13
IND61 METROSION Metrology to enable high temperature erosion testing 1 Deliverable Number 3.4.1 Lead Partner PTB Deliverable Title Measurement of erodent particles to determine size and size distribution Contractual Delivery Date Nov 14 Deliverable type Data Actual Delivery Date Nov 14 Contributors PTB, RSE, BAM Deliverable Details In order to measure size and size distribution of erodents, three different methods have been applied and compared. The first was done by RSE by means of a light scattering method (e.g. Malvern FPIA 3000). Such a device analyses a projected 2D-image of the erodents to determine its size. The erodents are oriented (by means of a special flow mechanism) to give its largest area. The calculated size of the erodent is the area-equivalent diameter. RSE analysed the erodents Silica angular, EPRI Alumina, Metrosion Alumina and Fly Ash. The second method was based on an optical measurement, done by NPL. Here a digital image was taken from a set of particles with a microscope. After binarizing the image the area was measured by pixel counting and the area-equivalent diameter calculated. This was done for EPRI Alumina as well as for Metrosion Alumina. The third method was by means of an x-ray computed tomography. To this end the same type of erodents have been embedded in a resin and measured with a Nikon XT H 225 ST, with a voxel edge length of about 3.2 µm. Additionally a sample of Chromia erodents has been measured with a synchrotron CT (BessyII, Berlin, Germany) by BAM. The voxel edge length here was about 0.9 µm. The volume data were then analysed with the program VG Studio Max 2.2.4 (Modul ‘Defect detection’). Since the CT measurement provides volume data, a size determination based on the volume-equivalent diameter has been calculated. In addition a Feret diameter (termed ‘size’) was measured for each erodent and an area-equivalent diameter was calculated. The latter, however, was not always the largest area, but randomly distributed. DTU developed a setup for measuring simultaneously the particle velocity and size, which is based on an LED imaging system. The results are shown in the attached documents.

IND61 METROSION - NPL

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: IND61 METROSION - NPL

IND61 METROSION Metrology to enable high

temperature erosion testing

1

Deliverable Number

3.4.1 Lead Partner PTB

Deliverable Title

Measurement of erodent particles to determine size and size distribution

Contractual Delivery Date

Nov 14 Deliverable type

Data

Actual Delivery Date

Nov 14 Contributors PTB, RSE, BAM

Deliverable Details

In order to measure size and size distribution of erodents, three different methods have been applied and compared. The first was done by RSE by means of a light scattering method (e.g. Malvern FPIA 3000). Such a device analyses a projected 2D-image of the erodents to determine its size. The erodents are oriented (by means of a special flow mechanism) to give its largest area. The calculated size of the erodent is the area-equivalent diameter. RSE analysed the erodents Silica angular, EPRI Alumina, Metrosion Alumina and Fly Ash. The second method was based on an optical measurement, done by NPL. Here a digital image was taken from a set of particles with a microscope. After binarizing the image the area was measured by pixel counting and the area-equivalent diameter calculated. This was done for EPRI Alumina as well as for Metrosion Alumina. The third method was by means of an x-ray computed tomography. To this end the same type of erodents have been embedded in a resin and measured with a Nikon XT H 225 ST, with a voxel edge length of about 3.2 µm. Additionally a sample of Chromia erodents has been measured with a synchrotron CT (BessyII, Berlin, Germany) by BAM. The voxel edge length here was about 0.9 µm. The volume data were then analysed with the program VG Studio Max 2.2.4 (Modul ‘Defect detection’). Since the CT measurement provides volume data, a size determination based on the volume-equivalent diameter has been calculated. In addition a Feret diameter (termed ‘size’) was measured for each erodent and an area-equivalent diameter was calculated. The latter, however, was not always the largest area, but randomly distributed. DTU developed a setup for measuring simultaneously the particle velocity and size, which is based on an LED imaging system. The results are shown in the attached documents.

