9
Index ADSS, see all dielectric self-supporting AFM, see atomic force microscope alkylammonium ions 53, 55–56, 60 all dielectric self-supporting (ADSS) 337 alumina nanofillers 51 aluminum nitride 25, 64, 223 aluminum nitride nanoparticles 25 synthesis of 25 3-aminopropyltriethoxysilane (APTES) 81–82, 85, 109 amorphous polyethylene 206 APTES, see 3- aminopropyltriethoxysilane atom-transfer radical-polymerization (ATRP) 4, 98, 182, 273 atomic force microscope (AFM) 135–136, 273 ATRP, see atom-transfer radical-polymerization BaTiO 3 44, 79, 82, 84, 102–103, 247, 250, 391 BaTiO 3 nanofillers 289, 391 BaTiO 3 nanoparticles 93, 96, 102–103, 182 dopamine-modified 97 BDS, see broadband dielectric spectroscopy boron nitride 44, 50, 64, 79, 130, 132 breakdown, short-term 267–268, 274 breakdown behavior 246, 249, 252, 260, 271, 273–274 breakdown performance 244, 249, 259, 261 breakdown strength 84, 88, 94–95, 97, 102–103, 244–247, 249–251, 253–254, 259–260, 262–263, 267–272, 405, 407 enhanced 103, 254, 262, 273 breakdown time 252 broadband dielectric spectroscopy (BDS) 127 butyl rubber 49, 109–110 calcination 15, 30, 286, 291, 293, 303–304 calcined fumed nanosilica 288–289, 292 capacitor dielectrics 391 carbon nanotubes 11, 44, 78–79, 342–343, 345 cation exchange capacity (CEC) 55–56, 60 CEC, see cation exchange capacity

Index [] · synthesis of 25 3 ... polysulfide 109 polytetrafluoroethylene (PTFE) ... Index 421 silicone gels 388 silicone rubber 50–53, 67, 136, 282,

  • Upload
    duongtu

  • View
    220

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Index [] · synthesis of 25 3 ... polysulfide 109 polytetrafluoroethylene (PTFE) ... Index 421 silicone gels 388 silicone rubber 50–53, 67, 136, 282,

Index

ADSS, see all dielectric self-supporting

AFM, see atomic force microscope

alkylammonium ions 53, 55–56, 60

all dielectric self-supporting (ADSS) 337

alumina nanofillers 51aluminum nitride 25, 64, 223aluminum nitride

nanoparticles 25 synthesis of 253-aminopropyltriethoxysilane

(APTES) 81–82, 85, 109amorphous polyethylene 206APTES, see 3-

aminopropyltriethoxysilaneatom-transfer

radical-polymerization (ATRP) 4, 98, 182, 273

atomic force microscope (AFM) 135–136, 273

ATRP, see atom-transfer radical-polymerization

BaTiO3 44, 79, 82, 84, 102–103, 247, 250, 391

BaTiO3 nanofillers 289, 391BaTiO3 nanoparticles 93, 96,

102–103, 182 dopamine-modified 97

BDS, see broadband dielectric spectroscopy

boron nitride 44, 50, 64, 79, 130, 132

breakdown, short-term 267–268, 274

breakdown behavior 246, 249, 252, 260, 271, 273–274

breakdown performance 244, 249, 259, 261

breakdown strength 84, 88, 94–95, 97, 102–103, 244–247, 249–251, 253–254, 259–260, 262–263, 267–272, 405, 407

enhanced 103, 254, 262, 273breakdown time 252broadband dielectric

spectroscopy (BDS) 127butyl rubber 49, 109–110

calcination 15, 30, 286, 291, 293, 303–304

calcined fumed nanosilica 288–289, 292

capacitor dielectrics 391carbon nanotubes 11, 44,

78–79, 342–343, 345cation exchange capacity (CEC)

55–56, 60CEC, see cation exchange

capacity

Page 2: Index [] · synthesis of 25 3 ... polysulfide 109 polytetrafluoroethylene (PTFE) ... Index 421 silicone gels 388 silicone rubber 50–53, 67, 136, 282,

416 Index

CED, see cohesive energy density

chain scission 264, 324–326, 328, 333, 335

chemical defects 196, 207, 237clay nanofillers 53, 55, 57, 59,

61, 66–67, 69 modification and exfoliation

of 53–61clays 44, 53–62, 65–67, 69–70,

125, 129, 137, 139, 141, 346, 389

dispersion of 41, 53, 60 exfoliated 58–59, 62 organic modification of 56, 62 swelled 61click chemistry 4, 184, 273cohesive energy density (CED)

