Industrial Wireless Guidebook

Embed Size (px)

Citation preview

  • 7/29/2019 Industrial Wireless Guidebook

    1/56

    www.moxa.com/iw

    AWK Series OnCell Series NPort Series

    Industrial IEEE 802.11

    Wireless AP/Bridge/Client

    Industrial Cellular

    Solutions

    Wireless and ZigBee

    Device Servers

    IndustrialWireless Guidebook

    Reliable Networks Sincere Service

  • 7/29/2019 Industrial Wireless Guidebook

    2/56

    About Moxa

    Moxa: Your Trusted

    Partner in AutomationFounded in 1987, Moxa is now one of theleading manufacturers of industrial networking,

    computing, and automation solutions.

    Moxa provides thousands of hardware and

    software products and draws upon 25 years of

    accumulated expertise. Moxas products reflect

    our constant zeal for improvement, keen eye for

    innovation, and respect for proven solutions and

    expertise. We harness these qualities to create

    solutions that deliver a competitive edge for

    our customers and partners in adapting to fast-

    changing network and market environments.

    Moxa delivers network-centric automation

    solutions that integrate automation and IT

    systems into a single network platform that

    simplifies management, reduces costs, and

    achieves greater reliability and efficiency.

    A Leader and Partnerin Automation

    Solutions

    Moxas commitment to execution,

    innovation, and collaboration with our

    partners has fueled our transformative

    journey to leadership as a solution

    provider and partner in automation.

    Mission and Vision

    As a world-class leader and a trustedpartner in industrial-grade device

    networking solutions for automation, Moxa

    proudly provides quality products and

    value-added service to establish win-win

    business relationships based on mutual

    trust and integrity. Moxa works closely with

    customers, channel-partners, and solution-

    partners to achieve and share success.

    Delivering onCommitmentsMoxas talented design team, which is

    experienced in networking technology

    and solution development, offers quick,

    flexible, and comprehensive R&D service

    to meet customers specific expectations

    and exacting requirements. Moxa

    collaborates closely with customers to

    drive advancements and achieve a faster

    time-to-market, and these partnerships keep

    Moxa in touch with emerging technologies

    and ensure that new developments and

    successes are shared with all of Moxas

    partners.

  • 7/29/2019 Industrial Wireless Guidebook

    3/562

    www.moxa.com e-mai l : [email protected]

    Integrating Automation by Enabling Convergence

    Moxa offers a wide array of devicenetworking products that feature anopen Ethernet infrastructure, industry-

    proven standards, extended temperature

    tolerance, environmental protection, and

    network redundancy to ensure network

    availability and reliability. Product lines

    range from edge-to-core industrial

    Ethernet switches, industrial wireless

    devices, serial cards, serial device servers,

    and embedded device servers, to USB

    and fieldbus components. All of our

    products are designed to stand up to harsh

    environments and are ideal for deploying

    mission critical applications in fields

    such as maritime, oil and gas, power and

    utilities, rail, and factory automation.

    Moxas industrial embedded solutionsare used to construct powerful front-end controllers that can execute onsite

    data collection and control at widely

    distributed remote sites through industrial

    Ethernet or wireless backbones. All of

    the computers feature rugged reliability

    and fanless operations with a wide

    operating temperature range of -40 to

    85C. Our products feature a user-friendly

    environment that makes application

    development easy. Moxa provides prompt

    and extensive customization services in

    addition to a wide selection of ready-to-run

    products such as industrial computers,

    wireless computers, and wide temperature

    computers.

    Moxas remote automation solutions empowercontrol and monitoring systems in remotelocations with the latest technology and industry

    expertise. Our product portfolio includes

    programmable RTU controllers, remote I/O

    devices, IP surveillance solutions, and easy-to-

    configure automation and video software. Both

    network and cellular communication interfaces

    are available to meet the needs of a variety of

    applications and to simplify long-range host-

    to-device communications around a standard

    industry protocol. Including Moxas SCADA-

    compatible IP surveillance solutions that enable

    your network video monitoring system, Moxas

    remote automation solutions enhance the safety

    and security of remote industrial facilities. Withtheir robust, wide temperature design, all of

    the products can be used in harsh, industrial

    environments.

    Industrial Networking Solutions Industrial Computing Solutions Remote Automation Solutions

    Industrial automation users have long anticipated the integration of computer, controller,

    I/O, video, and audio systems into a single easy-to-manage network. This vision of network-centric automation is possible today, thanks to Moxas two decades of accumulated

    knowledge in industrial networking and wide selection of

    automation solutions that enable the convergence of I/O, audio,

    and video data over Ethernet networks. Improve the efficiency

    and reliability of your industrial process by transforming a

    hodgepodge of controller-centric

    operations into a single network-

    centric operation. Moxa provides

    communication interoperability

    across the full range of automation

    devices and modules to seamlesslyintegrate them with industrial

    Ethernet networks.

  • 7/29/2019 Industrial Wireless Guidebook

    4/563 Industrial Wireless Guidebook

    About Moxa ......................................................................................................................1

    Table of Contents ............................................................................................................3

    Chapter 1 Wireless Landscape

    1-1 Overview ................................................................................................................................................................5

    Introduction

    TechnologyMap

    1-2 WLAN Basics ..........................................................................................................................................................6

    IEEE802StandardsintheOSIReferenceModel

    HistoryofWLANStandards

    WirelessSecurity

    1-3 WWAN(Cellular) Basics ................................................................ ................................................................. .........9

    Introduction

    EvolutionoftheCellularNetwork

    1-4 WPAN Basics ........................................................................................................................................................14

    IEEE802.15StandardsforWPAN

    IEEE802.15.4LowRateWPAN

    ZigBee

    ZigBeeSolution

    Chapter 2 Understanding Wireless Technology

    2-1 Radio System Concepts ............................................................... ................................................................. .......17

    HowRadioWorks

    WhatYouNeedtoKnowaboutaRadioSystem

    2-2 WLAN Antennas ...................................................................................................................................................24

    WhyUsingtheRightAntennaisImportant

    AntennaParameters

    AntennaTypes

    2-3 Cables ...................................................................................................................................................................28

    RFCables

    EthernetCables

    Table Of Contents

    Table Of Contents

  • 7/29/2019 Industrial Wireless Guidebook

    5/564

    www.moxa.com e-mai l : [email protected]

    2-4 Connectors ...........................................................................................................................................................31 AntennaConnectors

    EthernetConnectors

    Chapter 3 Industrial Wireless

    3-1 Industrial Design Concepts .................................................................................................................................33

    Introduction

    IndustrialHazards

    3-2 Robust Wireless Concepts ........................................................... ................................................................. .......35 Introduction

    ConcernsforWirelessLocalAreaNetworks

    ConcernsforWirelessWideAreaNetworks

    Chapter 4 Standards

    4-1 IEEE 802 Standards ..............................................................................................................................................38

    IEEE802.3Ethernet

    IEEE802.11WirelessLocalAreaNetwork IEEE802.15WirelessPersonalAreaNetwork

    4-2 Safety and Certifications .....................................................................................................................................41

    Moxas Wireless Product Selection Guide ..................................................................43

    Glossary .........................................................................................................................49

  • 7/29/2019 Industrial Wireless Guidebook

    6/565 Industrial Wireless Guidebook

    Wireless Landscape

    Wireless Landscape

    Introduction

    Wirelesstechnologieshavebecomeincreasinglypopularin

    industrialautomationasgrowingnumbersofsystemintegrators,

    governmentagencies,andindustrialoperatorscontinuetoturnto

    wirelesssolutionsfortheirapplications.Wirelessnetworkscanbe

    quicklydeployedtotransmitdatatoareaswithoutexistingcable

    infrastructures.Forhard-to-wirelocationsandworksitelandscapes

    thatconstantlychange,wirelesstechnologiesareidealforproviding

    highlyflexibleandefficientnetworkconnectivity.Inadditiontomobile

    versatility,wirelesstechnologiescanofferreal-timecommunication

    formission-criticalapplications,highbandwidthforvideo

    transmission,andalowtotalcostofownership.

    However,sincewirelesscommunicationsrelysolelyontheemission

    ofelectromagneticwavestotransmitdata,networksecurity

    Technology Selection

    WWAN (Wireless Wide Area Network) WLAN (Wireless Local Area Network) WPAN (Wireless Personal Area Network)

    Characteristics h Wideareacoverageh Longdistancecommunicationh Hightransmissionlatencyh Mediumtransmissionbandwidthh On-goingdatatransmissioncosth Basestationrestriction

    h Localareacoverageh Long/mediumdistancecommunicationh Lowtransmissionlatencyh Hightransmissionbandwidthh InitialAPsetupcost

    h Smallareacoverageh Shortdistancecommunicationh Lowtransmissionlatencyh Lowtransmissionbandwidthh Lowpowerconsumption

    Applications h Highwaysignalingcontrolsystemh Remotemonitoringsystemh

    Nationwideenvironmentalmonitoring

    h Traintogroundcommunicationformissioncriticaldatah HighthroughputforvideotogroundtransmissionhDatabridgingfordevicemonitoring

    h Streetlightcontrolh PersonneltrackinghShortdistancedataacquisition

    Technology Map

    Sincetheinventionofradiotransmission,manytypesof

    wirelesstechnologiesandstandardshavebeendevelopedto

    meettherequirementsofvariouswirelessapplications.Forthe

    developmentofeverywirelessstandard,twomajorvariables

    wereconsidered:coveragearea(distance)anddatarate

    (bandwidth).

    Wirelesstechnologiescanbedividedintothreecategories:

    WWAN,WLAN,andWPAN.

    isanimportantfactorforadministratorstoconsider.Another

    majorconcerniselectromagneticinterference(EMI),whichcan

    disruptdatatransmission,severelyreducedatathroughput,and

    compromisenetworkreliability.Withover25yearsofindustrial

    automationexperience,Moxaofferssecureandreliableindustrial

    wirelesssolutions,suchascellular,Wi-Fi,andZigBeeformission-

    criticalapplicationsthatdemanddependableanduninterrupted

    systemoperation.

    Wehopethisguidebookwillprovideyouwithamorecomprehensive

    understandingofindustrialwirelesstechnologiesandserveasyour

    mosttrustedguidetogettingun-wired.

    Itstimetogowireless!

    1-1 Overview

    Coverage

    Low Data Rate

    (>10 Mbps)

    Glgabits

    (>1 Gbps)

    Medium Data Rate

    (10 to 100 Mbps)

    High Data Rate

    (100 Mbps to 1 Gbps)

    Nationwide(> 1,000 m)

    Local Area(500 m)

    Short Distance(10 m)

    WLAN

    WWAN

    WPAN

    Data Rate

    Satellite

    RFID

    BlueTooth

    Zigbee

    UWB

    2G/2.XG

    GSM/GPRS/EDGE

    Pre4G/4G

    LTE/WiMAX/LTE-A

    3G

    UMTS/HSPA(+)CDMA2000 EV-DO

    Cellular Technology

    802.11b 802.11a/g 802.11n 802.11ac

    802.11 Family

    (Commonly known as Wifi)

  • 7/29/2019 Industrial Wireless Guidebook

    7/566

    www.moxa.com e-mai l : [email protected]

    W

    irelessLandscape

    1

    History of WLAN Standards

    ForWLANapplications,theIEEEfirstpublishedthe802.11standard

    in1997.ThreeMACsub-layersandthreedifferentphysical(PHY)

    layersareaddressedforthe802.11standard.FrequencyHopping

    SpreadSpectrum(FHSS)andDirectSequenceSpreadSpectrum

    (DSSS)aretwomethodsoffrequencyspreadingforthe2.4GHzISM

    bandthatprovidedataratesof1and2Mbps.

    IEEE802.11wasnotwidelyacceptedforuseuntiltherelease

    of802.11a/bin1999.IEEE802.11ausesthe5GHzbandwith

    orthogonalfrequency-divisionmultiplexing(OFDM)modulationtoprovidedataratesofupto54Mbps.IEEE802.11bstillusesthe2.4

    GHzISMbandtoprovidedataratesofupto11MbpsusingDSSS

    modulation,whichallowsintegrationofotherDSSS-basedIEEE

    802.11systems.FHSS-based802.11systems,however,cannotbe

    integrated.

    Themostwidely-adoptedvariationoftheIEEE802.11protocolsuite

    isIEEE802.11g,whichwasanimprovementupontheexistingIEEE

    802.11bstandard.Usingthesame2.4GHzband,OFDMmodulation

    allowsdataratesofupto54Mbps.

