53

Information Readout

  • Upload
    gtalite

  • View
    245

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 1/53

Page 2: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 2/53

TRANSCRIPTION

� Mechanistically similar DNA replication

in terms of substrates and template-

directed growth

� 2 major difference:

y Only 1 DNA template strand is transcribed

for a particular gene

y Only a small fraction of the entire geneticpotential of an organism is relaized in one

cell.

Page 3: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 3/53

EXISTENCE OF mRNA 

� Until about 1960 it was thought that

rRNA represented the set of templates

fro protein synthesis

� Jacob and Monod predicted the

existence of mRNA by analyzing E.coli 

mutants that are altered in the control of 

lactose metabolism� Operon model

� T2 and T4 barcteriophage

Page 4: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 4/53

CHARACTERISTICS OF mRNA

� There is a high rate of mRNA synthesisfollowed by rapid degradation

� Because of the rapid synthesis and

degradation, mRNA accumulates rapidlybut not to high steady state levels

� mRNA, being a copy of 2 or morecontiguous genes, is large andheterogenous

� mRNA nucleotide sequence is identicalto one of the template strand of DNA

Page 5: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 5/53

RNA POLYMERASE

� Polynucleotide phosphorylase was initiallythought to be the RNA-synthesizingenzyme

� Ultimately it turned out that it participates inthe degradation of bacterial mRNA

� In prokaryotes, a single RNA polymerasecatalyzes the synthesis of all 3 RNA

classes� In eukaryotes, 3 classes of polymerase

catalyze the different types of RNA

Page 6: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 6/53

RNA POLYMERASE

� The 3 classes of RNA Polymerase differ 

in their sensitivity to inhibition by -

amanitin

� 2 more inhibitors were used to confirm

other characteristics of transcription

y Cordycepin

Transcription chain terminator y Actinomycin D

Intercalating agent

Page 7: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 7/53

RNA POLYMERASE KINETICSDNA POLYMERASE RNA POLYMERASE

Turnover number 500 -1000

nucleotides/sec

50 nucleotides/ sec

Number of enzyme/

cell

10 molecules 3,000 molecules

Processivity High High

Accuracy 10-6 10-5

Error ± correction

mechanism

3¶ ±exonuclease GreA and Gre B

Page 8: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 8/53

RNA POLYMERASE STRUCTURE

SUBUNIT Mr  # per  enzyme 

molecule

Function

36,500 2 Chain initiation , interaction with regulatory

proteins and upstream promoter elements

151,00

0

1 Chain initiation and elongation

¶ 155,000

1 DNA binding

70,000 1 Promoter recognition

11,000 1 unknown

Page 9: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 9/53

RNA POLYMERASE STRUCTURE

Page 10: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 10/53

INITIATION OF TRANSCRIPTION

Page 11: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 11/53

ELONGATION: Incorporation of  

Ribonucleotides

Page 12: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 12/53

PROMOTER RECOGNITION

� The most frequently transcribed genes

initiate transcription about once every

10sec,whereas some genes are

transcribed as infrequently as once per 

generation (30-60 min)

� Rate ±limiting step

� Each gene transcribed in E.coli shared ashort adenine and thymine rich

sequence (CONSENSUS SEQUENCE)

Page 13: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 13/53

CONSERVED SEQUENCES IN 

PROMOTERS

Page 14: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 14/53

TERMINATION

� In bacteria, 2 distinct types of 

termination events exists:

y Factor ±Independent

y Factor ± Dependent

Page 15: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 15/53

FACTOR-INDEPENDENT 

� 2 structural

features:

y The symmetrical

GC-rich segmentsthat in the trasncript

have the potential to

form a stem-loop

structure

y A downstream run

of four to eight A

residues

Page 16: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 16/53

FACTOR DEPENDENT 

TERMINATION 

� Less frequent

� Rho protein is ahexamer composed

of identical subunits� It is an RNA ±DNA

helicase whichcontains nucleotide

triphosphataseacivity that isactivated by bindingto polynucleotides

Page 17: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 17/53

REGULATION OF TRANSCRIPTION

� Most genes are kept in a turned-off until

their products are needed

� Genes concerned primarily with

anabolism are kept turned-on unless the

product of the anabolic sequence is

present, then the genes are repressed

Page 18: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 18/53

PROKARYOTIC REGULATION OF 

TRANSCRIPTION

� The Lactose Operon

� Bacteriophage

The SOS regulon� Biosynthetic operons

Page 19: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 19/53

THE LACTOSE OPERON

� Consists of 3 linked structural genes that

encode enzymes of lactose utilization

plus adjacent regulatory sites

� Structural genes z,y and a encode -

galctosidase, - galactoside permease

and thiogalactoside transacetylase

� In the presence of an inducer, all 3enzymes accumulate simultaneously but

at different levels

Page 20: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 20/53

Page 21: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 21/53

REGULATION IN LAC OPERON 

� 2 distinct mutant phenotypes:

