31
Inferring baseline optical properties of the human head Alex Barnett [email protected] MGH/MIT/HMS AAM NMR CBI Inferring baseline optical properties of the human head – p.1

Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Inferring baseline opticalproperties of the human head

Alex [email protected]

MGH/MIT/HMS AAM NMR CBI

Inferring baseline optical properties of the human head – p.1

Page 2: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Aims

� How well can we measure baseline optical tissueproperties? Given. . .

� 3d anatomical MRI data

� optically-uniform segmented tissue types

� time-resolved measurements

� single optical

� Motivations:

� functional imaging requires accurate baselineproperties

� more

’s absolute [Hb] and [HbO].

� sets an upper bound on capability withoutMRI data.

Inferring baseline optical properties of the human head – p.2

Page 3: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Outline1. Bayesian method overview

2. simple layer system

3. likelihood

4. results in layer

5. optode calibration & location

6. preliminary head

7. issues & conclusion

Inferring baseline optical properties of the human head – p.3

Page 4: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Method overviewWhat do measurements � tell you about parameters � ?Inference � probability distribution functions (PDFs)

y

x

p(x|y)

= modeljoint p(y,x)

y measured

posterior likelihood prior

Constant prior look for peaks in likelihood.

No artificial regularization

Peak widths give all errorbars & correlations

Currently: testing with numerically-generated noisymeasurements

Inferring baseline optical properties of the human head – p.4

Page 5: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Method overviewWhat do measurements � tell you about parameters � ?Inference � probability distribution functions (PDFs)

y

x

p(x|y)

= modeljoint p(y,x)

y measured

� ��� ��� � � � �� � ��

� �� � � �� � ��� �

posterior � likelihood prior

Constant prior look for peaks in likelihood.

No artificial regularization

Peak widths give all errorbars & correlations

Currently: testing with numerically-generated noisymeasurements

Inferring baseline optical properties of the human head – p.4

Page 6: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Method overviewWhat do measurements � tell you about parameters � ?Inference � probability distribution functions (PDFs)

y

x

p(x|y)

= modeljoint p(y,x)

y measured

� ��� ��� � � � �� � ��

� �� � � �� � ��� �

posterior � likelihood prior

Constant prior look for peaks in likelihood.

� No artificial regularization

� Peak widths give all errorbars & correlations

Currently: testing with numerically-generated noisymeasurements

Inferring baseline optical properties of the human head – p.4

Page 7: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Method overviewWhat do measurements � tell you about parameters � ?Inference � probability distribution functions (PDFs)

y

x

p(x|y)

= modeljoint p(y,x)

y measured

� ��� ��� � � � �� � ��

� �� � � �� � ��� �

posterior � likelihood prior

Constant prior look for peaks in likelihood.

� No artificial regularization

� Peak widths give all errorbars & correlations

Currently: testing with numerically-generated noisymeasurements �

Inferring baseline optical properties of the human head – p.4

Page 8: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Simple 2-layer system

10 20 30 40 50 60 700

100

200

300

400

m = 1...M

ym

10 20 30 40 50 60 70

100

102

m = 1...M

ym

fm

(x)y

m

source detectors

layer 1: 8 mm layer 2: 18 mm

measurement vector y

56 mm

det3 det441

det1

det2

~20 ‘timegates’ from 0.2 − 2.0 ns

S-D separations of 7, 14, 21, 28 mm

Parameter vector � � ��� ���� �� � �

��� �� �

�� �� �

��� �

Inferring baseline optical properties of the human head – p.5

Page 9: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Likelihood

� �� � forward model (signal expectation)

� �

noise

noise model

y

x

f(x)σ(x)

� �� � � � �

noise

�� � � ��� � �

uncorr. gaussian �

�� �� ���� � � � ��

� � � � ��� �� �

� � � ��� �

� is some (growing) function of

, giving detectionstatistics. Inferring baseline optical properties of the human head – p.6

Page 10: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Look at sensitivity

20 40 6010

−2

100

102

104

m

sign

al e

xpec

tatio

n f m

mua1 = 0.010 per mmmua1 = 0.003 per mmmua1 = 0.030 per mm

20 40 6010

−2

100

102

104

m

sign

al e

xpec

tatio

n f m

mua2 = 0.010 per mmmua2 = 0.003 per mmmua2 = 0.030 per mm

20 40 6010

−2

100

102

104

m

sign

al e

xpec

tatio

n f m

musp1 = 2.000 per mmmusp1 = 0.667 per mmmusp1 = 6.000 per mm

20 40 6010

−2

100

102

104

m

sign

al e

xpec

tatio

n f m

musp2 = 1.000 per mmmusp2 = 0.333 per mmmusp2 = 3.000 per mm

Inferring baseline optical properties of the human head – p.7

Page 11: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Sensitivity compared to noise