    1-2 WLAN Basics

    OSI Model

    Layer Functions

    (7)ApplicationUserapplicationinteractionProcess-to-processcommunication

    (6)PresentationDatatransformation/reformattingDatacompression/encryption

    (5)SessionEstablishcommunicationbetweenendsystemsManageuserconnections

    (4)Transport Errordetection/recoveryNetworkconnectionflowcontrol

    (3)NetworkManagenetworkpathconnectionsDatarouting/relay

    (2)DataLinkAccess/error/flowcontrolMACaddressing

    (1)PhysicalControlsrawbit-streamtransmissionElectricalsignaling

    IEEE 802 Standards in the OSI Reference ModelIEEE802specificationsareonlyaddressedforlayer1(physical)

    andlayer2(datalink)oftheOpenSystemsInterconnection(OSI)

    referencemodelbytheInternationalOrganizationforStandardization

    (ISO).Thedatalinklayeriscomposedof2sub-layers:MediaAccess

    Control(MAC)andLogicalLinkControl(LLC).TheLLCsub-layer

    manageserror/flowcontrolandisessentiallythesameforallIEEE

    802standards.TheMACsub-layerisforphysicaladdressingand

    managesmediaaccesscontrol.IEEE802.3specificationsreferto

    accessforEthernetandIEEE802.11specificationsrefertoaccess

    forwirelessLANs.

    LLC 802.2

    IEEE 802 WLAN802.11

    Ethernet802.3

    TheIEEE802.11hstandardisanamendmentoftheIEEE802.11a

    standard.TransmissionPowerControl(TPC)andDynamicFrequency

    Selection(DFS)areappliedatthePHYlayertomeetEuropean

    regulationsandallowcompatibilitywithotherstandardsinthe5GHz

    band.

    ThenewestspecificationtotheIEEE802.11protocolsuiteisIEEE

    802.11ac,whichisbackwards-compatiblewithother802.11n

    networksusingthe5GHzrange.ItprovidesWLANthroughput

    ofgreaterthan1Gbpsonthe5GHzband,offersupto8MIMOstreamswithupto160MHzbandwidtheach,anduseshigh-density

    modulationofupto256QAM.

    Thetablebelowillustratesthedevelopmenthistoryof802.11and

    thedifferencesbetweenthevariousversionsof802.11network

    standards.

  • 7/29/2019 Industrial Wireless Guidebook

    8/567 Industrial Wireless Guidebook

    Wireless Landscape

    Wireless Security

    802.11networksuseradiosignalbroadcaststocommunicateand

    anyonewithacompatiblewirelessnetworkinterfacecardcanaccess

    theWLAN.SecuritymeasurestoverifyWLANaccessarecriticalto

    preventunauthorizedaccesstonetworkdevicesandresources.

    TwomaintypesofsecuritymeasuresareavailableforWLANs:

    Authentication:User/deviceidentityisverifiedbeforenetwork

    accessisgranted.

    Encryption:DataexchangedbetweenWLANnodesshouldbe

    encryptedtomakeintercepteddataunreadable.

    Variouscombinationsofauthenticationandencryptionmethods

    arecommonlyusedtoprovidedifferentlevelsofWLANsecurity.

    InadditiontothreemajortypesofWLANsecurity(WEP,WPA,

    andWPA2),theIEEE802.1Xprotocolalsoprovidesarobust

    authenticationschemeforeverysingleWLANconnection.

    WLAN Security Protocols

    Security Protocol Features

    WEP(WiredEquivalentPrivacy)

    RC4dataencryption

    Nouser/passwordauthentication

    WPA(Wi-FiProtectedAccess)

    TKIP+802.1X+MICSupportsRADIUSauthenticationBackwardscompatiblewithallsystems

    WPA2 WPA+AEScipher

    802.11 Standards

    Protocol Released Frequency (GHz) Bandwidth (MHz) Data Rate (Mbps) MIMO (max.) Modulation Compatibility

    802.11 1997 2.4 20 1,2 1 DSSS,FHSS 802.11

    802.11b 1999 2.4 20 1,2,5.5,11 1 DSSS 802.11b

    802.11a 1999 5 20 6to54 1 OFDM 802.11a

    802.11g 2003 2.4 20 6to54 1 DSSS,OFDM 802.11b/g

    802.11n 2009 2.4&52040

    6.5to28.813.5to600

    4 OFDM 802.11a/b/g/n

    802.11ac 2013 5

    204080160

    6.5to693.613.5to160029.3to3466.458.5to6933.6

    8 OFDM 802.11ac/n

    WEP

    WiredEquivalentPrivacy(WEP)isalow-levelsecuritymeasure

    toprovidedataconfidentialityforwirelesscommunication.Static

    sharedkeys(fixed-lengthalphanumericstrings)areusedtoencrypt

    dataandaremanuallydistributedtoallwirelessstationsonthe

    wirelessnetwork.

    In2001,WEPwasfoundtobehighlyvulnerabletopassiveattacks

    thatcancompromisethe24-bitRC4encryptionkeyandisnot

    recommendedforhigh-levelsecuritynetworks.Forwirelesssecurity

    thatismorerobust,Wi-FiProtectedAccess(WPAorWPA2)offers

    improveddataencryptionanduserauthentication.

    WPA

    Wi-FiProtectedAccess(WPA)wascreatedinresponsetothe

    flawsfoundinWEP.Itwasdesignedasatemporarymeasureuntil

    developmentsin802.11isecuritymeasureswereready.Whenused

    withRADIUSandVPNauthenticationmethods,WPAisgenerally

    acceptableasaneffectivemethodofWLANsecurity.

    WPA2

    WPA2isanupdatetotheencryptiontechnologyofWPA.WPA

    usesTemporalKeyIntegrityProtocol(TKIP)for128-bitdata

    encryption,whileWPA2usesAdvancedEncryptionStandard(AES),

    asubstitution-permutationnetworkencryptiondesignthatissuitable

    forWLANsthatrequirehighly-secureaccesscontrol.

  • 7/29/2019 Industrial Wireless Guidebook

    9/568

    www.moxa.com e-mai l : [email protected]

    W

    irelessLandscape

    1

    802.1X

    802.1Xisaport-basedauthenticationmethodthatprevents

    unauthorizedaccesstothenetwork.ItisusedwithWPAtoforma

    completeWLANsecuritysystem.Onmanywirelesssystems,users

    canlogintoindividualaccesspointsbutcannotgetfurtherwithout

    Method Client Support Considerations

    Open Nospecialrequirementh Canbeinstalledandusedquicklyh Bringshighriskandmaydamagethenetworksecurity

    WEP Built-insupportforall802.11a,802.11b,and802.11gdevicesh Providesweaksecurityh Requiresmanualkeymanagement

    WPA RequiresWPA-enabledsystemandnetworkcarddriver

    h Providesdynamicallygeneratedkeysthatareperiodicallyrefreshedh Providessimilarsharedkeyuserauthenticationh Providesrobustsecurityforsmallnetworks

    WPA2 RequiresWPA-enabledsystemandnetworkcarddriver

    h Providesrobustsecurityforsmallnetworksh Requiresmanualmanagementofpre-sharedkeyh WirelessstationsmayrequirehardwareupgradetobeWPA2-compliant

    802.1X RequiresWPA-enabledsystemandnetworkcarddriver

    h Providesdynamicallygeneratedkeysthatareperiodicallyrefreshedh RequiresconfiguredRADIUSserverh ProvidesbackwardscompatibilitywiththeoriginalWPA

    Choosing the Right Level of WLAN Security

    Therightbalancebetweensecurity,transparency,andcost

    effectivenessisimportantwhendeterminingthetypeofsecurityto

    implementontheWLAN.Factorssuchasthetargetenvironment,

    compatibletypesofsecuritylevels,andthepossibleimpacton

    networkperformancewhenusingmoresophisticatedsecuritymethodsshouldallbetakenintoconsideration.

    HereareafewkeyquestionsforevaluationofWLANsecurityoptions:

    Doestheenvironmentrequirehigh-levelsecurity?IftheWLAN

    willtransmitinformationsuchasmedicalrecords,thehighest

    levelofsecurityshouldbeapplied.However,iftheWLANwill

    onlybeusedtocommunicateenvironmentalmonitoringdata,

    alowerlevelofsecurityshouldbeappliedtooptimizeWLAN

    performance.

    Whatlevelsofsecuritycanthenetworkenvironmentsupport?

    WPAandWPA2encryptiontechnologiesprovidereliablesecurity,

    butcantheclientdevicessupportthem?Also,if802.1X

    authenticationistobeimplemented,isaRADIUSserveravailable

    ontheWLAN? Willhigh-levelsecurityhaveanundesirableimpactonthe

    performanceoftheWLAN?Howwilltheperformanceofwireless

    devicesontheWLANbeaffectedifencryptionisenabled?

    Encryption/decryptioncanrequiresignificantCPUresourcesfor

    processing.CanallWLANdevices,includingthedeviceservers,

    handletheadditionalloadfordataprocessing?

    Thefollowingtablesummarizestheconsiderationsfor

    implementationandclientrequirementsforWLANsecuritymethods.

    additionalauthentication.802.1Xrequiresuserstoauthenticate

    withthewirelessnetworkitself,nottoindividualAPsoraVPN

    connection.ThisprovideshigherWLANsecurity,asunauthorized

    trafficcanbedeniedrightattheAP.

    Open

    Applies no wireless

    security

    Provides quick deployment

    and easy-to-use access

    Makes the entire network

    system vulnerable

    Can be augmented with

    VPN in enterprise and

    high-traffic environments

    WEP

    Supported by most

    existing hardware

    Offers sufficient security

    for home use, but may be

    cracked in a few minutes

    Can be augmented with

    VPN in enterprise and

    high-traffic environments

    WPA2

    Adopts the final 802.11i

    standard (2004)

    Uses the new AES cipher

    Provides pre-authentication

    and PMK caching

    Most products are

    backwards compatible

    with WPA

    WPA

    Replaces WEP by using

    TKIP for encryption

    Provides a standard

    handshake procedure

    for determination/

    transmission of the

    session key

    Incorporates key

    features of pre-802.11i

    Low Security Level High

  • 7/29/2019 Industrial Wireless Guidebook

    10/569 Industrial Wireless Guidebook

    Wireless Landscape

    IntroductionAWWAN(wirelesswide-areanetwork)canincludevarioustypes

    ofmobilecommunicationnetworks,suchastraditionalmicrowave

    transmission,satellitecommunication,andnowadayscellular

    networktechnology.Allofthesenetworksofferawidecoverage

    areaandcanevenbeusedforglobaltransmissionofdigitaldata.

    Incellularcommunication,3Gnetworksservedmorethan1.5

    billionsubscribersin2013andthenumberofusersisforecasted

    toincreaseto3.5billionby2015.However,LTEtechnology(4G)is

    showingrapidgrowthandisexpectedtoreplace3Gtechnologyas

    theleadingstandardfornextgenerationcellularcommunication.

    Majorconcernsregardingtheuseofcellularnetworksfordata

    exchangeincludebandwidth,IPmanagement,andhighoperational

    cost(suchassatellitecommunication).However,astechnologies

    advancetoprovidemoreefficientservice,cellularnetwork

    infrastructurescanbedeployedatlowercoststopotentially

    replacetraditionalmicrowave,RF(radiofrequency),andsatellite

    communications.