Page 2: IND61 METROSION - NPL

20 m

m

� Preparation of erodents

Task 3.4: Particle Size, Size Distribution and Sha pe

Ch. Rothleitner, U. Neuschaefer-Rube - METROSION Meeting, Risø, 25-26 Nov, 2014 15

Silicaangular

AluminaEPRI

AluminaMetrosion

Fly Ash

(heat shrink tube and PMMA glue)

20 m

m

Page 3: IND61 METROSION - NPL

� Measured with Nikon XT H 225 ST

� Voxel edge length 3.2 µm

� Data analysis with VG Studio Max (‚Defect detection‘)

Task 3.4: Particle Size, Size Distribution and Sha pe

Ch. Rothleitner, U. Neuschaefer-Rube - METROSION Meeting, Risø, 25-26 Nov, 2014 16

Silicaangular

AluminaEPRI

AluminaMetrosion

Fly Ash

Page 4: IND61 METROSION - NPL

Task 3.4: Particle Size, Size Distribution and Sha pe Silica angular

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

0

20

40

60

80

100

120

140

15,8

7

30,2

4

44,6

1

58,9

8

73,3

5

87,7

1

102,

08

116,

45

130,

82

145,

19

159,

56

173,

93

188,

29

202,

66

Häu

figke

itHäufigkeitKumuliert %

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

0

20

40

60

80

100

120

140

160

Häu

figke

it

HäufigkeitKumuliert %

µmµm

#particles:

Ch. Rothleitner, U. Neuschaefer-Rube - METROSION Meeting, Risø, 25-26 Nov, 2014 17

xA=(127.83 ± 1.11) µmxV=(111.94± 0.96) µm

Volume equivalent diameter Area equivalent diameter

Onlyvolumes > 64 voxels

Voxel edgelength 3.2 µm

#particles: 1720

Page 5: IND61 METROSION - NPL

Task 3.4: Particle Size, Size Distribution and Sha peEPRI Alumina

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

0

100

200

300

400

500

600

700

800

14,4

319

,50

24,5

829

,66

34,7

439

,81

44,8

949

,97

55,0

560

,12

65,2

070

,28

75,3

580

,43

85,5

190

,59

95,6

610

0,74

105,

82

Häu

figke

it HäufigkeitKumuliert %

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

0

100

200

300

400

500

600

700

800

15,9

518

,87

21,8

024

,73

27,6

630

,59

33,5

236

,44

39,3

742

,30

45,2

348

,16

51,0

954

,02

56,9

459

,87

62,8

065

,73

68,6

6

Häu

figke

it HäufigkeitKumuliert %

µmµm

Ch. Rothleitner, U. Neuschaefer-Rube - METROSION Meeting, Risø, 25-26 Nov, 2014 18

xV=(39.80 ± 0.05) µm xA=(46.10 ± 0.07) µm

Volume equivalent diameter Area equivalent diameter

Onlyvolumes > 64 voxels

Voxel edgelength 3.2 µm

14,4

319

,50

24,5

829

,66

34,7

439

,81

44,8

949

,97

55,0

560

,12

65,2

070

,28

75,3

580

,43

85,5

190

,59

95,6

610

0,74

105,

82

15,9

518

,87

21,8

024

,73

27,6

630

,59

33,5

236

,44

39,3

742

,30

45,2

348

,16

51,0

954

,02

56,9

459

,87

62,8

065

,73

68,6

6

µmµm

#particles: 17619

Page 6: IND61 METROSION - NPL

Task 3.4: Particle Size, Size Distribution and Sha pe

Volume equivalent diameter Area equivalent diameter

Metrosion Alumina

µm

µm

#particles:

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

0

20

40

60

80

100

120

140

160

16,5

430

,23

43,9

357

,62

71,3

285

,02

98,7

111

2,41

126,

1013

9,80

153,

4916

7,19

180,

8819

4,58

208,

2822

1,97

Häu

figke

it

HäufigkeitKumuliert %

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

0

20

40

60

80

100

120

140

160

15,8

725

,98

36,0

846

,19

56,2

966

,40

76,5

086

,61

96,7

110

6,82

116,

9212

7,03

137,

1414

7,24

157,

3516

7,45

Häu

figke

itHäufigkeit

Kumuliert %

Ch. Rothleitner, U. Neuschaefer-Rube - METROSION Meeting, Risø, 25-26 Nov, 2014 19

Volume equivalent diameter Area equivalent diameter

xA=(105.96 ± 0.71) µmxV=(85.78 ± 0.52) µm

Onlyvolumes > 64 voxels

Voxel edgelength 3.2 µm

#particles: 2230

Page 7: IND61 METROSION - NPL

Task 3.4: Particle Size, Size Distribution and Sha pe

Volume equivalent diameter Area equivalent diameter

Fly Ash

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

0

200

400

600

800

1000

1200

13,0

127

,28

41,5

655

,83

70,1

084

,37

98,6

511

2,92

127,

1914

1,46

155,

7417

0,01

184,

2819

8,56

Häu

figke

it

HäufigkeitKumuliert %

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

0

200

400

600

800

1000

1200

1400

15,8

727

,40

38,9

350

,45

61,9

873

,51

85,0

396

,56

108,

0911

9,61

131,

1414

2,67

154,

1916

5,72

Häu

figke

it

HäufigkeitKumuliert %

µmµm

#particles:

