18
Influence of real phase equilibria on the sizing of pressure relief devices ACHEMA CONGRESS 2015 15 th June 2015, Frankfurt am Main Stephan Dreisch , Frank Westphal, Monika Christ

Influence of real phase equilibria on the sizing of ... the sizing of pressure relief devices ... “Influence of real phase equilibria on pressure relief ... safety valves for gas/liquid

  • Upload
    dokien

  • View
    242

  • Download
    7

Embed Size (px)

Citation preview

Influence of real phase equilibria

on the sizing of pressure relief

devices

ACHEMA CONGRESS 2015

15th June 2015, Frankfurt am Main

Stephan Dreisch, Frank Westphal, Monika Christ

15th June 2015 © consilab Gesellschaft für Anlagensicherheit mbH Slide 2

Motivation / Facts to start with

“Influence of real phase equilibria on pressure relief

devices” - Bachelor Thesis by Stephan Dreisch, 2014, in

continuation of a study by Christ, 2009 – “Influence of

improper input data on the size of a safety valve for a

tempered system”

Wrong temperatures at sizing conditions can lead to the most

decisive deviations for the sizing result

Sizing often based on vapour pressure curves of idealized

systems

Influence of real phase equilibria was not investigated

systematically until now

15th June 2015 © consilab Gesellschaft für Anlagensicherheit mbH Slide 3

Design case example

working

pressure

max. allowable

working

pressure

max. allowable

pressure during relief

closing

pressure

pressure

time

failure of

steam

control

M

safety valve

steam

Scenario: failure of external heating

15th June 2015 © consilab Gesellschaft für Anlagensicherheit mbH Slide 4

Objective

Investigation of the influence of phase equilibria

data of real mixtures on size of relief areas

Development of a practical procedure to

consider real phase equilibria for sizing of

pressure relief devices

Possible quality improvement by considering

real phase equilibria for sizing calculations of

pressure relief devices

15th June 2015 © consilab Gesellschaft für Anlagensicherheit mbH Slide 5

Approach

Selection of three binary solvent mixtures with

different characteristics and measurement of phase

equilibrium data by using a Vapour-Liquid-Equilibrium

apparatus (VLE)

Transfer of the phase equilibrium data into a

simulation software (ChemCAD®) and determination

of the phase equilibrium parameters

Vent sizing according to ISO 4126-10: “Safety devices

for protection against excessive pressure – Sizing of

safety valves for gas/liquid two phase flow”

Comparison of the vent sizing results to those based

on idealised systems and evaluation of occurring

errors

15th June 2015 © consilab Gesellschaft für Anlagensicherheit mbH Slide 6

Selected binary systems

Acetone/Chlorobenzene

Boiling point difference of 76 K at 1013 hPa

Miscible in any concentration

Large deviation from ideal phase equilibrium

behaviour

Water/Toluene (azeotrope, nearly immiscible)

2-Propanol/Toluene (azeotrope, miscible)

Measurements via VLE-Apparatus at two set

pressures (1.5 and 3.0 barabs)

Sample analysis via HPLC and refractometer

15th June 2015 © consilab Gesellschaft für Anlagensicherheit mbH Slide 7

VLE-Apparatus

boiling vessel

sampling:

vapour phase

return line:

liquid phase

sampling:

liquid phase

return line:

vapour phase

Cottrell-pump

storage tank

temperature sensor

(evaporator)

15th June 2015 © consilab Gesellschaft für Anlagensicherheit mbH Slide 8

Results: acetone/chlorobenzene at 1.5 bar

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

ma

ss f

ract

ion

of

ace

ton

e in

ga

s p

ha

se

mass fraction of acetone in liquid phase

YX-diagram for an acetone/chlorobenzene system at 1.5 barabs

Measured values ChemCAD-Simulation Idealised

15th June 2015 © consilab Gesellschaft für Anlagensicherheit mbH Slide 9

Results: acetone/chlorobenzene at 1.5 bar

60

70

80

90

100

110

120

130

140

150

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

tem

per

atu

re [

°C]

mass fraction of acetone

Txy-diagram for an acetone/chlorobenzene system at 1.5 barabs

Measured values - liquid phase Measured values - gas phase

ChemCAD - liquid phase ChemCAD - gas phase

15th June 2015 © consilab Gesellschaft für Anlagensicherheit mbH Slide 10

Summary of the experimental results

Good agreement of measured boiling points of

pure substances and simulated values

Good correlation of the trends in the YX- und

Txy-diagrams comparing the measured and

simulated values of the material systems

acetone/chlorobenzene and 2-propanol/toluene

Most of the measured equilibrium temperatures

are higher than the simulated temperatures

15th June 2015 © consilab Gesellschaft für Anlagensicherheit mbH Slide 11

Determination of simulation parameters

(Binary Interaction Parameters - BIP)

