. Adv. Instrum. Control 1995, 50(Pt. 2),65-75.

(J244) Qin, D.; Cadet, G. Anal. Chem. 1997, 69(10), 1942-5.(J245) Lambert, D.; Bages, S.; Descales, B.; Llinas, J.; Martens, A. Eur.

Pat. Appl. EP 706,050 (Cl. GO1N33/28, GO1N21/35, GO1N33/30), 10 Apr 1996, Appl. 94/430, 012, 07 Oct 1994.

166R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

(J246) Curtin, D. AT-PROCESS 1995, 1(2), 90-4.(J247) Amrhein, M.; Srinivasan, B.; Bonvin, D.; Schumacher, M. M.

Comput. Chem. Eng. 1996, 20(Suppl. B, European 1996),5975-80.

(J248) Gold, H. S. Leaping Ahead Near Infrared Spectrosc., [Proc. Int.Conf. Near Infrared Spectrosc.], 6th 1994, 344-8.

(J249) Hansen, W. G. Leaping Ahead Near Infrared Spectrosc., [Proc.Int. Conf. Near Infrared Spectrosc.], 6th 1994, 376-81.

(J250) Wolf, T.; Lindauer, U.; Obrig, H.; Dreier, J.; Back, T.; Villringer,A.; Dirnagl. U. Cereb. Blood Flow Metab. 1996, 16(6), 1100-7.

(J251) Haily, P. A.; Doheryt, P.; Tapsell, P.; Oliver, T.; Aldridge, P. K.J. Pharm. Biomed. Anal. 1996, 14(5), 551-9.

(J252) Sekulic, S.; Ward, H., II.; Brannegan, D.; Stanley, E.; Sciavolino,S.; Hailey, P.; Aldridge, P. Anal. Chem. 1996, 58(3), 509-13.

(J253) Friesen, W. Spectrosc. 1996, 50(12), 1535-40.(J254) Bernstsson, O.; Zachrisson, G.; Ostlin, G. J. Pharm. Biomed.

Anal. 1997, 15(7), 895-900.(J255) Gallaher, K.; Baudais, F.; Lester, R. Adv. Instrum. Control 1996,

51(Pt. 1), 139-48.(J256) Descales, B.; Martens, A.; Granzotto, C.; Lambert, D.; Llinas,

J. Eur. Pat. Appl. EP 706,049 (Cl. GO1N33/28, GO1N23/35),10 Apr 1996, Appl. 94. 94/430, 011, 07 Oct 1994.

(J257) Lambert, D.; Descales, B.; Llinas, R.; Espinosa, A.; Osta, S.;Sanchez, M.; Martens. A. Near Infrared Spectrosc.: FutureWaves, Proc. Int. Conf. Near Infrared Spectrosc. 7th 1995, 272-8.

(J258) Hindle, P. H.; Smith, C. R. R. Leaping Ahead Near InfraredSpectrosc., [Proc. Int. Conf. Near Infrared Spectrosc.], 6th 1994,372-5.

(J259) Rinke, G.; Hartig, C.; Hoeppener-Kramar, U. Chem. Technol.Eur. 1996, 3(1), 24-7.

(J260) Chuang, S.; Brundage, M.; Balakos, M.; Srinivas, G. ApplSpectrosc. 1995, 49(8), 1151-63.

(J261) Komiyama, M.; Obi, Y. Rev. Sci. Instrum. 1996, 67(4), 1590-2.

(J262) Tolmachev, Y.; Wang, Z.; Scherson, D. J. Electrochem. Soc.1996, 143(11), 3539-48.

(J263) Pandey, G. C.; Kumar, A. Trends NDE Sci. Technol., Proc. WorldConf. NDT, 14th 1996, 3, 1541-4.

(J264) Capuano, I.; Lefebvre, W.; Creasy, K. U.S. US 5,604, 132 (Cl.436-52; GO2N35/08), 18 Feb 1997, Appl. 376, 711, 23 Jan 1995.

(J265) Wortel, V.; Hansen, W. Near Infrared Spectrosc.: Future Waves,Proc, Int. Conf. Near Infrred Spectrosc., 7th 1995, 306-15.

(J266) Espinosa, A.; Sanchez, M.; Gil, J.; Martens, A.; Descales, B.;Llinas, J. R.; Lambert, D. C. Leaping Ahead Near InfraredSpectrosc., [Proc. Int. Conf. Near Infrared Spectrosc.], 6th 1994,349-54.

(J267) Litani-Barzilai, I.; Sela, I.; Bulatov, V.; Zilberman, I.; Schechter,I. Anal. Chim. Acta 1997, 339(1-2), 193-9.

(J268) Helland, K. Leaping Ahead Near Infrared Spectrosc., [Proc. Int.Conf. Near Infrared Spectrosc.], 6th 1994, 355-9.

(J269) Salim, S.; Wang, C. A.; Driver, R. D.; Jensen, K. F. J. Cryst.Growth 1996, 169(3), 443-9.

(J270) MacLaurin, Paul; Crabb, Nicolas, C.; Wells, Ian; Worsfold, PaulJ.; Coombs, David Anal. Chem. 1996, 68(7), 1116-23.

(J271) Walsh, J. E.; MacCraith; B. D.; Meaney, M.; Vos, J. G.; Regan,F.; Lancia, A.; Arthjushenko, S. Proc. SPIE-Int. Soc. Opt. Eng.1995, 2508, 233-42 (Chemical, Biochemical, and Environ-mental Fiber Sensors VII).

(J272) Streamer, R. W.; DeThomas, F. A. Leaping Ahead Near InfraredSpectrosc., [Proc. Int. Conf. Near Infrared Spectrosc.], 6th 1994,19-23.

(J273) Norri, T.; Aldrige, P. Analyst 1996, 121(8), 1003-8.(J274) Miller, R.; Miller, S.; Savkar, S.; Mourer, D. Int. J. Powder Metall.

1996, 32(2), 165-73.(J275) Qin, F.; Wolf, E. Catal. Lett. 1996, 39(1, 2), 19-25.(J276) Long, T. E.; Allen, R. D.; Sorriero, L. J.; Schell, B. A.; Teegarden,

D. M. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.)1996, 37(2), 678-9.

(J277) Mijovic, J.; Andelic, S.; Pejanovic, S. J. Serb. Chem. Soc. 1996,61(12), 1193-202.

(J278) Jones, L.; Noles, J.; Chimenti, R.; Fang, H. PCT Int. Appl. WO95 33, 705 (Cl. CO7C67/08, CO7C69/80), 14 Dec 1995; U.S.Appl. 253, 633, 03 Jun 1994.

(J279) Jones, L.; Noles, J.; Chimenti, R.; Fang, H. PCT Int. Appl. WO96 10, 009 (Cl. CO7C67/08, CO7C69/30), 04 Apr 1996; U.S.Appl. 314, 476, 28 Sep 1994.

(J280) Brearley, A.; Gold, H. U.S. US 5,532, 487 (Cl. 250-339. 12;GO1J5/02, GO1N30/28, GO1N33/00, GO1N23/00) 02 Jul 1996,Appl. 344, 426, 23 Nov 1994.

(J281) Cardis, T.; Brewer, G. Proc. Annu. Isa Anal. Div. Symp. 1996,29, 37-46.

(J282) Epple, M.; Kirschnick, H.; Thomas, J. M. J. Therm. Anal. 1996,47(2), 331-8.

(J283) Dosi, E.; Vaccari, G.; Campi, A. L.; Mantovani, G.; Gonzalez-Vara y R., A.; Trilli, A. Near Infrared Spectrosc.: Future Waves,Proc. Int. Conf. Near Infrared Spectrosc., 7th 1995, 249-54.

(J284) Brookes, I. K.; Gedge, B. M.; Hammond, S. V. Near InfraredSpectrosc.: Future Waves, Proc. Int. Conf. Near Infrared Spec-trosc., 7th 1995, 259-67.

(J285) Hathun, S.; Matischak, K.; Friedl, P. Anim. Cell Technol.:Vaccines Genet. Med., [Proc. Meet. ESACT], 14th 1996, 417-21.

(J286) Feldhoff, R.; Huth-Fehre, T.; Kantimm, T.; Winter, F.; Cammann,K.; Van den Broek, W.; Wienke, D.; Fuchs, H. Near InfraredSpectrosc.: Future Waves, Proc. Int. Conf. Near Infrared Spec-trosc., 7th 1995, 389-92.

(J287) Minty, B.; Ramsey, E. Anal. Commun. 1996, 33(6), 203-4.(J288) Tilotta, D. C.; Heglund, D. L.; Hawthorne, S. B. Am. Lab. 1996,

28(6), 36R-36T.(J289) Masi, C. G. R&D 1996, 38(13), 14-6, 18, 20.(J290) Swope, R.; Yoo, W. J. Vac. Sci. Technol., B 1996, 14(3), 1702-

5.(J291) Guber, A. E.; Koehler, U. Proc. SPIE-Int. Soc. Opt. Eng. 1995,

2637, 147-55.(J292) Kraemer, E.; Lodder, R. Spectroscopy 1996, 11(8), 17-8, 20.(J293) Wang, D.; Yang, Y.; Zou, J. Proc. SPIE-Int. Soc. Opt. Eng. 1996,

2857, 12-20 (Advanced Materials for Optics and PrecisionStructures).

(J294) Taylor-Smith, R. Int. SAMPE Technol. Conf. 1996, 28, 128-38 (Technology Transfer in a Global Community).

(J295) Perry, B.; Brown, J. Eur. Pat. Appl. EP 726,460 (Cl. GO1N33/28, GO1N21/35, C10G11/18), 14 Aug 1996; US Appl. 385, 257,08 Feb 1995.

(J296) Van Every, K. W.; Elder, M. J. J. Vinyl Addit. Technol. 1996,2(3), 224-8.

(J297) Webb, J. D.; Loos, K. R.; Yao, C. L.; Krueger, D. C.; Reid, S. A.;Williamson, S.; DeLong, M. J.; Chipman, P. I. Proc. SPIE-Int.Soc. Opt. Eng. 1996, 2883, 315-22 (Optical Remote Sensingfor Environmental and Process Monitoring).

(J298) Perry, S.; McKane, P.; Pescatore, D.; DuBois, A.; Kricks, R.Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2883, 333-44 (OpticalRemote Sensing for Environmental and Process Monitoring).

(J299) Wei, C.; Haller, G. Chem. Phys. 1995, 103(15), 6806-10.(J300) Watanabe, K.; Ohnuma, H.; Uetshka, H.; Kunimori, K. Surf.

Sci. 1996, 368(1-3), 366-70.(J301) Tan, C.; Ni, J. Chem. Eng. Data 1997, 42, 2(2), 342-5.(J302) Xiao, F.-S.; Ichikawa, M. J. Mol. Catal. A: Chem. 1996, 113(3),

427-44.(J303) Russell, A.; Rubasingham, L.; Hagans, P.; Ballinger, T. Electro-

chim. Acta 1996, 41(5), 637-40.(J304) Ciurczak, E. Spectroscopy 1995, 10(9), 19-20.(J305) Buettner, G.; Grummisch, U.; Pruefer, H. Leaping Ahead Near

Infrared Spectrosc., [Proc. Int. Conf. Near Infrared Spectrosc.],6th 1994, 390-3.

(J306) Kritzenberger, J.; Wokaun, A. J. Mol. Catal. A: Chem. 1997,118(2), 235-45.

(J307) Lin, W.; Sun, S. Electrochim. Acta 1996, 41(6), 803-9.(J308) Wadayama, T.; Maiwa, Y.; Shibata, H.; Hatta, A. Appl. Surf. Sci.

1996, 100/101, 575-8 (Proceeding of the 13th InternationalVacuum Congress and the 9th International Conference onSolid Surfaces, 1995.

(J309) Wadayama, T.; Maiwa, Y.; Shibata, H.; Hatta, A. Jpn. J. Appl.Phys., Part 2 1995, 34(68), L779-81.

ENVIRONMENTAL ANALYSIS

(K1) Malley, D. F.; Nilsson, M. Spectrosc. Eur. 1995, 7(6), 8, 10,12, 14, 16.

(K2) Bonanno, A. S.; Nelson, C. M.; Knight, K. S.; Serio, M. A.;Solomon, P. R. AT-Process 1996, 2(2), 208-14.

(K3) Masi, C. G. R&D 1996, 38(13), 14-6, 18, 20.(K4) Piccolo, A. Trans. World Congr. Soil Sci., 15th 1994, 3A, 3-22.(K5) Grainger, J.; McClure, P. C.; Liu, Z.; Botero, B.; Sirimanne, S.;

Patterson, D. G., Jr.; Sewer, M.; Gillyard, C.; Kimata, K.; et al.Chemosphere 1996, 32(1), 13-23.

(K6) Gurka, D. F.; Titus, R.; Robins, K.; Wong, A.; Wurrey, C. J.;Durig, J. R.; Shen, Z.; Burkhard, L. P. Anal. Chem. 1996, 68,4221-7.

(K7) Elfving, P.; Panas, I.; Lindqvist, O. Atmos. Environ. 1996,30(23), 4085-9.

(K8) Miola, W.; Ramani, R. V. Trans. Soc. Min., Metall., Explor.1995, 298, 1845-50/Section 2.

(K9) Stallard, B. R.; Garcia, M. J.; Kaushik, S. Appl. Spectrosc. 1996,50(3), 334-8.

(K10) Ewing, K. J.; Nau, G.; Bucholtz, F.; Aggarwal, I. D. Proc. SPIE-Int. Soc. Opt. Eng. 1995, 2504, 68-74.

(K11) Clapper, M.; Demirgian, J.; Robitaille, G. Spectroscopy 1995,10(7), 44, 46-9.

(K12) Wormhoudt, J.; Shorter, J. H.; McManus, J. B.; Kebabian, P.L.; Zahniser, M. S.; Davis, W. M.; Cespedes, E. R.; Kolb, C. E.Appl. Opt. 1996, 35, 5(21), 3992-7.

(K13) Nau, G.; Bucholtz, F.; Ewing, K. J.; Vohra, S. T.; McVicker, J.A.; Sanghera, J. S.; Aggarwal, I. D.; Adams, J. W.; Eng, D. Y.;King, T. V. V. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2883, 682-93.

(K14) Akyuz, T.; Akuz, S.; Varinlioglu, A.; Kose, A.; Davies, J. E. D.Spectrosc. Lett. 1996, 29(6), 1131-9.

(K15) Shinohara, Y. Ind. Health 1996, 34(1), 25-34.(K16) Eilert, A. J.; Danley, W. J.; Wang, X. Adv. Instrum. Control

1995, 50(Pt. 2), 87-95.(K17) Heglund, D. L.; Tilotta, D. C. Environ. Sci. Technol. 1996,

30(4), 1212-9.

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 167R

(K18) Regan, F.; Meaney, M.; Vos, J. G.; MacCraith, B. D.; Walsh, J.E. Anal. Chim. Acta 1996, 334(1-2), 85-92.

(K19) Regan, F.; MacCraith, B. D.; Walsh, J. E.; O′Dwyer, K.; Vos,J. G.; Meaney, M. Vib. Spectrosc. 1997, 14(2), 239-46.

(K20) Somson, G. W.; Jagt, I.; Gooijer, C.; Velthorst, N. H.; Brinkman,U. A. Th.; Visser, T. J. Chromatogr., A 1997, 756(1+2), 145-57.

(K21) Minty, B.; Ramsey, E. D.; Lewis, R. Anal. Commun. 1996,33(6), 203-4.

(K22) Sensfelder, E.; Buerck, J.; Ache, H.-J. Fresenius’ J. Anal. Chem.1996, 354(7-8), 848-51.

(K23) Niemelae, P. VTT Publ. 1994, 208, 1-113.(K24) Hover, G. L. V.; Plourde, J. V. Report 1994, USCG-D-09-94;

Order No. AD-A281 728. Avail. NTIS.; Gov. Rep. Announce.Index 1994, 94(21), Abstr. No. 459, 496.

(K25) Hover, G. L.; Plourde, J. V. Report 1995, CGR/DC-33/95,USCG-D-18-95; Order No. AD-A302656. Avail. NTIS, Gov. Rep.Announce. Index 1996, 96(12), Abstr. No. 12-00, 787.

(K26) Weisburd, R. S. J.; Ishil, M.; Fukushima, T.; Otsuki, A.Rikusuigaku Zasshi 1995, 56(3), 221-6.

(K27) Taylor-Smith, R. E. Int. SAMPE Technol. Conf. 1996, 28, 128-38.

(K28) Murata, K.; Ogawa, S.; Watanabe, E.; Hayashi, Y.; Yamashita,S. Vib. Spectrosc. 1997, 13(2), 235-40.

(K29) Wilks, P. A., Jr. Spectroscopy 1997, 12(1), 47-8.(K30) Desta, Y. M.; Murphy, M. C.; Madou, M.; Hines, J. Proc. SPIE-

Int. Soc. Opt. Eng. 1995, 2640, 172-7.(K31) Gruber, T. C., Jr.; Grim, L. B.; Ditillo, J. Proc. SPIE-Int. Soc.

Opt. Eng. 1996, 2883, 157-66.(K32) Childers, J. W.; Thompson, E. L., Jr.; Audige, E. Proc. SPIE-

Int. Soc. Opt. Eng. 1996, 2883, 147-56.(K33) King, D. E.; Webb, J. D. Proc. SPIE-Int. Soc. Opt. Eng. 1996,

2836, 38-49.(K34) Edl-Mizaikoff, B.; Gotz, R.; Kellner, R. Proc. SPIE-Int. Soc. Opt.

Eng. 1995, 2508, 253-64.(K35) Ahonen, I.; Riipinen, H.; Roos, A. Analyst 1996, 121(9), 1253-

5.(K36) Marinelli, W. J.; David Green, B. Proc. SPIE-Int. Soc. Opt. Eng.

1996, 2883, 245-54.(K37) Gurlit, W.; Burrows, J. P.; Burkhard, H.; Boehm, R.; Baev, V.

M.; Toschek, P. E. Infrared Phys. Technol. 1996, 37(1), 95-8.

