21
Inferring the AMOC from Surface Observations Timothy DelSole George Mason University, Fairfax, Va and Center for Ocean-Land-Atmosphere Studies July 21, 2018 Collaborators: Michael Tippett (Columbia), Barry Klinger (GMU), Arindam Bannerjee (U. Minnesota) 1 / 21

Inferring the AMOC from Surface Observations

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Inferring the AMOC from Surface Observations

Inferring the AMOC from Surface Observations

Timothy DelSole

George Mason University, Fairfax, Va andCenter for Ocean-Land-Atmosphere Studies

July 21, 2018

Collaborators: Michael Tippett (Columbia), Barry Klinger (GMU), ArindamBannerjee (U. Minnesota)

1 / 21

Page 2: Inferring the AMOC from Surface Observations

To What Extent Can the AMOC be InferredFrom Surface Information?

2 / 21

Page 3: Inferring the AMOC from Surface Observations

Past Work

Latif et al., 2004; J. Climate: Reconstructing, Monitoring, and PredictingMultidecadal-Scale Changes in the NA Thermohaline Circulation with SST

Hirschi and Marotzke 2007; JPO: Reconstructing the Meridional OverturningCirculation from Boundary Densities and the Zonal Wind Stress

Zhang, 2008; GRL: Coherent surface-subsurface fingerprint of the AMOC

Zhang, Rosati, Delworth, 2010; J. Climate: The Adequacy of Observing Systems inMonitoring the AMOC and North Atlantic Climate

Mahajan et al. 2011; Deep-Sea Res. II: Predicting AMOC variations using subsurfaceand surface fingerprints

Lopez et al., 2017; GRL: A reconstructed South Atlantic Meridional OverturningCirculation time series since 1870

3 / 21

Page 4: Inferring the AMOC from Surface Observations

No study has shown that a reconstruction methodworks in a suite of coupled atmosphere-ocean models.

4 / 21

Page 5: Inferring the AMOC from Surface Observations

New Analysis with CMIP5

I Analyze CMIP5 simulations

I Only piControl simulations at least 500 years long

I 5-year running mean SST North Atlantic basin (0-60N).

I AMOC index: maximum streamfunction at 40N

I AMOC index is 5-year running mean

I Only 11 models have 500-year control, AMOC index, and SST.

I MIROC5 has SST discontinuity, leaving 10 models.

5 / 21

Page 6: Inferring the AMOC from Surface Observations

Variance of AMOC

0.6 0.8 1.0 1.2

standard deviation (Sv)

CanESM2

CNRM−CM5

inmcm4

MPI−ESM−LR

MPI−ESM−MR

MPI−ESM−P

MRI−CGCM3

CCSM4

NorESM1−M

CESM1−BGC

AMOC index

0.06 0.08 0.10 0.12

standard deviation (K)

CanESM2

CNRM−CM5

inmcm4

MPI−ESM−LR

MPI−ESM−MR

MPI−ESM−P

MRI−CGCM3

CCSM4

NorESM1−M

CESM1−BGC

Mean North Atlantic SST

6 / 21

Page 7: Inferring the AMOC from Surface Observations

Linear Regression

Assume reconstruction model of the form

reconstructed AMOC(t) = w1X1(t) + w2X2(t) + · · ·+ wMXM(t)

Least squares: select the weights w to minimize∥∥∥∥ y − X wAMOC SST weights

∥∥∥∥2

Problem: Not enough data.There are more SST grid points than data.

7 / 21

Page 8: Inferring the AMOC from Surface Observations

Linear Regression

Assume reconstruction model of the form

reconstructed AMOC(t) = w1X1(t) + w2X2(t) + · · ·+ wMXM(t)

Least squares: select the weights w to minimize∥∥∥∥ y − X wAMOC SST weights

∥∥∥∥2

Problem: Not enough data.There are more SST grid points than data.

8 / 21

Page 9: Inferring the AMOC from Surface Observations

Approach: impose constraints on the equation.