Fit of the NRTL parameters (BIP) to measured

VLE data using ChemCAD®

Simulations in ChemCAD® using different

NRTL parameters at pressure levels 1.5 and

3.0 barabs:

BIP from ChemCAD® database

BIP-Regression 1 via ChemCAD®

(minimisation of the absolute errors)

BIP-Regression 2 via ChemCAD®

(minimisation of the relative errors)

15th June 2015 © consilab Gesellschaft für Anlagensicherheit mbH Slide 12

Results: acetone/chlorobenzene at 1.5 bar

60

70

80

90

100

110

120

130

140

150

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

tem

per

atu

re [

°C]

mass fraction of acetone

Txy-diagram for an acetone/chlorobenzene system at 1,5 barabs comparison of different NRTL-parameters (BIP)

Measured values BIPs from ChemCAD database BIP-Regression 1 (abs.err.) BIP-Regression 2 (rel.err.)

15th June 2015 © consilab Gesellschaft für Anlagensicherheit mbH Slide 13

Summary of the simulation results

Successful determination of the NRTL

parameters using measured VLE data of the

investigated systems

Good fit of the simulated trends with the trends

of the measured values

Large differences in equilibrium temperatures

(deviations up to 10 K)

15th June 2015 © consilab Gesellschaft für Anlagensicherheit mbH Slide 14

Vent sizing calculation

(according to ISO 4126-10)

Design Case: external heating / vapour system

Basic data: Vessel Volume: 10 m³

Heating Area: 15 m²

Liquid Surface Area: 3.8 m²

Steam Temperature: 200°C

Heat Transfer Coefficient: 800 W/(m²K)

Calculations for set pressures of 1.5 barabs and 3.0 barabs

Determination of the required relief area for

single phase vapour flow

two-phase flow

Physical properties of pure components from ChemCAD®-database

15th June 2015 © consilab Gesellschaft für Anlagensicherheit mbH Slide 15

Results: acetone/chlorobenzene

(set pressure: 3.0 barabs)

80

100

120

140

160

180

200

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

req

uir

ed r

elie

f d

iam

ete

r fo

r tw

o p

has

e f

low

[m

m]

mass fraction of acetone in liquid phase

Calculated relief diameter for an acetone/chlorobenzene system at 3.0 barabs two phase flow

Measured values BIP from ChemCAD database BIP-Regression 1 (abs.err.) BIP-Regression 2 (rel.err.) Idealised

15th June 2015 © consilab Gesellschaft für Anlagensicherheit mbH Slide 16

Deviation of the sizing results

Deviation of the sizing results derived from NRTL models in

relation to the results derived from calculations with

measured data from VLE apparatus:

Negative values: sizing based on simulated data < sizing

based on measured data

system flow

regime

NRTL-

simulations idealised

min max min

acetone/chlorobenzene

(set pressure 3.0 barabs)

two phase -3.2% 11.6% -25.3%

vapour -2.7% 12.5% -19.2%

15th June 2015 © consilab Gesellschaft für Anlagensicherheit mbH Slide 17

Summary

Equilibrium temperature and vapour phase composition do have impact on the required relief diameter → temperature effect is higher

Optimization of NRTL-parameters can lead to deviations of up to 15%

Vent sizing with idealised material systems can lead to smaller relief areas → not conservative !

The lowest temperature at the set pressure should be taken into account to receive conservative relief areas

Recommendation: be careful with idealisation of phase equilibria data – try to use realistic values

Thank you for

your attention. consilab

Gesellschaft für Anlagensicherheit mbH

Industriepark Höchst, G 830

65926 Frankfurt am Main

www.consilab.de

Stephan Dreisch, B. Sc.

T +49(0)69-305-30015

F +49(0)69-305-30014

[email protected]