(K38) Spellicy, R. L.; Hull, D. M.; Herget, W. F.; Krametbauer, G. J.Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2883, 37-45.

(K39) Johansen, I. R.; Honne, A.; Tschudi, J. Spectrosc. Eur. 1996,8(6), 10, 12, 14-6.

(K40) Reagen, W. K.; Wolter, J. T.; Vo, A.-D. Proc. SPIE-Int. Soc. Opt.Eng. 1996, 2883, 617-27.

(K41) Keifer, W. S.; Griebstein, J. Proc. Annu. Meet. - Air WasteManage. Assoc. 87th 1994, 3B, 94-WA71.01.

(K42) Hanst, P. L.; Hanst, S. T.; Williams, G. M. Proc. SPIE-Int. Soc.Opt. Eng. 1996, 2883, 640-52.

(K43) Biermann, H. W. ACS Symp. Ser. 1997, No. 652, 202-11.(K44) Tormonen, K.; Roos, A. Report 1996, VTT-TIED-1743, VTT/

RN-1743, Order No. PB96-186606GAR. Avail. NTIS, Gov. Rep.Announce. Index 1996, 96(17), Abstr. No. 17-02, 304.

(K45) Pinnock, S.; Hurley, M. D.; Shine, K. P.; Wallington, T. J.;Smyth, T. J. J. Geophys. Res. 1995, 100(D11), 23227-38.

(K46) Lindh, C. H.; Joensson, B. A. G.; Welinder, H. E. Am. Ind. Hyg.Assoc. J. 1996, 57(9), 832-6.

(K47) Mao, Z.; Dermigian. J.; Mathew, A.; Hyre, R. Waste Manage.1995, 15(8), 567-77.

(K48) Jonas, E. H.; Svanberg, S. Opt. Lett. 1996, 21(23), 1945-7.(K49) Klamm, S. W.; McHugh, J. M.; Proc SPIE-Int. Soc. Opt. Eng.

1996, 2883, 46-57.(K50) Hall, J. L.; Polak, M. L.; Herr, K. C. Proc. SPIE-Int. Soc. Opt.

Eng. 1996, 2883, 435-42.(K51) Plummer, G. M.; Dunder, T. A.; Geyer, T. J.; Kinner, L. L. Proc.,

Annu. Meet.-Air Waste Manage. Assoc. 87th 1994, 3B, 94-RP129.05.

(K52) Kassman, H.; Abul-Milh, M.; Aamand, L. E. Proc. Int. Conf.Fluid Bed Combust., 13th 1995, 2, 1447-54.

(K53) Palank, J.; Dundar, T.; Plummer, G.; Grover, R.; Squires, R.U. S. Environ. Prot. Agency, Res. Dev. EPA 1995, EPA-600/R-95-015c (Proceedings: 1993 SO2 Control Symposium, Vol.3, Paper No. 66).

(K54) Bonanno, A. S.; Nelson, C. M.; Wojtowicz, M. A.; Knight, K.S.; Serio, M. A.; Solomon, P. R. Proc. SPIE-Int. Soc. Opt. Eng.1996, 2883, 611-6.

(K55) Welch, G. M.; Herman, B. E. Adv. Instrum. Control 1995,50(Pt. 2), 65-75.

(K56) Mao, Z.; Demirgian, J. C. Waste Manage. 1995, 15(3), 233-41.

(K57) Nelson, C. M.; Smith, J. D.; VanDell, R. D.; Bonanno, A. S.;Solomon, P. R. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2883,628-39.

(K58) Modiano, S. H.; McNesby, K. L.; Marsh, P. E.; Bolt, W.; Herud,C. Report 1996, ARL-TR-990, Order No. AD-A306143, Avail.NTIS, Gov. Rep. Announce. Index 1996, 96(18), Abstr. No.18-00, 623.

(K59) Pottel, H. Fire Mater. 1995, 19(5), 221-31.(K60) Roberts, J. P.; Lowry, S. R. Soc. Automot. Eng. 1994, SP-1043,

125-31.

(K61) Haschberger, P.; Lindermeir, E. J. Geophys. Res. 1996,101(D20), 25995-6006.

(K62) Heland, J.; Hau, R.; Schaefer, K. Proc., Annu. Meet. - Air WasteManage. Assoc. 87th 1994, 3A, 94-TP29B.06.

(K63) Wormhoudt, J.; Zahniser, M. S.; Nelson, D. D.; McManus, J.B.; Miake-Lye, R. C.; Kolb, C. E. Proc. SPIE-Int. Soc. Opt. Eng.1996, 2546, 552-61.

(K64) Lowry, S. R.; Roberts, J.; Lindner, J.; Munday, D. Soc. Automat.Eng. 1995, SP-1094, 111-7.

(K65) Klebba, R. E.; Lowry, S. R.; Timmerman, G. Soc. Automat. Eng.1995, SP-1094, 105-10.

(K66) Lee, G. R.; McDonald, C. R.; Widdicombe, K. A.; van den Brink,P. J. Soc. Automat. Eng. 1996, SP-1177, 67-78.

(K67) Muller, C. Nouv. Sci. Technol. 1995, 13(2/3/4), 161-3.(K68) Bell, W.; Paton-Walsh, C.; Gardiner, T. D.; Woods, P. T.; Swann,

N. R.; Martin, N. A.; Donohoe, L. J. Atmos. Chem. 1996, 24(3),285-97.

(K69) Meier, A.; Northolt, J. Geophys. Res. Lett. 1996, 23(5), 551-4.

(K70) Pougatchev, N. S.; Connor, B. J.; Jones, N. B.; Rinsland, C. P.Geophys. Res. Lett. 1996, 23(13), 1637-40.

(K71) Murata, I.; Kondo, Y.; Nakajima, H.; Koike, M.; Zhao, Y.;Matthews, W. A.; Suzuki, K. Geophys. Res. Lett. 1997, 24(1),77-80.

(K72) Zhang, X.; Shu, Y.; Yan, J. Proc. SPIE-Int. Soc. Opt. Eng. 1996,2899, 146-52.

(K73) Yonemura, S.; Iwagami, N. Atmos. Environ. 1996, 30(22),3697-703.

(K74) Schaefer, K.; Haak, A.; Haus, R.; Heland, J.; Sussmann, R. Proc.SPIE-Int. Soc. Opt. Eng. 1995, 2506, 418-27.

(K75) Blecka, M. I.; De Maziere, M. Ann. Geophys. 1996, 14(11),1103-10.

(K76) Theriault, J.-M.; Bradette, C.; Gilbert, J. Proc. SPIE-Int. Soc.Opt. Eng. 1996, 2744, 664-72.

(K77) Haus, R. Proc. SPIE-Int. Soc. Opt. Eng. 1995, 2506, 564-75.(K78) Van Allen, R.; Murcray, F. J.; Liu, X. Appl. Opt. 1996, 35, 5(9),

1523-30.(K79) Camy-Peyret, C.; Jeseck, P.; Hawat, T.; Durry, G.; Payan, S.;

Berube, G.; Rochette, L.; Huguenin, D. Spec. Publ.-Eur. SpaceAgency, 1995, ESA SP-370, 323-8 (12th ESA Symposium onEuropean Rockets and Balloon Programmes and Related Res.).

(K80) Rider, D. M.; Beer, R.; Margolis, J. S.; Worden, H.; Nandi, S.;Glavich, T. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2820, 72-7.

(K81) Nolt, I. G.; Ade, P. A. R.; Alboni, F.; Carli, B.; Carlotti, M.;Cortesi, U.; Epifani, M.; Griffin, M. J.; Hamilton, P. A.; et al.Geophys. Res. Lett. 1997, 24(3), 281-4.

(K82) Ballard, J. Adv. Spectrosc. 1995, 24, 49-84.(K83) Carli, B. Proc. Int. Sch. Phys. “Enrico Fermi”, 124th 1995, 203-

17.(K84) Rataj, M.; Orleanski, P. Proc. SPIE-Int. Soc. Opt. Eng. 1996,

2961, 98-106.(K85) Nelson, D. D.; Zahniser, M. S.; McManus, J. B.; Shorter, J.

H.; Wormhoudt, J. C.; Kolb, C. E. Proc. SPIE-Int. Soc. Opt.Eng. 1996, 2834, 148-59.

(K86) Roths, J.; Zenker, T.; Parchatka, U.; Wienhold, F. G.; Harris,G. W. Appl. Opt. 1996, 35(36), 7075-84.

(K87) Schiff, H. I.; Mackey, G. I.; Nadler, S. D. Infrared Phys. Technol.1996, 37(1), 39-43.

(K88) Worden, H.; Beer, R.; Rinsland, C. P. J. Geophys. Res. 1997,102(D1), 1287-99.

(K89) Kroutil, R. T.; Combs, R. J.; Knapp, R. B.; Small, G. W. Report1993, ERDEC-TR-111; Order No. AD-A276982, Avail. NTIS.Gov. Rep. Announce. Index 1994, 94(13), Abstr. No. 436, 024.

(K90) Hammaker, R. M.; Poholarz, J. M.; Marshall, T. L.; Tucker,M. D.; Witkowski, M. R.; Fateley, W. G. Leaping Ahead NearInfrared Spectrosc., [Proc. Int. Conf. Near Infrared Spectrosc.],6th 1994, 510-3.

(K91) Haus, R.; Schaefer, K.; Hughes, J.; Heland, J.; Bautzer, W. Proc.SPIE-Int. Soc. Opt. Eng. 1995, 2506, 45-54.

(K92) Haus, R.; Heland, J. Proc. SPIE-Int. Soc. Opt. Eng. 1997, 3106,56-64.

(K93) Beier, K.; Schreier, F. Mitt. Dtsch. Forschungssanst. Luft-Raumfahrt 1994, 94-06, 94-9.

(K94) Mellqvist, J.; Arlander, B.; Galle, B.; Berqvist, B. IVL Rep.1996, B 1214.

(K95) Alayli, Y.; Bendamardji, S.; Huard, S. Proc. SPIE-Int. Soc. Opt.Eng. 1996, 2881, 133-40.

(K96) Fong, A.; Hieftje, G. M. Appl. Spectrosc. 1995, 49(9), 1261-7.

(K97) Nau, G.; Bucholtz, F.; Ewing, K. J.; Vohra, S. T.; Sanghera, J.S.; Aggarwal, I. D. Proc. SPIE-Int. Soc. Opt. Eng. 1995, 2504,291-6.

(K98) Vohra, S. T.; Bucholtz, F.; Nau, G. M.; Ewing, K. J.; Aggarwal,I. D. Appl. Spectrosc. 1996, 50(8), 985-90.

(K99) Bangalore, A. S.; Small, G. W.; Combs, R. J.; Knapp, R. B.;Kroutil, R. T.; Traynor, C. A.; Ko, J. D. Anal. Chem. 1997,69, 9(2), 118-29.

(K100) Dai, Q.; Robinson, G. N.; Freedman, A. J. Phys. Chem. B 1997,101(25), 4940-6.

(K101) Webb, J. D.; Loos, K. R.; Yao, C. L.; Krueger, D. C.; Reid, S.A.; Williamson, S.; DeLong, M. J.; Chipman, P. I. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2883, 315-22.

168R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

(K102) Ivancic, W. A.; Hutson, T. B.; Myers, J. D.; Barnes, R. H.;Maher, D. M.; Taylor, T. T. Proc. SPIE-Int. Soc. Opt. Eng.1996, 2883, 418-31.

(K103) Yokelson, R. J.; Griffith, D. W. T.; Ward, D. E. J. Geophys. Res.1996, 101(D15), 21067-80.

(K104) Frish, M. B.; Melnyk, J. M. Hydrocarbon Process., Int. Ed.1996, 75(5), 99-100.

(K105) Bomse, D. Opt. Photonics News 1996, 7(9), 31-33, 47.(K106) Wu, R. T.; Chang, S.-Y.; Chung, Y. W.; Tzou, H. C.; Tso, T.-L.

Proc. SPIE-Int. Soc. Opt Eng. 1995, 2552(Pt. 2), 719-27.(K107) Tso, T.-L.; Chang, S.-Y. Anal. Sci. 1996, 12, 2(2), 311-9.(K108) Drescher, A. C.; Park, D. Y.; Yost, M. G.; Gadgil, A. J.; Levine,

S. P. Atmos. Environ. 1997, 31(5), 727-40.(K109) Todd, L. A. Proc. SPIE-Int. Soc. Opt. Eng. 1995, 2504, 26-

34.(K110) Fateley, W. G.; Hammaker, R. M.; Chaffin, C. T.; Marshall, T.

L. Proc. SPIE-Int. Soc. Opt. Eng. 1995, 2504, 2-14.(K111) Yokelson, R. J.; Griffith, D. W.; Burkholder, J. B.; Ward, D. E.

Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2883, 365-76.(K112) Herget, W. F. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2883, 191-

202.(K113) Kagann, R. H.; Walter, W. T.; David Wang, C. Proc. SPIE-Int.

Soc. Opt. Eng. 1996, 2883, 179-90.(K114) Childers, J. W.; Russwurm, G. M.; Thompson, E. L., Jr. Proc.

SPIE-Int. Soc. Opt. Eng. 1996, 2883, 167-78.(K115) Russwurm, G. M. Proc. SPIE-Int. Soc. Opt. Eng. 1997, 3107,

169-73.(K116) Hashmonay, R. A.; Mamane, Y.; Benayahu, Y.; Cohen, A. Proc.

SPIE-Int. Soc. Opt. Eng. 1996, 2883, 379-92.(K117) Zwicker, J. O. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2883, 550-

67.(K118) Schmidt, C. E.; Kricks, R.; Perry, S.; Leo, M.; DuBois, A.; New,

D. Proc., Annu. Meet. - Air Waste Manage. Assoc., 88th 1995,1A, 95-TP55.05.

(K119) Campagna, P. R.; Mickunas, D.; Schuetz, S.; Weston, R. F. Proc.- Technol. Semin. Chem. Spills, 11th 1994, 171-6.

(K120) Chadha, AS.; Wayland, R. J.; Saeger, M.; Rucker, J.; Dishakjian,R. N. Proc., Annu. Meet. - Air Waste Manage. Assoc., 87th1994, 1B, 94-RA106.03.

(K121) DuBois, A. E.; Engle, J. W.; McKane, P. L.; Perry, S. H. Proc.SPIE-Int. Soc. Opt. Eng. 1996, 2883, 139-46.

(K122) Hull, D.; Brewer, R.; Dieringer, W.; Lange, J.; Pophal, G.;Spellicy, R. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2883, 345-54.

(K123) Todd, L. A. Appl. Occup. Environ. Hyg. 1996, 11(11), 1327-34.

(K124) Haus, R.; Schaefer, K.; Bautzer, W. Proc. SPIE-Int. Soc. Opt.Eng. 1995, 2506, 247-56.

(K125) Taylor, L. H.; Suhre, D. R.; Mech, S. J. Proc. Annu. ISA Anal.Div. Symp. 1996, 29, 155-64.

(K126) Perry, S. H.; McKane, P. L.; Pescatore, D. E.; DuBois, A. E.;Kricks, R. J. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2883, 333-44.

(K127) Hendricks, D. M.; Lippert, J. L. Proc., Annu. Meet. - Air WasteManage. Assoc., 87th 1994, 3A, 94-TP26B.05.

(K128) Kagann, R. H.; Fancher, J.; Tomich, S. Proc., Annu. Meet. -Air waste Manage. Assoc., 87th 1994, 3A, 94-TP29B.04.

(K129) Kagann, R. H.; Ringler, E. Proc., Annu. Meet. - Air WasteManage. Assoc., 87th 1994, 1B, 94-RA106.05.

(K130) Giese-Bogdan, S.; Levine, S. P. J. Air Waste Manage. Assoc.1996, 46(8), 761-4.

(K131) Lamp, T.; Radmacher, M.; Weber, K.; Gaertner, A.; Nitz, R.;Broeker, G. Proc. SPIE-Int. Soc. Opt. Eng. 1997, 3107, 126-36.

(K132) Ropertz, A.; Lamp, T.; Dourard, M.; Weber, K.; Gaertner, A.;Elbers, C.; Nitz, R. Proc. SPIE-Int. Soc. Opt. Eng. 1997, 3107,137-47.

CARBON AND CARBON COMPLEXES

(L1) Szczepanski, J.; Ekern, S.; Vala, M. J. Phys. Chem. A 1997,101(10), 1841-7.

(L2) Szczepanski, J.; Ekern, S.; Chapo, C.; Vala, M. Chem. Phys.1996, 211(1, 2, 3), 359-66.

(L3) Kranze, R. H.; Withey, P. A.; Rittby, C. M.; Graham, W. R. M.J. Chem. Phys. 1995, 103(16), 6841-50.

(L4) Kranze, R. H.; Rittby, C. M. L.; Graham, W. R. M. J. Chem.Phys. 1996, 105(13), 5313-20.

(L5) Menendez, J.; Guha, S. Int. Conf. Phys. Semicond., 22nd 1994,3, 2093-6 (Lockwood, D. J., Ed.; World Scientific: Singapore,Singapore).

(L6) Rao, A. M.; Eklund, P. C.; Hodeau, J.-L.; Marques, L.; Nunez-Regueiro, M. Phys. Rev. B: Condens. Matter 1997, 55(7),4766-73.

(L7) Kozlov, M. E.; Tokumoto, M.; Yakushi, K. Appl. Phys. A: Mater.Sci. Process. 1997, A64(3), 214-45.

(L8) Rao, A. M.; Eklund, P. C.; Venkateswaran, U. D.; Tucker, J.;Duncan, M. A.; Bendele, G. M.; Stephens, P. W.; Hodeau, J.L.; Marques, L.; et al. Appl. Phys. A: Mater. Sci. Process. 1997,A64(3), 231-9.

(L9) Matsuo, Y.; Nakajima, T.; Kasamatsu, Shinji J. Fluorine Chem.1996, 78(1), 7-13.

(L10) Jansen, M.; Kneip, K.; Waidmann, G. Fullerene Sci. Technol.1996, 4(4), 699-714.

(L11) Walters, J. K.; Newport, R. J.; Parker, S. F.; Howells, W. S. J.Phys.: Condens. Matter 1995, 7(50), 1059-73.