0 20 40 60 80−20

0

20

40

60

80

m

β m

mua1 = 0.003 per mmmua1 = 0.030 per mm

0 20 40 60 80−15

−10

−5

0

5

10

15

20

m

β m

mua2 = 0.003 per mmmua2 = 0.030 per mm

0 20 40 60 80−100

0

100

200

300

400

500

m

β m

musp1 = 0.667 per mmmusp1 = 6.000 per mm

0 20 40 60 80−15

−10

−5

0

5

10

15

m

β m

musp2 = 0.333 per mmmusp2 = 3.000 per mm

� -normalized changes : � � �� � �

Inferring baseline optical properties of the human head – p.8

Page 12: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Maximizing Likelihood

0.0080.01

0.0120.014

0.8

1

1.2

1.40

0.2

0.4

0.6

0.8

1

mua2 (per mm)

slice through relative likelihood peak

musp2 (per mm)

p lik(x

)

0.009 0.0095 0.01 0.0105 0.011 0.0115 0.012 0.01250.9

0.95

1

1.05

1.1

1.15

1.2

1.25

mua2 (per mm)

mus

p2 (p

er m

m)

objective funct ( −log plik

(x)) difference from min

0.10.31231030100

x = true parametersexpt

minimization

Minimize ‘objective function’ NLL � � � � � �� � � �

� gaussian noise � ‘weighted least squares’

� peak very narrow in �

layer 1 I show only �

layer 2

� 1-2 minutes per optimizationInferring baseline optical properties of the human head – p.9

Page 13: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Results : photon numbertyp tissue properties �

expt

����

� � � � �� � � � � ��

mm � �

0 0.005 0.01 0.015 0.020

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

mua2 (per mm)

mus

p2 (p

er m

m)

# photons in det 4 = 0.72.0

6.7

20

67

Ellipses define likelihood peak width:

200

� more photons narrower peak

� true �expt rarely outside peak — good!

Inferring baseline optical properties of the human head – p.10

Page 14: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Results : varying �

0 0.005 0.01 0.015 0.020

0.2

0.4

0.6

0.8

1

1.2

mua2 (per mm)

mus

p2 (

per

mm

)less photons survive to distant detectors

so greater uncertainty in parameters

� other 3 parameters held constant

� photon # : 67 photons at det4

� realistic inference of errorbarsInferring baseline optical properties of the human head – p.11

Page 15: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Results : varying

��

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

xexpt

: musp2 (per mm)

p(x

|y)

: m

usp

2 (

pe

r m

m)

0.007 0.008 0.009 0.01 0.011 0.012 0.013 0.014 0.015

0.5

1

1.5

2

2.5

mua2 (per mm)

mu

sp

2 (p

er m

m)

Generally good agreement. Reliability problems. . .

� noise model mismatch ? / optimization gettingstuck

Inferring baseline optical properties of the human head – p.12

Page 16: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Integrating out free parametersWidth in �

layer 1 is much less than in �

layer 2.We only care about �

layer 2 (e.g. cortex in head).Once peak found, use gaussian approx: analytic integral over

layer 1:

xlayer 1

x layer 2

marginalize (integrate)multidimensional gaussian

λλ−1/2

2

1−1/2

�� � � �� �T ��� �� � � � ��

�� � � ��

This illustrates the general Bayesian recipe for free parameters :integrate over them.

Inferring baseline optical properties of the human head – p.13

Page 17: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Optode calibration & placementOptode calibration :

� � � � �

free scaleparameters

� As for layer 1, they will be narrow-width

� integrate out with gaussians (fast)

Placement : choose best source/detector locations

� use peak volume

�� � � � ��as objective func.

� fix � �

expt, and optimize over locations.

For gaussian noise model � � � diag

��� � � �� �

.with jacobean

� ����� � � �

�� ��� � .

Inferring baseline optical properties of the human head – p.14

Page 18: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Noise model detailsUsed uncorrelated gaussian model:

py f = gaussian approx to Poisson

5% model errorσf

fpy = signal of 1 photon / timegate

� gaussian approx to poisson, clipped at both ends

� Collect more photons model error dominates

� Other more robust noise models (power law tails,etc) possible, easy to implement in Bayesianformalism.

Inferring baseline optical properties of the human head – p.15

Page 19: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Forward model detailsTime-resolved detector signals

given params � .Written finite-difference time-domain (FDTD) code:

time

x

t

space (3d)

boundary conditions

initial condition (source)

EVOLUTION METHOD

� arbitrary 3d tissue geometries

� 0.5s per source, small system 6cm � 6cm � 3cm � 2ns

� Diffusion Approx, validated against Monte Carlo

� Robin BCs, surface normals only

��� ��

.

� evolution: ‘forward-Euler’

� ��

, small � � slows it down.Inferring baseline optical properties of the human head – p.16

Page 20: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Forward model issuesThere are

� �� �

methods (‘implicit’, e.g. ADI) :

� faster (less timesteps), but nonsmooth fluence bad!

Boundary Conditions

� do matter.