    Evolution of the Cellular Network

    1-3 WWAN (Cellular) Basics

    Technology Multislot Class TDMA Timeslots allocatedDL+UL (Active TS)

    Coding Schemes(Kbps per slot)

    Download (Kbps) Upload (Kbps)

    GPRS 10 4+1(5) CS-4(20Kbps) 4slots(80Kbps) 1slots(20Kbps)

    GPRS 10 3+2(5) CS-4(20Kbps) 3slots(60Kbps) 2slots(40Kbps)

    EDGE 10 4+1(5) MCS-9(59.2Kbps) 4slots(236.8Kbps) 1slots(59.2Kbps)

    EDGE 10 3+2(5) MCS-9(59.2Kbps) 3slots(177.6Kbps) 2slots(118.4Kbps)

    P.14

    LTE-A

    HSPA+

    (UMTS)

    2G 2.XG 3G 4G

    GSM GPRS

    W-CDMA

    (UMTS)

    HSPA

    (UMTS)

    EV-DO/Rev A/Rev B

    (CDMA2000)CDMAOne

    1x

    (CDMA2000)

    LTE

    WiMAX

    EDGE

    Evolution of Digital Cellular Standards

  • 7/29/2019 Industrial Wireless Guidebook

    11/5610

    www.moxa.com e-mai l : [email protected]

    W

    irelessLandscape

    1

    2G/2.XG Technology

    Circuit-Switched Data for GSM Networks

    GSM(GlobalSystemforMobileCommunications)isasetof

    standardsformobilephonecommunicationon2Gdigitalcellular

    networks.GSMwasdevelopedbytheEuropeanTelecommunications

    StandardsInstitute(ETSI)andbecamethedefactostandardfor

    mobilecommunicationtoreplacefirstgeneration(1G)analog

    cellularnetworks.GSMusescircuit-switcheddata(CSD)forfull

    duplexvoicetransmissionandthetechnologywasexpandedover

    timetointroducedatacommunicationfirstviacircuit-switched

    transmission,whicheventuallyevolvedintopacket-switched

    technologiesandthenbyGPRS(GeneralPacketRadioServices)

    andEDGE(EnhancedDatarateforGSMEvolution)fortransmitting

    dataviaGPRS(GeneralPacketRadioServices)andEDGE(Enhanced

    DataratesforGSMEvolution).

    GPRS

    GeneralPacketRadioService(GPRS)isapacket-switchedservice

    forGSMtransmissionon2G/2.5Gnetworkstoallowsimultaneous

    voiceanddatatransmissions.GPRScanbeusedforservices,

    includingSMS,MMS,email,andinternetaccess.GPRSwasfirst

    developedbytheEuropeanTelecommunicationsStandardsInstitute,

    andisnowmaintainedbythe3rdGenerationPartnershipProject

    (3GPP).

    EDGE

    EnhancedData-ratesforGSMEvolution,alsoknownasEnhanced

    GPRS(EGPRS),IMTSingleCarrier(IMT-SC),orEnhancedDatarates

    forGlobalEvolution,isanextensionofGSM.EDGEisapre-3Gdigital

    mobilephonetechnologythatallowshigherdataratesthanGPRS,

    withtransmissionratesofupto384kbps.

    Additional Information

    Thefollowingfiguregivesaroughideaofthroughputimprovement

    overtimewithdifferent2Gtechnologies.

    Furthermore,GSM,GPRS,andEDGEoperateonfourcommonGSM

    bands:850MHz,900MHz,1800MHz,and1900MHz.However,

    sincedifferentregulationsareusedindifferentcountries,acommon

    GSMfrequencyisnotusedaroundtheworld.Theaccompanying

    tablegivesabriefoverviewoftheGSMbandsusedinanumberof

    countries.

    Continent Country850MHz

    900MHz

    1800MHz

    1900MHz

    America

    Brazil

    Canada

    UnitedStates

    EuropeFrance Germany

    UnitedKingdom

    Africa SouthAfrica

    Asia

    China

    India

    Russia

    Taiwan

    OceaniaAustralia

    NewZealand

    Note1:Forthelatestbandusage,pleasecontactlocalcarriers.Note2:Forcellulardevicecompatibilitywithaparticularcarrier,pleasecheckCarrierApprovalwithyourcellulardevicevendor.

    GSM Frequency Band Usage Overview

    (Based on major carriers)

    1990 Timeline 20132003

    GSM

    Circuit-SwitchedData

    GPRS

    UL:20kbps

    DL:80kbps

    EDGE

    UL:59.2kbps

    DL:236.8kbps

  • 7/29/2019 Industrial Wireless Guidebook

    12/5611 Industrial Wireless Guidebook

    Wireless Landscape

    3G Technologies

    3GPPFrom UMTS to HSPA+

    UMTS

    TheUniversalMobileTelecommunicationsSystem(UMTS)isaGSM-based3Gtechnologyformobilecellularnetworksdevelopedbythe

    3rdGenerationPartnershipProject(3GPP).UMTSusesWideband

    CodeDivisionMultipleAccess(W-CDMA)andcombinesboth

    wirelessandsatellitecellulartechnologiestotransmitupto2Mbps

    ofdatatoprovidegreaterspectrumefficiencyandbandwidth.

    HSPA (HSDPA/HSUPA/HSPA+)

    HighSpeedPacketAccess(HSPA)isthetermforUMTS-based3GcellularnetworksthatsupportbothHSUPA(HighSpeedUplink

    PacketAccess)andHSDPA(HighSpeedDownlinkPacketAccess)

    datatocommunicateviaW-CDMAprotocolstoprovidedownload

    ratesofupto14.4Mbpsanduploadratesofupto5.8Mbps.A

    newerversion,EvolvedHSPA(alsoknownasHSPA+),wasreleased

    in2008andiscapableofprovidingdataratesofupto42Mbpsfor

    downloadingand22Mbpsforuploading.

    2001 Timeline 2013

    UMTS

    UL:64kbps

    DL:2MbpsHSPA

    UL:5.8Mbps

    DL:14.4Mbps

    HSPA+

    UL:22Mbps

    DL:42Mbps

    HSDPA

    DL:14.4Mbps

    HSUPA

    UL:5.8Mbps

    Additional Information

    Thefollowingfiguregivesaroughideaofthethroughputimprovementovertimewithdifferent3G-UMTStechnologies.

    Furthermore,thereare5commonlyusedUMTSfrequencies:800,850,900,1900,and2100.TheUMTSfrequencyusageisdifferentfordifferent

    operators.ThefollowingtablegivesaroughoverviewoftheUMTSbandselectionforseveralmajoroperatorsaroundtheworld.

    Continent Country 850 MHz 900 MHz 1700 MHz 1900 MHz 2100 MHz

    America

    BrazilTIMBR

    Vivo

    CanadaBellMobility

    RogersWireless

    UnitedStatesAT&TMobility

    T-MobileUS

    Europe

    FranceOrange

    SFR

    GermanyO2

    Vodafone

    UnitedKingdomT-Mobile

    Vodafone

    Africa SouthAfricaMTNSA

    Vodacom

    AsiaChina ChinaUnicom

    Taiwan ChunghwaTelecom

    Oceania

    Australia Telstra

    NewZealandTelecomNZ

    VodafoneNZ

    Note1:Forthelatestbandusage,pleasecontactlocalcarriers.Note2:Forcellulardevicecompatibilitywithaparticularcarrier,pleasecheckCarrierApprovalwithyourcellulardevicevendor.

    UMTS Frequency Band Usage Overview

    (Based on major carriers)

  • 7/29/2019 Industrial Wireless Guidebook

    13/5612

    www.moxa.com e-mai l : [email protected]

    W

    irelessLandscape

    1

    3GPP2From CDMA2000 to EV-DO

    CDMA2000,alsoknownasIMTMulti-Carrier(IMT-MC),isanIMT-

    2000-basedstandardofCode-DivisionMultipleAccess(CDMA)that

    wasdevelopedbytheITUforsendingdatabetweenmobilephones

    andcelltowers(orBST,BaseTransceiverStation).CDMA2000and

    W-CDMAarecompetingstandardsinthecellularcommunication

    networkmarket.

    CDMA2000actuallydenotesafamilyofstandardsthatrepresentthe

    successive,evolutionarystagesoftheunderlyingtechnology.The

    differentvariationsareallapprovedradiointerfacesforIMT-2000

    andarelistedbelowinchronologicalorder:

    4G Technologies

    Pre-4G vs. True 4G

    Today'soperatorsrefertoLTEandWiMAXtechnologiesasfourth

    generationcellulartechnologies(4G).However,accordingtothe

    InternationalTelecommunicationUnion,True4Gtechnology

    shouldprovideGigabit-leveldatarateswhenstationary,andapeak

    rateof100Mbpsforhighlymobileapplicationsandothercriteria

    (detailsgivenbelow).Thissectiongivesabriefintroductiontopre-4G

    technology(LTE),andtrue-4Gtechnology(LTE-A).

    Requirements of IMT-Advanced (4G)

    ThecandidateRadioInterfaceTechnology(RIT)shallbebasedon

    anIP-basedpacketswitchednetwork.

    ThecandidateRITshallprovideanominaldatarateof100Mbps

    whentheclientisphysicallymovingathighspeedsrelativetothe

    basetransceiverstation(BST),and1Gbpsforlow-speedmobility

    orrelativelyfixedpositions.

    ThecandidateRITshallbeabletodynamicallyshareandusethe

    networkresourcestosupportmoresimultaneoususerspercell.

    ThecandidateRITshallbeabletousedifferentbandwidth

    allocationstosupportascalablebandwidthofupto(and

    including)40MHz.

    ThecandidateRITshallhaveaminimumdownlinkpeakspectral

    efficiencyof15bits/s/Hz,andaminimumuplinkpeakspectral

    efficiencyof6.75bits/s/Hz.

    Forindoorenvironments,thecandidateRITshallhaveacellspectralefficiencyofupto3bits/s/Hz/cellfordownlinkand2.25

    bits/s/Hz/cellforuplink.

    ThecandidateRITshallprovideseamlesshandoversandglobal

    roamingacrossmultipleheterogeneousnetworks.

    ThecandidateRITshallofferahighqualityofservicefornext

    generationmultimediaservices.

    2000 Timeline 2013

    CDMA20001X

    UL:153kbps

    DL:153kbps

    1xEV-DORel.0

    UL:153kbps

    DL:2.4Mbps

    1xEV-DORev.A

    UL:1.8Mbps

    DL:3.1Mbps

    EV-DORev.B

    UL:5.4Mbps

    DL:14.7Mbps

    DOAdvanced

    UL:12.4Mbps

    DL:32Mbps

    1XEnhancements

    EVRC-B+QLIC+QQF

    UL:153kbps

    DL:153kbps

    1XAdvanced

    NEWCHANNELCARD

    UL:307kbps

    DL:307kbps

  • 7/29/2019 Industrial Wireless Guidebook

    14/5613 Industrial Wireless Guidebook

    Wireless Landscape

    LTE Data Speeds

    LTE

    PeakDownload 100Mbps

    PeakUpload 50Mbps

    Long Term Evolution (LTE)

    Thepre-4G3GPPLongTermEvolution(LTE)technologyisoften

    branded4G-LTE,butthefirstLTEreleasedoesnotfullycomply

    withtheIMT-Advancedrequirements.LTEhasatheoreticalnetbit

    ratecapacityofupto100Mbpsinthedownlinkand50Mbpsin

    theuplinkifa20MHzchannelisused,andmoreifmultiple-input

    multiple-output(MIMO),i.e.,antennaarrays,areused.Thefollowing

    tablegivesatheoreticalmeasurementoftheLTEdatarate.

    LTE Advanced Data Speeds

    LTE Advanced

    PeakDownload 1Gbps

    PeakUpload 500Mbps

    Additional Information

    LTEin2013isstillagrowingtechnology,andfrequencyusageorregulationisstillevolvingovertime.ThefollowingtablegivesasnapshotofLTE

    frequencyusagein2013.ForthelatestinformationpleasecontactyourlocalLTEserviceprovider.

    Continent Country 700 MHz 800 MHz 850 MHz 900 MHz 1700 MHz 1800 MHz 2100 MHz 2300 MHz 2600 MHz

    America

    Brazil

    Canada

    UnitedStates

    Europe

    France

    Germany

    UnitedKingdom

    Africa SouthAfrica

    AsiaJapan

    SouthKorea

    OceaniaAustralia

    NewZealand

    Note1:Forthelatestbandusage,pleasecontactlocalcarriers.Note2:Forcellulardevicecompatibilitywithaparticularcarrier,pleasecheckCarrierApprovalwithyourcellulardevicevender.

    Long Term Evolution Advanced (LTE-A)

    LTE-Advanced(LongTermEvolutionAdvanced)wasformally

    submittedbythe3GPPorganizationtoITU-Tinfall2009asa

    candidatefortheIMT-Advancedstandardandisexpectedtobe

    releasedin2013.LTE-Advancedisessentiallyanenhancement

    totheexistingLTEtechnologyformobilenetworks.LTEandLTE-

    Advancedalsomakeuseofadditionalspectrumsandmultiplexingto

    allowhigherdataspeeds.CoordinatedMulti-pointTransmissionwill

    alsoallowmoresystemcapacitytohelphandletheenhanceddata

    speeds.Release10ofLTEisexpectedtoachievethedata-speed

    requirementsofIMT-Advanced.Release8currentlyprovidesup

    to300Mbpsofdatadownload,whichisstillinadequateforIMT-

    Advancedstandards.