(L12) Stief, R.; Schaefer, J.; Ristein, J.; Ley, L.; Beyer, W. J. Non-Cryst. Solids 1996, 198-200, 636-40 (Pt. 2, Amorphous Semi-conductors: Science And Technology).

(L13) Scott, A.; Duley, W. W. Astrophys. J. 1996, 472(2, Pt. 2), L123-5.

(L14) Liu, Y.; Kong, X.; Yu, J.; Fan, X.; Alberti, T. Chin. Phys. Lett.1996, 13(7), 537-40.

(L15) De Artino, C.; Demichelis, F.; Tagiaferro, A. Chem. Eng. Sci1995, 4(10), 1210-5.

(L16) Wang, T. M.; Wang, W. J.; Jing, C. Diamond Relat. Mater.1996, 5(12), 1418-32.

(L17) Chin, R. P.; Huang, J. Y.; Shen, Y. R.; Chuang, T. J.; Seki, H.Phys. Rev. B: Condens. Matter 1996, 54(11), 8243-51.

(L18) Zawadshi, J. Carbon 1995, 33(11), 1541-6.(L19) Kindness, A.; Marr, I. L. Analyst 1996, 121(2), 205-9.(L20) Kindness, A.; Marr, I. L. Appl. Spectrosc. 1997, 51(1), 17-21.(L21) Yaun, Y. N. F.; Eaton, R. A.; Anderson, A. Chem. Phys. Lett.

1997, 269(3, 4) 305-8.(L22) Mastalerz, M.; Bustin, R. M. Int. J. Coal Geol. 1996, 32(1-4),

55-67.(L23) Ruau, O.; Pradier, B.; Landais, P.; Gardette, J. L. Org. Geochem.

1996, 25(5-7), 325-39.(L24) Munoz, E.; Moliner, R.; V. Ibarra, J. Coal Sci. Technol. 1995,

24, 115-8 (Coal Science, Vol. 1).(L25) Nosyrev, I. E.; Gruber, R.; Cagniant, D.; Krzton, A.; Pajak, J.;

Stefanova, M. D.; Grishchuk, S. Fuel 1996, 75(13), 1549-56.(L26) Ibarra, J. V.; Miranda, J. L. Vib. Spectrosc. 1996, 10(2), 311-

8.(L27) Alciaturi, C. E.; Escobar, M. E.; Vallejo, R. Fuel 1996, 75(4),

491-9.(L28) Alciaturi, C. E.; Montero, T.; De La Cruz, C.; Escobar, M. E.

Anal. Chim. Acta 1997, 340(1-3), 233-40.(L29) Zhang, M.; Chen, B.; Shen, S.; Chen, S. Fuel 1997, 76(5),

415-23.(L30) Gomez-Serrano, V.; Pastor-Villegas, J.; Perez-Florindo, A.;

Duran-Valle, C.; Valenzuela-Calahorro, C. J. Anal. Appl. Pyrolysis1996, 36(1), 71-80.

(L31) Smith, D. M.; Chughtai, A. R. Colloids Surf. A 1995, 105(1),47-77.

(L32) King, B.; Do, D. D. Chem. Eng. Sci. 1996, 51(3), 423-39.

CHEMICAL REACTIONS/ORGANIC CHEMISTRY

(M1) Harmon, K. M.; Bulgarella, J. A. J. Mol. Struct. 1995, 354(3),179-87.

(M2) Harmon, K. M.; Bulgarella, J. A. J. Mol. Struct. 1996, 382(2),81-91.

(M3) (M3) Bruyneel, K.; Leroux, N.; Zeegers-Huyskens, T. Spec-trosc. Lett. 1996, 29(4), 739-47.

(M4) (M4) Antonova, T. N.; Chabutkina, E. M.; Yablonskii, O. P.;Koshel, G. N. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. 1995,38(1-2), 53-8.

(M5) (M5) Elaiwi, A.; Hitchcock, P. B.; Seddon, K. R.; Srinivasan,N.; Tan, Y.-M.; Welton, T.; Zora, J. A. J. Chem. Soc., DaltonTrans. 1995, (21), 3467-72.

(M6) Furer, V. L.; Kuznetsova, L. M.; Grigorieva, S. V. Spectrosc.Biol. Mol., Eur. Conf., 6th 1995, 73-4 (Merlin, J. C.; Turrell,S.; Huvenne, J. P., Eds.; Kluwer: Dordrecht).

(M7) 7) Xie, M.; Yang, X.; Wang, Q.; Zhi, J. Spectrosc. Lett. 1996,29(1), 53-60.

(M8) Houben, L.; Schoone, K.; Maes, G. Vib. Spectrosc. 1996, 10(2),147-59.

(M9) El-Eswed, B. I.; Zughul, M. B.; Derwish, G. A. W. J. InclusionPhenom. Mol. Recognit. Chem. 1996, 24(4), 325-40.

(M10) Sawka-Dobrowolska, W.; Malarski, Z.; Grech, E. Pol. J. Chem.1996, 70(8), 1036-42.

(M11) Leroux, N.; Goethals, M.; Zeegers-Huyskens, Th. Vib. Spec-trosc. 1995, 9(3), 235-43.

(M12) Choi, Y. S.; Kim, J.; Park, J.; Yu, J.-A.; Yoon, C.-J. Spectrochim.Acta, Part A 1996, 52A(13), 1779-83.

(M13) Marti, J.; Padro, J. A.; Guardia, E. J. Mol. Liq. 1995, 64(1-2), 1-12.

(M14) Mizuno, K.; Mabuchi, K.; Miyagawa, T.; Matsuda, Y.; Kita,S.; Kaida, M.; Shindo, Y. J. Phys. Chem. A 1997, 101(7),1366-9.

(M15) Tonge, P. J.; Fausto, R.; Carey, P. R. J. Mol. Struct. 1996,379, 135-42.

(M16) Han, S. W.; Kim, K. J. Phys. Chem. 1996, 100(43), 17124-32.

(M17) Filarowski, A.; Koll, A. Vib. Spectrosc. 1996, 12(1), 15-24.(M18) Nyquist, R. A.; Putzig, C. L.; Clark, T. L.; McDonald, A. T.

Vib. Spectrosc. 1996, 12(1), 93-102.(M19) Granzow, B. J. Mol. Struct. 1996, 381(1-3), 127-31.(M20) Perjessy, A.; Rasala, D.; Gawinecki, R.; Boykin, D. W. J. Mol.

Struct. 1996, 382(2), 93-9.(M21) Dega-Szafran, Z.; Kania, A.; Grundwald-Wyspianska, M.; Szaf-

ran, M.; Tykarska, E. J. Mol. Struct. 1996, 381(1-3), 107-25.

(M22) Zundel, G. J. Mol. Struct. 1996, 381(1-3), 23-37.

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 169R

(M23) Dickert, F. L.; Keppler, M.; Zwissler, G. K.; Obermeier, E.Ber. Bunsen-Ges. Phys. Chem. 1996, 100(8), 1312-7.

(M24) De Wael, K.; Zeegers-Huyskens, T. Biopolymers 1997, 41(2),205-12.

(M25) Sekikawa, T.; Miyakubo, K.; Takeda, S.; Kobayashi, T. J. Phys.Chem. 1996, 100(14), 5844-8.

(M26) Novak, P.; Vikic-Topic, D.; Meic, Z.; Sekusak, S.; Sabljic, A. J.Mol. Struct. 1995, 356(2), 131-41.

(M27) Lewis, F. D.; Yoon, B. A. Res. Chem. Intermed. 1995, 21(7),749-63.

(M28) Rozenberg, M. Sh. Spectrochim. Acta, Part A 1996, 52A(11),1559-63.

(M29) Wolfs, I.; Desseyn, H. O. Spectrochim. Acta, Part A 1995,51A(10), 1601-15.

(M30) Wolfs, I.; Desseyn, H. O. Spectrochim. Acta, Part A 1996,52A(11), 1521-8.

(M31) Janssen, R. G.; Verboom, W.; Lutz, B. T. G.; van der Maas, J.H.; Maczka, M.; van Duynhoven, J. P. M.; Reinhoudt, D. N. J.Chem. Soc., Perkin Trans. 2 1996, (9), 1869-76.

(M32) Bertolasi, V.; Gilli, P.; Ferretti, V.; Gilli, G. Chem.sEur. J.1996, 2(8), 925-34.

(M33) Bogunovic, L. J.; Mioc, U. B.; Ribinikar, S. V.; Stanislavljev,B. R. J. Serb. Chem. Soc. 1996, 61(9), 755-8.

(M34) Nikolic, A. D.; Ivancev-Tumbas, I. I.; Petrovic, S. D.; Antonovic,D. G. Serb. Chem. Soc. 1996, 61(9), 773-6.

(M35) Borisover, M. D.; Stolov, A.; Baitalov, F. D.; Morozov, A. I.;Solomonov, N. Thermochim. Acta 1996, 285(2), 199-209.

(M36) Grech, E.; Nowicka-Scheibe, J.; Olejnik, Z.; Lis, T.; Pawelka,Z.; Malarski, Z.; Sobczyk, L. J. Chem. Soc., Perkin Trans. 21996, (3), 343-8.

(M37) Brzezinski, B.; Radziejewski, P.; Rabold, A.; Zundel, G. J. Mol.Struct. 1995, 355(2), 185-91.

(M38) Borisenko, V. E.; Blinkova, G. Y.; Osipova, L. L.; Zavjalova, Y.A. J. Mol. Liq. 1996, 70(1), 31-54.

(M39) Moribe, K.; Yonemochi, E.; Oguchi, T.; Nakai, Y.; Yamamoto,K. Chem. Pharm. Bull. 1995, 43(4), 666-70.

(M40) Arrivo, S. M.; Heilweil, E. J. J. Phys. Chem. 1996, 100(29),11975-83.

(M41) Thomas, J. M.; Zamaraev, K. I. Top. Catal. 1994, 1(1, 2), 1-8.(M42) Aboulayt, A.; Binet, C.; Lavalley, J.-C. J. Chem. Soc., Faraday

Trans. 1995, 91(17), 2913-20.(M43) Yamaguchi, M.; Shido, T.; Ohtani, H.; Isobe, K.; Ichikawa, M.

Chem. Lett. 1995, (8), 717-8.(M44) Beres, A.; Konya, Z.; Hannus, I.; Molnar, A.; Kiricsi, I. Appl.

Catal. 1996, 146(2), 331-8.(M45) S-Aguilar, E. F.; Murta-Valle, M. L.; Sobrinho, E. V.; Cardoso,

D. Stud. Surf. Sci. Catal. 1995, 97, 417-22.(M46) Gao, S.; Moffat, J. B. Colloids Surf., A 1995, 105(1), 133-42.(M47) Anunziata, O. A.; Pierella, L. B. Stud. Surf. Sci. Catal. 1995,

94, 574-81.(M48) Berndt, H.; Lietz, G.; Luecke, B.; Voelter, J. Appl. Catal., A

1996, 146(2), 351-63.(M49) Larsen, G.; Lotero, E.; Marquez, M.; Silva, H. J. Catal. 1995,

157(2), 645-55.(M50) Matsumura, Y.; Moffat, J. B. J. Chem. Soc., Faraday Trans.

1996, 92(11), 1981-4.(M51) Konya, Z.; Hannus, I.; Kiricsi, I. Appl. Catal., B 1996, 8(4),

391-404.(M52) Chafik, T.; Bianchi, D.; Teichner, S. J. Top. Catal. 1995, 2(1-

4), 103-16.(M53) Ouyang, F.; Kondo, J.; Maruya, K.-i.; Domen, K. J. Chem. Soc.,

Faraday Trans. 1997, 93(1), 169-74.(M54) McGee, K. C.; Driessen, M. D.; Grassian, V. H. J. Catal. 1996,

159(1), 69-82.(M55) Pak, S.; Smith, C. E.; Rosynek, M. P.; Lunsford, J. H. J. Catal.

1997, 165(1), 73-9.(M56) Driessen, M. D.; Grassian, V. H. J. Am. Chem. Soc. 1997,

119(7), 1697-707.(M57) Busca, G.; Finocchio, E.; Lorenzelli, V.; Trombetta, M.; Rossini,

S. A. J. Chem. Soc., Faraday Trans. 1996, 92(23), 4687-93.(M58) Lyth, E.; Ng, L. M. J. Phys. Chem. 1995, 99(49), 17615-23.(M59) Hunter, G.; Rochester, C. H.; Wilkinson, A. G.; Paton, J. J.

Chem. Soc., Faraday Trans. 1997, 93(6), 1205-10.(M60) Kameswari, U. React. Kinet. Catal. Lett. 1995, 55(2), 291-

304.(M61) Sim, W. S.; King, D. A. J. Am. Chem. Soc. 1995, 117(42),

10583-4.(M62) Nedez, C.; Lefebvre, F.; Choplin, A.; Basset, J.-M. Langmuir

1996, 12(4), 925-9.(M63) Bagshaw, S. A.; Cooney, R. P. Appl. Spectrosc. 1996, 50(3),

310-5.(M64) Shin, J.; Tornquist, W. J.; Korzeniewski, C.; Hoaglund, C. S.

Surf. Sci. 1996, 364(2), 122-30.(M65) Carrazan, S. R. G.; Martin, C.; Rives, V.; Vidal, R. Spectrochim.

Acta, Part A 1996, 52A(9), 1107-18.(M66) Finocchio, E.; Ramis, G.; Busca, G.; Lorenzelli, V.; Willey, R.

J. Catal. Today 1996, 28(4), 381-9.(M67) Finocchio, E.; Busca, G.; Lorenzelli, V.; Escribano, V. S. J.

Chem. Soc., Faraday Trans. 1996, 92(9), 1587-93.(M68) Long, R.-Q.; Wan, H.-L.; Lai, H.-L.; Ksai, K.-R. Gaodeng Xuexiao

Huaxue Xuebao 1995, 16(11), 1796-7.(M69) Meijers, S.; Ponec, V. J. Catal. 1996, 160(1), 1-9.

(M70) Solymosi, F.; Rasko, J.; Papp, E.; Oszko, A.; Bansagi, T. Appl.Catal., A 1995, 131(1), 55-72.

(M71) Chen, C.-S.; Chen, H.-W. J. Chem. Soc., Faraday Trans. 1996,92(9), 1595-601.

(M72) Jackson, S. D.; Casey, N. J. J. Chem. Soc., Faraday Trans.1995, 91(18), 3269-74.

(M73) Cremer, P. S.; Su, X.; Shen, Y. R.; Somorjai, G. J. Chem. Soc.,Faraday Trans. 1996, 92(23), 4717-22.

(M74) Szanyl, J.; Paffet, M. I. J. Catal. 1996, 164(1), 232-45.(M75) Descorme, C.; Gelin, P.; Primet, M.; Lecuyer, C. Catal. Lett.

1996, 41(3, 4), 133-8.(M76) Aylor, A. W.; Lobree, L. J.; Reimer, J. A.; Bell, A. T. Stud. Surf.

Sci. Catal. 1996, 101,(Pt. A), 661-70 (11th InternationalCongress on Catalysis-40th Anniversary, 1996, Pt. A).

(M77) Hayes, N. W.; Joyner, R. W.; Shpiro, E. S. Appl. Catal., B1996, 8(3), 343-63.

(M78) Matyshak, V. A.; Baron, S. L.; Ukharskii, A. A.; Il’ichev, A.N.; Sadykov, V.; Korchak, V. N. Kinet. Catal. 1996, 37(4),549-54 (Transl. of Kinet. Katal.).

(M79) Hadjiivanov, K.; Klissurski, D.; Ramis, G.; Busca, G. Appl.Catal., B 1996, 7(3-4), 251-67.

(M80) Poignant, F.; Saussey, J.; Lavalley, J.-C.; Mabilon, G. Catal.Today 1996, 29(1-4), 93-7.

(M81) Ito, E.; Mergler, Y. J.; Nieuwenhuys, B. E.; Calis, H. P. A.;van Bekkum, H.; van den Bleek, C. M. J. Chem. Soc., FaradayTrans. 1996, 92(10), 1799-806.

(M82) Ramis, G.; Yi, L.; Busca, G. Catal. Today 1996, 28(4), 373-80.

(M83) Ukisu, Y.; Miyadera, T.; Abe, A.; Yoshida, K. Catal. Lett. 1996,39(3, 4), 265-7.

(M84) Seland, J. G.; Noremsaune, I. M. W.; Nielsen, C. J. J. Chem.Soc., Faraday Trans. 1996, 92(19), 3459-65.

(M85) Kovalchuk, V. I.; Mikova, N. M.; Savitskii, A. F.; Chesnokov,N. V.; Kuznetsov, B. N. Izv. Akad. Nauk. Ser. Khim. 1995,(4), 632-41.

(M86) Huang, L.; Xu, Y.-D. J. Nat. Gas Chem. 1996, 5(3), 237-49.(M87) Demri, D.; Chateau, L.; Hindermann, J. P.; Kiennemann, A.;

Bettahar, M. J. Mol. Catal. A: Chem. 1996, 104(3), 237-49.(M88) Meijers, S.; Gielgens, L. H.; Ponec, V. J. Catal. 1995, 156(1),

147-53.(M89) Zahidi, E.; Castonguay, M.; McBreen, P. H. J. Phys. Chem.

1995, 99(51), 17906-16.(M90) Streck, R.; Barnes, A. J.; Herrebout, W. A.; van der Veken, B.

J. J. Mol. Struct. 1996, 376, 277-87.(M91) Venkateshwarlu, G.; Kumar, T. V.; Singh, T. C. Acta Cienc.

Indica. Chem. 1994, 20(2), 60-2.(M92) Lutz, B. T. G.; Asstarloa, G.; van der Maas, J. H.; Janssen, R.

G.; Verboom, W.; Reinhoudt, D. N. Vib. Spectrosc. 1995,10(1), 29-40.

(M93) Stoyanov, E. S.; Chesalov, Y. A. J. Chem. Soc., Faraday Trans.1996, 92(10), 1725-30.

(M94) Picquart, M.; Lefevre, T.; Lacrampe, G. Appl. Spectrosc. 1995,49(9), 1268-74.