A priori assumption:AMOC affects the large-scale SST.

9 / 21

Page 10: Inferring the AMOC from Surface Observations

Approach: impose constraints on the equation.

A priori assumption:AMOC affects the large-scale SST.

10 / 21

Page 11: Inferring the AMOC from Surface Observations

Laplacians

Laplacian 1

−0.8

−0.6

−0.4 −0.2

0.2 0.4

0.6

0.6

0.8

Laplacian 2

−0.6

−0.4

−0.

2

0.2

0.4 0.6 0.8

Laplacian 3

0 100 200 300 400 500

Time Series for Laplacian 1

CanESM2CNRM−CM5inmcm4MPI−ESM−LR

MPI−ESM−MRMPI−ESM−PMRI−CGCM3CCSM4

NorESM1−MCESM1−BGC

11 / 21

Page 12: Inferring the AMOC from Surface Observations

Normalized Variance Spectrum for N. Atlantic SST

1 2 5 10 20 50 100

Laplacian

0.1

1

10

tos

varia

nce

(% o

f tot

al)

−5/3 power law

Normalized Variance Spectrum for North Atlantic SST

Empirical Spectrum = 200/(K^5/3 + 20)

12 / 21

Page 13: Inferring the AMOC from Surface Observations

Constrained Least Squares

Constrained least squares is equivalent to minimizing the function∥∥∥∥ y − L wAMOC SST weights

∥∥∥∥2

+ λR(w),

where R(w) is a non-negative “penalty” function of the weights.

LASSO corresponds to R(w) =∑

i |wi |. It tends to sign zeroweight to high-wavenumbers because they have small variance.

λ controls the strength of the penalty:

I large λ means most w’s are zero: field is smooth

I small λ means more w’s are non-zero: field can be noisy.

13 / 21

Page 14: Inferring the AMOC from Surface Observations

AMOC Prediction

lambda

CV

−M

SE

of A

MO

C P

redi

ctio

n

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

LASSO Prediction Based on North Atlantic SST

MPI−ESM−P; 5−yr running mean

lambda

Lapl

acia

n

0

20

40

60

80

100

0.01 0.1 1 10

59 50 38 33 27 21 17 13 11 8 7 6 5 3 2 1 0000

lambda

CV

−M

SE

of A

MO

C P

redi

ctio

n

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

LASSO Prediction Based on North Atlantic SST

MPI−ESM−P; 5−yr running mean

lambda

Lapl

acia

n

0

20

40

60

80

100

0.01 0.1 1 10

59 50 38 33 27 21 17 13 11 8 7 6 5 3 2 1 0000

14 / 21

Page 15: Inferring the AMOC from Surface Observations

AMOC Prediction

lambda

CV

−M

SE

of A

MO

C P

redi

ctio

n

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

LASSO Prediction Based on North Atlantic SST

MPI−ESM−P; 5−yr running mean

lambda

Lapl

acia

n

0

20

40

60

80

100

0.01 0.1 1 10

59 50 38 33 27 21 17 13 11 8 7 6 5 3 2 1 0000

15 / 21

Page 16: Inferring the AMOC from Surface Observations

AMOC Prediction

lambda

CV

−M

SE

of A

MO

C P

redi

ctio

n

0.4

0.6

0.8

1.0

1.2

LASSO Prediction Based on North Atlantic SST

MPI−ESM−MR; 5−yr running mean

lambda

Lapl

acia

n

0

20

40

60

80

100

0.01 0.1 1 10

50 47 39 32 28 24 19 17 13 10 7 5 5 3 2 1 0000

16 / 21

Page 17: Inferring the AMOC from Surface Observations

AMOC Prediction

0.0

0.2

0.4

0.6

0.8

1.0

lambda

CV

−M

SE

of A

MO

C

0.001 0.01 0.1 1 10

CanESM2●

CNRM−CM5 ●

inmcm4●

MPI−ESM−LR ●

MPI−ESM−MR●

MPI−ESM−P

MRI−CGCM3 ●

CCSM4 ●

NorESM1−M ●CESM1−BGC ●

17 / 21

Page 18: Inferring the AMOC from Surface Observations

Cross-Model Predictions

Train on one model, test in another model.