    LTE Frequency Band Usage Overview

    (Based on major carriers)

  • 7/29/2019 Industrial Wireless Guidebook

    15/5614

    www.moxa.com e-mai l : [email protected]

    W

    irelessLandscape

    1

    1-4 WPAN Basics

    IEEE 802.15 Standards for WPANWPAN(WirelessPersonalAreaNetwork)technologies,alsoknown

    asIEEE802.15,weredevelopedbytheIEEEforpersonal-area

    communicationacrossashort-distancewirelessnetwork,which

    IEEE 802.15.4 Low Rate WPAN

    IEEE802.15.4(LowRateWPAN)providesanuncomplicatedmethod

    forlowdataratecommunicationbutwithaverylongbatterylife(low

    powerconsumption).Thestandarddefineslayer1(physical)and

    layer2(datalink)oftheOSIreferencemodel.Severalstandardized

    andproprietaryprotocolscanbeusedforcommunicationon

    802.15.4networks,suchasIEEE802.15.5,ZigBee,ISA100.11a,

    6LoWPAN,andWirelessHART.

    includeswirelesscommunicationbetweenmobilecomputers,and

    devicessuchascellphones,laptops,andPDAs.Thetablebelow

    compareskeyfactorsforvarioustypesofWPANtechnology.

    SPAN (IEEE) Technology Data Rate Distance

    IEEE802.15.1 Bluetooth 1Mbps10m(Class3)100m(Class1)

    IEEE802.15.2 CoexistenceMechanismsbetweenWLANandWPAN

    IEEE802.15.3 HighRateWPAN(UWB) 11,22,33,44,55Mbps 30to50m

    IEEE802.15.3a Alternate15.3PHY >100Mbps 10m

    IEEE802.15.4 LowRateWPAN(ZigBee) 250kbps 1to100m

    IEEE802.15.4aLowRateAlternativePHYof802.15.4(UWB)

    5Mbps

  • 7/29/2019 Industrial Wireless Guidebook

    16/5615 Industrial Wireless Guidebook

    Wireless Landscape

    ZigBee

    Developedforlowcostandlowpowerconsumption,ZigBeeisa

    globalstandardbasedonIEEE802.15.4formachine-to-machine

    (M2M)networkcommunicationusingunlicensedbands(868MHz

    inEurope,900MHzintheUS,and2.4GHzglobally).Therelatively

    lowcostallowsZigBeetobewidelydeployedinwirelesscontrol

    andmonitoringapplications,anditslowpowerrequirementsallows

    nodestooperateformonths,andevenuptoafewyears,atatime

    withouthavingtoreplacethebatteries.Meshnetworkingprovides

    highreliability,extensivecoverageareas,andnetworkflexibility.Data

    transmissionratescanrangefrom20kbps(868MHz)to250kbps

    (2.4GHz).

    TheZigBeenetworklayersupportsstar,tree,andmeshnetwork

    topologies.Everynetworkmusthaveatleastonecoordinatordevice.

    Withinstarnetworks,thecoordinatormustbethecentralnode.Both

    treeandmeshnetworktopologiesallowtheuseofZigBeeroutersto

    extendcommunicationatthenetworklevel.

    Thespecificationgoesontocompletethestandardbyaddingfourmaincomponents:networklayer,applicationlayer,ZigBeedeviceobjects

    (ZDOs),andmanufacturer-definedapplicationobjects,whichallowforcustomization,andfavortotalintegration.

    ZigBeeisnotdesignedforpowerlinenetworkingbutisoftenusedinapplicationssuchasbuildingautomation,lightingcontrols,HVACcontrol,

    medicaldevices,andwarehouseapplications.ZigBeenodesarehighlycosteffectiveandcanrecoverfromsleepmodeinlessthan30

    millisecondstoprovidelowlatencynetworkcommunication.

    Star Tree Mesh

    Mobility L M H

    Distance 100m 500m 1000m

    Stability H M L

    Efficiency H M L

    Star

    Coordinator

    Router

    End DeviceTree Mesh

    Application (APL) Layer

    Application Framework

    Application Support Sublayer (APS)

    SecurityServiceProvider

    ZDOM

    anagementPlane

    Medium Access Control (MAC) Layer

    Physical (PHY) Layer

    ZigBee Device Object(ZDO)

    ApplicationObject 240

    APSDE-SAP

    APS SecurityManagement

    SecurityManagement

    2.4 GHz Radio 868/915 MHz Radio

    RoutingManagement

    NetworkManagement

    MessageBroker

    APS MessageBroker

    ReflectorManagement

    APSDE-SAP

    NLDE-SAP

    IEEE 802.15.4 defined

    ZigBee Alliance defined

    End manufacturer defined

    Layer function

    Layer interface

    NLME-SAP

    MLME-SAP

    PLME-SAP

    NLME-SAP

    PD-SAP

    Endpoint 1APSDE-SAP

    Endpoint 0APSDE-SAP

    ZDOP

    ublic

    Interface

    ApplicationObject 1

  • 7/29/2019 Industrial Wireless Guidebook

    17/5616

    www.moxa.com e-mai l : [email protected]

    W

    irelessLandscape

    1

    TheIEEE802.15.4standardforZigBeenetworksisidealforWPANcommunicationinindustrialapplications.ZigBeenetworksprovidesimpleand

    low-costwirelesscommunicationforserialdevices,suchassensors,meters,anddisplays,toprovideflexibledatacommunicationwithminimal

    cablingrequired.AdditionalZigBeenetworkbenefitsinclude:

    Meshnetworkscanextendupto120nodes

    ConfigurableinStar,Tree,andMeshtopologies

    Easyinstallationandlowpowerconsumptionreducestotalcostofownership

    ZigBee Solution

    TheZigBeeprotocolhasbeenacceptedbyover300companies

    (knownastheZigBeeAlliance)acrosstheglobeasareliableopen

    standardtoprovidealow-costpersonal-areainfrastructureforlow

    data-ratecommunication.

    AZigBeenetworkconsistsofthreetypesofdevices/nodes;the

    ZigBeecoordinator(ZC),ZigBeerouter(ZR),andZigBeeenddevice

    (ZED).

    ZigBee Coordinator

    EveryZigBeenetworkhasonecoordinatorfornetworkmanagement

    anddatarouting.Thecoordinatorshouldbemains-poweredbecause

    ZigBeenetworkcommunicationreliesontheZC.

    ThefollowinggraphillustratesatypicalZigBeenetworktopology,

    whichgenerallyincludesthreedevicetypes.Serialdevicescanbe

    connectedtoanyZigBeedevicetypetoexchangedataviathePAN.

    Autilityisusuallyprovidedbythedevicemanufacturertoconfigure

    theZigBeenetwork.

    ZigBeedevicesthatareconfiguredasthecoordinator(ZC)canhave

    anEthernet-enabledinterfacetoprovideaccesstoanotherdevice,

    Ethernet-basednetwork,ortheInternet.Thefollowinggraphshows

    twosucharchitectures.

    ZigBee Router

    Routersforwarddataacrossthenetworkthroughmulti-hoprouting

    andareusuallymains-powered.Otherthanconnectingtorouters,enddevicescanalsoconnectdirectlytothecoordinator.

    ZigBee End Device

    ZigBeeenddevicesaregenerallyconnectedtothenetworkthrough

    routers.Inadditiontorelyingonmains-power,enddevicescan

    bebattery-poweredtoobecauseoftheirlow-powerconsumption.

    Mostly,enddevicessleeptoconservebatterypowerandwakeup

    regularlytocollectandtransmitdata.

    Coordinator Router End DeviceCoordinator Router End Device

    Internet

    Connection to a Host Uplink to a Network

  • 7/29/2019 Industrial Wireless Guidebook

    18/5617 Industrial Wireless Guidebook

    Understanding Wireless Technology

    2-1 Radio System ConceptsHow Radio Works

    Electromagnetic Waves

    DataistransmittedthroughtheairwithElectromagnetic(EM)waves,

    whichareformedbyanalternatingcurrentthatisrapidlychanging

    directiononaconductivematerial.Therapidoscillationofelectric

    andmagneticfieldsaroundtheconductorprojectselectromagnetic

    wavesintotheair(seetheaccompanyingfigure).Inorderforcurrent

    toberadiatedintotheairintheformofelectromagneticwaves,

    afewfactorsarecritical;namely,thelengthoftheconductor

    andfrequencyoftheACcurrent.Ahigherfrequencyreducesthe

    requirementforconductorlength.

    Anantenna(alsocalledanaerial)isaconductordevicedesigned

    totransmitand/orreceiveelectromagneticwavesduringwireless

    communication.

    Tx & Rx

    Everyradiosetupincludestwomajorcomponents:

    Transmitter(abbreviatedasTx)

    Receiver(abbreviatedasRx)

    Electromagneticwavesareradiatedfromatransmittertoareceiver.

    Thetransmitterencodesvoice,video,anddataontoasinewave,

    andtransmitsitviaradiowaves.Thereceiverreceivestheradio

    wavesanddecodesthewavestoretrievetheinformation.Boththe

    transmitterandreceiveruseantennastoradiateandcaptureradio

    signals.Thefollowingfigureisanexampleofthesystemarchitecture

    andblockdiagramofanIEEE802.11aradiounit.Youcanseethatthetransmitterandreceiverarebothfeaturedinthesameradio

    unit.Theupperpath,fromtheantennaside(left)toadatastream

    (right),showshowtheradiosignalistransferredtoadatastreamvia

    areceiverandseveralfunctionalblockswhilethelowerpathshows

    howtransmissionworks.Amultiplexerisusedtoselectapathfor

    transmissionorreception.

    Understanding Wireless Technology

    Magnetic field

    Electric field

    Propagation

    direction

    Wavelength ()

    I & Q

    Modulator

    Symbol

    Shaping

    FEC

    Encoder

    FEC

    Decoder

    Guard

    Interval

    Addition

    Guard

    Interval

    Removed

    Interleaving

    and

    mapping

    Demapping

    and

    Deinterleaving

    IFFT

    FFT

    MultiplexerAntenna

    Switch

    Automatic

    Frequency

    Control

    Clock Recovery

    I & Q

    Demodulator

    Receiver Level

    Determination

    11010111

    01001011

    Automatic Gain Control

    AmplifierMixer

    AmplifierMixer

    Low Noise

    Amplifier

    Thesize(orlength)oftheantennaisdirectlyproportionaltoits

    desiredtransmission/receptionfrequency.

  • 7/29/2019 Industrial Wireless Guidebook

    19/5618

    www.moxa.com e-mai l : [email protected]

    UnderstandingWirelessTechnology

    2

    Propagation

    AsEMwavespropagatethroughtheair,theyexperiencethe

    followingtypesofalterationsastheyencounterdifferenttypesof

    obstacles:

    Diffraction (Shadow Fading)

    Signalstrengthisreducedafterexperiencingdiffraction.Obstacles

    causingdiffractionusuallyhavesharpedgessuchastheedgesof

    buildings.WhenEMwavesencounteranobstaclewithsharpedges

    thatcannotbepenetrated,theEMwaveswraparoundtheobstacle

    toreachthereceiver.

    Scattering

    WhenEMwavesencountermanysmallobstacles(smallerthanthe

    signalwavelength),theEMwavesscatterintomanysmallreflective

    wavesanddamagethemainsignal,causinglowqualityoreven

    MIMO

    MIMO(MultipleInput/MultipleOutput,commonlypronouncedmy-

    mo)isatechnologythatusesmultipletransmittersandreceivers

    (withmultipleantennas)toimprovetheperformanceofwireless

    communication.Thefollowinglettersareusedtodescribesuch

    aradiosystem:M=Multiple;S=Single;I=Input;O=Output.

    TheM,S,I,andOrelatetowhatisdoneintheair,notthedevice.

    Forexample,regardingaMIMOradiosystem,MI(multipleinputs)

    meansmultipletransmitterssendmultipledatastreamsintothe

    air.MO(multipleoutputs)meansmultiplereceiversacquiremultiple

    datastreamsoutoftheair.Notethatthetermsinputandoutput

    refertotheradiochannelcarryingthesignal,nottothedeviceswith

    antennas.