(M95) Cabaniss, S. E.; McVey, I. F. Spectrochim. Acta, Part A 1995,51A(13), 2385-95.

(M96) Nyquist, R. A.; Clark, T. D. Vib. Spectrosc. 1996, 10(2), 203-28.

(M97) Harnagea, E. I.; Jagodzinski, P. W. Vib. Spectrosc. 1996, 10(2),169-75.

(M98) Nodland, E.; Libnau, F. O.; Kvalheim, O. M. Vib. Spectrosc.1996, 12(2), 163-76.

(M99) Takasuka, M.; Saito, T.; Nakai, H. Vib. Spectrosc. 1996, 13(1),65-74.

(M100) Fell, L. M.; Shurvell, H. F. Can. J. Appl. Spectrosc. 1996, 41(4),96-106.

(M101) Boo, D. W.; Liu, Z. F.; Suits, A. G.; Tse, J. S.; Lee, Y. T. Science1995, 269(5220), 57-9.

(M102) Boo, D. W.; Lee, Y. T. J. Chem. Phys. 1995, 103(2), 520-30.(M103) Kolling, O. W. J. Phys. Chem. 1996, 100(40), 16087-91.(M104) Foerland, G. M.; Libnau, F. O.; Kvalheim, O. M.; Hoeiland,

H. Appl. Spectrosc. 1996, 50(10), 1264-72.(M105) Koll, A.; Rospenk, M.; Bureiko, S. F.; Bocharov, V. N. J. Phys.

Org. Chem. 1996, 9(7), 487-97.(M106) Bruni, P.; Giorgini, E.; Maurelli, E.; Tosi, G. Vib. Spectrosc.

1996, 12(2), 249-55.(M107) Genov, D. G.; Tebby, J. C. Phosphorus, Sulfur Silicon Relat.

Elem. 1996, 114(1-4), 91-8.(M108) Zoidis, E.; Besnard, M.; Yarwood, J. Chem. Phys. 1996, 203(2),

233-43.(M109) Gerothanassis, I. P.; Vakka, C. Spectrosc. Biol. Mol., Eur. Conf.,

6th 1995, 51-2 (Merlin, J. C.; Turrell, S.; Huvenne, J. P.,Eds.; Kluwer: Dordrecht).

(M110) Perjessy, A.; Engberts, J. B. F. N. Monatsh. Chem. 1995,126(8/9), 871-88.

(M111) Mitsuzuka, A.; Fujii, A.; Ebata, T.; Mikami, N. J. Chem. Phys.1996, 105(7), 2618-27.

(M112) Szczepaniak, K.; Person, W. B.: Leszczynski, J.; Kwiatkowski,J. S. Postepy Biochem. 1995, 41(5, Suppl.), 300-8.

(M113) Chappell, J. S. Forensic Sci. Int. 1995, 75(1), 1-10.(M114) Hess, B. A., Jr.; Smentek, L. Int. J. Quantum Chem., Quantum

Chem. Symp. 1995, 29, 647-56.(M115) De Vito, S.; Ciardelli, F.; Benedetti, E.; Bramanti, E. Polym.

Adv. Technol. 1997, 8(2), 53-62.

170R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

(M116) Maier, G.; Pacl, H.; Reisenauer, H. P.; Meudt, A.; Janoschek,R. J. Am. Chem. Soc. 1995, 117(51), 12712-20.

(M117) Maier, G.; Reisenauer, H. P.; Pacl, H. In OrganosiliconChemistry II; Auner, N., Weis, J., Eds.; VCH: Weinheim,Germany, 1994; pp 303-7.

(M118) Slavov, S. V.; Chuang, K. T.; Sanger, A. R. Langmuir 1995,11(10), 3607-9.

(M119) Atkinson, R.; Tuazon, E. C.; Kwok, E. S. C.; Arey, J.;Aschmann, S. M.; Bridier, I. J. Chem. Soc., Faraday Trans.1995, 91(18), 3033-9.

(M120) Tabba, H. D.; Yousef, N. M.; Al-Arab, M. M. Collect. Czech.Chem. Commun. 1995, 60(4), 594-604.

(M121) Konya, Z.; Hannus, I.; Molnar, A.; Kiricsi, I. Appl. Catal., A1996, 146(2), 323-30.

(M122) Chen, J.; Young, V.; Catoire, V.; Niki, H. J. Phys. Chem. 1996,100(16), 6580-6.

(M123) Noremsaune, I. M. W.; Hjorth, J.; Nielsen, C. J. J. Atmos. Chem.1995, 21(3), 223-50.

(M124) Brill, T. B.; Kieke, M. L.; Schoppelrei, J. W. Phys. Chem.Aqueous Syst., Proc. Int. Conf. Prop. Water Steam, 12th 1994,610-6 (White, H. J., Jr., Ed.; Begell House: New York).

(M125) Dedkov, Yu. M.; Korsakova, N. V.; Kotov, A. V. J. Anal. Chem.1995 50(10), 945-54 (Transl. of Zh. Anal. Khim.).

(M126) Qiao, G. G.; Andraos, J.; Wentrup, C. J. Am. Chem. Soc. 1996,118(24), 5634-8.

(M127) Maiella, P. G.; Brill, T. B. Appl. Spectrosc. 1996, 50(7), 829-35.

(M128) Bujnicki, B.; Drabowicz, J.; Mikolajczyk, M.; Kolbe, A.;Stefaniak, L. J. Org. Chem. 1996, 61(21), 7593-6.

(M129) Remko, M.; Rode, B. M. THEOCHEM 1995, 339, 125-31.(M130) Woelki, G.; Salzer, R. Fresenius’ J. Anal. Chem. 1995, 352(5),

529-31.(M131) Akao, M.; Saito, K.; Okada, K.; Takahashi, O.; Tabayashi, K.

Ber. Bunsen-Ges. Phys. Chem. 1996, 100(7), 1237-41.(M132) Stadella, L.; Argentero, M. Thermochim. Acta 1996, 268, 1-7.(M133) Leistner, S.; Baumann, S.; Marx, G. In Organosilicon Chemistry

II; Auner, N., Weis, J., Eds.; VCH: Weinheim, Germany, 1994,pp 295-301.

(M134) Carbo, M. T. D.; Reig, F. B.; Adelantado, J. V. G.; Martinez,V. P. Anal. Chim. Acta 1996, 330(2-3), 207-15.

(M135) Gillard, R. D.; Hardman, S. M. ACS Symp. Ser. 1996, No.625, 173-86 (Archaeological Chemistry).

(M136) Zieba-Palus, J. Adv. Forensic Sci., Proc. Meet. Int. Assoc.Forensic Sci., 13th 1995, 5, 335-7 (Jacob, B.; Bonte, W., Eds.;Verlag Dr. Loester: Berlin, Germany).

(M137) Stroeve, P.; Os, M. v.; Kunz, R.; Rabolt, J. F. Thin Solid Films1996, 284-5, 200-3.

(M138) Chujo, T.; Saraoka, I.; Kato, S.; Sato, H.; Fukuhara, K.;Matsuura, H. Inclusion Phenom. Mol. Recognit. Chem. 1994,20(2), 173-90.

(M139) Politi, M. J.; Tran, C. D.; Gao, G.-H. J. Phys. Chem. 1995,99(38), 14137-41.

(M140) Prezhdo, V. V.; Prezhdo, O. V.; Vaschenko, E. V. J. Mol. Struct.1995, 356(1), 7-13.

(M141) Tanaka, M.; Yamazaki, Y.; Suzuki, H.; Hayashi, H. Mol. Cryst.Liq. Cryst. Sci. Technol., Sect. A 1996, 277, 517-25.

(M142) Hassib, H. B.; Issa, Y. M. Commun. Fac. Sci. University Ankara,Ser. B: Chem. Chem. Eng. 1993, 39(1-2), 27-35.

(M143) Habeeb, M. M.; Alwakil, H. A.; El-Dissouky, A.; Fattah, H. A.Pol. J. Chem. 1995, 69(10), 1428-36.

(M144) Quadri, S. M.; Shurvell, H. F. Can. J. Appl. Spectrosc. 1995,40(5), 124-30.

(M145) Brzezinski, B.; Zundel, G. J. Mol. Struct. 1996, 380(3), 195-204.

(M146) Schoppelrei, J. W.; Kieke, M. L.; Wang, X.; Klein, M. T.; Brill,T. B. J. Phys. Chem. 1996, 100(34), 14343-51.

(M147) Momose, T.; Uchida, M.; Sogoshi, N.; Miki, M.; Masuda, S.;Shida, T. Chem. Phys. Lett. 1995, 246(6), 583-6.

(M148) Li, H.; Li, Q.; Wentao, M.; Zhu, Q.; Kong, F. J. Chem. Phys.1997, 106(14), 5943-6.

(M149) Holes, A.; Eusebi, A.; Grosjean, D.; Allen, D. T. Aerosol Sci.Technol. 1997, 26(6), 516-26.

(M150) Khabashesku, V. N.; Boganov, S. E.; Antic, D.; Nefedov, O.M.; Michi, J. Organometallics 1996, 15(22), 4714-24.

(M151) Tomioka, H.; Matsushita, T.; Murata, S.; Koseki, S. LiebigsAnn. 1996, (12), 1971-80.

FOOD AND AGRICULTURE

(N1) Davies, A. M. C., Williams, P. C., Eds. Near Infrared Spectros-copy: Future Waves: Proc. Int. Conf. Near Infrared Spectrosc.,7th; NIR Publications: Chichester, U.K., 1996.

(N2) Batten, G. D., Ed. Leaping Ahead Near Infrared Spectrosc.:Proc. Int. Conf. Near Infrared Spectrosc., 6th; Near InfraredSpectroscopy Group: North Melbourne, Australia, 1995.

(N3) Wilson, R. H. New Phys.-Chem. Technol. Charact. Complex FoodSyst.; Dickinson, E., Ed.; Blackie: Glasgow, U.K., 1995; pp177-95.

(N4) McQueen, D. H.; Wilson, R.; Kinnunen, A. Trends Anal. Chem.1995, 14(10), 482-92.

(N5) de Jong, E. A. M.; Kaper, J. Neth. Milk Dairy J. 1996, 50(1)35-51.

(N6) Atanassova, S. Anal. Lab. 1995 4(4) 232-4.

(N7) Rodgriguez-Otero, J. L.; Centeno, J. A.; Hermida, M. Milch-wissenschaft 1997, 52(4), 196-200.

(N8) Fehrmann, A.; Franz, M.; Hoffman, A.; Rudzik, L.; Wuest, E.J. AOAC Int. 1995, 78(6), 1537-42.

(N9) McQueen, D. H.; Wilson, R.; Kinnunen, A.; Jensen, E. P.Talanta 1995, 42(12), 2007-15.

(N10) Lee, S. J.; Jeon, I. J.; Harbers, L. H. J. Food. Sci. 1997, 62(1)53-56.

(N11) Cadet, F.; Robert, C.; Offman, B. Appl. Spectrosc 1997, 51(3),369-75.

(N12) Edye, L. A.; Clarke, M. A. Proc. Sugar Process. Res. Conf. 1996,350-67.

(N13) Cadet, F.; Offman, B. J. Agric. Food Chem. 1997, 45(1), 166-71.

(N14) Bilba, K.; Ouensanga, A. J. Anal. Appl. Pyrolysis 1996, 38, 61-73.

(N15) Clarke, M. A.; Scott, C. V.; Kelly, A.; Edye, L. A. Proc. SugarProcess. Res. Conf. 1996, 519-25.

(N16) Clarke, M. A.; Edye, L. A.; Miranda, X.; Scott, C. V. Publ.Technol. Pap. Proc. Annu. Meet. Sugar Ind. Technol. 1995,54, 81-9.

(N17) van de Voort, F. R.; Sedman, J.; Ismail, A. A. Lab. Rob. Autom.1996, 8(4), 205-12.

(N18) Ulberth, F.; Henninger, M. Eur. J. Med. Res. 1995, 1(2), 94-9.

(N19) Ali, L. H.; Angyal, G.; Weaver, C. M.; Rader, J. I.; Mossoba,M. M. J. Am. Oil Chem. Soc. 1996, 73(12), 1699-705.

(N20) Favier, J. P.; Bicanic, D. B.; van de Bovenkamp, P.; Chirtoc,M.; Helander, P. Anal. Chem. 1996, 68(5), 129-33.

(N21) Liescheski, P. B. J. Agric. Food Chem. 1996, 44(3), 823-8.(N22) Hong, J.; Yamaoka-Koseki, S.; Yasumoto, K. Food Sci. Technol.

Int. 1996 2(3), 146-9.(N23) Dupuy, N.; Duponchel, L.; Huvenne, J. P.; Sombret, B.;

Legrand, P. Food Chem. 1996, 57(2), 245-51.(N24) van de Voort, F. R.; Memon, K. P.; Sedman, J.; Ismail, A. A. J.

Am. Oil Chem. Soc. 1996, 73(4), 411-6.(N25) Kellner, R.; Lendl, B.; Wells, I.; Worsfold, P. J. Appl. Spectrosc

1997, 51(2), 227-35.(N26) Rambla, F. J.; Garrigues, S.; de la Guardia, M. Anal. Chim.

Acta 1997, 344(1-2), 41-53.(N27) Meurens, M.; Li, W.; Foulen, M.; Acha, V. Cerevisia 1995,

20(3), 33-6.(N28) Li, W.; Goovaerts, P.; Meurens, M. J. Agric. Food Chem. 1996,

44(8), 2252-9.(N29) Chamblee, T. S.; Karelitz, R. L.; Radford, T.; Clark, B. C., Jr.

J. Essent. Oil Res. 1997, 9(2), 127-32.(N30) Kemsley, E. K.; Holland, J. K.; Defernez, M.; Wilson, R. H. J.

Agric. Food Chem. 1996, 44(12), 3864-70.(N31) Slaughter, D. C.; Barrett, D.; Boersig, M. J. Food Sci. 1996,

61(4), 695-7.(N32) Tanaka, M.; Kojima, T. J. Agric. Food Chem. 1996, 44(8)

2272-7.(N33) Polissiou, M. Spectrosc. Biol Mol., Eur. Conf., 6th Merlin, J.

C., Turrell, S., Huvenne, J. P., Eds.; Kluwer: Dordrecht, 1995,pp 599-602.

(N34) Briandet, R.; Kemsley, E. K.; Wilson, R. H. J. Agric. Food Chem.1996, 44(1), 170-4.

(N35) Briandet, R.; Kemsley, E. K.; Wilson, R. H. J. Sci. Food Agric.1996, 71(3), 359-66.

(N36) Downey, G.; Boussion, J. J. Sci. Food Agric. 1996, 71(1) 41-9.

(N37) Song, C.; Otto, R. Z. Lebensm.-Unters. Forsch. 1995, 201(3),226-9.

(N38) Downey, G. Food Chem. 1996, 55(3), 305-11.(N39) Wold, J. P.; Jakobsen, T.; Krane, L. J. Food Sci. 1996, 61(1),

74-7.(N40) Kays, S. E.; Windkam, W. R.; Barton, F. E, II J. Agric. Food

Chem. 1996, 44(8), 2266-71.(N41) Windham, W. R.; Kays, S. E.; Barton, F. E., II J. Agric. Food

Chem. 1997, 45(1), 140-4.(N42) Sun, L.; Durrani, C. M.; Donald, A. M. In Gums Stab. Food

Ind. 8, Proc. Int. Conf.; Phillips, G. O., Williams, P. A., Wedlock,D. J., Eds.; IRL Press: Oxford, U.K., 1995, pp 423-32.

(N43) Cho, R. K.; Lee, J. H.; Ahn, J. J.; Ozaki, Y.; Iwamoto, M. J.Near Infrared Spectrosc. 1995, 3(2), 73-9.

(N44) Hong, J.-H.; Yasumoto, K. J. Food Compos. Anal. 1996, 9(2),127-34.

(N45) Smeller, L.; Goosens, K.; Rubens, P.; Heremans, K. High-Pressure Sci. Technol., Proc.; Trzeciakowski, W. A., Ed.; WorldScientific: Singapore, Singapore, 1995; pp 895-7.

(N46) Yates, R. A.; Caldwell, J. D.; Perkins, E. G. J. Am. Oil Chem.Soc. 1997, 74(3), 289-92.

(N47) Noah, L.; Robert, P.; Millar, S.; Champ, M. J. Agric. Food Chem.1997, 45(7), 2593-7.

(N48) Fayolle, P.; Picque, D.; Perret, B.; Latrille, E.; Corrieu, F. Appl.Spectrosc. 1996, 50(10), 1325-30.

(N49) Al-Jowder, O.; Kemsley, E. K.; Wilson, R. H. Food Chem. 1997,59(2), 195-201.

(N50) Thyholt, K.; Isaksson, T. J. Sci. Food Agric. 1997, 73(4) 525-32.

(N51) Ville, H.; Maes, G.; De Schrijver, R.; Spincemaille, G.; Rom-bouts, G.; Geers, R. Meat Sci. 1995, 41(3), 283-91.

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 171R

(N52) Gadaleta, S. J.; Landis, W. J.; Boskey, A. L.; Mendelsohn, R.Connect. Tissue Res. 1996, 34(3), 203-11.

(N53) Pazdernik, D. L.; Plehn, S. J.; Halgerson, J. L.; Orf, J. H. J.Agric. Food Chem. 1996, 44(8), 2278-81.

(N54) Abbott, T. P.; Naâni, H.; Sessa, D. J.; Wolf, W. J.; Liebman,M. N.; Dukor, R. K. J. Agric. Food Chem. 1996, 44(8), 2220-4.

(N55) Remblay, G. F.; Broderick, G. A.; Abrams, S. M. J. Dairy Sci.1996, 79(2), 276-82.

(N56) Hong, J.-H.; Ikeda, K.; Kreft, I.; Yasumoto K. J. Nutr. Sci.Vitaminol. 1996, 42(4), 359-66.

(N57) Delwiche, S. R.; McKenzie, K. S.; Webb, B. D. Cereal Chem.1996, 73(2), 257-63.