0.0

0.5

1.0

1.5

2.0

lambda

CanESM2

0.0

0.5

1.0

1.5

2.0

lambda

devi

ance

CNRM−CM5

0.0

0.5

1.0

1.5

2.0

lambda

inmcm4

0.0

0.5

1.0

1.5

2.0

lambda

devi

ance

MPI−ESM−LR

0.0

0.5

1.0

1.5

2.0

lambda

MPI−ESM−MR

0.0

0.5

1.0

1.5

2.0

lambda

devi

ance

MPI−ESM−P

0.0

0.5

1.0

1.5

2.0

lambda

MRI−CGCM3

0.0

0.5

1.0

1.5

2.0

lambda

devi

ance

CCSM4

0.0

0.5

1.0

1.5

2.0

NorESM1−M

0.001 0.01 0.1 1 10

0.0

0.5

1.0

1.5

2.0

devi

ance

CESM1−BGC

0.001 0.01 0.1 1 10

18 / 21

Page 19: Inferring the AMOC from Surface Observations

AMOC Prediction

0.0

0.5

1.0

1.5

2.0

lambda

CanESM2

0.0

0.5

1.0

1.5

2.0

lambda

devi

ance

CNRM−CM5

0.0

0.5

1.0

1.5

2.0

lambda

inmcm4

0.0

0.5

1.0

1.5

2.0

lambda

devi

ance

MPI−ESM−LR0.

00.

51.

01.

52.

0

lambda

MPI−ESM−MR

0.0

0.5

1.0

1.5

2.0

lambda

devi

ance

MPI−ESM−P

0.0

0.5

1.0

1.5

2.0

lambda

MRI−CGCM3

0.0

0.5

1.0

1.5

2.0

lambda

devi

ance

CCSM4

0.0

0.5

1.0

1.5

2.0

NorESM1−M

0.001 0.01 0.1 1 10

0.0

0.5

1.0

1.5

2.0

devi

ance

CESM1−BGC

0.001 0.01 0.1 1 10

19 / 21

Page 20: Inferring the AMOC from Surface Observations

SST that Co-Varies with AMOC (λ = optimal)

−5

5

5

10

15

20

CanESM2

41

5

5

10

10

15

20

CNRM−CM5

37

2

2

2

2

2

4

4

6 8

10

10

inmcm4

1

1

1

1

1

2

2 3

3

4

5

MPI−ESM−LR

3

5

5 10

15

MPI−ESM−MR

39

2 2

2

2 4 6

MPI−ESM−P

5

5

5

10

MRI−CGCM3

33

−5

5

5

5

5

5

10

10

15

20

25

CCSM4

24

−8

−6

−4

−2

−2

−2

−2

2

2

2

2

2

2 2

2

2

4

4

4

4

6

NorESM1−M

36

−10

−5

5

5

5

5

5

5

10

15

20

CESM1−BGC

20

20 / 21

Page 21: Inferring the AMOC from Surface Observations

Conclusions

1. We reconstruct the AMOC based on surface observations using acombination of regularized regression and Laplacian basis functions.

2. Fraction of AMOC that is predictable from Atlantic SST: 10-70%.

3. A reconstruction equation that works well in one climate model canperform poorly in other climate models.

4. Reconstructions at λ = 1 tend to have skill in all models.

5. Reconstructions at λ = 0.1 suggest model clusters:

I CCSM4, CESM1-BGC, NorESM1-MI MPI modelsI CanESM2, CNRM-CM5I INMCM4I MRI-CGCM3

Next step: include time lags and other variables (e.g,. SSS).Optimal Fingerprinting.

21 / 21