y Constitutive

y Noninducible

� These 2 mutations mapped in 2 sited o

and i 

� Transcription of the 3 structural genes is

initiated near an adjacent site called theoperator 

� This will yield a polycystronic mRNA

Page 22: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 22/53

REGULATION IN LAC OPERON

Page 23: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 23/53

ISOLATION AND PROPERTIES OF 

REPRESSOR

� Isolated by W.Gilbert andB.Muller-Hill in

1966� A tetramer, each

with 360 aminoacids

i gene is expressedat a very low rate(10 molecules /cell)but very efficient

Page 24: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 24/53

THE REPRESSOR BINDING SITE

� The operator is composed of 35 bp, with

28 bp of symmetrical sequence

Page 25: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 25/53

Page 26: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 26/53

REGULATION BY  GLUCOSE

� Glucose repression or catabolite

repression

� Decrease in the levels of glucose would

increase the cAMP levels

� The increase would trigger activation of 

the lac operon by its interaction with a

protein cAMP receptor protein (CRP)

Page 27: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 27/53

Page 28: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 28/53

BACTERIOPHAGE

Page 29: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 29/53

BACTERIOPAHGE

� 2 repressors: cI and Cro

� Each binds 2 different operators.

The operators contain 3 repressor binding sites and promoter sites

interspersed with the repressor binding

site

� Transcrition from the 2 promoter-operator sites takes place in opposite

directions along the genome

Page 30: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 30/53

Page 31: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 31/53

Lambda cI REPRESSOR

� A dimeric protein with

a subunit molecular 

weight of 27,000

� Transcription from

OLPL andORPR is

controlled by cI and

Cro

Page 32: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 32/53

GENES in LAMBDA PHAGE

� cI and cro ± code for the repressors

� cII and cIII ± stimulate cI synthesis

rex ± unknown function� O and P ± initiation of DNA replication

� N ± product interacts with NusA to

prevent termination

� Q ± product activates late gene

transcription

Page 33: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 33/53

INTERACTION BETWEEN THE 2

REPRESSORS

� OLPL controls transcription of N through

interaction of its repressor binding site

with the cI protein

� However, most regulatory action occurs

at ORPR and it is here that the decision

is made between lysogenic and lytic

infection

Page 34: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 34/53

Page 35: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 35/53

Cro REPRESSOR

� Homodimer of 66-residue subunits

folded into 3 alpha-helical regions and 3

beta strands

� Helices 2 and 3 fit into the major groove

of the DNA

Page 36: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 36/53

THE SOS REGULON

� REGULON ± set of unlinked genesregulated by a common mechanism

� Lytic infection is induced through DNAdamaging treatments (i.e. UV irradiation)

� lexA and recA gene products are thecontrol elements in E.coli SOS regulon

� RecA ± stimulates strand pairing duringrecombination and can stimulate proteolytic

cleavage of proteins when bound to ssDNA� LexA ± a repressor that binds at least 25

different operators scattered in the genome

Page 37: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 37/53

THE SOS REGULON

� In healthy cells, lexA and recA areexpressed at low levels

� The triger that activates the SOS systemafter damage is ssDNA

� RecA binding within a gap activates LexAproteolysis

� Decrease in conc of LexA removes LexAbarrier to recA transcription. RecA

accumulates� Simultaneously, cleavage of LexA protein

activates transcriptio of all genes under lexA control (including cI repressor)

Page 38: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 38/53

BIOSYNTHETIC OPERONS

� Since biosynthetic pathways utilize

energy, the regulatory goal is to repress

gene activity by turning off the synthesis

of the enzymes in the pathway when theend product is available

� t rp operon

Page 39: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 39/53

Page 40: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 40/53

Page 41: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 41/53

POSTTRANSCRIPTIONAL 

PROCESSING

� The major postranscritional event in

metabolism of prokaryotic mRNA is its

own degradation

� mRNA have half-lives of ~2-3 mins

� Degradation starts from the 5¶ end

Page 42: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 42/53

POSTTRANSCRIPTIONAL 

PROCESSING

� rRNA processing

y Contains 7 different operons for rRNA

species .