170, 244, 258, 266colloid science 3, 159–160colloidal particles 3, 12, 161colloids 3–4, 160–162, 172, 175combustion 314, 339–340, 343composite materials 30, 114,

160, 190cross-linked polyethylene

(XLPE) 8, 44, 221, 232, 234, 402–404

dielectric breakdown mechanisms 245, 267

dry band arcing 282, 295, 314–315, 336

electrical breakdown 243–244, 249

epoxy-aluminum oxides 224, 229

erosion 294–295, 297

high-energy radiation 332–333

inorganic coating 77–78, 101, 104

inorganic fillers 1, 4, 41, 50, 159–161, 174, 182, 223, 281, 290, 388, 392–393, 403

insulated switchgear, solid-state 407–408

insulating materials 24, 86, 219, 243, 254, 271, 314, 355, 370

solid 243, 245insulating substrates 372, 378,

387, 392insulation 281, 283, 385–386,

393, 401–403 composite 232, 409insulation systems 243, 254,

282, 336, 399insulators 197, 199, 255, 265,

282, 297–298, 398interactions covalent 80, 200, 207, 209 matrix/nanoparticle 308, 349 nanoparticle/matrix 125, 189 nanoparticle/polymer 104,

188 phonon 205–206interfaces electrode-dielectric 236–237 nanoparticle/matrix 177 nanoparticle/polymer 78–79interfacial tension 287, 305interfacial thermal conductance

190ions 21, 125–126, 139, 163,

168, 172, 333 metal 53, 55–56irradiation, high-energy

332–333

Page 3: Index [] · synthesis of 25 3 ... polysulfide 109 polytetrafluoroethylene (PTFE) ... Index 421 silicone gels 388 silicone rubber 50–53, 67, 136, 282,

417Index

laser ablation 130, 295, 298–299, 311, 314

latex particles 22–23layered double hydroxide

(LDH) 125, 129, 138–139LCST, see lower critical solution

temperatureLDH, see layered double

hydroxideLDPE, see low-density

polyethylenelinear low-density polyethylene

(LLDPE) 85–88, 247LLDPE, see linear low-density

polyethylenelow-density polyethylene

(LDPE) 6, 44, 221, 226, 229, 232, 235–237, 246, 271, 347–348, 370

lower critical solution temperature (LCST) 141

lowest unoccupied molecular orbital (LUMO) 209–211

LUMO, see lowest unoccupied molecular orbital

magnetic permeability, high 369–371

magneto-dielectric material 379MD, see molecular dynamicsmethoxysilanes 83, 108–110micro-filler 41–43, 62–66, 71,

119micro-fillers 281–283, 387–388,

393, 402, 406, 408micro-silica 303–306micro-silica fillers 406–407microcomposites 43, 255, 261mini-emulsions 18–19, 22–23MMT, see montmorillonite

modified clays 55–60, 62, 69, 388

molded transformers 408molecular dynamics (MD) 7, 113,

115, 126, 185, 187, 190, 196, 198, 202

monomers 7, 17, 23, 58–59, 139, 179, 181, 187, 326, 328, 334

montmorillonite (MMT) 54–56, 123, 125, 132, 136, 138–140, 179, 342, 347–348

nano alumina 282, 288–289, 301, 303, 305, 311, 313, 315

nano-micro composites 63–66, 71, 387, 392, 394

nano TiO2 225nanoclays 11, 128, 137, 139,

141, 343–347nanocomposites characterization of 113–142 clay 54, 56–59, 61, 69, 123,

126, 261 clay-based 53, 55, 60 dielectric 4 epoxy/silica 68 epoxy/TiO2 94 fabrication of 42, 45, 47,

52–53, 57, 59, 62, 66, 71 LLDPE 87–88 low loss magneto-dielectric

372–373, 375, 377, 379 morphology of 131, 232 polyamide-based clay 58–59 polyamide/clay 61–62 polyester-imide/silica 67–68 polyethylene 235–236

Page 4: Index [] · synthesis of 25 3 ... polysulfide 109 polytetrafluoroethylene (PTFE) ... Index 421 silicone gels 388 silicone rubber 50–53, 67, 136, 282,