(N58) Reeves, J. B. J. Agric. Food Chem. 1997, 45(5), 1711-4.(N59) Wheeler, R. A.; Chaney, W. R.; Johnson, K. D.; Butler, L. G.

Anim. Feed Sci. Technol. 1996, 64(1), 1-9.(N60) Aufrere, J.; Graviou, D.; Demarquilly, C.; Perez, J. M.; Andrieu,

J. Anim. Feed Sci. Technol. 1996, 62(2-4), 77-90.(N61) Sanderson, M. A.; Agblevor, F.; Collins, M.; Johnson, D. K.

Biomass Bioenergy 1996, 11(5), 365-70.(N62) Schimleck, L. R.; Wright, P. J.; Michell, A. J.; Wallis, A. F. A.

Appita J. 1997, 50(1), 40-6.(N63) Reis Machado, A. S.; Sardinha, R. M. A.; Gomes De Azevedo,

E.; Nunes Da Ponte, M. Holzforschung 1996, 50(6), 531-40.(N64) Rutherford, R. S.; Van Staden, J. J. Chem. Ecol. 1996, 22(4),

681-94.(N65) Ridgway, C.; Chambers, J. J. Sci. Food Agric. 1996, 71(2),

251-64.(N66) Homble, F.; Raussens, V.; Ruysschaert, J.-M.; Grouzis, J.-P.;

Goormaghtigh, E. Biospectroscopy 1996, 2(3), 193-203.(N67) Regan, F.; Meaney, M.; Vos, J. G.; MacCraith, B. D.; Walsh,

J. E. Anal. Chim. Acta 1996, 334(1-2), 85-92.(N68) Piccolo, A. Trans., World Congr. Soil Sci., 15th 1994, 3A, 3-22.

BIOCHEMISTRY

(O1) Very, J.-M.; Gilbert, R.; Guilhot, B.; Debout, M.; Alexandre,C. Calcif. Tissue Int. 1997, 60(3), 271-5.

(O2) Sajid, J.; Elhaddaoui, A.; Turrel, S. J. Raman Spectrosc. 1997,28(2&3), 165-9.

(O3) Haisch, M.; Hering, P.; Fuss, W.; Fabinski, W. Isotopenpraxis1994, 30(2/3), 247-51.

(O4) Signori, V.; Lewis, D. M. Int. J. Cosmet. Sci. 1997, 19(1), 1-13.(O5) Harris, D.; Reinisch, L.; Edwards, G.; Yessik, M.; Ashrafi, S.;

Santos-Sacchi, J. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2672,165-175 (Lasers in Dentistry II).

(O6) Borchman, D.; Ozaki, Y.; Lamba, O.; Byrdwell, W.; Yappert,M. Biospectroscopy 1996, 2(2), 113-123.

(O7) Dasarathy, K.; Chittur, K.; Dasarathy, B. Proc. SPIE-Int. Soc.Opt. Eng. 1996, 2847, 67-77 (Applications of Digital ImageProcessing XIX).

(O8) Perz-Ponce, A.; Garrigues, S.; de la Guardia, M. Anal. Chim.Acta 1996, 336(1-3), 123-9.

(O9) Stuart, B. Biochem. Mol. Biol. Int. 1996, 38(4), 839-45.(O10) Lewis, E.; Gorbach, A.; Levin, I. Monit. Mol. Neurosci., Proc.

Int. Conf. In Vivo Methods, 6th 1994, 55-6.(O11) Ersoy, L.; Atmaca, S.; Saglik, S.; Imre, S. Anal. Commun. 1996,

33(1), 19-20.(O12) Sowa, M. G.; Wang, J.; Schultz, C. P.; Ahmed, M. K.; Mantsch,

H. H. Vib. Spectrosc. 1995, 10(1), 49-56.(O13) Labianca, D. Eur. J. Clinc. Chem. Clin. Biochem. 1996, 34(1),

59-61.(O14) Siebert, F. Isr. J. Chem. 1995, 35(3-4), 309-23.(O15) Lee, S.; Greener, E.; Menis, D. Dent. Mater. 1995, 11(5&6),

348-53.(O16) Kupka, T. Spectrosc. Biol. Mol., Eur. Conf., 6th 1995, 559-

60.(O17) Wilkes, A.; Mapleson, W. Br. J. Anaesth. 1996, 76(5), 737-

9.(O18) Palafox, M. Rev. Roum. Chim. 1995, 40(2), 191-201.(O19) Neault, J.; Naoui, M.; Manfait, M.; Tajmir-Riahi, H. FEBS Lett.

1996, 382(1, 2), 26-30.(O20) Landau, R.; McKenzie, P.; Forman, A.; Dauer, R.; Futran, M.;

Epstein, A. Process Control Qual. 1995, 7(3-4), 133-42.(O21) Picquart, M.; Tayab, Z.; Lacrampe, G. Spectrosc. Biol. Mol.,

Eur. Conf., 6th 1995, 403-4.(O22) Sarros, G.; Nastou, H.; Nastos, A.; Sarrou, V.; Fotopoulos, N.;

Anastassopoulou, J. Spectrosc. Biol. Mol., Eur. Conf., 6th 1995,565-6.

(O23) Masoud, M.; El-Nahas, H.; Haggag, S., Pak. J. Sci. Ind. Res.1995, 38(3/4), 108-14.

(O24) Gunasekaran, S.; Varadhan, S.; Karunanidhi, N. Proc. IndianNatl. Sci. Acad., Part A 1996, 62(4), 309-16.

(O25) Gicquaud, C.; Auger, M.; Wong, P.; Poyet, P.; Boudreau, N.;C-Gaudreault, R. Arch. Biochem. Biophys. 1996, 334(2), 193-9.

(O26) Eysel, H.; Jackson, M.; Nikulin, A.; Somorjai, R.; Thomson,G.; Mantsch, H. Biospectroscopy 1997, 3(2), 161-7.

(O27) Yano, K.; Ohoshima, S.; Shimizu, Y.; Moriguchi, T.; Katayama,H. Cancer Lett. 1996, 110(1, 2), 29-34.

(O28) Micha-Akretta, M.; Steele, B.; Chairopoulos, G. Chem. Chron.,Genike Ekdose 1997, 59(3), 75-8.

(O29) Khand, F.; Ansari, A.; Khand, T.; Memon, J. J. Chem. Soc. Pak.1996, 18(3), 246-9.

(O30) Malins, D.; Polissar, N.; Gunselman, S. Proc. Natl. Acad. Sci.U.S.A. 1996, 93(24), 14047-52.

(O31) Wood, B.; Quinn, M.; Burden, F.; McNaughton, D. Biospec-troscopy 1996, 2(3), 143-53.

(O32) Yoshida, S. Obes. Res. 1995, 3(Suppl. 5), 761S-67S.(O33) Krausova, D.; Koutna, M.; Bekarek, V. Acta University Palacki.

Olomuc., Fac. Rerum Nat. 1994, 117, 45-55.(O34) Moharram, M.; Higazi, A.; Moharram A.Int. J. Infrared Mil-

limeter Waves 1996, 17(6), 1103-14.(O35) Tanfani, F.; Kochan, Z.; Swierczynski, J.; Zydowo, M.; Bertoli,

E. Biopolymers 1995, 36(5), 569-77.(O36) Allam, N.; Millot, J.; Manfait, M. Spectrosc. Biol. Mol., Eur.

Conf., 6th 1995, 531-2.(O37) Mioc, U.; Kuntic, V.; Nedic, Z.; Filipovic, I.; Jelic, S. J. Serb.

Chem. Soc. 1996, 61(9), 767-71.(O38) Meurens, M.; Wallon, J.; Tong, J.; Noelle, H.; Haot, J., Vib.

Spectrosc. 1996, 10(2), 341-6.(O39) Wong, P.; Lacelle, S.; Fung, M.; Senterman, M.; Mikhael, N.

Biospectroscopy 1995, 1(5), 357-64.(O40) Majer, Z.; Holly, S.; Toth, G. K.; Varadi, G.; Laczko, I.;

Rajnavolgyi, E.; Hollosi, M. Proc. Eur. Pept. Symp., 23rd 1994,545-6.

(O41) Neault, J.; Naoui, M.; Tajmir-Riahi, H. J. Biomol. Struct. Dyn.1995, 13(2), 387-97.

(O42) Stuart, B. Biochem. Mol. Biol. Int. 1996, 39(3), 629-34.(O43) Kim, J.; Lee, S.; Carter, B.; Rupprecht, A. Biopolymers 1997,

41(2), 233-8.(O44) Kim, H.; Rey, C.; Glimcher, M. Calcif. Tissue Int. 1996, 59(1),

58-63.(O45) Severcan, F.; Haris, P.; Heaton, R.; Chapman, D. Biochem. Soc.

Trans. 1996, 24(2), 299S.(O46) Ge, Z.; Brown, C.; Turcott, J.; Wang, Z.; Notter, R. J. Colloid

Interface Sci. 1995, 173(2), 471-7.(O47) Jackson, M.; Sowa, M.; Liu, K.; Ju, H.; Dixon, I.; Mantsch, H.

Spectrosc. Biol. Mol., Eur. Conf., 6th 1995, 483-4.(O48) Raimbault, C.; Couthon, F.; Vial, C.; Buchet, R. Eur. J. Biochem.

1995, 234(2), 570-8.(O49) Lewis, E.; Gorbach, A.; Marcott, C.; Levin, I. Appl. Spectrosc.

1996, 50(2), 263-9.(O50) Neault, J.; Tajmir-Riahi, H. J. Biol. Chem. 1996 271(14), 8140-

3.(O51) Ahmad, R.; Naoui, M.; Neault, J.; Diamantoglou, S.; Tajmir-

Riahi, H. J. Biomol. Struct. Dyn. 1996, 13(5), 795-802.(O52) Fini, C.; Tanfani, F.; Bertoli, E.; Jansen, S.; Spicer, C.; Floridi,

A.; Jones, R., Biochem. Mol. Med. 1996, 58(1), 37-45.(O53) Dathe, M.; Fabian, H.; Gast, K.; Zirwer, D.; Winter, R.;

Beyermann, M.; Schuemann, M.; Bienert, M. Int. J. Pept.Protein Res. 1996, 47(5), 383-93.

(O54) Vecchio, G., Bossi, A.; Pasta, P.; Carrea, G. Int. J. Pept. ProteinRes. 1996, 48(2), 113-7.

(O55) Bramanti, E.; Benedetti, E.; Papineschi, F.; Benedetti, E.Biopolymers 1997, 41(5), 545-53.

(O56) Takeda, N.; Kato, M.; Taniguchi, Y. High-Pressure Sci. Technol.1995, 866-8.

(O57) Clemmer, R.; Kelly, J.; Martin, S.; Mong,.; Sharpe, S. Proc.SPIE-Int. Soc. Opt. Eng. 1997, 2937, 45-56 (Chemistry- andBiology-Based Technologies for Contraband Detection).

(O58) Kalasinsky, K. Handb. Anal. Ther. Drug Monit. Toxicol. 1997,127-36.

(O59) Levy, R.; Ravreby, M.; Meirovich, L.; Shapira-Heiman, O. J.Forensic Sci. 1996, 41(1), 6-11.

(O60) Hindorf, G. Forensische Chem., Beitr. Symp. Ges. Toxikol.Forensische Chem. 1993, 71-87.

(O61) Tanner, P.; Leung, K. Appl. Spectrosc. 1996, 50(5), 565-71.(O62) Marechal, Y.; Chamel, A. Biospectroscopy 1997, 3(2), 143-

53.(O63) Stewart, D.; Yahiaoue, N.; McDougall, G.; Myton, K.; Marque,

C.; Boudet, A.; Haigh, J. Planta 1997, 201(3), 311-8.(O64) Singh, M.; De, S. Indian J. Agric. Chem. 1993, 26(2&3), 63-

9.(O65) Subirade, M.; Marion, D.; Pezolet, M. Spectrosc. Biol. Mol.,

Eur. Conf., 6th 1995, 391-2.(O66) Gomes, R.; Mangrich, A.; Coelho, R.; Linhares, L. Biol. Fertil.

Soils 1996, 21(1-2), 84-8.(O67) Pistorius, A. Spectrosc. Eur. 1995, 7(4), 8, 10, 12, 14-5.(O68) Qi, X.; Holt, C.; McNulty, D.; Clarke, D.; Brownlow, S.; Jones,

G., Biochem. J. 1997, 324(1), 341-6.(O69) Zhang, Y.; Lewis, R.; McElhaney, R. Biophys. J. 1997, 72(2,

Pt. 1), 779-93.(O70) Tanfani, F.; Galeazzi, T.; Curatola, G.; Betoli, E.; Ferretti, G.

Biochem. J. 1997, 322(3), 765-9.(O71) Nahar, S.; Carpentier, R.; Tajmir Riahi, H. A. J. Inorg. Biochem.

1997, 65(4), 245-50.(O72) Bailey, L.; Navarro, R.; Hernanz, A. Biospectroscopy 1997, 3(1),

47-59.(O73) Jaouen, G.; Vessieres, A.; Top, S.; Salmain, M. Actual. Chim.

1997, (1), 4-12.(O74) Menikh, A.; Nyholm, P.; Boggs, J. Biochemistry 1997, 36(12),

3438-47.(O75) Sartori, C.; Finch, D.; Ralph, B.; Gilding, K. Polymer 1997,

38(1), 43-51.

172R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

(O76) Noguchi, T.; Ono, T.; Inoue, Y. Photosynth.: Light Biosphere,Proc. Int. Photosynth. Congr., 10th 1995, 2, 235-40.

(O77) Carrier, D.; Chartrand, N.; Matar, W. Biochem. Pharmacol.1997, 53(3), 401-8.

(O78) Brudler, R.; De Groot, H.; Van Liemt, W.; Gast, P.; Hoff, A.;Lugtenburg, J.; Gerwert, K. React. Cent. Photosynth. Bacte-riol.: Struct. Dyn., Proc. Workshop 1996, 395-404.

(O79) Huehmer, A.; Aced, G.; Perkins, M.; Guersoy, R.; Jois, D.;Larive, C.; Siahaan, T.; Schoeneich, C. Anal. Chem. 1997,69(12), 29R-57R.

(O80) Marechal, Y. Faraday Discuss. 1996, 103, 349-61.(O81) Lamcharfi, E.; Cohen-Solal, C.; Parquet, M.; Lutton, C.; Dupre,

J.; Meyer, C. Eur. Biophys. J. 1997, 25(4), 285-91.(O82) Tanaka, M.; Kohno, Y.; Yonezawa, Y.; Shimidzu, T. Ber.

Bunsen-Ges. 1997, 101(2), 265-71.(O83) Ruediger, M.; Tittor, J.; Gerwert, K.; Oesterhelt, D. Biochem-

istry 1997, 36(16), 4867-74.(O84) Taymaz, A.; Breiki, G.; Kanat, I.; Karaman, A.; Wong, P. NATO

ASI Ser., Ser. A 1996, 286, 383-92 (Analytical Use ofFluorescent Probes in Oncology).

(O85) Ferre, G.; Besson, F.; Buchet, R. Spectrochim. Acta, Part A1997, 53A(4), 623-35.

(O86) Boye, J.; Alli, I.; Ismail, A. J. Agric. Food Chem. 1997, 45(4),1116-25.

(O87) Domingo, J.; de Madariaga, M. Chem. Phys. Lipids 1996,84(2), 147-53.

(O88) Kinder, R.; Ziegler, C.; Wessels, J. Int. J. Radiat. Biol. 1997,71(5), 561-71.

(O89) Lapathitis, G.; Tanfani, F.; Kotyk, A. Folia Microbiol. 1997,42(3), 233-4.

(O90) Imamoto, Y.; Mihara, K.; Hisatomi, O.; Kataoka, M.; Tokunaga,F.; Bojiova, N.; Yoshihara, K. J. Biol. Chem. 1997, 272(20),12905-8.

(O91) Fragata, M.; Nenonene, E. K.; Maire, V.; Gabashvili, I. S. J.Mol. Struct. 1997, 405(2-3), 151-8.

(O92) Boulkanz, L.; Vidal-Madjar, C.; Balcar, N.; Baron, M., J. ColloidInterface Sci. 1997, 188(1), 58-67.

(O93) Steinke, C.; Reeves, K.; Powell, J.; Lee, S.; Chen, Y.; Wyrzyk-iewicz, T.; Griffey, R.; Mohan, V. J. Biomol. Struct. Dyn. 1997,14(4), 509-16.

(O94) Schmitt, J.; Flemming, H. Microb. Influenced Corros. Mater.1996, 143-57.

(O95) Mendelsohn, R.; Snyder, R. Biol. Membr. 1996, 145-74.(O96) Maradona, M. Comput. Appl. Biosci. 1996, 12(4), 353-6.(O97) Wellner, N.; Belton, P.; Tatham, A. Biochem. J. 1996, 319(3),

741-7.(O98) Salgado, J.; Villalain, J.; Gomez-Fernandez, J. Perspect. Protein

Eng. Complementary Technol., Collect. Pap., Int. Symp., 3rd1994, 282-2.

(O99) Taga, K.; Sowa, M.; Wang, J.; Etori, H.; Yoshida, T.; Okaba-yashi, H.; Mantsch, H. Vib. Spectrosc. 1997, 14(1), 143-6.

(O100) Dahmani, B.; Krebs, D.; El Antri, S.; Troalen, F.; Fermandjian,S. J. Biomol. Struct. Dyn. 1997, 14(4), 429-39.

(O101) Cadet, F., Spectrosc. Lett. 1997, 30(1), 1-16.(O102) Li, X.; Zhou, J. Biospectroscopy 1997, 3(2), 121-9.(O103) Malins, D.; Polissar, N.; Gunselman, S. Proc. Natl. Acad. Sci.

U.S.A. 1997, 94(8), 3611-5.(O104) Mouro, C., Jung, C.; Bondon, A.; Simonneaux, G. Biochemistry

1997, 36(26), 8125-34.(O105) Rizvt, T. Rom. J. Biophys. 1996, 6(1-2), 55-60.(O106) Snyder, R.; Liang, G.; Strauss, H.; Mendelsohn, R. Biophys. J.