    Whenmultipletransmittersandmultiplereceiversareused,simulta-

    neousdatastreamscanbesent,whichincreasethedatarate.Inad-

    dition,multiplereceiversallowgreatercoverageandlongerdistances

    betweendevices.TheIEEE802.11nstandardusesMIMOtoincrease

    speedto100Mbpsandbeyond.MIMOtechnologyisalsousedin

    LTEandotherwirelessstandards.

    RxTx

    Tx Rx

    RxTx

    Tx Rx

    brokenlinks.Suchobstaclesincluderoughsurfaces,rocks,sand,

    dust,treeleaves,streetlights,etc.

    ReflectionWhenEMwavesrunintolargeobstaclessuchastheground,walls,

    orbuildings,theyreflectandchangetheirdirectionandphase.Ifthe

    reflectedsurfaceissmooth,thereflectedsignalwilllikelyrepresent

    theinitialsignalandnotbescattered.

    Alloftheabovephenomenaresultinmultipathpropagationsonot

    allsignalswillarriveatthereceiverantennaatthesametimedue

    toobstaclesthatchangethesignalpaths.Whetheryouaresetting

    upanoutdoororindoorapplication,multipathcanseverelyaffect

    receivedsignalqualitybecausethedelayedsignalsaredestructiveto

    themainsignal.ThemultipathissuecanusuallybecompensatedbyantennadiversityattheRFleveland/orbyOFDMatthebasebandlevel.

    The various systems are illustrated below:

    Single-inputsingle-output(SISO)

    Multiple-inputsingle-output(MISO)

    Single-inputmultiple-output(SIMO)

    Multiple-inputmultiple-output(MIMO)

  • 7/29/2019 Industrial Wireless Guidebook

    20/5619 Industrial Wireless Guidebook

    Understanding Wireless Technology

    Transmit Power and Received SensitivityWhenaradiosignalisbeingtransmittedthroughtheair,itwill

    experienceagreatlossinsignalstrength,knownasattenuation,

    whilepropagatingthroughfreespace.Therefore,whenevaluating

    awirelesssystem,oneneedstobeawareofthesignalpowerlevel

    atthetransmitterendandatthereceiverend.Thesignalpower

    receivedcannotbesoweakastobreakthecommunicationlink,or

    toostrongastosaturatethereceiversamplifiers.

    Theseconcernscallforestimatingthepowerbudgetofawireless

    system.Powerbudgetestimationswillgiveanideaofhowfarto

    extendthewirelesslinkwithoutlosingcommunication.Notethatthefollowingcalculationsaretheoreticalestimatesthatarenotmeantto

    guaranteecommunicationdistance.TheformulascomefromtheFriis

    EquationandarebasedontheideaofFreeSpaceLoss.

    TheFriisTransmissionFormulaenablesustocalculatethepower

    received(Pr)giventhataknownpower(P

    t)isradiated.Friisassumes

    thatbothantennasareisotropic,andFreespaceimpliesthatthere

    arenoobjectspresenttoaffectpropagation.Thetheoreticalformula

    maylooklikethis:

    whereGtandG

    rarethegainofthetransmittingandreceiving

    antennas,isthewavelength,andRisthedistancefromtheradiator.

    Since=c/F, where cisthespeedoflight(3x108m/s)andFis

    thefrequencyinHz,wecansimplifytheformulaandrepresentthe

    effectivetransmissiondistancer(inkm)asfollows

    wherefisthefrequencyinMHz,ptandp

    rareindBm,andg

    tandg

    r

    areindBi.

    Theseparametersareeasytoobtainfromthedesignortheproduct

    specifications.Pluginthevaluesfortheseparameterstogetthe

    effectivedistance.Inreality,duetosystemlossortheuseofnon-

    isotropictransmittingandreceivingantennas,weusuallydivide

    thetheoreticalresultbyafactorof4toobtainamorereasonable

    distance.Infact,factorsof8orhighermaybeusedifthesystemand

    environmentalconditionsarenotcontrollable.

    (pt+gt+gr

    _pr) /2010

    r=41.88 fx

    =GtGrPP ( )

    2

    4Rr

    t

    Signal Power

    Radiosignalsaretransmittedatacertainpowerlevel,withpower

    measuredinwatts.However,powerratingsforaWLANareusuallymeasuredinmilliwatts(mW).AcommercialwirelessAPtransmits

    between30to100mWofpower,andabout50mWforwireless

    adaptors(clients).Certainapplicationswillrequirehighertransmit

    power(orTxpower)andmayattempttousepowerboostersor

    customizedhigh-powermodulestoamplifythetransmitpower.

    However,suchattemptsmustbeperformedwithcautionaspower

    amplificationmaycausethesystemtoexceedthecountrysradio

    emissionregulations(i.e.,FCCregulations).

    PowermeasuredinmWishardonthemathwhendealingwith

    extremelysmallpowerlevelsatthereceiverend.Therefore,insteadofusingabsolutevalues(milliwatts)weoftenconverttheminto

    dBm.TheunitofdBmisalogarithmicrepresentationofmW.The

    conversionsareasfollows:

    What You Need to Know about a Radio System

    ThedBmisanabsoluteunitwhichisreferencedtothemilliwatt.0

    dBmequals1milliwatt.TheunitdBmisusedforameasurementofabsolutepower.Bycomparison,thedecibel(dB)isadimensionless

    unit,usedforquantifyingtheratiobetweentwovalues.Roughly

    speaking,a3-dBincreaserepresentsroughlydoublingthepower,

    whilea3-dBdecreasemeansthatthepowerisreducedbyabout

    onehalf.Hereisaquicktableshowingunitconversions:

    dBm mW dBm mW dBm mW

    -3 0.5 9 8 21 126-2 0.6 10 10 22 158-1 0.8 11 13 23 2000 1.0 12 16 24 2501 1.3 13 20 25 3162 1.6 14 25 26 3983 2.0 15 32 27 5004 2.5 16 40 28 6305 3.2 17 50 29 8006 4 18 63 30 10007 5 19 79 33 20008 6 20 100 36 4000

    dB m logPmWP = 10

    mWP = 10

    dBmP

    10( )

  • 7/29/2019 Industrial Wireless Guidebook

    21/5620

    www.moxa.com e-mai l : [email protected]

    UnderstandingWirelessTechnology

    2

    Spread-spectrumtechniquesaremethodsfortransmittinga

    radiosignaloverabandwidththatisconsiderablylargerthanthe

    frequencycontentoftheoriginalinformation.Spread-spectrum

    techniquesprovidethebenefitsofsecurecommunications,better

    resistanceagainstinterference,noise,andjamming,andlimiting

    thepowerfluxdensity.Tosimplifythisdiscussion,onlyspread-spectrumtechniquesthatpertaintotheradio-basedphysicallayers

    inthe802.11standard,namelyFHSS,DSSS,andOFDM,willbe

    discussed.

    FHSS (Frequency Hopping Spread Spectrum, or FH)

    Thisisoneofthemodulationtechniquesusedinspreadspectrum

    signaltransmission.ItisalsoknownasFrequency-HoppingCode

    DivisionMultipleAccess(FH-CDMA).Spreadspectrumenablesa

    signaltobetransmittedacrossafrequencybandthatismuchwider

    thantheminimumbandwidthrequiredbytheinformationsignal.The

    transmitterspreadstheenergy,originallyconcentratedinanarrowband,acrossanumberoffrequencybandchannelsonawider

    electromagneticspectrum.FHSShastheadvantagesofimproved

    privacy,decreasednarrowbandinterference,andincreasedsignal

    capacity.

    DSSS (Direct Sequence Spread Spectrum, or DS)

    DSSSdividesastreamofinformationtobetransmittedintosmall

    pieces,eachofwhichisallocatedtoafrequencychannelacrossthe

    spectrum.DSSSgeneratesaredundantbitpatternforeachbittobe

    transmitted.Thisbitpatterniscalledachip(orchippingcode).Even

    ifoneormorebitsinthechiparedamagedduringtransmission,

    statisticaltechniquesembeddedintheradiocanrecovertheoriginal

    datawithouttheneedforretransmission.Directsequencespread

    spectrumisalsoknownasdirectsequencecodedivisionmultiple

    access(DS-CDMA).Thismodulationtechniqueisofficiallyaccepted

    andusedbytheIEEE802.11bandIEEE802.11gstandards.

    Modulation and Spread Spectrum

    Modulationistheprocessofconveyingamessagesignalbyvarying

    oneormorepropertiesofaperiodicwaveform,calledthecarrier

    signal,withamodulatingsignalthatencodestheinformationtobe

    transmitted.Theactofextractingtheoriginalinformation-bearingsignalfromamodulatedcarrierwaveiscalleddemodulation.

    TherearemanyRFmodulationtechniques.Theaccompanyingchart

    categorizesdifferentdigitalmodulationtechniques.

    Category Digital Modulation Technology

    Phase-shiftkeying

    BinaryPSK(BPSK)BinaryPSK(BPSK)QuadraturePSK(QPSK)DifferentialPSK(DPSK)

    DifferentialQPSK(DQPSK)Multi-phaseshiftkeying(M-aryPSKorMPSK)/4QPSK

    Frequency-shiftkeying

    Audiofrequency-shiftkeying(AFSK)Multi-frequencyshiftkeying(M-aryFSKorMFSK)Dual-tonemulti-frequency(DTMF)

    ComplementaryCodeKeying

    ComplementaryCodeKeying(CCK)

    Quadratureamplitude

    MultipleQuadratureamplitudemodulation(M-aryQAM)

    Continuousphase

    Minimum-shiftkeying(MSK)

    Gaussianminimum-shiftkeying(GMSK)Continuous-phasefrequency-shiftkeying(CPFSK)

    Frequency-divi-sionmultiplexing

    Orthogonalfrequency-divisionmultiplexing(OFDM)

    Spread-spectrumDirect-sequencespreadspectrum(DSSS)Chirpspreadspectrum(CSS)Frequency-hoppingspreadspectrum(FHSS)

    Theformulaalsoshowsthattherearemanyotherfactorsinvolved

    thatwillaffecttransmissiondistance.Thereceiverssensitivityis

    theminimumpowerlevelthatisrequiredforthereceivertoprocess

    receiveddata.Thespecifiedsensitivityisnotthepowerdetectedby

    thereceivingantenna,butthepowerpresentatthereceivermodule.Animportantpointtonotefromtheaboveequationisthatasthe

    frequencyincreases,theeffectivedistancedecreases.Therefore,

    the5GHzband-enabled802.11aand802.11nstandardswillyield

    ashortercommunicationdistancethan2.4GHz-enabled802.11b/g

    and802.11n.Userswhowishtocommunicateoverlongdistances

    shouldthereforeselectthe2.4GHzbandandtake802.11b/g/nastheiroperatingstandard.

  • 7/29/2019 Industrial Wireless Guidebook

    22/5621 Industrial Wireless Guidebook

    Understanding Wireless Technology

    ISM and Unlicensed Bands

    Unlicensedbandsarepartoftheradiospectrumthatcanbeused

    byanybodywithoutapplyingforalicense.Awell-knownunlicensed

    bandistheISM(industrial,scientific,andmedical)radioband,

    whichisreservedinternationallyfortheuseofradiofrequency(RF)

    energyforindustrial,scientific,andmedicalpurposesotherthan

    communications.TheISMbandsaredefinedbytheITU-Rin5.138,

    5.150,and5.280oftheradioregulations.ThreeISMbandsare

    commonlyused:

    902MHzto928MHz

    2.400GHzto2.500GHz

    5.725GHzto5.875GHz

    Usageofthebandsdesignatedinthesesectionsmayvaryin

    differentcountriesduetovariationsinnationalradioregulations.

    IntheU.S.,ISMbandusageisgovernedbyFCC(Federal

    CommunicationsCommission)Part18,andPart15contains

    regulationsforunlicensedcommunicationdevices(eventhosethat

    shareISMfrequencies).InEuropeancountries,theuseoftheISM

    bandiscoveredbyShortRangeDevice(SRD)regulationsissuedby

    theEuropeanCommission,basedontechnicalrecommendationsby

    CEPTandstandardsbyETSI.

    Regulatoryauthoritiesmayallocatepartsoftheradiospectrumfor

    unlicensedcommunicationsthatmayormaynotalsobeallocated

    asISMbands.Forexample,theFCCregulatestheusablefrequency

    bandsandthemaximumallowablepowerinthesefrequencybands

    fortheUnitedStates.From1997,ithasaddedadditionalbands

    inthe5GHzrangeunderPart15.407,knownastheUnlicensed

    NationalInformationInfrastructure(U-NII)bandsforWLANusage.