418 Index

polyimide/SiO2 46–47 polymeric 220, 222, 226,

228, 232, 284 silicone-based 298–301 silicone rubber 53, 312–313 silicone rubber/boehmite

alumina 67nanodielectrics 31, 113, 116,

127, 219–220, 253, 268, 273–274

hybrid 181 non-polar 226nanofibers, dopamine-modified

BaTiO3 97nanofiller dispersion 41–72,

286, 315, 374nanofillers 41–45, 47–53,

62–66, 123–124, 219–221, 227–232, 244, 281–284, 286–291, 293, 297–303, 307–308, 313–315, 342–348, 401–402

nanolayers 342, 344nanomagnetic fillers 369–380nanoparticle modifiers 90, 93nanoparticle silanization 81–82nanoparticle surface chemistry

28, 78, 104nanoparticle surface modification

77–81, 83–85, 87–93, 95–99, 101, 103–104, 246

nanoparticles dielectric 101 inorganic 17, 19, 21–23, 79 iron 369, 372 maghemite 19 MgO 233, 237 silver 20, 102–103, 119, 136,

237 sol-gel 15, 17, 24 sol-gel synthesis of 12–13, 17 surface functionalization of

246–247

TiO2 94–95, 129 ZnO 128, 347nanorods 14, 21nanosilica 16, 53, 125, 136, 221,

231, 290, 293, 311, 390 natural 282, 300, 302, 305,

311, 315nanotubes 122, 125, 133, 342,

344–346NMR, see nuclear magnetic

resonancenuclear magnetic resonance

(NMR) 115–116, 124–126

OCT, see optical coherence tomography

oleylamine 369, 373–375, 380one-electron simulation

204–205optical coherence tomography

(OCT) 141–142organic materials 2, 314, 340organic modifiers 53, 55–57,

60, 170, 343organically modified clays 57organoclay 131–132

partial discharge (PD) 3, 5–6, 44–45, 64, 337–338, 348, 399–401, 405

partial discharge resistance 5, 44–45, 64

PD, see partial dischargePD resistance 3, 5, 397,

399–400, 405pentafluorobenzyl phosphonic

acid (PFBPA) 93–94permeability, high 370, 372, 380

Page 5: Index [] · synthesis of 25 3 ... polysulfide 109 polytetrafluoroethylene (PTFE) ... Index 421 silicone gels 388 silicone rubber 50–53, 67, 136, 282,

419Index

permeability control 369–370, 372, 374, 376, 378, 380

permittivity 2, 44, 64, 168, 182, 226–227, 256, 355–357, 359–360, 362, 370, 379, 399, 404, 409

high 182, 250, 358–359, 370–372, 380

relative 127, 220–228, 360, 365, 374, 376–377

permittivity gradient composite material structures 353–368

PFBPA, see pentafluorobenzyl phosphonic acid

phosphonates 91–93, 104phosphonic acid 91–94photodegradation 319,

323–324PMDA, see pyromellitic

dianhydridePMMA, see poly(methyl

methacrylate)poly(methyl methacrylate)

(PMMA) 17, 98, 100, 128–129, 133, 182, 252

poly(vinyl chloride) (PVC) 17, 89, 110, 161–162

polyamic acid 47polyamide-imide/silica

nanocomposite system 7polyamides 44, 49, 56, 58–59,

62, 171–172, 177, 329, 334, 345

polybutadiene rubber 89polydopamine 96polyesters 44, 329, 334, 345polyethylene 8, 49, 113, 129,

132, 172, 176–177, 198–199, 202, 232, 322, 397, 402

polyhedral oligomeric silsebquioxane (POSS) 44–45, 134, 253–254, 342, 344

polyimide 44, 46–47, 49, 110, 250, 391, 397, 399

polymer biodegradation 326–327

polymer brushes 184polymer chains 100, 166,

174–175, 184, 187, 202, 226, 264, 320–323, 325, 328, 330–331

polymer coating 77–78, 98–100, 104

polymer combustion 338–339polymer composites 244polymer degradation 319, 330,

335, 349polymer dielectrics 263polymer molecules 115, 125,

165, 188–189, 331polymer nanocomposite

dielectrics 41–43, 71polymer nanocomposites 1, 3,

5–6, 77–78, 83–84, 86, 90, 96–97, 102, 159, 219–220, 222, 224, 226, 243–272

dielectric 78, 103 electrical properties of 93, 101 high-dielectric-constant 90,

102polymerization 21, 23, 58–59,

98, 185, 227, 321 degree of 320, 330polymers acrylic 389 neat 1, 220, 228, 258, 260 organically modified clay