� ‘Stiffness’ tricky forFDTD stability 0 5 10

x 10−10

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

t (sec)

sign

al

4: MC7: MC4: FD dir7: FD dir4: FD rob7: FD rob

Avoid large system (head) by matching to :fluence components � � ��� obey Helmholtz eqn with fixed

� � � � �� � � . So, ‘radiative’ BC is just Robin BC.

Inferring baseline optical properties of the human head – p.17

Page 21: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Nonlinear optimization issuesForward model with discontinuities (jumps) = bad :

ridges in

� ��� �

fake local minima

Had to be removed!

Derivative info vastly improves speed/robustness:� Adjoint (‘reverse’) differentiation: get

���

wrt all� � withlittle more effort than

(e.g. Hielscher, Klose, Hanson1999)

Inferring baseline optical properties of the human head – p.18

Page 22: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Future directions

� MRI-segmented heads: 5 tissue-types, effect ofCSF.

Forward model improvements: adjointdifferentiation, ADI timestepping.

Use peak width (Hessian) to optimize optodelocations

Test integrating out free params: optodecalibration, start time. . .

Noise models: Poisson for low photon counts,detector saturation.

More sources, experimental phantom verification,heads. . .

Inferring baseline optical properties of the human head – p.19

Page 23: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Future directions

� MRI-segmented heads: 5 tissue-types, effect ofCSF.

� Forward model improvements: adjointdifferentiation, ADI timestepping.

Use peak width (Hessian) to optimize optodelocations

Test integrating out free params: optodecalibration, start time. . .

Noise models: Poisson for low photon counts,detector saturation.

More sources, experimental phantom verification,heads. . .

Inferring baseline optical properties of the human head – p.19

Page 24: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Future directions

� MRI-segmented heads: 5 tissue-types, effect ofCSF.

� Forward model improvements: adjointdifferentiation, ADI timestepping.

� Use peak width (Hessian) to optimize optodelocations

Test integrating out free params: optodecalibration, start time. . .

Noise models: Poisson for low photon counts,detector saturation.

More sources, experimental phantom verification,heads. . .

Inferring baseline optical properties of the human head – p.19

Page 25: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Future directions

� MRI-segmented heads: 5 tissue-types, effect ofCSF.

� Forward model improvements: adjointdifferentiation, ADI timestepping.

� Use peak width (Hessian) to optimize optodelocations

� Test integrating out free params: optodecalibration, start time. . .

Noise models: Poisson for low photon counts,detector saturation.

More sources, experimental phantom verification,heads. . .

Inferring baseline optical properties of the human head – p.19

Page 26: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Future directions

� MRI-segmented heads: 5 tissue-types, effect ofCSF.

� Forward model improvements: adjointdifferentiation, ADI timestepping.

� Use peak width (Hessian) to optimize optodelocations

� Test integrating out free params: optodecalibration, start time. . .

� Noise models: Poisson for low photon counts,detector saturation.

More sources, experimental phantom verification,heads. . .

Inferring baseline optical properties of the human head – p.19

Page 27: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Future directions

� MRI-segmented heads: 5 tissue-types, effect ofCSF.

� Forward model improvements: adjointdifferentiation, ADI timestepping.

� Use peak width (Hessian) to optimize optodelocations

� Test integrating out free params: optodecalibration, start time. . .

� Noise models: Poisson for low photon counts,detector saturation.

� More sources, experimental phantom verification,heads. . .

Inferring baseline optical properties of the human head – p.19

Page 28: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Conclusions

� Time-resolved data with few detected photonscan infer optical parameters in layer 8mm belowsurface, to

� �

Full posterior (errorbars & correlations) can behandled

Developed & validated rapid 3d diffusionforward model

Bayesian optode calibration and optimal locationrecipes

Inferring baseline optical properties of the human head – p.20

Page 29: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Conclusions

� Time-resolved data with few detected photonscan infer optical parameters in layer 8mm belowsurface, to

� �

� Full posterior (errorbars & correlations) can behandled

Developed & validated rapid 3d diffusionforward model

Bayesian optode calibration and optimal locationrecipes

Inferring baseline optical properties of the human head – p.20

Page 30: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Conclusions

� Time-resolved data with few detected photonscan infer optical parameters in layer 8mm belowsurface, to

� �

� Full posterior (errorbars & correlations) can behandled

� Developed & validated rapid 3d diffusionforward model

Bayesian optode calibration and optimal locationrecipes

Inferring baseline optical properties of the human head – p.20

Page 31: Inferring baseline optical properties of the human headahb/talks/pmi02.pdf · 2002. 5. 9. · mua2 (per mm) musp2 (per mm) # photons in det 4 = 0.7 2.0 6.7 20 67 Ellipses define likelihood

Conclusions

� Time-resolved data with few detected photonscan infer optical parameters in layer 8mm belowsurface, to

� �

� Full posterior (errorbars & correlations) can behandled

� Developed & validated rapid 3d diffusionforward model

� Bayesian optode calibration and optimal locationrecipes

Inferring baseline optical properties of the human head – p.20