    U-NII band a.k.a. Frequency Bandwidth Usage DFSPower

    Limitation

    Max EIRP

    (with 6 dBi Ant.)

    Note

    U-NII-1 U-NIILow 5.15to5.25GHz 100MHzIndoor

    onlyNo 50mW

    23dBm/200mW

    U-NII-2AU-NIIMid,

    U-NII-25.25-5.35GHz 100MHz

    Indoor&Outdoor

    Yes 250mW30dBm/

    1W

    U-NII-2B U-NIIUpper 5.35to5.47GHz 120MHz - - - - Notdeterminedyet

    U-NII-2CU-NIIWorldwide,

    U-NII-2e5.47to5.725GHz 225MHz

    Indoor&Outdoor

    Yes 250mW30dBm/

    1W

    Operationsonch120-128(5.6to5.65GHz)bandislimitedbecause

    ofweatherradar

    U-NII-3 U-NIIUpper 5.725to5.825GHz 100MHzIndoor&Outdoor

    No 1W36dBm/

    4WOverlapswiththeISMband

    U-NII-4 U-NIIUpper 5.85to5.925GHz 75MHz - - - - Notdeterminedyet

    OFDM (Orthogonal Frequency Division Multiplexing)

    OFDMisamodulationschemethatdividesasingledigitalsignal

    simultaneouslyacross1,000ormoresignalcarriers.Thesignals

    aresentatrightangles(orthogonal)toeachothersotheydo

    notinterferewitheachother.OFDMhastheabilitytoovercome

    multi-patheffectsbyusingmultiplecarrierstotransmitthesame

    signal.OFDMiscommonlyusedintheIEEE802.11aand802.11g

    standards.Non/nearline-of-sightassociationscanalsobeachieved

    byusingtheOFDMtechnique.

    The802.11g(802.11bbackwardscompatible)standardisused

    belowasanexampleforhowthetransmissiontypeofspread

    spectrumandmodulationschemecorrespondstoeachdatarate:

    Data Rate (Mbps)Transmission Type

    of Spread SpectrumModulation Scheme

    54 OFDM 64QAM

    48 OFDM 64QAM

    36 OFDM 16QAM

    24 OFDM 16QAM

    18 OFDM QPSK

    12 OFDM QPSK

    11 DSSS CCK

    9 OFDM BPSK

    6 OFDM BPSK

    5.5 DSSS CCK

    2 DSSS QPSK

    1 DSSS BPSK

  • 7/29/2019 Industrial Wireless Guidebook

    23/5622

    www.moxa.com e-mai l : [email protected]

    UnderstandingWirelessTechnology

    2

    Advantages and Disadvantages of Using Unlicensed Bands

    ISMandU-NIIarebothunlicensedbands,whichallowanyoneto

    transmitinthesebandswithoutalicensefromtheFCCorrelatedauthorities.Itistheopeningoftheseunlicensedbandsthathas

    allowedtheWLANbusinesstogrowinsmallbusinessesandhomes.

    However,thefreedomoftheselicense-freebandsalsomeans

    agreatnumberofun-licensedusersmaybesharingthesame

    bandwidth.Thepowerfulemissionsofthesedevicescancreate

    electromagneticinterferenceanddisruptradiocommunicationusing

    thesamefrequency,sothesedeviceswerelimitedtocertainbands

    offrequencies.Ingeneral,communicationsequipmentoperatingin

    theseunlicensedbandsmusttolerateanyinterferencegeneratedby

    otherequipment,anditalsomeansthatusershavenoregulatory

    protectionfromdevicesoperatingonunlicensedbands.

    Letstakethe2.4GHzbandasanexample.Inthefollowingdiagram,

    therearethreenon-overlappingchannelsforDSSSoperation(IEEE

    802.11b).Whenchannel-bondingisappliedinIEEE802.11n,there

    isonlyonenon-overlappingchannel(eitherch3orch11),which

    meansthattheoperationofonedevicecaneasilyinterferewithother

    devices,andviceversa.Thatiswhysomevendorsdonotprovide

    channel-bondingfor2.4GHzbandoperation.

    Inthefollowingsections,ourdiscussiononlyincludesthe2.4GHz

    bandand5GHzbandbecausetheyarethemostcommonlyused

    bandsinWLANapplications.InadditiontoIEEE802.11standards,

    thetradeoffsbetweenthesetwobandsareusuallyconsideredwith

    interference(almostentirelyinthe2.4GHzband)andrange(bigger

    powerlossshortensthetransmissiondistanceinthe5GHzband).

    902-928 MHz

    2400-2500 MHz

    U-NII-1 U-NII-2A U-NII-2B U-NII-3 U-NII-4U-NII-2C

    ISM: 2.4 GHz

    ISM: 900 MHz

    ISM: 5.8 GHz

    900

    100 km

    3 kHz

    increasing wavelength

    30 kHz 300 kHz 3 MHz 30 MHz 300 MHz 3 GHz 30 GHz 300 GHz

    10 km 1 km 100 m 10 m 1 m 10 cm 1 cm 1 mm

    VLF

    maritimenavigation

    signals

    navigational

    aids

    AM radio,

    maritime radio

    shortwave radio VHF television,

    FM radio

    UHF television,cellular phone,

    GPS

    space andsatellite

    communications,microwavesystems

    radio astronomy

    LF MF HF VHF UHF SHF EHF

    2400 2425 2450 2475

    5100 5200 5300 5400 5500 5600 5700 5800 5900

    2500

    910 920 930 MHz

    6000 MHz

    MHz

    increasing frequency

    2.4 GHz

    802.11b (DSSS) channel width 22 MHz

    802.11n (OFDM) 44 MHz ch. width - 33.75 MHz used by sub-carriers

    2.4835 GHz 2.5 GHz

    Channel 1

    2412 MHz

    Channel 3

    2422 MHz

    Channel 11

    2462 MHz

    Channel 6

    2437 MHz

    Channel 11

    2462 MHz

    2.4 GHz 2.4835 GHz 2.5 GHz

    ThefollowingdiagramshowsthespectrumoverviewoftheISMandU-NIIbands.

  • 7/29/2019 Industrial Wireless Guidebook

    24/5623 Industrial Wireless Guidebook

    Understanding Wireless Technology

    ChannelNumber

    CenterFrequency

    (MHz)

    Regulatory Domain

    US EU JP

    8 2447 Yes Yes Yes

    9 2452 Yes Yes Yes

    10 2457 Yes Yes Yes

    11 2462 Yes Yes Yes

    12 2467 Yes Yes

    13 2472 Yes Yes

    14 2484 Yes*

    ChannelNumber

    CenterFrequency

    (MHz)

    Regulatory DomainChannelNumber

    CenterFrequency

    (MHz)

    Regulatory Domain

    US EU JP US EU JP

    36 5180 Yes Yes Yes 116 5580 Yes Yes Yes

    40 5200 Yes Yes Yes 120 5600 No** Yes Yes

    44 5220 Yes Yes Yes 124 5620 No** Yes Yes

    48 5240 Yes Yes Yes 128 5640 No** Yes Yes

    52 5260 Yes Yes Yes 132 5660 Yes Yes Yes

    56 5280 Yes Yes Yes 136 5680 Yes Yes Yes

    60 5300 Yes Yes Yes 140 5700 Yes Yes Yes

    64 5320 Yes Yes Yes 149 5745 Yes Yes*** No

    100 5500 Yes Yes Yes 153 5765 Yes Yes*** No

    104 5520 Yes Yes Yes 157 5785 Yes Yes*** No

    108 5540 Yes Yes Yes 161 5805 Yes Yes*** No

    112 5560 Yes Yes Yes 165 5825 Yes Yes*** No

    **Thesechannelshavebeeneliminatedfrom2010toavoidinterferencewithTerminalDopplerWeatherRadar(TDWR)systems.***ThesechannelsareonlyrelatedtotheuseofShortRangeDevices(SRD)with25mWpowerlimitation.

    ChannelNumber

    CenterFrequency

    (MHz)

    Regulatory Domain

    US EU JP

    1 2412 Yes Yes Yes

    2 2417 Yes Yes Yes

    3 2422 Yes Yes Yes

    4 2427 Yes Yes Yes

    5 2432 Yes Yes Yes

    6 2437 Yes Yes Yes

    7 2442 Yes Yes Yes

    2.4 GHz Band

    802.11b/garethemostcommonlyusedWLANstandardstoday.The

    2.4GHzISMbandissupportedbyalmosteverycountryworldwide.

    Noteverycountrysupportsthesamechannelsinthe2.4GHzISM

    band,sousersneedtomakesurethatthewirelessAPmatches

    thesamestandardthatisbeingusedinthatcountry.Thefollowing

    chartshowschannelsthataresupportedinthe2.4GHzISMband

    5 GHz Band

    802.11a/h/j/n/acusethe5GHzband.Comparedwiththe2.4GHz

    band,the5GHzbandisconsideredtohavemoreclearoptions:

    afullchannelwidthreservedwithoutoverlap,andlessnon-Wi-Fi

    interferenceandtightercellpackingforhighercapacity.However,

    everycountryappliesitsownradioregulationstoallocatethe

    allowablechannelsandmaximumpowerlevelswithinthe5GHz

    band.Networkoperatorsshouldconsultlocalauthoritiesasthese

    regulationsaresubjecttochangeatanytimeandmaybeoutof

    date.Seebelowforchannelssupportedinthe5GHzbandforthe

    threeregulatorydomains.

    fordifferentregulatorydomains.AlthoughtheISMbandisopen

    between2.4to2.5GHz,IEEE802.11b/gstandardsonlyuse2.400

    to2.4835GHz.Theminormismatchisduetochannelspacingand

    providesabuffertopreventpowerfromleakingintothelicensed

    bands.

    *Ch14isvalidonlyforDSSSandCCKmodesinJapan.

  • 7/29/2019 Industrial Wireless Guidebook

    25/5624

    www.moxa.com e-mai l : [email protected]

    UnderstandingWirelessTechnology

    2

    2-2 WLAN Antennas

    Why Using the Right Antenna is Important

    Antenna Parameters

    FrequencyAnantennaisatransducerthatisdesignedtotransmitand/or

    receiveelectromagneticwaves.Itislikeaconverterthatconverts

    backandforthbetweenelectromagneticwavesandelectrical

    currents.Differentwirelessdevicesusedifferentantennastooperate

    indifferentfrequenciesandtoachieve,forexample,adesired

    range.Themostimportantparameterofanantennaisitsworking

    frequency.Forexample,a2.4GHzantennaswavelengthistooshort

    tousewithIEEE802.11acommunicationandusinganantennawith

    amismatchedfrequencywilllikelycauseaverypoorperformanceon

    bothsignalradiationandactualdatathroughput.

    Thetransmissionspeedofawirelessconnectionissignificantly

    relatedtotheradiosignalstrengthofthetransmission.Selectingthe

    appropriateantennasfortheapplicationenvironmentisthemost

    importantsteptoensureastrongwirelesslink.

    Thefigurebelowisasimpleillustrationofthewirelesssignal

    transmission.Afterthedigitalsignalsgetconvertedintoanalog

    LessDense

    LessDense

    MoreDense

    MoreDense

    IncidentPulse

    TransmittedPulse

    ReflectedPulse

    form,thesignalgetsmixed,filtered,amplified,andfinallyreleased

    totheatmosphere.Themainfunctionoftheantennaistocontrol

    howtheenergyisreleasedandwhatkindofenergyfielditis

    forming.Thischapterintroducesthekeyparametersforselecting

    therightantennaforyourapplication,suchasantennafrequency,

    impedancematching,voltagestandingwaveratio(VSWR),gain,and

    polarization.

    Impedance Matching

    Maximumpowertransferfromthetransmittertotheantenna

    requiresimpedancematchingoftheantennasystem.Thefigure

    belowdemonstratesthereflectioneffectwhentheimpedancedoesn'tmatchbetweentwomediums.Mismatchedimpedance

    willcauseenergylossandriskcircuitdamagefromthereflected

    energypulse.Transmittersgenerallyhaveanoutputimpedanceof

    50ohmsandthatneedstobematchedacrossthetransmission

    linetotheantennainordertomaximizeoverallefficiency,eliminatelinevariationwithanequalvoltagestandingwaveratio(VSWR),and

    reducetransmissionlinelosses.