58–59polypropylene 8, 44, 49, 135,

141, 171–172, 177, 253, 332, 397, 404

Page 6: Index [] · synthesis of 25 3 ... polysulfide 109 polytetrafluoroethylene (PTFE) ... Index 421 silicone gels 388 silicone rubber 50–53, 67, 136, 282,

420 Index

polystyrene systems 125, 131polysulfide 109polytetrafluoroethylene (PTFE)

208–210, 212, 332POSS, see polyhedral oligomeric

silsebquioxanePTFE, see polytetrafluoroethylenePVC, see poly(vinyl chloride)pyromellitic dianhydride

(PMDA) 46–47

quasi-particle electronic system 197

radial distribution function (RDF) 188–189

RDF, see radial distribution function

reactions click 184–185 curing 61 heterocondensation 92 scission 324–325, 330 sol-gel 13, 20, 46, 125resin 5, 61, 246, 251–252,

348, 386, 388–389, 391, 397–399, 401

SAED, see selected area electron diffraction

salt fog 282, 310–311SAXS, see small angle X-ray

scatteringSBR, see styrene-butadiene

rubberscanning electron microscopy

(SEM) 19, 67–68, 116–117,

124, 130–131, 133–135, 307, 311, 373

scanning tunneling microscopy (STM) 117, 135–136

scattering, inter-particle 70scattering techniques 116,

137–138SE, see secondary electronssecondary electrons (SE) 117,

130–131selected area electron

diffraction (SAED) 129SEM, see scanning electron

microscopysemiconductor package

structure 390SF6 gas 353–354, 356, 407silane coupling 4, 168–169silane coupling agents 46,

48–50, 77, 80–81, 83–85, 87, 90, 223

silane surface modification 83–85, 87–88

silanes 30, 48–50, 80, 82–87, 90, 100, 104, 108, 174, 247, 290, 293, 297

silanol groups 16–17, 80–82, 291, 293–294, 303–304, 306

silanols 82, 291silica 8, 12–13, 16, 18–19, 29,

43–44, 65, 68, 132–133, 163, 171, 174, 290–291, 294, 400

silica nanofillers 47, 52–53, 67 colloidal 70–71silica nanoparticles 82, 180, 290 colloidal 71 functionalized 184silicates, layered 53silicone elastomers 8, 171–172,

177

Page 7: Index [] · synthesis of 25 3 ... polysulfide 109 polytetrafluoroethylene (PTFE) ... Index 421 silicone gels 388 silicone rubber 50–53, 67, 136, 282,

421Index

silicone gels 388silicone rubber 50–53, 67,

136, 282, 288–290, 292, 314–315, 397, 405–406

silicone rubber composites 305silicone rubber matrix 288–290,

294, 303–306, 311, 314single walled carbon nanotubes

(SWCNTs) 122, 124, 136, 140

SiO2 micro-fillers 66, 68–69SiO2 nanoparticles octyltrimethoxysilane-treated

86–87 untreated 87small angle X-ray scattering

(SAXS) 66, 70, 139, 174–175

sol-gel chemistry 12, 16, 18sol-gel method 16, 28, 45–46,

174solid dielectrics 263, 337solid insulators 353–356, 364,

368space charge 2, 5, 64, 86, 130,

210–211, 232–237, 266, 269, 271, 273, 338, 397, 399

space charge accumulation 45, 220, 232–237, 270–271

space charge behavior 22, 220, 232–233

space charge distribution 86–87space charge dynamics 232,

271, 273Space charge measurement

232–233, 235space charge suppression

234–236, 238STM, see scanning tunneling

microscopystructural irregularities 321–322

styrene-butadiene rubber (SBR) 89, 109–110, 125

surface conductivity 256surface erosion, suppression of

281–310surface erosion resistance 283,

311, 313, 315surface flashover 243, 257surface flashover performance

255, 257surface hydroxyl groups 30, 178,

291surface modification 77–78, 82,

84–85, 90, 92–94, 100, 125, 180, 234–236, 245–246, 282, 286–287, 290

covalent 79 non-covalent 79surfactant, non-ionic 20, 23SWCNTs, see single walled

carbon nanotubes

TEM, see transmission electron microscopy

tetraethoxysilane 12, 45–46TGA, see thermal gravimetric

analysisthermal conductivity 5–6,

24–25, 63–64, 189–190, 283, 306–308, 347, 354, 385–386, 388, 392–394, 402, 408

thermal decomposition 345thermal gravimetric analysis

(TGA) 56–57, 120, 127–128, 304–305

thermally stimulated current (TSC) 2, 235–236

TiO2 nanofillers 68–69

Page 8: Index [] · synthesis of 25 3 ... polysulfide 109 polytetrafluoroethylene (PTFE) ... Index 421 silicone gels 388 silicone rubber 50–53, 67, 136, 282,