1996, 71(6), 3186-98.(O107) Haag, H.; Gremlich, H.; Bergmann, R.; Sanglier, J. J. Microbiol.

Methods 1996, 27(2, 3), 157-63.(O108) Cadet, F. Spectrosc. Lett. 1996, 29(5), 919-36.(O109) Agosti, E.; Zerbi, G. Synth. Met. 1996, 79(2), 107-13.(O110) Swamy, M.; Heimburg, T.; Marsh, D. Biophys. J. 1996, 71(2),

840-7.(O111) Jackson, M.; Mantsch, H. Adv. Spectrosc. 1996, 25, 185-215

(Biomedical Applications of Spectroscopy).(O112) Dong, A.; Hyslop, R.; Pringle, D. Arch. Biochem. Biophys.

1996, 333(1), 275-81.(O113) Freitas, S.; Ventura, M. An. Acad. Bras. Cienc. 1996, 68(2),

165-74.(O114) Martinez, A.; Haavik, J.; Flatmark, T.; Arrondo, J.; Muga, A. J.

Biol. Chem. 1996, 271(33), 19737-42.(O115) Boenisch, H.; Backmann, J.; Kath, T.; Naumann, D.; Schaefer,

G. Arch. Biochem. Biophys. 1996, 333(1), 75-84.(O116) Chung, L.; Thompson, T. Biochemistry 1996, 35, 5(35),

11343-54.(O117) Noguchi, T.; Ono, T.; Inoue, Y. Biochim. Biophys. Acta 1995,

1232(1/2), 59-66.(O118) Mendelsohn, R.; Snyder, R. Biol. Membr. 1996, 145-74.(O119) Moore, D.; Rerek, M.; Mendelsohn, R. Biochem. Biophys. Res.

Commun. 1997, 231(3), 797-801.(O120) Costantino, H.; Nguyen, T.; Hsu, C. Pharm. Sci. 1996, 2(5),

229-32.(O121) Yamamoto, T.; Arakawa, H.; Ikai, A.; Hirotsu, S.; Tasumi, M.

J. Mol. Struct. 1996, 384(2-3), 149-57.(O122) Nadolny, C.; Zundel, G. J. Mol. Struct. 1996, 385(2), 81-7.(O123) Van der Mei, H.; Naumann, D.; Busscher, H. Infrared Phys.

Technol. 1996, 37(4), 561-4.

(O124) Lefevre, T.; Picquart, M. Biospectroscopy 1996, 2(6), 391-403.

(O125) Kacurakova, M.; Mathlouthi, M. Carbohydr. Res. 1996, 284(2),145-57.

(O126) Carey, P.; Surewicz, W. Protein Eng. Des. 1996, 231-63.(O127) Fournier, P.; Buffeteau, T.; Ritcey, A.; Pezolet, M. Biol. Mol.,

Eur. Conf., 6th 1995, 373-4.(O128) Kawasaki, T.; Fujioka, Y.; Saito, K.; Ohta, H. Chem. Lett. 1996,

(3), 195-6.(O129) Lewis, R.; Pohle, W.; McElhaney, R. Biophys. J. 1996, 70(6),

2736-46.(O130) Blume, A. Curr. Opin. Colloid Interface Sci. 1996, 1(1), 64-

77.(O131) Alstanei, A.; Mandravel, C.; Constantinescu, S. An. University

Bucurest, Shim. 1995, 4, 32-9.(O132) Yu, K.; Phillips, J. IFAC Symp. Ser. 1992, (10), 7-13

(Modeling and Control of Biotechnical Processes).(O133) Salter, C.; Mitchell, R.; Drake, A. J. Chem. Soc., Perkin Trans.

1995, (12), 2203-11.(O134) De Collongue-Poyet, B.; Sebille, B.; Tauc, P.; Brochon, J.;

Baron, M. Spectrosc. Biol. Mol., Eur. Conf., 6th 1995, 115-6.(O135) Xie, L.; Jing, G.; Zhou, J. Arch. Biochem. Biophys. 1996,

328(1), 122-8.(O136) Hucho, F.; Naumann, D.; Goerne-Tschelnokow, U. Enzymes

Cholinesterase Fam., 5th 1994, 83-8.(O137) Reddy, K.; Yonetani, T.; Tsuneshige, A.; Chance, B.; Kushku-

ley, B.; Stavrov, S. S.; Vanderkooi, J. Biochemistry 1996,35(17), 5562-70.

(O138) Haris, P.; Chapman, D.; Benga, G. Eur. J. Biochem. 1995,233(2), 659-64.

(O139) Lutz, B.; van der Windt, E.; Kanters, J.; Klaembt, D.; Kojic-Prodic, B.; Ramek, M. J. Mol. Struct. 1996, 382(3), 177-85.

(O140) Kandori, H.; Maeda, A. Biochemistry 1995, 34(43), 14220-9.(O141) Vannini, L.; Lanciotti, R.; Gardini, F.; Guerzoni, M. Word J.

Microbiol. Biotechnol. 1996, 12(1), 85-90.(O142) Aamouche, A.; Ghomi, M.; Coulombeau, C.; Jobic, H.; Grajcar,

L.; Baron, M.; Baumruk, V.; Turpin, P.; Henriet, C.; Berthier,G. J. Phys. Chem. 1996, 100(13), 5224-34.

(O143) Middaugh, R. Proc. Int. Sym. Controlled Release Bioact. Mater.,22nd 1995, 141-2.

(O144) Dong, A.; Matsuura, J.; Allison, S.; Chrisman, E.; Manning,M.; Carpenter, J. Biochemistry 1996, 35(5), 1450-7.

(O145) Reisdorf, W.; Krimm, S. Biochemistry 1996, 35(5), 1383-6.(O146) Heimburg, T.; Schuenemann, J.; Weber, K.; Geisler, N.

Biochemistry 1996, 35(5), 1375-82.(O147) Suyrewicz, W.; Mantsch, H. In Spectroscopic Methods for

Determining Protein Structure in Solution; Havel, H. A., Ed.;VCH: New York, 1996; pp 135-62.

(O148) Fabian, H.; Reinstaedler, D.; Zhang, M.; Bogel, H.; Naumann,D.; Mantsch, H. Spectrosc. Biol. Mol., Eur. Conf., 6th 1995,83-4.

(O149) Slootmaekers, B.; Perlepes, S. P.; Desseyn, H. Spectrochim.Acta, Part A 1996, 52A(3), 375-7.

(O150) Wang, J.; Sowa, M.; Mantsch, H.; Bittner, A.; Heise, M. TrAC,Trends Anal. Chem. 1996, 15(7), 286-96.

(O151) Hellwig, P.; Rost, B.; Kaiser, U.; Ostermeier, C.; Michel, H.;Meantele, W. FEBS Lett. 1996, 385(1, 2), 53-7.

(O152) Mitchell, P.; Parker, S.; Simkiss, K.; Simmons, J.; Taylor, M.J. Inorg. Biochem. 1996, 62(3), 183-97.

(O153) Van der Spek, T.; Arendsen, A.; Happe, R.; Yun, S.; Bagley,K.; Stufkens, D.; Hagen, W.; Albracht, S. Eur. J. Biochem.1996, 237(3), 629-34.

(O154) Kurihara, K.; Mizukami, M.; Suzuki, K.; Oosawa, K. ColloidsSurf., A 1996, 109, 375-84.

(O155) Tonan, K.; Enmi, J.; Ikawa, S. Pept. Chem., 33rd 1995, 453-56.

(O156) Buijs, J.; Norde, W.; Lichtenbelt, J. Langmuir 1996, 12(6),1605-13.

(O157) Haris, P.; Chapman, Dennis; Benga, Gheorghe, Biochem. Soc.Trans. 1996, 24(1), 152S.

(O158) Tsubake, Motonari; Mogi, T.; Hori, H.; Sato-Watavabe, M.;Anraku, Y. J. Biol. Chem. 1996, 271(8), 4017-22.

(O159) Qi, X.; Holt, C.; McNulty, D.; Clarke, D..; Jones, G. Biochem.Soc. Trans. 1995, 23(4), 612S.

(O160) Moore, D.; Sills, R.; Patel, N.; Mendelsohn, R. Biochemistry1996, 35(1), 229-35.

(O161) Krieg, P.; Lendl, B.; Vonach, R.; Kellner, R. Fresenius J. Anal.Chem. 1996, 356(8), 504-7.

(O162) Iliadis, G.; Brzezinski, B.; Zundel, G. Biophys. J. 1996, 71(5),2840-7.

(O163) Stephens, S.; Dluhy, R. Thin Solid Films 1996, 284-5, 381-6.

(O164) Subirade, M.; Marion, D.; Pezolet, M. Thin Solid Films 1996,284-5, 326-9.

(O165) Hernandez, B.; Hernanz, A.; Navarro, R. Spectrosc. Biol. Mol.,Eur. Conf., 6th 1995, 291-2.

(O166) Boulkanz, L.; Balcar, N.; Baron, M. Appl. Spectrosc. 1995,49(12), 1737-46.

(O167) Dornberger, U.; Fandrei, D.; Backmann, J.; Huebner, W.;Rahmelow, K.; Guehrs, K.; Hartmann, M.; Schlott, B.; Fritzsche,H. Biochim. Biophys. Acta 1996, 1294(2), 168-76.

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 173R

(O168) Heinisch, O.; Kowalski, E.; Goossens, K.; Frank, J.; Heremanks,K.; Ludwig, H.; Tauscher, B. Z. Lebensm.-Unters. Forsch. 1995,201(6), 562-5.

(O169) Cornut, I.; Desbat, B.; Turlet, J.; Dufourcq, J. Biophys. J. 1996,70(1), 305-12.

(O170) Szalontai, B.; Joo, F.; Vigh, L. Spectrosc. Biol. Mol., Eur. Conf.,6th 1995, 377-8.

(O171) Chung, L.; Thompson, T. Biochemistry 1996, 35(35), 11343-54.

(O172) Hill, J.; Ziegler, C.; Suslick, K.; Dlott, D.; Rella, C.; Fayer, M.J. Phys. Chem. 1996, 100(46), 18023-32.

(O173) Lippe, G.; Di Pancrazio, F.; Dabbeni-Dala, F.; Bertoli, E.;Tanfani, F. FEBS Lett. 1995, 373(2), 141-5.

(O174) Lo, Y.; Rahman, Y. Pharm. Res. 1996, 13(2), 265-71.(O175) Qian, J.; Liu, H.; Liu, Y.; Yu, T.; Deng, J. Electroanalysis 1996,

8(5), 480-4.(O176) Marechal, Y.; Chamel, A. Spectrosc. Biol. Mol., Eur. Conf., 6th

1995, 383-4.(O177) Waring, A.; Faull, K.; Curtain, C.; Gordon, L. Bull. Magn. Reson.

1995, 17, 238-9 (1-4, Proceedings of the InternationalSociety of Magnetic Resonance XIIth Meeting, Part 1).

(O178) Barnett, S.; Dracheva, S.; Hendler, R.; Levin, I. Biochemistry1996, 35(14), 4558-67.

(O179) Wang, Y.; Averill, B. J. Am. Chem. Soc. 1996, 118(16), 3972-3.

(O180) Backmann, J.; Fabian, H.; Naumann, D. Spectrosc. Biol. Mol.,Eur. Conf., 6th 1995, 103-4.

(O181) Heaton, R.; Haris, P.; Russell, J.; Chapman, D. Biochem. Soc.Trans. 1995, 23(4), 502S.

(O182) Henderson, D.; Mu, R.; Gunasekaran, M. Biomed Lett. 1995,51(204), 223-8.

(O183) Lasch, P.; Naumann, D. Spectrosc. Biol. Mol., Eur. Conf., 6th1995, 399-400.

(O184) Blackler, M.; Wharton, C.; Weir, M. Spectrosc. Biol. Mol., Eur.Conf., 6th 1995, 155-6.

(O185) Lu, J.; Xia, Wen-S.; Wang, K.; Zhai, C.; Liu, Q. J. Chin. Pharm.Sci. 1995, 4(3), 136-43.

(O186) Cadet, F. Appl. Spectrosc. 1996, 50(12), 1590-6.(O187) Li, S.; Xu, Y.; Zhang, T.; Gao, S.; Xu, D.; Wu, J.; Xu, G. Spectrosc.

Biol. Mol., Eur. Conf., 6th 1995, 91-2.(O188) Zhao, X.; Caughey, W.; Poyton, R. Methods Enzymol. 1995,

260, 399-406 (Mitochondrial Biogenesis and Genetics, Pt. A).(O189) Regan, T., Wharton, C. Spectrosc. Biol. Mol., Eur. Conf., 6th

1995, 159-60.(O190) Johal, S.; Blackler, M.; Regan, T.; Wharton, C. W. Spectrosc.

Biol. Mol., Eur. Conf., 6th 1995, 149-50.(O191) Pispisa, B.; Venanzi, M.; Palleschi, A.; Zanotti, G. Spectrosc.

Biol. Mol., Eur. Conf., 6th 1995, 57-8.(O192) Reinstaedler, D.; Backmann, J.; Fabian, H.; Naumann, D.

Spectrosc. Biol. Mol., Eur. Conf., 6th 1995, 107-8.(O193) Beck, M.; Sakmar, R. P.; Siebert, F. Spectrosc. Biol. Mol., Eur.

Conf., 6th 1995, 173-4.(O194) Backmann, J.; Schultz, C.; Fabian, H.; Hahn, U.; Saenger, W.;

Naumann, D. Proteins: Struct., Funct., Genet. 1996, 24(3),379-87.

(O195) Bilinska, B. Spectrochim. Acta, Part A 1996, 52A(9), 1157-62.

(O196) Baumruk, B.; Pancosda, P.; Keiderling, T. J. Mol. Biol. 1996,259(4), 774-91.

(O197) Fabian, H.; Yuan, T.; Vogel, H.; Mantsch, H. Eur. Biophys. J.1996, 24(4), 195-201.

(O198) Florian, J.; Leszczynski, J. Int. J. Quantum Chem., QuantumBiol. Symp. 1995, 22, 207-25 (Proceedings of the Interna-tional Symposium on the Applications of Fundamental Theoryto Problems. Of Biology and Pharmacology).

(O199) Dagneaux, C.; Liquier, J.; Taillandier, E. Biochemistry 1995,34(51), 16618-23.

(O200) Fischer, W.; Fischer, I.; Steiner, G.; Schrattenholz, A.; Maelicke,A.; Salzer, R. Int. Symp. Bioanal. Chem., Proc., 1st 1995, 16-7.

(O201) Jiang, H.; Song, Z.; Ling, M.; Yang, S.; Du, Z. Biochim. Biophys.Acta 1996, 1294(2), 121-8.

(O202) Maeda, A. Isr. J. Chem. 1995, 35(3-4), 387-400.(O203) Gomathi, L.; Fairwell, T.; Krishna, G.; Ferretti, J.; Subramanian,

S. Curr. Sci. 1996, 70(10), 910-27.(O204) Yamamoto, T.; Honma, R.; Nishio, K.; Hirotsu, S.; Okamoto,

S.; Furuya, H.; Watanabe, J.; Abe, A. J. Mol. Struct. 1996,375(1-2), 1-7.

(O205) Reid, S.; Moffatt, D.; Baenziger, J. Spectrochim. Acta, Part A1996, 52A(10), 1347-56.

(O206) Le Bihan, T.; Blochet, J.; Desormeaux, A.; Marion, D.; Pezolet,M. Biochemistry 1996, 35(39), 12712-22.

(O207) Pohle, W.; Selle, C.; Fritzsche, H.; Rattay, B. Spectrosc. Biol.Mol., Eur. Conf., 6th 1995, 381-2.

(O208) Shibata, T.; Tonan, K.; Yasuda, T.; Ikawa, S. Appl. Spectrosc.1997, 51(3), 337-9.

(O209) Lin, C.; Spiro, T. J. Phys. Chem. B 1997, 101(3), 472-82.(O210) Mishra, P.; Griebenow, K.; Klibanov, A. Biotechnol. Bioeng.

1996, 52(5), 609-14.(O211) Cast, J. In Developments in Oils and Fats; Hamilton, R. J., Ed.;

Chapman & Hall: New York, 1995, pp 224-66.(O212) Salgado, J.; Gomez-Fernandez, J. Biochim. Biophys. Acta 1995,

1239(2), 213-25.

(O213) Nishimura, S.; Sasaki, J.; Kandori, H.; Matsuda, T.; Fukada,Y.; Maeda, A. Biochemistry 1996, 35(41), 13267-71.

(O214) Nabedryk, E.; Leibl, W.; Breton, J. Photosynth. Res. 1996,48(1-2), 301-8.

(O215) Griebenow, K.; Klibanov, A. J. Am. Chem. Soc. 1996, 118(47),11695-700.

(O216) Carrier, D.; Wong, P. Chem. Phys. Lipids 1996, 83(2), 141-52.

(O217) Engelhard, M.; Scharf, B.; Siebert, F. FEBS Lett. 1996, 395(2,3), 195-8.

(O218) Eid, P.; Wong, P.; Lacelle, S.; Bergeron, M.; Beauchamp, D.;Carrier, D. Chem. Phys. Lipids 1996, 83(2), 131-40.

(O219) Methot, M.; Boucher, F.; Salesse, C.; Subirade, M.; Pezolet,M. Thin Solid Films 1996, 284, 627-30.

(O220) Medrano, F.; Gasset, M.; Lopez-Zumel, C.; Usobiaga, P.; Garcia,J.; Menendez, M. J. Biol. Chem. 1996, 271(46), 29152-61.

(O221) Dubreuil, N.; Alexandre, S.; Lair, D.; Valleton, J. Langmuir1996, 12(26), 6721-3.

(O222) Wharton, C. In Proteins Labfax;Price, N. C., Ed.; AcademicPress: San Diego, 1996; pp 187-94.

(O223) Jiang, H.; Jiang, B.; Song, Z.; Deng, Z.; Yang, S.; Zhu, D.Pept.: Biol. Chem., Proc. Chin. Pept. Symp., 3rd 1994, 100-4.