    Baseband

    InputAmplifier Amplifier

    RFOutput

    MixerFilter

    VCO

    Baseband

    Output

    Amplifier Amplifier

    RFInput

    MixerFilter

    VCO

  • 7/29/2019 Industrial Wireless Guidebook

    26/5625 Industrial Wireless Guidebook

    Understanding Wireless Technology

    Polarization

    Polarizationreferstothedirectioninwhichtheelectricfieldlines

    pointasthesignalradiatesawayfromtheantenna.Thesimplest

    andmostcommontypeislinearpolarization.Animproperantenna

    installationwilldecreasesignalreceptionquality.Forexample,a

    perfectlyalignedhorizontal(sidetoside)antennawillnotreceiveany

    signalssentfromaperfectlyalignedvertical(upanddown)antenna.

    Gain

    Thegainofeachantennaspecifiesitsdirectivityandelectrical

    efficiency.Ingeneral,thelowerthegain,themoreevenlydistributed

    inalldirectionstheradiationwillbe.Highgainantennas,onthe

    otherhand,emitradiationinamorespecificdirection.Thegain

    definesitspowergainordirectivegainintermsoftheratioofthe

    intensity,orpowerperunitsurface.Ingeneral,whenwechoose

    anantenna,thelongerthetransmissiondistance,thehigherthe

    antennagainmustbe.Atthesametime,wemustsacrificeomni-

    directionalcoverage.

    Anantennaata45alignment(skewpolarization)however,can

    receivesignalssentfrombothhorizontalandverticalantennas,

    butatreducedsignalstrengths(dB).Itisimportanttoknowthe

    polarizationoftheantennasintheWLANtomakesurethatsignals

    arebeingsentandreceivedunderoptimalconditions.Thefigures

    belowarethevisualizationofthehorizontalandverticallinear

    polarizations.

    HorizontalLinearPolarization VerticalLinearPolarization

    0

    30

    60

    90

    120

    150

    180

    210

    240

    270

    300

    330

    -

    0

    30

    60

    90

    120

    150

    180

    210

    240

    270

    300

    330

    Useofdirectorsmakesanglesmallerandgainhigher

  • 7/29/2019 Industrial Wireless Guidebook

    27/5626

    www.moxa.com e-mai l : [email protected]

    UnderstandingWirelessTechnology

    2

    H-Plane

    E-Plane

    Antenna Radiation Patterns (E-plane and H-plane)

    HPBW

    Half-powerbeamwidth,alsocalledthe3-dBbeamwidth,istheangular

    measurementofthemainlobedirectivityontheantennaradiationpattern

    wherethesensitivity(gain)isone-half(or-3dB)ofthemaximumvalue.

    SometimesitisalsocalledFWHM(thefullwidthofthebeamathalfits

    maximumintensity).The3-dBbeamwidthmeasurementiscommonlyused

    todefinetheverticalandhorizontalanglesofaparticularantenna.

    Asasidenote,anantennaisapassivecomponent,whichmeansitdoesnot

    increasetheoverallinputenergyinanyway.Inordertoachievelongerdistance

    transmission,itcompressestheenergyfieldtomakeitleanerandlonger.Therefore,ahighergainantennatendstocomewithanarrowerbeamwidth.

    VSWR

    Thevoltagestandingwaveratio(VSWR)istheratioofthemaximum

    voltagetotheminimumvoltageonthetransmissionline(cable)used

    tomeasureantennaefficiency.Whenthetransmittersendssignals

    forwardthroughthetransmissionlinetotheantenna,aportionofthe

    signalwillbouncebackacrossthetransmissionlineiftheantennais

    atadifferentimpedance,andmixwithoncomingforwardsignalsto

    createavoltagestandingwavepattern.

    A1:1VSWR(orjust1)indicatesthatpowerisbeingfullyabsorbed

    bytheantenna(becauseantennaimpedanceisalsothesameasthe

    impedanceonthetransmissionline)andnopowerisbeingreflected

    backtothetransmitter,butthisisverydifficulttoachieve.For

    example,a50-ohmradiowithanantennaimpedanceof75ohmswill

    haveatheoreticalVSWRof1.5:1onthetransmissionline.Fortypical

    antennasystems,aVSWRof1.2:1canbeconsideredtobemore

    thanacceptable.AVSWRof2:1,whichiscommonformanyantenna

    systems,meansthatroughly10%oftheforwardsignalsarebeing

    reflectedfromtheantenna.AhigherVSWRmeanslowertransmissionefficiencyandcanresultinheatedtransmissionlinesanddamaged

    transmitters.

    Mainlobemaximumdirection

    Mainlobe

    1.0

    0.5

    Half-powerpoint(right)

    Half-powerpoint(left)

    Minorlobes

    Half-powerbeamwidth(HP)

    Muchaboutanantennasperformancecanbelearnedfrom

    itsradiationpattern.Theantennaradiationpatternisathree-

    dimensionalillustrationofhowtheantennaemitsandreceivesradio

    signals(seefigureontheright)duringcommunication.

    Aradiationpatternisessentiallytheelectromagneticfield,which

    consistsofanelectricfield(E-plane)andamagneticfield(H-plane).

    Theelectricfieldandmagneticfieldpropagatetowardthesame

    generaldirection,butthepolarizationoftheirwavesarealways

    perpendicular(90angle)toeachother.Radiationpatternsare

    differentforvarioustypesofantennas.E-planeandH-plane

    diagramsprovideatwo-dimensionalviewofhowelectricand

    magneticfieldsbehaveforaparticularantenna.

    VSWR Efficiency Chart

    VSWR Efficiency Loss

    1 100% 0.00dB

    1.3 98.3% 0.08dB

    1.5 96.0% 0.18dB

    1.8 91.8% 0.36dB

    2 88.9% 0.51dB

    2.5 81.6% 0.86dB

    3 75.0% 1.25dB

    3.5 69.1% 1.61dB

    4 64.0% 1.94dB

    5 55.6% 2.55dB

  • 7/29/2019 Industrial Wireless Guidebook

    28/5627 Industrial Wireless Guidebook

    Understanding Wireless Technology

    Sample Antenna Spec

    Omni-directional Antennas Antenna Patterns: E-Plane for 2.4 GHz Antenna Patterns: H-Plane for 2.4 GHz

    0

    30

    60

    90

    120

    150

    180

    210

    240

    270

    300

    330

    0

    30

    60

    90

    120

    150

    180

    210

    240

    270

    300

    330

    Antenna Types

    TherearetwobasictypesofantennasforWLANproducts,categorizedbythedirectioninwhichtheybeamradiosignals:omni-directionaland

    directional.

    Sample Antenna Spec

    Directional Antennas Antenna Pattern: E-Plant for 2.4GHz Antenna Pattern: H-Plant for 2.4GHz

    0

    30

    60

    90

    120

    150

    180

    210

    240

    270

    300

    330

    0

    30

    60

    90

    120

    150

    180

    210

    240

    270

    300

    330

    Directional Antennas

    Directionalorpatchantennasprovideamorefocusedsignalthan

    omni-directionalantennas.Signalsaretypicallytransmittedinan

    oval-shapedpatternwithabeamwidthofapproximately30degrees.

    Thistypeofantennaisalsoidealforofficelocations.Forexample,an

    accesspointwithasemi-directionalantennacanbeplacedinone

    Omni-directional Antennas

    Omni-directionalantennasaredesignedtoradiatesignalsequally

    inall360degrees.Usethistypeofantennaifyouneedtotransmit

    fromacentralnode,suchasanaccesspoint,tousersscatteredall

    aroundthearea.Inasmallofficewiththreeorfourrooms,anaccess

    pointwithanomni-directionalantennashouldbeabletoprovide

    sufficientcoverageforallwirelessstationsinallrooms.

    cornerofaroomtoprovidereliablecoverageforitsentirelength.

    Directionalantennascanalsobeusedoutdoorstoprovideshort

    distancepoint-to-pointlinksorasthecustomerendofapoint-to-

    multipointnetwork.

  • 7/29/2019 Industrial Wireless Guidebook

    29/5628

    www.moxa.com e-mai l : [email protected]

    UnderstandingWirelessTechnology

    2

    2-3 Cables

    RF CablesRFcable,alsocalledcoaxialcable,isthemostcommontype

    ofcableusedtoconnectanRFtransmitter(orreceiver)tothe

    antenna.Thecoreandwovenshieldaregenerallymadeofcopper,

    andthedielectricinsulatoriscommonlymadeofsolidorfoamed

    polyethylene.SomeRFcablesalsoincludeafoillayerbetweenthe

    shieldandthedielectrictofurtherreduceloss.

    Typically,themetallicshieldisatgroundpotentialandthevoltageis

    appliedtothemainconductortotransmitsignals.Themainbenefit

    ofusinganRFcableisthatelectromagneticfieldsarekeptwithin

    thedielectricinsulatorwithverylittleradiatedloss.Inaddition,the

    dielectricinsulatorprotectsthetransmissionlineagainstsourcesof

    externalinterference.

    plastic jacket

    dielectric insulator

    metallic shield

    central core

    Key Parameters

    Impedance Matching

    Thisisthesameprincipleintroducedintheantennasection.Tohave

    thebesttransmissionefficiency,theconnectedmediums,suchasRFcable,antenna,connector,andsourcetransmitter,musthavea

    matchingimpedance.

    Attenuation

    EveryRFcablehassignalloss,whichisreferredtoasattenuation

    andismeasuredindecibels(dB)per100feet.AttenuationofRF

    signalswillincreaseathigherfrequenciesbecauseRFcurrenttravels

    mostlyontheoutersurfacelayer(skineffect)ofthecoreconductor

    andsurfaceresistancewillincreaseathigherfrequencies.Skin

    effectlossesonthecoreconductorcanbereducedbyincreasing

    thediameterofthecable.Doublingthecablediameterwillreducetheskineffectresistanceinhalf(notincludingdielectricandshield

    losses).

    Bending Radius

    Thebendingradiusistheminimummeasureoftheinsidecurvature

    thatacablecanbebentwithoutcausingitphysicaldamage,reducingitsperformance,orshorteningitsusefullife.Thefigure

    belowillustratesacablewithabendingradiusof3centimeters.

    3cm

    Cable

  • 7/29/2019 Industrial Wireless Guidebook

    30/5629 Industrial Wireless Guidebook

    Understanding Wireless Technology

    Common Coaxial Cables

    Ethernet Cables

    Category5(Cat5)isthefifth-generationstandardfortwisted-pair

    EthernetcablesestablishedbytheElectronicIndustriesAssociation

    andTelecommunicationsIndustryAssociation(EIA/TIA).Cat5

    cablescontain4pairsofwiresbutuseonly2pairs(ratedat100

    MHz)for10BASE-Tand100BASE-TX(FastEthernet)transmission.

    Anenhancedversion,CAT5e,imposesmorerestrictedcross-talk

    specificationstoensurethestabilitywhenusingallfourpairsfor

    1000BASE-T(GigabitEthernet)communication.Cat5/5ecables

    generallyhaveatransmissiondistancelimitationof100meters.

    Category6(Cat)isanothercommonlyusedstandardforGigabit

    Ethernettransmission.ItisbackwardscompatiblewithCat5andCat

    5e,butatthesametime,itallowshighertransmissionfrequency

    upto250MHz.Itissuitablefor10BASE-T,100BASE-TX(Fast

    Ethernet),1000BASE-T/1000BASE-TX(GigabitEthernet),and

    10GBASE-T(10-GigabitEthernet).

    TypeImpedance

    (ohms)Core

    DielectricType

    Dielectric VF Dielectric mm OD mmMax. Attenuation

    @ 750 MHz dB/100 ft

    LMR-100 50 2.79 20.725

    LMR-195 50 4.95 10.125

    LMR-200

    50 1.12mmCu PF 0.83 2.95 4.95 9.035HDF-200

    CFD-200

    LMR-400

    502.74mm

    (Cu-cladAl)PF 0.85 7.24 10.29 3.544HDF-400

    CFD-400

    LMR-600 50

    4.47mm

    (Cu-cladAl) PF 0.87 11.56 14.99 2.264

    LMR-900 506.65mm(BCtube)

    PF 0.87 17.27 22.1 1.537

    LMR-1200 508.86mm(BCtube)

    PF 0.88 23.37 30.48 1.143

    LMR-1700 5013.39mm(BCtube)

    PF 0.89 34.29 42.42 0.844

  • 7/29/2019 Industrial Wireless Guidebook

    31/5630

    www.moxa.com e-mai l : [email protected]

    UnderstandingWirelessTechnology

    2

    Key Parameters

    Bending Radius

    MostCategory5cablescanbebentatanyradiusexceeding

    approximatelyfourtimesthediameterofthecable.