422 Index

titanate coupling agents 77–78, 88–90, 100, 104

titanates 50, 90, 290tracking 283, 293, 297, 406tracking resistance 5–6,

294–295, 297–298transmission electron

microscopy 14, 67, 116, 128, 373

transmission electron microscopy (TEM) 14–15, 26, 66–68, 116–117, 128–129, 134, 138, 232, 373

treeing lifetime 3, 5–6, 407TSC, see thermally stimulated

current

ultrasonic waves (USW) 51–52underfill materials 387, 390

USW, see ultrasonic wavesUV/vis spectroscopy 119–120

WAXS, see wide angle X-ray scattering

wide angle X-ray scattering (WAXS) 138–139

X-ray diffraction (XRD) 15, 25–26, 56–57, 120, 126

X-Ray scattering 137–139XLPE, see cross-linked

polyethyleneXRD, see X-ray diffraction

Z-contrast 117, 129, 131

Page 9: Index [] · synthesis of 25 3 ... polysulfide 109 polytetrafluoroethylene (PTFE) ... Index 421 silicone gels 388 silicone rubber 50–53, 67, 136, 282,

“This book gives an excellent review of polymeric nanocomposites for dielectric applications, a truly interdisciplinary field between chemistry, physics, and electrical engineering. It covers fundamental concepts and historical reviews of the scientific progress as well as new enablers for a rapid advance in this area. These include methods to chemically design interfaces on a molecular level, three-dimensional imaging technologies on a nanometer level, and the rapid progress in material simulations. From an engineering point of view, the book discusses current and new application areas for nanocomposite dielectrics in the electric power and electronics industry. An outstanding reference for both scientists and engineers.”

Dr. Henrik HillborgABB, Sweden

This book illustrates interfacial properties, preparation, characterization, devices, and applications from the standpoint of nano-interfacial tailoring. Since the primary focus of the book is on the use of nanocomposite dielectrics in electrical applications, chapters are devoted to directly relevant topics, such as surface and bulk breakdown processes. However, the mechanisms that underpin such behavior are not unique. Therefore, the book also addresses related topics that range from the chemistry of polymer and nanocomposite degradation to the simulation of charge transport dynamics in disordered materials, thereby presenting a multi- and interdisciplinary approach to the area. It will serve as a practical handbook or graduate textbook and is supplemented by ample number of illustrations, case studies, practical examples, and historical perspectives.

Toshikatsu Tanaka is a research fellow at the IPS Research Center of Waseda University, Japan, professor emeritus at Xi’an Jiaotong University, China, and chair of the Institute of Electrical Engineers of Japan (IEEJ) Committee on Nanocomposites. He is a recipient of the Japanese Ministry of Science and Technology Prize (2000), IEEJ Technology Progress Award (1988), Institute of Electrical and Electronics Engineers (IEEE) Whitehead

Memorial Lecture Award (2001), IEEJ Inuishi Award (2001), and IEEE Dakin Award (2002). Dr. Tanaka is an IEEE fellow and an IEEJ life fellow. He was the chair of the International Council on Large Electric Systems Working Group on Nanocomposites for 6 years from 2006.

Alun S. Vaughan has a BSc in chemical physics and a PhD in polymer physics from the University of Reading, UK. After undertaking postdoctoral research and working at the UK’s Central Electricity Research Laboratories, he returned to academia and spent 11 years as a lecturer in physics at the University of Reading, before moving to the University of Southampton in 2000, where he is professor of dielectric materials and head of the

Electronics and Electrical Engineering research group. Dr. Vaughan is a former chair of the Dielectrics Group of the Institute of Physics, UK, a fellow of the Institute of Physics and the Institution of Engineering and Technology, UK, and a senior member of the IEEE.

Tanaka | Vaughan

Toshikatsu TanakaAlun S. Vaughan

edited by

Tailoring of Nanocomposite Dielectrics

Tailoring of Nanocomposite DielectricsFrom Fundamentals to Devices and Applications

ISBN 978-981-4669-80-1V514