y Each one encodes one copy of 16S, 23Sand 5S in a single transcript

y It also includes sequences for 1-4 tRNA

molecules

y Initial transcript form each operon is a 30S

RNA molecule

y RNaseIII

Page 43: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 43/53

POSTTRANSCRIPTIONAL 

PROCESSING

� tRNA processing

y tRNAs are

synthesized in

transcriptscontaining 1-7

tRNAs each all

surrounded by

lengthy flankingsequences

Page 44: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 44/53

TRANSCRIPTION IN EUKARYOTIC 

CELLS

� Transcription is precisely programmed

during development and tissue

differentiation

� Needs to deal with the complicated

levels of structure of eukaryotic

chromatin

� Presence of different polymerases whichrequires transcription factors to bind to a

promoter and initiate transcription

Page 45: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 45/53

RNA POLYMERASE I

� 18S (small), 28S, 5.8S and 5S (large)

� 28S, 18S and 5.8S all come from a large 45Spre-mRNA transcript

� Pol I contains 13 sunbunits (600kDa) and

requires at least 2 TF� The nucleolus is the site of ribosomal subunit

assembly

� About 6800 nucleotides will be discarded inthe process

� The processed rRNAs will combine with 5Sfrom other regions of the nucleus and areexported to the cytosol

Page 46: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 46/53

RNA POLYMERASE III

� Largest and most complex

� Involves 14 subunits (700kDa), requires

at least 3 TF (TFIIIB,C and A)

� Catallyzes production of tRNAs and 5S

rRNA

Page 47: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 47/53

RNA POLYMERASE II

Page 48: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 48/53

FACTOR # of  

subunits

MW (kDa) FUNCTION

TFIID(TBP+TAF)

TBP -1TAF -12

3815-250

Core promoter recognition; TFIIBrecruitment

Core promoter recognition; + and ±

regulatory functions

TFIIA 3 12,19,35 Stabilization of TBP binding; stabilization of 

TAF-DNA intxn

TFIIB 1 35 RNA polII-TFIIF recruitment ; start-site

selection by RNA pol II

TFIIF 2 30,74 Promoter targeting of polII; destabilization of 

nonspecific polII-DNA intxn

RNA polII 12 10-220 Catalysis; recruitemnt of TFIIE

TFIIE 2 34,57 TFIIH recruitement, modulation of TFIIH

helicase, ATPase and kinase activities

TFIIH 9 35-89 Promoter melting using helicase activity,

Page 49: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 49/53

MAJOR PROBLEMS IN 

TRANSCRIPTION

� How can transcription factors and

initiation complex bind to DNA in the

presence of nucleosomes?

� How can the actively transcribing

polymerase pass through arrays of 

nucleosomes?

Page 50: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 50/53

PROBABLE ANSWERS

� Presence of hypersensitive sites

y Susceptible to digestion by nucleases

y Appear in the 5¶ flanking regions of the

embryonic genes

y These provide points at which TF and other 

trans-acting proteins can gain access to

promoters and enhancers, allowing initiation

and stimulation of transcription

Page 51: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 51/53

PROBABLE ANSWERS

� Chromatin Remodellingy Chromatin remodelling factors

y SWI/SNF from yeast and NURF from Drosophil a

y

Both require ATP

hydrolysisy Exact mechanism is still unclear 

y Histone acetyltransferase and deacetylase

y High acetylation of histone increasestranscriptional activity

y Acetylation of histones in promoter nucleosomescontributes to loosening of chromatin structures inthese regions

Page 52: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 52/53

TERMINATION

� The eukaryotic pol II continues totranscribe well past the end of the gene

� In doing so, it passes through 1 or more

AATAAA signals� The pre-mRNA carrying this signal as

AAUAAA is cleaved by specialendonuclease

� After cutting at a site 11 to 30 residues 3¶to it, a poly A tail is added by the non-template directed polymerase

Page 53: Information Readout

8/7/2019 Information Readout

http://slidepdf.com/reader/full/information-readout 53/53

POST TRANSCRITIONAL 

PROCESSING

� Addition of 5¶ capping

� Splicing