16
INFRARED PHOTODISSOCIATION SPECTROSCOPY OF Cr 2+ (H 2 O)Ar n AND Cr + (H 2 O)Ar COMPLEXES P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN Department of Chemistry, University of Georgia, Athens, GA, 30602 www.arches.uga.edu/~maduncan/ U. S. Department of Energy

INFRARED PHOTODISSOCIATION SPECTROSCOPY OF Cr 2+ (H 2 O)Ar n AND Cr + (H 2 O)Ar COMPLEXES P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN Department

Embed Size (px)

Citation preview

Page 1: INFRARED PHOTODISSOCIATION SPECTROSCOPY OF Cr 2+ (H 2 O)Ar n AND Cr + (H 2 O)Ar COMPLEXES P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN Department

INFRARED PHOTODISSOCIATION SPECTROSCOPY OF Cr2+(H2O)Arn AND Cr+

(H2O)Ar COMPLEXES

P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN

Department of Chemistry, University of Georgia, Athens, GA, 30602

www.arches.uga.edu/~maduncan/

U. S. Department of Energy

Page 2: INFRARED PHOTODISSOCIATION SPECTROSCOPY OF Cr 2+ (H 2 O)Ar n AND Cr + (H 2 O)Ar COMPLEXES P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN Department

Motivation

• Understand solvation on a molecular scale

• Metal cation solvation is integral to several chemical and biological processes

• Most work has been performed on singly charged species

• Most metals exist in higher oxidation states in the bulk phase

Page 3: INFRARED PHOTODISSOCIATION SPECTROSCOPY OF Cr 2+ (H 2 O)Ar n AND Cr + (H 2 O)Ar COMPLEXES P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN Department

Previous Work

• First studies focused on bulk phase measurements of multiply charged metal complexes

• Difficulty in producing stable species in the gas phase• Generated ions by electrospray and analyzed with mass

spectrometric methods (Kebarle, Posey, Williams, Metz, Stace, Schwarz, etc.)

• Electronic Spectroscopy performed by Metz and coworkers

• Recently, IR spectroscopy by Williams and coworkers on Ca2+(H2O)n and Cu2+(H2O)n

Page 4: INFRARED PHOTODISSOCIATION SPECTROSCOPY OF Cr 2+ (H 2 O)Ar n AND Cr + (H 2 O)Ar COMPLEXES P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN Department

LaserVision OPO/OPA

2000-4400 cm-1

Cold ions produced through laser vaporization/supersonic expansion

Cations are mass selected Ion densities are too low for

absorption Use IR-REPD

Page 5: INFRARED PHOTODISSOCIATION SPECTROSCOPY OF Cr 2+ (H 2 O)Ar n AND Cr + (H 2 O)Ar COMPLEXES P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN Department

100 200 300

Cr2+(H2O)Ar

m

m = 0

6

m/z

Cr2+

Cr2+Arn

n = 1

5

Page 6: INFRARED PHOTODISSOCIATION SPECTROSCOPY OF Cr 2+ (H 2 O)Ar n AND Cr + (H 2 O)Ar COMPLEXES P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN Department

Metal Ion Water Complexes: M2+(H2O)

IP(Cr) 6.7 eV

2nd IP(Cr) 16.5 eV

IP (H2O) 12.6 eV

•Difficulty in producing due to efficient charge transfer•Other sources take advantage of bulk solution phase•Stace and Schwarz have used techniques to ionize the complex•In this source the singly charged complex is ionized

Asymptotically Stable

Asymptotically Unstable

Page 7: INFRARED PHOTODISSOCIATION SPECTROSCOPY OF Cr 2+ (H 2 O)Ar n AND Cr + (H 2 O)Ar COMPLEXES P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN Department

Binding Energy (D0; kcal/mol) vs Photon Energy

Mn+-H2O Mn+-Ar

IR Photon

loss of argon

Ar

Ar

M+

Cr+ 30.9 (10,807 cm-1)a 6.7 (2338 cm-1) c

Cr2+ 84.3 (29,510 cm-1)b 37.3 (13,050 cm-1)

H2O O-H sym 3657 cm-1 O-H asym 3756 cm-1

vibrations H-O-H bend 1595 cm-1

a. Armentrout and coworkers, JACS 1994, 116, 3525 c. Brucat and coworkers, Chem. Phys. Lett. 1991, 177, 380.

b. Bock and coworkers, Inorg. Chem. 1998, 372, 4425

Page 8: INFRARED PHOTODISSOCIATION SPECTROSCOPY OF Cr 2+ (H 2 O)Ar n AND Cr + (H 2 O)Ar COMPLEXES P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN Department