    Maximum Cable Segment Length

    TherecommendedlengthforaCAT5cablesegmentis100meters

    (TIA/EIA568-5-A).Repeatersandswitchescanbeusedtoextend

    thetransmissiondistance.Mediaconverters,suchasEthernet-to-

    fiberconverters,canbeusedtosignificantlyextendtransmission

    distance.

    Straight-through vs. Cross-over

    TwistedpairsofEthernetcablescanberearrangedtoprovide

    connectivitybetweendifferenttypesofdevices.Atypicalstraight-

    throughcable,alsocalledapatchcable,hasidenticaltwisted-pair

    arrangementsonbothends(RJ45connector)andisusedtoconnect

    acomputertoaswitchorrouter.Across-overcablehastheorange

    twistedpaircrossedoverwiththegreentwistedpair,andisusedto

    connecttwocomputersdirectlytoallowcommunication.However,

    newernetworkinterfaceswithauto-MDIXportsarecapableof

    detectingthetypeofconnectiontoautomaticallychooseMDIor

    MDIXconfiguration,whicheliminatestheneedforcross-overcables.

    10BASE-T and 100BASE-TX vs. 1000BASE-T

    10BASE-Tand100BASE-TXEthernetconnectionsrequiretwo

    cablepairs.1000BASE-TEthernetconnectionsrequirefourcable

    pairs(8pins).Listedbelowarethepinassignmentsforthesethree

    10/100BASE-TX MDI and MDI-X PORT PINOUTS

    Pin MDI Signal Name MDI-X Signal Name

    1 TransmitDataplus(TD+) ReceiveDataplus(RD+)

    2 TransmitDataminus(TD-) ReceiveDataminus(RD-)

    3 ReceiveDataplus(RD+) TransmitDataplus(TD+)

    6 ReceiveDataminus(RD-) TransmitDataminus(TD-)

    4,5,7,8 Notused Notused

    1000BASE-T MDI and MDI-X PORT PINOUTS

    Pin MDI Signal Name MDI-X Signal Name

    1Bi-directionalPairAPlus(BI_DA+)

    Bi-directionalPairBPlus(BI_DB+)

    2Bi-directionalPairAMinus(BI_DA-)

    Bi-directionalPairBMinus(BI_DB-)

    3Bi-directionalPairBPlus(BI_DB+)

    Bi-directionalPairAPlus(BI_DA+)

    4Bi-directionalPairCPlus(BI_DC+)

    Bi-directionalPairDPlus(BI_DD+)

    5Bi-directionalPairCMinus(BI_DC-)

    Bi-directionalPairDMinus(BI_DD-)

    6Bi-directionalPairBMinus(BI_DB-)

    Bi-directionalPairAMinus(BI_DA-)

    7Bi-directionalPairDPlus(BI_DD+)

    Bi-directionalPairCPlus(BI_DC+)

    8 Bi-directionalPairDMinus(BI_DD-) Bi-directionalPairCMinus(BI_DC-)

    1 2

    Orangepair 1

    Green pair 3

    3 4 5 6 7 8

    Bluepair 1

    Brownpair 1

    1 2

    Orangepair 2

    Green pair 3Straight-through

    3 4 5 6 7 8

    Bluepair 1

    Brownpair 4

    1 2

    Orangepair 2

    Green pair 3

    3 4 5 6 7 8

    Bluepair 1

    Brownpair 4

    1 2

    Greenpair 3

    Orange pair 2Cross-over

    3 4 5 6 7 8

    Bluepair 1

    Brownpair 4

    standards(10BASE-T,100BASE-TX,1000BASE-T)onbothMDI

    (MediaDependantInterface)andMDI-X(MediaDependantInterface

    cross-over).

  • 7/29/2019 Industrial Wireless Guidebook

    32/5631 Industrial Wireless Guidebook

    Understanding Wireless Technology

    2-4 Connectors

    Beforeplacinganorderforantennasandcablesforyourwirelessdevice(s),theconnectortypesmustfirstbedetermined.Ingeneral,

    termssuchasplug,pin,andprongrefertomaleconnectors,

    andtermssuchasreceptacle,socket,andslotrefertofemale

    Connector Frequency Range Male Connector Female Connector

    SMA(Sub-MiniatureversionA)

    DCto18GHz

    RP-SMA(ReversePolaritySMA)

    DCto18GHz

    QMA(QuickSMA)

    DCto18GHz

    N-type(namedafterPaulNeill)

    DCto11GHz

    TNCDCto11GHz

    Antenna Connectors

    TherearevarioustypesofcoaxialRFantennaconnectorsdesignedfordifferentapplications.Thissectionintroducesseveralcommonly-usedantennaconnectortypesasaguidelineforidentifyingandselectingtheappropriateconnector.

    connectors.Forelectricalconnectors,connectorgender(maleandfemale)isnotenoughtoidentifytherightconnector.Thischapter

    providesseveralcommonlyusedconnectorsandtheirpicturesasa

    referencetoyourselection.

  • 7/29/2019 Industrial Wireless Guidebook

    33/5632

    www.moxa.com e-mai l : [email protected]

    UnderstandingWirelessTechnology

    2

    Connector Data Rate Distance Transceiver

    SFP(SmallForm-factorPluggable)

    155Mbpsto4.25Gbps

  • 7/29/2019 Industrial Wireless Guidebook

    34/5633 Industrial Wireless Guidebook

    Industrial Wireless

    Introduction

    Wirelessfailuresathomeorintheofficewillbeaninconvenience

    untilareplacementdeviceisinstalled.Wirelessnetworkfailuresin

    industrialapplications,however,canjeopardizethesafetyofonsite

    personnel,damageexpensivemachinery/equipment,andpossibly

    translateintothousandsofdollarsperminuteinproductionlosses.

    Industrial Hazards

    Manyindustrialwirelessapplications,suchasthoseformining,

    railway,andoil&gas,aredeployedinharshenvironments

    andrequiretheuseofindustrial-gradedevices.Whilesome

    environmentalfactorsareobvious,suchasextremetemperatures

    andmoisture,thereareotherelementsthatarenotsoapparent

    3-1 Industrial Design Concepts

    Industrial Wireless

    Electrical Interference

    DescriptionTherearemanydifferentkindsofelectricalinterferenceinan

    industrialenvironment:electrostaticdischargeaccumulatedona

    humanbody,surgecausedbyindirectlightningstrikes,andbursts

    generatedbyfactorygenerators.Failingtoproperlydesignyour

    systemtoprotectagainstsuchinterferencecanresultinunstable

    communications,orsometimesyourdevicecouldbepermanently

    damaged,causingacompleteshutdownofyoursystem.

    Inadditiontonetworkredundancy,industrialoperatorsmustalso

    assesstheapplicationenvironmentforelementsthatcanimpact

    networkperformance,compromisedevicereliability,andleadto

    unplannedsystemdowntime.

    butcanalsoquicklydisableanunprotecteddevice.Thischapter

    introducesseveralexamplesofinterferencesandenvironmental

    difficultiesthatarecommonlyseeninindustrialapplications.

    Industrial SolutionIndustrial-gradedevicesaredesignedtoprotectinternal

    components,andcircuitsarespeciallydesignedtobeable

    towithstanddifferenttypesofinterference.Inaddition,the

    manufacturerwilltesttheproductstomakesuretheycanoperate

    reliablyinharshconditionssoend-userscanrestassuredthatthe

    productswillbemorestable,morereliable,andhavealongerlife

    thannon-industrialproducts.

  • 7/29/2019 Industrial Wireless Guidebook

    35/5634

    www.moxa.com e-mai l : [email protected]

    In

    dustrialWireless

    3

    Radiated Electromagnetic Interference

    Flammable Gases

    Extreme Temperatures

    Shock and Vibration

    Description

    Radiatedelectromagneticinterferenceismostobviousnearanelectricalsubstation.Thehigh

    voltageandstrongcurrentflowcauseacouplingeffectwithnearbyelectricaldevices.Ifthe

    devicesarenotproperlyprotected,theinternalcircuitsofthedevicescanwearoutmorequickly

    orbepermanentlydamaged.Thesameeffectcanalsobeseennearfactorygeneratorsand

    largetransformers.

    Industrial Solution

    Forindustrial-gradedevices,ametalcasingandproperlydesignedisolationcanovercomesuch

    interference.

    Description

    Incertainindustries,theworkingenvironmentcouldbepermeatedwithflammablegasordust,andtopreventelectricalequipmentfromcausingafireorexplosion,strictregulationsarein

    placetodefinewhatkindofdevicescanbeusedintheseextremehazardouslocations.

    Industrial Solution

    Differentlevelsofanti-explosivedesignarestipulated.Forexample,anencapsulationdesign

    referstoadevicethatisairtight,orequivalentmethodsthatpreventsparksfromcominginto

    contactwiththesurroundingflammablegases.Anintrinsicallysafedesignreferstoadevice

    thatwillnotigniteflammablegasesunderanycircumstances,evenifthereisdirectcontact

    betweenthedeviceandgas.

    Description

    Underahotsummersun,deviceslockedinsideanoutdoorcabinetcaneasilyreacha

    temperatureof70C(158F),whereasasimilarcabinetlocatedatahighaltitudecould

    experienceatemperatureof-30C(-22F)onacoldwinternight.Withoutaproperdesign,

    electronicdevicesinsidethecabinetcouldeitherover-heat,orbeunabletobootupifthe

    temperatureistoolow.

    Industrial Solution

    Twomajordesignfocusesforindustrial-gradeproductsareheat-dissipationandlow-

    temperatureoperation.Byselectingtherightcomponentsandmechanicaldesign,engineers

    canensurethatdeviceswillbeabletooperatereliablyinbothextremelyhotandextremelylow

    temperatures.

    Description

    Wirelesstechnologyiswidelyusedinmobilecommunications.However,fordevicesinstalled

    invehicleswithRJ45connectorsand/orstandardpowerjacks,thecontinuousvibrationofthe

    vehiclecancausetheconnectionstowiggleloose.

    Industrial Solution

    Inordertoprovideamorereliableconnection,industrialproductsdesignedformobile

    communicationsoftencomewithM12connectorsfordatacommunicationandterminalblocks

    forpowerandDI/DOconnections.

  • 7/29/2019 Industrial Wireless Guidebook

    36/5635 Industrial Wireless Guidebook

    Industrial Wireless

    Omni-directional

    Antenna

    Standard Roaming

    Connect to AP 1 Connect to AP 2

    Lost AP1 signal,

    disconnect to AP1

    Scan for available AP and

    re-establish the connection

    Client

    AP1 AP2

    3-2 Robust Wireless Concepts

    IntroductionEnsuringthestabilityandreliabilityofwirelessdevicesiscriticalfor

    industrialdeployments.Withanindustrial-gradehardwaredesign,

    wirelessdevicescanwithstandhigherlevelsofdisturbanceinharsh

    industrialenvironments.However,tofurtherenhancethereliability

    ofwirelessnetworkcommunicationformission-criticalapplications,

    anindustrial-gradesoftwaredesignisalsorequired.Inthischapter,

    wediscussseveralmajorindustrialconcernsforwirelesstechnology,

    andintroducethecorrespondingsoftwaresolutionsdesignedto

    answerthoseconcerns.

    Concerns for Wireless Local Area Networks

    Wi-Fi Mobile Communication: Roaming Break/Recovery Time

    Standard Roaming

    Thefollowingfigureillustratesthestandardroamingmechanismformostcommercial-gradewirelessdevices.Themovingclientdevice

    willstayconnectedwiththecurrentAPuntilsignalsgettooweakto

    maintainfurthercommunication.Itthendisconnectsfromthecurrent

    Recentadvancesinwirelesstechnologyhavemadeitpossibleto

    usewirelessformission-criticalmobileapplications,suchasrailway

    (Train-to-Ground),buses(waysideAPcommunication),andfactory

    AGV(AutomatedGuidedVehicle).Themostcrucialaspectofthese

    mission-criticalwirelessapplicationsi