(O224) Nara, M.; Masuda, S.; Torii, H.; Tasumi, M. Spectrosc. Biol.Mol., Eur. Conf., 6th 1995, 113-4.

(O225) Baumruk, V.; Endova, M.; Mojzes, P.; Rosenberg, I.; Smolikova,E.; Stepanek, J.; Tocik, Z. Spectrosc. Biol. Mol., Eur. Conf., 6th1995, 319-20.

(O226) Huang, Z.; Wang, L.; Keiderling, T. Spectrosc. Biol. Mol., Eur.Conf., 6th 1995, 321-2.

(O227) Carmona, P.; Molina, M.; Lasagabaster, A. Spectrosc. Biol. Mol.,Eur. Conf., 6th 1995, 329-30.

(O228) Zhang, L.; Liang, H.; Wang, J.; Li, W.; Yu, T. Photosynth. Res.1996, 48(3), 379-84.

(O229) Noguchi, T., Kusumoto, N.; Inoue, Y.; Sakurai, H. Biochemistry1996, 35(48), 15428-35.

(O230) Cadet, F.; Offman, B. Spectrosc. Lett. 1996, 29(7), 1353-65.(O231) Chia, N.; Mendelsohn, R. Biochim. Biophys. Acta 1996,

1283(2), 141-50.(O232) Costantino, H.; Griebenow, K.; Mishra, P.; Langer, R.; Klibanov,

A. Biochim. Biophys. Acta 1995, 1253(1), 69-74.(O233) Pohle, W.; Selle, C. Chem. Phys. Lipids 1996, 82(2), 191-8.(O234) Raussens, V.; Narayanaswami, V.; Goormaghtigh, E.; Ryan, R.;

Ruysschaert, J. J. Biol. Chem. 1996, 271(38), 23089-95.(O235) Liu, K.; Mantsch, H.; Ramjiawan, B.; Pierce, G. Biospectroscopy

1996, 2(1), 39-45.(O236) Brandenburg, K.; Seydel, U. In Infrared Spectroscopy of Bio-

molecules; Mantsch, H. H., Chapman, D., Eds.; Wiley-Liss:New York, 1996; pp 203-37.

(O237) Liquier, J.; Taillandier, E. In Infrared Spectroscopy of Biomol-ecules; Mantsch, H. H., Chapman, D., Eds.; Wiley-Liss: NewYork, 1996; pp 131-58.

(O238) Lewis, R.; McElhaney, R. In Infrared Spectroscopy of Biomol-ecules; Mantsch, H. H., Chapman, D., Eds.; Wiley-Liss: NewYork, 1996; pp 159-202.

(O239) Torii, H.; Tasumi, M. In Infrared Spectroscopy of Biomolecules;Mantsch, H. H., Chapman, D., Eds.; Wiley-Liss: New York,1996; pp 1-18.

(O240) Alben, J. In Infrared Spectroscopy of Biomolecules; Mantsch, H.H., Chapman, D., Eds.; Wiley-Liss: New York, 1996; pp 19-37.

(O241) Marechal, Y.; Chamel, A. J. Phys. Chem. 1996, 100(20), 8551-5.

(O242) Bartl, F.; Zundel, G.; Brzezinski, B. J. Mol. Struct. 1996,377(2), 193-200.

(O243) Menendez, M.; Gasset, M.; Laynez, J.; Lopez-Zumel, G.;Usobiaga, P.; Toepfer-Petersen, E.; CalVete, J. Eur. J. Biochem.1995, 234(3), 887-96.

(O244) Fragata, M.; Bellemare, F.; Nenonene, E. J. Phys. Chem. B1997, 101(10), 1916-21.

(O245) Ludlam, C.; Arkin, I.; Liu, X.; Rothman, M.; Raath, P.; Aimoto,S.; Smith, S.; Engelman, D.; Rothschild, K. Biophys. J. 1996,70(4), 1728-36.

(O246) Florian, J.; Baumruk, V.; Leszczynski, J. J. Phys. Chem. 1996,100(13), 5578-89.

(O247) Mendelsohn, R.; Liang, G.; Strauss, H.; Snyder, R. Biophys. J.1995, 69(5), 1987-98.

(O248) Huang, W.; Hu, T.; Peng, Q.; Soloway, R.; Weng, S.; Wu, J.Biospectroscopy 1995, 1(4), 291-6.

(O249) Schmitz, H.; Huebner, W. Biospectroscopy 1995, 1(4), 275-89.

(O250) Methot, N.; Demers, C.; Baenziger, J. Biochemistry 1995,34(46), 4(46), 15142-9.

(O251) Zeroual, W.; Millot, J.; Choisy, C.; Manfait, M. Biospectroscopy1995, 1(6), 365-73.

(O252) Veness, R.; Evans, C. J. Chromatogr. 1996, 721(1), 165-72.(O253) Soederstroem, M.; Bjoerk, H.; Haekkinen, Besa, M.; Kosti-

ainen, O.; Kuitunen, M.; Rautiom, M. J. Chromatogr. 1996,742(1+2), 191-203.

(O254) Ferary, S.; Auger, J.; Touche, A. Talanta 1996, 43(3), 349-57.

(O255) Meyer, E.; Van Bocxlaer, J.; Lambert, W.; Thienpont, L.; DeLeenheer, A. J. Anal. Toxicol. 1996, 20(2), 116-20.

174R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

(O256) Ojanpera, I.; Hyppola, R.; Vuori, E. Forensic Sci. Int. 1996,80(3), 201-9.

(O257) Veness, R.; Evans, C. J. Chromatogr. 1996, 750(1+2), 311-6.

(O258) Climent, M.; Miranda, M. J. Agric. Food Chem. 1997, 45(5),1916-9.

(O259) Fogel, C.; Grzybek, S.; Hienerwadel, R.; Okamura, M. Y.;Paddock, M. L.; Breton, J.; Nabedryk, E.; Maentele, W.Photosynth.: Light Biosphere, Proc. Int. Photosynth. Congr., 10th1995, 1, 591-4.

(O260) Kandori, H.; Yamazake, Y.; Hatanaka, M.; Needleman, R.;Brown, L.; Richter, H.; Lanyi, J.; Maeda, A. Biochemistry 1997,36(17), 5134-41.

(O261) Dioumaev, A.; Braiman, M. J. Phys. Chem. 1997, 101(9),1655-62.

(O262) Barth, A.; Corrie, J.; Gradwell, M.; Maeda, Y.; Maentele, W.;Meier, T.; Trentham, D. J. Am. Chem. Soc. 1997, 119(18),4149-59.

(O263) Barth, A.; Germar, R. v.; Kreutz, W.; Maentele, W. Spectrosc.Biol. Mol., Eur. Conf., 6th 1995, 147-8.

(O264) Barth, A.; von Germar, F.; Kreutz, W.; Maentele, W. J. Biol.Chem. 1996, 271(48), 30637-46.

(O265) Reinstaedler, D.; Fabian, H.; Backmann, J.; Naumann, D.,Biochemistry 1996, 35(49), 15822-30.

(O266) Williams, S.; Causgrove, T.; Gilmanshin, R.; Dyer, R., Woodruff,W.; Callender, R. Spectrosc. Biol. Mol., Eur. Conf., 6th 1995,105-6.

(O267) Troullier, A.; Gerwert, K.; Dupont, Y. Biophys. J. 1996, 71(6),2970-83.

(O268) Goormaghtigh, E. Chim. Nouv. 1996, 14(53), 1553-9.(O269) Sonveaux, N.; Goormaghtigh, E.; Ling, V.; Ruysschaert, J. J.

Biol. Chem. 1996, 271(40), 24617-24.(O270) Borel, M.; Lynch, B. Can. J. Appl. Spectrosc., 1993, 38(1), 18-

21.(O271) Mueller, E.; Giehl, A.; Schwarzmann, G.; Sandhoff, K.; Blume,

A. Biophys. J. 1996, 71(3), 1400-21.(O272) Franck, P.; Sallerin, J.; Schroeder, H.; Gelot, M.; Nabet, P. Clin.

Chem. 1996, 42(12), 2015-20.(O273) Tatulian, S.; Hinterdorfer, P.; Baber, G.; Tamm, L. EMBO J.

1995, 14(22), 5514-23.(O274) Axelsen, P.; Kaufman, B.; McElhaney, R.; Lewis, R. Biophys.

J. 1995, 69(6), 2770-81.(O275) Homble, F.; Raussens, V.; Ruysschaert, J.-M.; Grouzis, J.-P.;

Goormaghtigh, E. Biospectroscopy 1996, 2(3), 193-203.(O276) Subramanian, D. J. Soc. Cosmet. Chem 1995, 46(3), 153-62.(O277) Heberle, J.; Zscherp, C. Appl. Spectrosc. 1996, 50(5), 588-

96.(O278) Yokomizo, Y. J. Controlled Release 1996, 42(3), 249-62.(O279) Kugo, K.; Matsutani, K.; Nshinio, J. Adv. Biomater. Biomed.

Eng. Drug Delivery Syst. 1995, 233-4.(O280) Goormaghtigh, E.; de Jongh, H.; Ruysschaert, J. Appl. Spec-

trosc. 1996, 50(12), 1519-27.(O281) Jadoul, A.; Doucet, J.; Durand, D.; Preat, V. J. Controlled Release

1996, 42(2), 165-73.(O282) De Jongh, H.; Goormaghtigh, E.; Ruysschaert, J. Anal. Bio-

chem. 1996, 242(1), 95-103.(O283) Ball, A.; Jones, R. Langmuir 1995, 11, 1(9), 3542-8.(O284) Goormaghtigh, E.; de Jongh, H.; Ruysschaert, J. M. Spectrosc.

Biol. Mol., Eur. Conf., 6th 1995, 71-2.(O285) Severdia, A.; Bullock, J.; Johnston, D. Appl. Spectrosc. 1996,

50(12), 1603-5.(O286) Fahmy, K.; Siebert, F.; Sakmar, T. Spectrosc. Biol. Mol., Eur.

Conf., 6th 1995, 171-2.(O287) Zscherp, C.; Bueldt, G.; Heberle, J. Spectrosc. Biol. Mol., Eur.

Conf. 6th 1995, 177-8.(O288) Giehl, A.; Mueller, E.; Blume, A.; Sandhoff, K.; Schwarzmann,

G. Spectrosc. Biol. Mol., Eur. Conf., 6th 1995, 371-2.(O289) Baty, A.; Suci, P.; Tyler, B.; Geesey, G. J. Colloid Interface Sci.

1996, 177(2), 307-15.(O290) Yokomizo, Y.; Sagitani, H. J. Pharm. Sci. 1996, 85(11), 1220-

26.(O291) Mueller, M.; Werner, C.; Grundke, K.; Eichhorn, K. J.;

Jacobasch, H.-J. Macromol Symp. 1996, 103, 55-72 (Polymersand Medicine).

(O292) Qing, H.; Yanlin, H.; Fenlin, S.; Zuyi, T., Spectrochim. Acta,Part A 1996, 52A(13), 1795-800.

(O293) Nardviriyakul, N.; Wurster, D.; Donovan, M. J. Pharm. Sci.1997, 86(1), 19-25.

(O294) Sockalingum, G. D.; Bouhedja, W.; Pina, P.; Allouch, P.;Mandray, C.; Labia, R.; Millot, J. M.; Manfait, M. Biochem.Biophys. Res. Commun. 1997, 232(1), 240-6.

(O295) Mink, J.; Horvath, E.; Kristof, J.; Gal, T.; Veress, T. Mikrochim.Acta 1995, 119(1-2), 129-35.

(O296) Duran, N.; Ferraz, A.; Esposito, E.; Jara, A.; Castro e Silva, A.Proc. Braz. Symp. Chem. Lignins Other Wood Compon., 3rd1993, 343-7.

(O297) Otsuka, M.; Matsuda, M. Pharm. Sci. 1995, 1(4), 167-8.(O298) Otsuka, M.; Matsuda, Y. J. Pharm. Sci. 1996, 85(1), 112-6.(O299) Parker, R.; Frost, R. Proc. Int. Clay Conf., 10th 1993 300-3.(O300) Goodacre, R.; Timmins, E.; Rooney, P.; Rowland, J.; Kell, D.

FEMS Microbiol Lett. 1996, 140(2-3), 233-9.(O301) Bugay, D.; Newman, A.; Findlay, W. J. Pharm. Biomed. Anal.

1996, 15(1), 49-61.

(O302) Kalasinsky, V. Applied Spectrosc. Rev. 1996, 31(3), 193-249.(O303) Gadaleta, S.; Camacho, N.; Mendelsohn, R.; Boskey, A. Calcif.

Tissue Int. 1996, 58(1), 17-23.(O304) Yue, W.; He, J.; Xie, R.; Xu, J.; Zhu, K.; Weng, S. Sci. China,

Ser. C: Life Sci. 1996, 39(3), 234-42.(O305) Choo, L.; Wetzel, D.; Halliday, W.; Jackson, M.; LeVine, S.;

Mantsch, H. Biophys. J. 1996, 71(4), 1672-9.(O306) Hayashi, J., Saito, T.; Aizawa, K. Ther. Res. 1995, 16(9), 3064-

7.(O307) Stewart, D. Appl. Spectrosc. 1996, 50(3), 357-65.(O308) Estepa-Maurice, L.; Hennequin, C.; Lacour, B.; Daudon, M.

Spectrosc. Biol. Mol., Eur. Conf., 6th 1995, 461-2.(O309) Ende, M.; Peppas, N. Pharm. Res. 1995, 12(12), 2030-5.(O310) Lin, S.; Duan, K.; Lin, T. Spectrochim. Acta, Part A 1996,

52A(12), 1671-8.(O311) Paschalis, E.; DiCarlo, E.; Betts, F.; Sherman, P.; Mendelsohn,

R.; Boskey, A. Calcif. Tissue Int. 1996, 59(6), 480-7.(O312) Sun, L.; Durrani, C.; Donald, A.; Rillery-Travisw, A.; Lenney,

J. Biophys. Chem. 1996, 61(2-3), 143-50.(O313) Camacho, N.; Landis, W.; Boskey, A. Connect. Tissue Res.

1996, 35(1-4), 259-65.(O314) Paschalis, E.; Jacenko, O.; Olsen, B.; Decrombrugghe, B.;

Boskey, A. Connect. Tissue Res. 1996, 35(1-4), 371-7.(O315) Noda, M.; Kimura; M.; Ohta, T.; Kinoshita, A.; Kubo, F.;

Kuzuya, N.; Kanazawa, Y. Inst. Congr. Ser. 1995, 1100, 1128-32 (Diabetes 1994).

(O316) Kuenstner, J.; Norris, K. J. Near Infrared Spectrosc. 1995, 3(1),11-8.

(O317) Norris, K.; Kuenstner, J. Leaping Ahead Near Infrared Spec-trosc., 6th 1994, 431-6.

(O318) Spanner, G.; Niessner, R. Fresenius J. Anal. Chem. 1996,355(3-4), 327-8.

(O319) Pan, S.; Chung, H.; Arnold, M.; Small, G. Anal. Chem. 1996,68(7), 1124-35.

(O320) Chung, H.; Arnold, M.; Rhiel, M.; Murhammer, D. Appl.Spectrosc. 1996, 50(2), 270-6.

(O321) Shaffer, R.; Small, G.; Arnold, M. Anal. Chem. 1996, 68(15),2663-75.

(O322) Qu, J.; Wilson, B. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2679,236-42 (Advances in Laser and Light Spectroscopy to Diag-nose Cancer and Other Diseases III: Optical Biopsy).

(O323) Mcshane, M.; Cote, G.; Spiegelman, C. Proc. SPIE-Int. Soc.Opt. Eng. 1997, 2982, 189-97 (Optical Diagnostics ofBiological Fluids and Advanced Techniques in AnalyticalCytology).

(O324) Wallon, J.; Yan, S.; Tong, J.; Meurens, M.; Haot, J. Proc. Int.Conf. Near Infrared Spectrosc., 6th 1994, 437-40.

(O325) Tong, J.; Meurens, M.; Noel, H. Near Infrared Spectrosc.:Future Waves, Proc. Int. Conf. Near Infrared Spectrosc., 7th1995, 334-6.

(O326) Wallon, J.; Yan, S.; Haot, J. Near Infrared Spectrosc.: FutureWaves, Proc. Int. Conf. Near Infrared Spectrosc., 7th 1995,337-42.

(O327) Martin, K., Near Infrared Spectrosc.: Future Waves, Proc. Int.Conf. Near Infrared Spectrosc., 7th 1995, 328-33.

(O328) Zheng, L.; Lee, H. Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2676,241-9 (Biomedical Sensing, Imaging, and Tracking Technolo-gies I).

(O329) George, A.; Patonay, G.; Crow, S. Near Infrared Spectrosc.:Future Waves, Proc. Int. Conf. Near Infrared Spectrosc., 7th1995, 323-7.

(O330) Kumar, G.; Schmitt, J. Appl. Opt. 1997, 36(10), 2286-93.(O331) Shaw, R.; Kotowich, S.; Mantsch, H.; Leroux, M. Clin. Biochem.

1996, 29(1), 11-9.(O332) Kusaka, T.; Isobe, K.; Kawada, K.; Ishii, Y.; Imal, T.; Itoh, S.;

Onishi, S.; Hirao, K., Photomed. Photobiol. 1995, 17, 63-5.(O333) Kumar, G.; Schmitt, J. Proc. SPIE-Int. Soc. Opt. Eng. 1996,

2678, 442-53 (Optical Diagnostics of Living Cells and Biof-luids).

(O334) Hock, C.; Villringer, K.; Mueller-Spahn, F.; Wenzel, R.; Heek-eren, H.; Schuh-Hofer, S.; Hofmann, M.; Minoshima, S.;Schwaiger, M.; Dirnagl, U.; Villringer, A. Brain Res. 1997,755(2), 293-303.

(O335) Kawai, Y.; Okuda, Y.; Ogura, K. World Congr. Microcirc., 6th1996, 697-701.

(O336) Sowa, M.; Mansfield, J.; Scarth, G.; Mantsch, H. Appl. Spectrosc.1997, 51(2), 143-52.