Red Shift in OH Stretches

3500 3600 3700 3800 3900

3762 38373735

3655

cm-1

3576

3764

36973623

Zn+(H2O)Ar

Cu+(H2O)Ar

2

O

H

H

O

H

H

Page 9: INFRARED PHOTODISSOCIATION SPECTROSCOPY OF Cr 2+ (H 2 O)Ar n AND Cr + (H 2 O)Ar COMPLEXES P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN Department

3400 3500 3600 3700 3800 3900 4000

(4,3)

(3,2)(1,2)

(0,1)

(1,0)

Simulation

cm-1

A'' = 13.1 cm-1

B'',C'' = .056, .056 cm-1

A' = 13.0 cm-1

TJ,K

= 85, 130 K

B.O.sym

= 3620 cm-1

B.O.asym

= 3690 cm-1

(2,1)

(

(

Cr+(H2O)Ar

Experiment

111.1

(4,3)

(3,2)(1,2)

(0,1)

(1,0)

(2,1) Free OH Stretches

Page 10: INFRARED PHOTODISSOCIATION SPECTROSCOPY OF Cr 2+ (H 2 O)Ar n AND Cr + (H 2 O)Ar COMPLEXES P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN Department

3500 3600 3700 3800 3900

3687

cm-1

Cr+(H2O)Ar

2

3621

Combination Bands

+

•3621 and 3687 are the OH stretching modes

•Combination band present in most M+(H2O)Ar2

•Complex structure possibly from the hindered rotor vibration

Page 11: INFRARED PHOTODISSOCIATION SPECTROSCOPY OF Cr 2+ (H 2 O)Ar n AND Cr + (H 2 O)Ar COMPLEXES P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN Department

50 100 150 200 250

- 20

75

95Cr2+(H2O)Ar

3

m/z

- 20

95

115Cr2+(H2O)Ar

4

- 20

115135

155Cr2+(H2O)Ar

6

135 155

Cr2+(H2O)Ar

8

195- 40 = 2 x 20

Page 12: INFRARED PHOTODISSOCIATION SPECTROSCOPY OF Cr 2+ (H 2 O)Ar n AND Cr + (H 2 O)Ar COMPLEXES P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN Department

3000 3200 3400 3600 3800 4000

cm-1

3000 3200 3400 3600 3800 4000

3000 3200 3400 3600 3800 4000

3512Cr2+(H

2O)Ar

3

3292

3281

3531

Cr2+(H2O)Ar

4

3276

3546

Cr2+(H2O)Ar

5

free OH stretches

Page 13: INFRARED PHOTODISSOCIATION SPECTROSCOPY OF Cr 2+ (H 2 O)Ar n AND Cr + (H 2 O)Ar COMPLEXES P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN Department

Internal Rotation

3000 3200 3400 3600 3800 4000

(,)

A" = 12.6 cm-1

B", C" = 0.05, 0.05 cm-1

A' = 12.8 cm-1

B', C' = 0.05, 0.05 cm-1

TJ,K

= 250 K

B. O.sym

= 3521 cm-1

B. O.asym

= 3586 cm-1

cm-1

simulation

experiment

(0,1

)

(1,0

)(2

,1)

(3,2

) (4,3

)

Cr2+(H2O)Ar

4

113.5

Page 14: INFRARED PHOTODISSOCIATION SPECTROSCOPY OF Cr 2+ (H 2 O)Ar n AND Cr + (H 2 O)Ar COMPLEXES P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN Department

Hydroxide Formation

3000 3200 3400 3600 3800 4000

cm-1

113.5

H-Cr3+(OH-) Cr2+(H2O)Ar4

•Appearance of resonance to the red of fundamentals•Bending overtone does not accurately describe the frequency•Formation of the hydroxide reaction product

3271 cm-1

Page 15: INFRARED PHOTODISSOCIATION SPECTROSCOPY OF Cr 2+ (H 2 O)Ar n AND Cr + (H 2 O)Ar COMPLEXES P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN Department

3000 3200 3400 3600 3800 4000

3578

3380

Cr2+(H2O)Ar

6

cm-1

3265

3000 3200 3400 3600 3800 4000

3467

3260Cr2+(H

2O)Ar

8

•Spectrum changes significantly at n = 6

•Coordination of Cr2+ filled at n = 5

•Ar begins to bind to hydrogens

•At n = 8 both hydrogens are bound to Ar

Page 16: INFRARED PHOTODISSOCIATION SPECTROSCOPY OF Cr 2+ (H 2 O)Ar n AND Cr + (H 2 O)Ar COMPLEXES P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN Department

Conclusions• IR photodissociation spectra obtained for mono- and

dicationic Cr water complexes

• Larger red shifts in the OH stretches for the doubly charged complexes

• Rotationally resolved spectra for both analogues provide a direct comparison of both charged species

• Coordination of Cr2+ is six

• Formation of hydroxide reaction product