Ch. Rothleitner, U. Neuschaefer-Rube - METROSION Meeting, Risø, 25-26 Nov, 2014 20

Volume equivalent diameter Area equivalent diameter

xA=(24.71 ± 0.20) µmxV=(26.27 ± 0.16) µm

Onlyvolumes > 64 voxels

Voxel edgelength 3.2 µm

#particles: 4684

Page 8: IND61 METROSION - NPL

Task 3.4: Particle Size, Size Distribution and Sha pe

Chromia• Measured with Synchrotron CT

(BESSY2) by BAM• Voxel edge length 0.876 µm• Defect detection with VG Studio Max• Contains approx. 700 particles

Ch. Rothleitner, U. Neuschaefer-Rube - METROSION Meeting, Risø, 25-26 Nov, 2014 21

Page 9: IND61 METROSION - NPL

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

0

10

20

30

40

50

60

70

80

3,95

11,0

3

18,1

0

25,1

7

32,2

4

39,3

1

46,3

9

53,4

6

60,5

3

67,6

0

74,6

7

81,7

5

88,8

2

und …

Häu

figke

it

Häufigkeit

Kumuliert %

Task 3.4: Particle Size, Size Distribution and Sha pe

Volume equivalent diameter Area equivalent diameter

Chromia

µm µm0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

0

10

20

30

40

50

60

70

80

Häu

figke

itHäufigkeit

Kumuliert %

#particles:

Ch. Rothleitner, U. Neuschaefer-Rube - METROSION Meeting, Risø, 25-26 Nov, 2014 22

Volume equivalent diameter Area equivalent diameter

Onlyvolumes > 64 voxels

xA=(42.64 ± 0.64) µmxV=(38.38 ± 0.55) µm

200 µm Voxel edgelength 0.876 µm

#particles: 697

Page 10: IND61 METROSION - NPL

Silicaangular

EPRI Alumina

Metrosion Alumina

Fly Ash Chromia

µm µm µm µm µm

Volume-equivalentdiameter, x V

Mean / µm 111,94 39,80 85,78 24,71 38,38

Stdev / µm 40,01 5,99 24,46 10,97 14,42

Sterr / µm 0,96 0,05 0,52 0,16 0,55

Area-equivalentdiameter, x A

Mean / µm 127,83 46,10 105,96 26,27 42,64

Stdev / µm 46,21 9,40 33,47 13,88 16,86

Sterr / µm 1,11 0,07 0,71 0,20 0,64

Task 3.4: Particle Size, Size Distribution and Sha pe

Ch. Rothleitner, U. Neuschaefer-Rube - METROSION Meeting, Risø, 25-26 Nov, 2014 23

‚SizeX‘ Mean / µm 140,23 52,12 115,70 31,91 48,26

Stdev / µm 52,17 14,99 45,39 17,42 21,10

Sterr / µm 1,26 0,11 0,96 0,25 0,80

RSE Mean / µm 153,53 52,00 122,77 32,31

Stdev / µm

Sterr / µm

Voxel edgelength

3,2 µm 3,2 µm 3,2 µm 3,2 µm 0,9 µm

Page 11: IND61 METROSION - NPL

Erodent Particles – Alumina Optical Size Measurement

Particles are thresholded to obtain binary images of each particle.

The number of pixels in each particle are then counted up and then a centre of mass is calculated and the radius of the circle that encloses the same area as the particle is calculated. calculated.

The perimeter of the particle is then unwrapped and the local curvature is calculated at every point around the entire perimeter.

The curvature plot of all protruding sections is then integrated into a single number and multiplied by the estimated mass of the particle in order to obtain a “Weighted Factor” which is expected to be proportional to its potential to damage a surface when it impinges upon it..

Page 12: IND61 METROSION - NPL

Erodent

Light Scattering MethodX-ray Computed

TomographyOptical Analysis

d(0.1), µm d(0.5), µm d(0.9), µm Particle Size, µmEquivalent

Radius, µm

Equivalent

Diameter, µm

METROSION

Alumina78 123 191 100 73 146

EPRI Alumina 33 52 81 48 28 56

Page 13: IND61 METROSION - NPL

Size and Velocity

2 pulses Δt=1µs in the same frame

FOV size measurement area 3.24 x 2.41 mm

2 pulses Δt=1µs in 2 separate frame