(O337) Domjan, G.; Jako, J.; Valyi-Nagy, I. Near Infrared Spectrosc.:Future Waves, Proc. Int. Conf. Near Infrared Spectrosc., 7th1996, 353-6.

(O338) Valyi-Nagy, I.; Jado, J.; Domjan, G. Near Infrared Spectrosc.:Future Waves, Proc. Int. Conf. Near Infrared Spectrosc., 7th1996, 343-6.

(O339) Gatin, M.; Long, J.; Schmitt, P.; Galley, P.; Price, J. NearInfrared Spectrosc.: Future Waves, Proc. Int. Conf. Near InfraredSpectrosc. 1996, 347-52.

(O340) Verdaguer-Codina, J.; Pujol, P.; Drobnic, F.; Galilea, P.; Riera,J.; Pons, V.; Banquells, M.; Ruiz, O. Proc. SPIE-Int. Soc. Opt.Eng. 1995, 2626, 375-86.

(O341) Hock, C.; Mueller-Spahn, F.; Schuh-Hofer, S.; Hofmann, M.;Dirnagl, U.; Villringer, A. J. Cereb. Blood Flow Metab. 1995,15(6), 1103-8.

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 175R

(O342) Verdaguer-Codina, J. Proc. SPIE-Int. Soc. Opt. Eng. 1996,2925, 255-60 (Photon Propagation in Tissues II).

(O343) Cooper, C.; Elwell, C.; Meek, J.; Matcher, S.; Wyatt, J.; Cope,M.; Delpy, D. Pediatr. Res. 1996, 39(1), 32-8.

(O344) Thorniley, M.; Sammut, I.; Simpkin, S.; Green, C. Biochem.Soc. Trans. 1995, 23(4), 525S.

(O345) Stein, J.; Purschian, B.; Zeuzem, S.; Lembcke, B.; Caspary, W.Clin. Chem. 1996, 42(2), 309-12.

(O346) Yoxall, C.; Weindling, A. Pediatr. Res. 1996, 39(6), 1103-6.(O347) Takeuchi, A.; Itabashi, A.; Araki, R. Kensa to Gijutsu 1996,

24(5), 471-3.(O348) Hall, J.; Pollard, A., Leaping Ahead Near Infrared Spectrosc.,

6th 1994, 421-30.(O349) Nahm, W.; Gehring, H. Sens. Actuators 1995, B29(1-3), 174-

9.(O350) Dempsey, R.; Davis, D.; Buice, R.; Lodder, R. Appl. Spectrosc.

1996, 50(2), 18A-34A.(O351) Watanabe, E.; Yamashita, Y.; Make, A.; Ito, Y.; Koizumi, H.

Neurosci. Lett. 1996, 205(1), 41-4.(O352) Matsumoto, H.; Oda, T.; Hossain, M.; Yoshimura, N. Anesth.

Analg. 1996, 83(3), 513-8.(O353) Liu, Y.; Sakurai, K.; Miura, T.; Cho, R. K.; Ozaki, Y. Leaping

Ahead Near Infrared Spectrosc. 1994, 71-4.(O354) Beker, O.; Postma, C.; Fischer, J.; Franck, P.; Lombarts, A.

Eur. J. Clin. Chem. Clin. Biochem. 1996, 34(7), 561-3.(O355) Hamaoka, T.; Iwane, H.; Shimomitsu, T.; Katsumura, T.;

Murase, N.; Nishio, S.; Osada, T.; Kurosawa, Y.; Chance, Br.J. Appl. Physiol. 1996, 81(3), 1410-7.

(O356) Caliari, S.; Vantini, I.; Sembenini, C.; Gregori, B.; Carnielli, V.;Benini, L. Scand. J. Gastroenterol. 1996, 3199, 863-7.

(O357) Wolf, M.; Bucher, H. U.; Keel, M.; Von Siebenthal, K.; Duc,G. Adv. Exp. Med. Biol. 1996, 388 93-9 (Oxygen Transportto Tissue XVII).

(O358) Cooper, C.; Springett, R.; Panagiotopoulou, A.; Penrice, J.Biochem. Soc. Trans. 1996, 24(3), 448S.

(O359) Macnab, A.; Gagnon, R., Anal. Biochem. 1996, 236(2), 375-7.

(O360) Miller, N. R. Soc. Chem. 1996, 181, 69-72 (Natural Antioxi-dants and Food Quality in Atherosclerosis and Cancer Preven-tion).

(O361) Zhou, X.; Chung, H.; Arnold, M.; Rhiel, M.; Murhammer, D.ACS Symp. Ser. 1995, No. 613, 116-32 (Biosensor andChemical Sensor Technology).

(O362) Sauer, K.; Cogdell, R.; Prince, S.; Freer, A.; Isaacs, N.; Scheer,H. Photochem. Photobiol. 1996, 64(3), 564-76.

(O363) Gagnon, R.; Gagvon, F.; Macnab, A. Eur. J. Appl. Physiol. Occup.Physiol. 1996, 74(6), 487-95.

(O364) Cho, R.; Lee, J.; Ahn, J.; Ozaki, Y.; Iwamoto, M., J. Near InfraredSpectrosc. 1995, 3(2), 73-9.

(O365) Leupold, D. Photochem. Photobiol. 1995, 62(6), 984-96.(O366) Yamashita, Y.; Maki, A.; Koizumi, H. Rev. Sci. Instrum. 1996,

67(3, Pt. 1), 730-2.(O367) Di Luzio, C.; Morzilli, S.; Cardinale, E. Beitr. Tabakforsch. Int.

1995, 16(4), 171-89.(O368) Shinohara, H.; Tanaka, A.; Kitai, T.; Yanabu, N.; Inomoto, T.;

Satoh, S.; Hatano, E.; Yamaoka, Y.; Hirao, K. Hepatology 1996,23(1), 137-44.

(O369) Atanassova, S.; Djouvinov, D.; Enev, E.; Todorov, N. NearInfrared Spectrosc.; Future Waves, Proc. Int. Conf. Near InfraredSpectrosc., 7th 1995, 548-51.

(O370) Sakanoue, J.; Ichikawa, K.; Nomura, Y.; Tamura, M. J. Biochem.1997, 121(1), 29-37.

(O371) Yano, T.; Harata, M.; Aimi, T.; Nakano, Y. Anim. Cell Tech-nol.: Dev. 21st Century 1994, 357-361.

(O372) Reeves, J., III; Glenn, B. J. Dairy Sci. 1995, 78(9), 1962-9.(O373) Guggenbuhl, P. Methods Find. Exp. Clin. Pharmol. 1995,

17(9), 621-7.(O374) Ohdan, H.; Fududa, Y.; Suzuki, S.; Amamiya, H.; Dohi, K.

Transplantation 1995, 60(6), 530-5.(O375) Tano, T.; Harata, M. Leaping Ahead Near Infrared Spectrosc.,

6th 1994, 417-20.(O376) Murray, I.; Paterson, R. M.; Chen, X. B.; De B. Hovel, F. D.

Leaping Ahead Near Infrared Spectrosc., 1994, 492-6.(O377) Wolf, T.; Lindauer, U.; Obrig, H.; Dreier, J.; Back, T.; Villringer,

A.; Dirnagl, U. Cereb. Blood Flow Metab. 1996, 16(6), 1100-7.

(O378) Kanashiro, M. Ther. Res. 1996, 17(6), 2000-6.(O379) Tureen, J.; Liu, Q.; Chow, L. Pediatr. Res. 1996, 40(5), 759-

63.(O380) Wolf, T.; Arnold, G.; Dreier, J.; Back, T.; Villringer, A.; Dirnagl,

U. Front. Headache Res. 1995, 5, 107-12 (ExperimentalHeadache Models).

(O381) Van Beek, J.; Osbakken, M.; Chance, B. Adv. Exp. Med. Biol.1996, 388, 147-54 (Oxygen Transport to Tissue XVII).

(O382) Nerella, N.; Drennen, J. Appl. Spectrosc. 1996, 50(2), 285-91.

(O383) Muller, D.; Kapral, T. Near Infrared Spectrosc.: Future Waves,Proc. Int. Conf. Near Infrared Spectrosc., 7th 1995, 357-64.

(O384) Bertha-Somodi, Z.; Pap-Sziklay, Z.; Kaffka, K. Near InfraredSpectrosc.: Future Waves, Proc. Int. Conf. Near InfraredSpectrosc., 7th 1995, 365-72.

(O385) Steffens, K.-J.; List, K. World Meet. Pharm., Biopharm. Pharm.Technol., 1st 1995, 155-6.

(O386) Wargo, D.; Drennen, J. J. Pharm. Biomed. Anal. 1996, 14(11),1415-23.

(O387) Jouan-Rimbaud, D.; Khots, M.; Massart, D.; Last, I.; Prebble,K. Anal. Chim. Acta 1995, 315(3), 257-66.

(O388) Gottfries, J.; Depui, H.; Fransson, M.; Jongeneelen, M.;Josefson, M.; Langkilde, F.; Witte, D. J. Pharm. Biomed. Anal.1996, 14(11), 1495-503.

(O389) Van Zyl, E.; Louw, M., J. Forensic Sci. 1995, 40(6), 1072-6.(O390) Dreassi, E.; Ceramelli, G.; Corti, P.; Piero, L. Analyst 1996,

121(2), 219-22.(O391) Nahm, W.; Gehring, H. Sens. Actuators 1995, B29(1-3), 174-

9.(O392) Jedvert, I.; Johansson, S.; Langkilde, F.; Haessle, A. Kem.

Tidskr./Kemivaerlden 1996, 108(6), 44-6.(O393) Weiler, H.; Sarinas, S. Leaping Ahead Near Infrared Spectrosc.,

6th 1994, 412-6.(O394) Hearn, M.; Celi, P.; Chanyaputhipong, P.; Chi, W.; Kang, J.;

Katz, A.; Shah, R.; Thai, M.; Ung, P. J. Near Infrared Spectrosc.1995, 3(1), 19-23.

(O395) Dyer, D.; Feng, P. Near Infrared Spectrosc.; Future Waves, Proc.Int. Conf. Near Infrared Spectrosc.; 7th 1995, 490-3.

(O396) Patrick, B.; Jolliff, G. J. Am. Oil Chem. Soc. 1997, 74(3), 273-6.

(O397) Prasad, M. Biomass Bioenergy 1995, 8(3), 203-5.(O398) Bengtsson, S.; Bergloef, T.; Sjoeqvist, T. J. Agric. Food Chem.

1996, 44(8), 2260-5.(O399) Hanna, K., Rees, G.; Robinson, B.; Svensson, M. Biotechnol.

Tech. 1996, 10(10), 767-72.(O400) Dosi, E.; Vaccari, G.; Campi, A. L.; Mantovani, G.; Gonzalez-

Vara Y.; Trilli, A. Near Infrared Spectrosc.: Future Waves, Proc.Int. Conf. Near Infrared Spectrosc., 7th 1995, 249-54.

(O401) Brookes, I.; Gedge, B.; Hammond, S. Near Infrared Spec-trosc.: Future Waves, Proc. Int. Conf. Near Infrared Spectrosc.,7th, 1995, 259-267.

(O402) Hall, J.; McNeil, B.; Rollins, M.; Draper, I.; Thompson, B.;Macaloney, G. Appl. Spectrosc. 1996, 50(1), 102-8.

(O403) Hall, J.; Macaloney, G.; Rollins, M. Leaping Ahead Near InfraredSpectrosc., 6th 1994, 514-8.

(O404) Lim, M.; Jackson, T.; Anfinrud, P. J. Phys. Chem. 1996,100(29), 12043-51.

(O405) Colier, W.; Van Haaren, N.; Van De Ven, M.; Folgering, H.;Oeseburg, B. J. Biomed. Opt. 1997, 2(2), 162-70.

(O406) Raimbault, C.; Buchet, R.; Vial, C. Eur. J. Biochem. 1996,240(1), 134-42.

(O407) Sonar, S.; Lee, C.; Ludlam, C.; Liu, X.; Coleman, M.; Marti, T.;RajBhandary, U.; Rothschild, K. Technol. Protein Chem, VII9th 1995, 151-9.

(O408) Ryan, S.; Demers, C.; Chew, J.; Baenziger, J. J. Biol. Chem.1996, 271(40), 24590-7.

(O409) Hienerwadel, R.; Boussac, A.; Breton, J.; Berthomieu, C.Biochemistry 1996, 35(48), 15447-60.

(O410) Luebben, M.; Gerwert, K. FEBS Lett. 1996, 397(2, 3), 303-7.

(O411) Hienerwadel, R., Berthomieu, C. Biochemistry 1995, 34(50),16288-97.

(O412) Foerstendorf, H.; Mummert, E.; Schaefer, E.; Scheer, H.;Siebert, F. Biochemistry 1996, 35(33), 10793-9.

(O413) Hienerwadel, R.; Boussac, A.; Breton, J.; Berthomieu, C.Spectrosc. Biol. Mol., Eur. Conf., 6th 1995, 193-6.

(O414) Weidlich, O.; Friedman, N.; Sheves, M.; Siebert, F. Biochemistry1995, 34(41), 13502-10.

(O415) Breton, J.; Nabedryk, E. Biochim. Biophys. Acta 1996, 1275(1/2), 84-90.

(O416) Foerstendorf, H.; Parbel, A.; Scheer, H.; Siebert, F. FEBS Lett.1997, 402(2, 3), 173-6.

(O417) Breton, J.; Nabedryk, E., Photosynth.: Light Biosphere, Proc.Int. Photosynth. Congr., 10th 1995, 1, 395-400.

(O418) Nishimura, S.; Kandori, H.; Nakagawa, M.; Tsuda, M.; Maeda,A. Biochemistry 1997, 36(4), 864-70.

(O419) Troullier, A.; Gerwert, K.; Dupont, Y. Biophys. J. 1996, 71(6),2970-83.

(O420) Mitchell, D.; Shapleigh, J.; Archer, A.; Alben, J.; Gennis, R.Biochemistry 1996, 35(29), 9446-50.

(O421) Rammelsberg, R.; Hessling, B.; Chorongiewski, H.; Gerwert,K. Appl. Spectrosc. 1997, 51(4), 558-62.

(O422) Breton, J.; Nabedryk, E.; Allen, J.; Williams, J. Biochemistry1997, 36(15), 4515-25.

(O423) Raimbault, B.; Besson, F.; Buchet, R. Eur. J. Biochem. 1997,244(2), 343-51.

(O424) Breton, J.; Nabedryk, E.; Mioskowski, C.; Boullais, C. React.Cent. Photosynth. Bacteriol.: Struct. Dyn., Proc. Workshop1995, 381-94.

(O425) Baymann, F.; Robertson, D. E.; Maentele, W. Photosynth.: LightBiosphere, Proc. Int. Photosynth. Congr., 10th 1995, 2, 611-4.

(O426) Hienerwadel, R.; Boussac, A.; Breton, J.; Berthomieu, C.Photosynth.: Light Biosphere, Proc. Int. Photosynth. Congr., 10th1995, 1, 747-50.

(O427) Neault, J.; Tajmir-Riahi, H. J. Biol. Chem. 1997, 272(14),8901-4.

(O428) Sibai, A.; Elamri, K.; Barbier, D.; Jaffrezic-Renault, N.; Soutey-rand, E. Sens. Actuators 1996, B31(1-2), 125-30.

176R Analytical Chemistry, Vol. 70, No. 12, June 15, 1998

(O429) Nadebryk, E. In Infrared Spectroscopy of Biomolecules; Mantsch,H. H., Chapmsn, D., Eds.; Wiley-Liss: New York, 1996; pp39-81.

(O430) Cown, B.; Hochstrasser, R. In Infrared Spectroscopy of Biomol-ecules; Mantsch, H. H., Chapman, D., Eds.; Wiley-Liss: NewYork, 1996; pp 107-29.

(O431) Hill, J., Dlott, D.; Rella, C.; Smith, T.; Schwettman, H.; Peterson,K.; Kwok, A.; Rector, K.; Fayer, M. Biospectroscopy 1996, 2(5),277-99.

(O432) Ye, T.; Arnold, C.; Pattison, D.; Anderton, C.; Dukic, D.; Perutz,R.; Hester, R.; Moore, J. Appl. Spectrosc. 1996, 50(5), 597-607.

(O433) Zinth, W.; Arlt, T.; Penzkofer, H.; Hamm, P.; Bibidova, M.;Dohse, B.; Oesterhelt, D.; Meyer, M.; Scheer, H. Photosynth.;Light Biosphere, Proc. Int. Photosynth. Congr., 10th 1995, 1,389-94.

(O434) Rella, C.; Dwok, A.; Rector, K.; Hill, J.; Schwettman, H.; Dlott,D.; Fayer, M. Phys. Rev. Lett. 1996, 77(8), 1648-51.

(O435) Rella, C.; Rector, K.; Dwok, A.; Hill, J.; Schwettman, H.; Dlott,D.; Fayer, M. J. Phys. Chem. 1996, 100(38), 15620-9.

(O436) Rector, K.; Rella, C.; Hill, J.; Kwok, A.; Sligar, S.; Chien, E.;Dlott, D.; Fayer, M. J. Phys. Chem. B 1997, 101(8), 1468-75.

(O437) Hu. X.; Frei, H.; Spiro, T. Biochemistry 1996, 35(40), 13001-5.

(O438) Hage, W.; Kim, M.; Frei, H.; Mathies, R. J. Phys. Chem. 1996,100(39), 16026-33.

(O439) Wynne, K.; Haran, G.; Reid, G.; Moser, C.; Dutton, P.;Hochstrasser, R. J. Phys. Chem. 1996, 100(12), 5140-8.

(O440) Haran, G.; Wynne, K.; Moser, C.; Dutton, P.; Hochstrassner,R. Springer Ser. Chem. Phys. 1996, 62, 326-7 (UltrafastPhenomena X).

(O441) Hamm, P.; Zurek, M.; Zinth, W. Photosynth.: Light Biosphere,Proc. Int. Photosynth. Congr., 10th 1995, 1, 751-4.

A1980006K

Analytical Chemistry, Vol. 70, No. 12, June 15, 1998 177R